北师大版六年级下册数学教案《变化的量》

合集下载

六年级下册数学教案-4.1 变化的量|北师大版

六年级下册数学教案-4.1 变化的量|北师大版

六年级下册数学教案-4.1 变化的量|北师大版一、教学目标1.理解变化是事物在不同时刻的状态差异。

2.理解“变化量”的概念,能用文字、图形及公式表示一个物体的变化量和平均变化速度。

3.运用所学知识解决生活中的实际问题。

二、教学重难点1.理解“变化量”的概念。

2.能用文字、图形及公式表示变化量和平均变化速度。

三、教学方法1.采用讲授、示例归纳法和练习相结合的教学方法;2.引导学生自发探究,自主发现规律。

四、教学准备1.文具、白板、黑板、彩笔等;2.教学课件、图表等。

五、教学过程1. 导入•教师出示一张照片,让学生描述它变化了什么。

•教师引导学生讨论,在日常生活中有哪些可以观察到的事物是在不断变化的。

2. 提出问题•教师引导学生将物体的变化分为哪几类:速度均匀变化、速度不均匀变化、突然变化和周期性变化。

•教师出示实际问题,引导学生讲解数据变化及速度变化情况。

3. 知识探究1.1 变化的概念•教师引导学生描述变化的概念:事物状态的改变,包括变化的距离和时间以及方向等。

•教师分组让学生探究变化的概念,当其完成探究后,展示其个人想法。

1.2 变化量的概念•教师从样例出发,讲解变化量的概念:在规定的时间、空间等受限条件下,物体状态发生了多少次改变。

•教师引导学生讲解改变时间和改变的物体量之间的关系,此过程步步深入,直至学生掌握为止。

1.3 平均变化速度的概念•教师引导学生描述平均变化速度的概念:物体在一定时间内的速度改变情况。

•教师引导学生计算平均变化速度公式,从公式推导中,学生更能够深入理解其概念。

4. 合作探究•教师让学生分好小组,将速度均匀变化、速度不均匀变化、突然变化和周期性变化进行分类后,每组思考一个与实际相近问题,用所学知识解决问题并展示更好的结果。

5. 总结•教师引导学生完成本节课的总结,理清变化的概念及变化量和平均变化速度。

•要求学生自己编写一组变化量题目,并在下一堂课教学前完成。

六、课堂小结•学生通过这节课的学习,理解了变化的概念及其分类,掌握了变化量和平均变化速度的概念及计算方法。

北师大版六年级数学下册《变化的量》教案

北师大版六年级数学下册《变化的量》教案

集体备课教案教学过程一、创设情境,引出“变化的量”师提问:小明真的变矮了么?(引发学生思考,进而引出“变化的量”这节内容。

)在这一年当中,尽管小明的身高在发生变化,不过小树的高度也在变化,当然小树上面的记号的高度也随着变化,只不过小明高度的增加没有这个记号增加的多。

小结:像小明的身高、树的高度、记号的高度在我们数学上把它称作一个个的量,因为它们在变化,所以我们称之为:“变化的量”——板书。

二、探索交流,初步分析体会变化的量活动一:师:生活中像这样变化的量还有很多,比如说妙想6岁之前的体重。

我们可以想象一下,妙想六岁之前的体重是怎样的?(越来越重。

)师提问:那我们怎么用数学的办法来表示呢?……(教师出示表格)淘气他是用列表的方法。

(板书:列表格)请同学们观察,在表格中有哪两种变化的量?生:有年龄和体重这两个变化的量。

(板书:体重和年龄)师生共同完整叙述:体重和年龄是一对变化的量。

师生共同分析表格中数据后,学生能发现年龄和体重都在变化,是在增加。

师:体重是怎样随着年龄的增长而变化的?(年龄增长了,体重增加了,体重随着年龄的增长而增长。

)师:说的真好!体重随着年龄的增长而增长。

那笑笑用什么方法表示出了这种变化的情况?(出示下图并板书:画图)(学生在教师的引导下学会怎样看图。

)师:怎么看这个图?生:先看横轴和纵轴。

师提问:各表示什么?(在这里横轴表示的是年变化而变化的图。

)教师引导学生观察并提问:师:图中有哪两个变化的量?(温度和时间——板书)师:同学们看着横轴上表示的时间,有没有感到奇怪的地方?(让学生发现有的时间比24还大,引起学生认知冲突。

)师追问:一天才24个小时,怎么会有比24还大的时间呢?(让学生明白那是第二天的时间。

)师:那你能分清楚哪是第一天的时间哪是第二天的时间吗?(根据旧知可以发现:从0时到24时是第一天的时间,从24时到48时是第二天的时间。

)师:同学们真会思考。

请完成图下面的三道题目。

4.1《变化的量》(教案) 六年级下册数学北师大版

4.1《变化的量》(教案) 六年级下册数学北师大版

4.1《变化的量》(教案)六年级下册数学北师大版一、教学目标1. 让学生理解变量和常量的概念,能够识别并区分变量和常量。

2. 培养学生观察、分析、归纳问题的能力,能够发现生活中的变量和常量。

3. 培养学生运用数学知识解决实际问题的能力,能够运用变量和常量的知识解决相关问题。

二、教学内容1. 变量的概念:变量是指数值可以变化的量。

2. 常量的概念:常量是指数值始终保持不变的量。

3. 变量和常量的区分:通过具体实例,让学生理解变量和常量的区别,并能够识别。

4. 变量和常量的应用:运用变量和常量的知识解决实际问题。

三、教学重点与难点1. 教学重点:理解变量和常量的概念,能够识别并区分变量和常量。

2. 教学难点:运用变量和常量的知识解决实际问题。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件。

2. 学具:学生用书、练习本、文具。

五、教学过程1. 导入:通过生活中的实例,引出变量和常量的概念,激发学生的学习兴趣。

2. 新课:讲解变量和常量的定义,通过具体实例让学生理解并区分变量和常量。

3. 练习:让学生独立完成练习题,巩固对变量和常量的理解。

4. 应用:讲解如何运用变量和常量的知识解决实际问题,让学生尝试解决相关问题。

5. 小结:总结本节课的主要内容,强调变量和常量的区别及在实际问题中的应用。

六、板书设计1. 《变化的量》2. 变量的概念、常量的概念、变量和常量的区分、变量和常量的应用。

七、作业设计1. 基础题:让学生完成练习册上的相关习题,巩固对变量和常量的理解。

2. 提高题:让学生运用变量和常量的知识解决实际问题,培养解决问题的能力。

八、课后反思本节课通过讲解变量和常量的概念,让学生理解并区分变量和常量,并能够运用相关知识解决实际问题。

在教学过程中,要注意通过具体实例让学生理解变量和常量的区别,注重培养学生的观察能力、分析能力和解决问题的能力。

在课后,要及时批改作业,了解学生对本节课内容的掌握情况,并对学生的疑难问题进行解答。

《变化的量》(教案)北师大版六年级下册数学

《变化的量》(教案)北师大版六年级下册数学

《变化的量》(教案)北师大版六年级下册数学今天我要为大家分享的教学内容是《变化的量》,这是北师大版六年级下册数学的一节重要课程。

一、教学内容本节课的教学内容主要包括变化的量的概念、图形的放大与缩小、以及比例尺的应用。

我们将通过具体例题和实际问题,让学生理解和掌握这些知识点。

二、教学目标通过本节课的学习,我希望学生能够理解变化的量的含义,掌握图形放大与缩小的方法,以及能够运用比例尺解决实际问题。

三、教学难点与重点本节课的重点是让学生理解和掌握变化的量的概念和图形放大与缩小的方法。

难点则是如何引导学生运用比例尺解决实际问题。

四、教具与学具准备为了帮助学生更好地理解和掌握知识,我准备了一些实际物品,如尺子、图纸等,让学生能够直观地感受图形放大与缩小的过程。

同时,我也准备了一些练习题,帮助学生巩固所学知识。

五、教学过程1. 情景引入:我通过展示一些实际问题,如地图上的距离和实际距离的关系,引出变化量的概念。

2. 知识讲解:我通过具体的例题和图示,讲解图形放大与缩小的方法和比例尺的应用。

3. 随堂练习:我设计了一些练习题,让学生在课堂上进行实际操作和解答,以巩固所学知识。

4. 作业布置:我布置了一些相关的练习题,让学生在课后进行自主学习和巩固。

六、板书设计板书设计主要包括变化的量的概念、图形放大与缩小的方法和比例尺的应用,以便学生能够清晰地理解和掌握。

七、作业设计1. 请解释什么是变化的量?答案:变化的量是指在某一过程中,数值发生变化的量。

2. 请解释什么是图形放大与缩小?答案:图形放大与缩小是指将原图形的每条边按一定比例放大或缩小,得到一个新的图形。

3. 请解释比例尺的应用?答案:比例尺是表示图上距离与实际距离的比例关系,通过比例尺可以计算图上的距离与实际距离的关系。

八、课后反思及拓展延伸本节课通过实际问题引入,让学生理解和掌握变化的量的概念和图形放大与缩小的方法,以及比例尺的应用。

在教学过程中,我注意引导学生进行实际操作和解答练习题,以巩固所学知识。

六年级数学下《变化量》教学设计

六年级数学下《变化量》教学设计

六年级数学下《变化量》教学设计北师大版六年级数学下《变化量》教学设计(精选6篇)作为一名人民教师,往往需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。

优秀的教学设计都具备一些什么特点呢?下面是店铺整理的北师大版六年级数学下《变化量》教学设计,仅供参考,欢迎大家阅读。

六年级数学下《变化量》教学设计篇1教学内容:变化的量教材简析:“变化的量”是学习正比例与反比例的起始课。

教材通过系列情境,结合日常生活中的问题,让学生体会变量和变量之间相互依存的关系,并尝试对这些关系进行大致的描述,从而拓宽学生理解正比例、反比例的背景。

教学目标:知识技能:结合具体的数学情境认识“变化的量”,并通过描述活动,了解其中一个变量是怎样随着另一个变量而变化的。

数学思考:通过举例与交流活动,找到生活中互相依存的变量,描述日常生活中一个变量是怎样随着另一个变量的变化而变化的。

问题解决:能从图表中获取信息,正确表述量的变化关系;或用数学关系式表示两个变量之间的关系。

情感态度:知道列表与画图都是表示变量关系的常用的方法,积累表征变量的数学活动经验;从大量生活情境中获取数学学习的兴趣和动力。

教学过程:一、情境引入1、出示一则新闻信息:xxxx年11月14日零时,国家发改委发布了最新的国内成品油最高零售限价,受国际油价持续大跌的影响,国内也出现了罕见的油价“八连跌”现象。

2、交流:你知道油价持续下跌会产生怎样的影响吗?3、思考:从这些影响中你发现了什么?(生活中存在着大量相互依存的变量)4、揭示课题:今天我们就来研究像这样相互依存的变化的量。

(板书课题)二、探究新知1、发现生活中特定时期相互依存的变化的量出示妙想6岁前的体重变化的文字信息。

(1)提问:你有什么方式能将这些信息更加简洁明了的表示出来吗?(2)观察:出示淘气和笑笑呈现信息的表格和图,口答哪些量在发生变化?再说说用表格和图呈现两个变量分别有什么优点。

六年级下册数学教案-4.1变化的量|北师大版

六年级下册数学教案-4.1变化的量|北师大版

六年级下册数学教案-4.1变化的量 | 北师大版教学目标1. 知识与技能:使学生能够理解变量概念,识别变量间的相互关系,并能在实际问题中应用变量思维。

2. 过程与方法:通过观察、实验、分析等数学活动,培养学生独立思考与合作探究的能力,增强其数学抽象和逻辑推理素养。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养其探究精神和科学态度,增强解决实际问题的自信心。

教学内容本节课主要介绍变量的概念,包括常量与变量的区别,以及如何在实际情境中识别和应用变量。

学生将通过实例分析,探索变量间的相互关系,并学习如何表达这些关系。

教学重点与难点重点:变量概念的理解与应用。

难点:变量间关系的识别与表达。

教具与学具准备教具:多媒体投影仪、变量关系示例图表。

学具:练习本、直尺、圆规。

教学过程1. 导入:通过日常生活中的实例引入变量概念,如温度随时间的变化等,激发学生兴趣。

2. 探究活动:小组讨论:学生分组讨论,分享各自对变量的理解。

实例分析:分析不同情境中的变量,如物体运动中的距离与时间关系。

数学实验:设计简单的实验,观察变量间的变化,如改变输入电压观察灯泡亮度的变化。

3. 知识讲解:教师对变量概念进行系统讲解,强调常量与变量的区别,并通过示例说明变量间的关系。

4. 互动练习:通过课堂练习,让学生应用变量知识解决问题,加深理解。

板书设计板书将围绕变量概念、变量间关系以及变量在实际问题中的应用进行设计,通过图表和示例清晰展示教学内容。

作业设计设计相关的习题,要求学生运用变量知识解决实际问题,如计算速度与时间的关系等。

安排探索性作业,鼓励学生观察生活中的变量实例,并记录下来。

课后反思教师应反思教学过程中的有效性,包括学生的参与度、理解程度以及教学方法的适用性。

根据学生的反馈和学习情况,调整教学策略,以便更好地达到教学目标。

通过本节课的学习,学生不仅掌握了变量教学重点与难点详细补充教学重点案例研究:选择几个与学生生活密切相关的案例,如气温变化、植物生长与时间的关系等,让学生观察并记录数据,分析变量之间的关系。

北师大版六年级数学下册教案-4.1变化的量

北师大版六年级数学下册教案-4.1变化的量

北师大版六年级数学下册教案-4.1变化的量教学目标1.了解变化的概念,掌握有关描述变化的语言和方法;2.学会用一次函数公式解决日常问题。

教学重点和难点1.理解变化的含义;2.掌握描述变化的语言和方法;3.熟练掌握一次函数的解决方法。

教学内容及过程课前导入教师通过一个小视频或者实物拿来说明,在现实生活中,很多物品都会发生变化,通过变化这一现象,我们可以解决很多问题。

1. 变化及其含义1.1 变化的概念教师介绍变化的概念,指出变化是指事物发现的演变过程。

为寻求问题的解决方法,有时需要对不同的量(例如时间、物质、空间等)之间的相互关系进行观察,同时也要考虑它们之间的变化关系。

1.2 变化的类型教师介绍变化的类型,指出变化可以分为周期性变化和非周期性变化。

其中,周期性变化是指在一定的时间范围内,某种量呈现出规律性的周期性变化,例如季节变化、月相变化等等;非周期性变化则是指某种量的变化不规律,没有明显的周期性特征。

2. 描述变化的语言和方法2.1 描述变化的语言教师介绍描述变化的语言,包括“增加”、“减少”、“相等”、“变化率”等等。

2.2 描述变化的方法教师介绍描述变化的方法,包括:(1)用绝对量来描述变化,例如用“增加100元”来描述一笔收入的变化;(2)用相对量来描述变化,例如用“增加了50%”来描述一笔费用的变化;(3)用量的增减率来描述变化,使用以下公式:变化率= 变化量 / 原来的量。

3. 一次函数解决日常问题3.1 一次函数的概念教师介绍一次函数的概念,指出一次函数是指函数中的未知量只有一次方的函数,通常的表示方法为 y = kx + b。

(其中,k为斜率,b为截距。

)3.2 一次函数的解题步骤教师介绍一次函数的解题步骤,主要包括以下几步:(1)确定自变量和因变量;(2)通过题目中的信息,列出函数的解析式;(3)确定函数图像的斜率和截距;(4)按照函数图像,计算出题目中需要求解的值。

4. 例题分析举例分析一道典型的例题,让学生熟练掌握一次函数的解题方法。

六年级下册数学教案-变化的量-北师大版

六年级下册数学教案-变化的量-北师大版

六年级下册数学教案变化的量北师大版一、教学目标1. 让学生理解变量和函数的概念,掌握变量之间的关系,能运用函数表达事物之间的数量关系。

2. 培养学生观察、分析、归纳和解决问题的能力,提高学生的数学思维和数学素养。

3. 激发学生对数学学习的兴趣,培养学生主动探究、合作交流的良好学习习惯。

二、教学内容1. 变量的概念:变量是指数值可以变化的量,通常用字母表示。

2. 函数的概念:函数是变量之间的一种关系,其中一个变量的值取决于另一个变量的值。

3. 变量之间的关系:包括正比例关系、反比例关系、线性关系等。

4. 函数的表达方式:包括解析式、列表法、图象法等。

三、教学重点与难点1. 教学重点:理解变量和函数的概念,掌握变量之间的关系,能运用函数表达事物之间的数量关系。

2. 教学难点:如何引导学生观察、分析、归纳和解决问题,培养学生的数学思维和数学素养。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过生活中的实例,引出变量和函数的概念,激发学生的兴趣。

2. 新课:讲解变量和函数的定义,举例说明变量之间的关系,引导学生运用函数表达事物之间的数量关系。

3. 练习:布置练习题,让学生独立完成,巩固所学知识。

4. 讲解:针对学生的错误,进行讲解和指导,确保学生掌握正确的解题方法。

6. 作业布置:布置课后作业,巩固所学知识。

六、板书设计1. 变化的量2. 目录:教学目标、教学内容、教学重点与难点、教具与学具准备、教学过程、板书设计、作业设计、课后反思3. 根据教学过程,逐步展示变量和函数的概念、变量之间的关系、函数的表达方式等内容。

七、作业设计1. 基础题:让学生运用函数表达事物之间的数量关系,巩固所学知识。

2. 提高题:设计一些实际问题,让学生运用所学知识解决,培养学生的解决问题的能力。

3. 思考题:引导学生深入思考,培养学生的数学思维和数学素养。

《变化的量》(教案)北师大版六年级下册数学

《变化的量》(教案)北师大版六年级下册数学

变化的量1. 教学目标通过本节课的学习,学生将能够:1.理解变化量的概念;2.掌握表示变化量的方法;3.能够应用变化量进行简单计算。

2. 教学重点与难点2.1 教学重点1.学习变化量的概念;2.掌握表示变化量的方法。

2.2 教学难点1.理解变化量和原始量之间的关系。

3. 教学内容3.1什么是变化量?变化量是表示量在时间或空间上的改变,它是描述某一事物从一个特定状态到另一个特定状态所经历的变动的大小。

比如,你一个月内体重减轻了3公斤,那么你的体重的变化量就是3公斤。

3.2 表示变化量的方法表示变化量的方法一般有以下几种:1.用加减法表示变化量。

如:张三一天内跑了3公里,第二天跑了5公里,那么张三两天内跑的总距离为3公里+5公里=8公里,其中第二天比第一天多跑了5-3=2公里,这个2公里就是张三的跑步变化量。

2.用比数表示变化量。

如:在一个公司的10个员工中,3个员工去了新公司,那么这个公司员工的变化量是(3/10)*100%=30%。

3.用比较词表示变化量。

如:小明的成绩从90分提高到了95分,这个提高了5分就是小明的成绩变化量。

完整示例:小明的成绩从90分提高到了95分,这个提高了5分就是小明的成绩变化量。

3.3 应用变化量进行简单计算在实际应用中,我们可以通过变化量进行简单计算,例如:1.A一天内走了2公里,B一天内走了3公里,两人总共走了5公里,求A和B的步行变化量。

解法:A的走路变化量为2公里,B的走路变化量为3公里。

2.一个公司员工数为100人,新招收了15个员工,那么员工数的变化量为多少?解法:员工数的变化量为(15/100)*100%=15%。

4. 教学步骤4.1 情境导入老师可以通过实际生活中的例子,引导学生认识变化量的概念。

例如:最近小明的体重减轻了5公斤,小红的体重却增加了2公斤,那么小明和小红的体重变化量分别是多少?4.2 观察实验老师可以让学生观察变化量的实验,例如:小明手里有一个5元纸币和一个10元纸币,现在他把10元纸币拿出来,那么小明的纸币变化量是多少?4.3 认知讲解老师可以基于上述实验,引导学生认识变化量和原始量之间的关系。

《变化的量》(教案)北师大版六年级下册数学

《变化的量》(教案)北师大版六年级下册数学

《变化的量》(教案)北师大版六年级下册数学一、教学目标1. 让学生理解变量和常量的概念,掌握变量和常量之间的关系。

2. 培养学生观察、分析、归纳问题的能力。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 变量和常量的概念。

2. 变量与常量的关系。

3. 实际问题中变量和常量的应用。

三、教学重点与难点1. 教学重点:变量和常量的概念,变量与常量的关系。

2. 教学难点:实际问题中变量和常量的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、笔。

五、教学过程1. 导入:通过生活中的实例,引导学生关注变量和常量。

2. 新课:讲解变量和常量的概念,举例说明变量与常量的关系。

3. 案例分析:分析实际问题中变量和常量的应用,引导学生运用所学知识解决问题。

4. 练习:布置练习题,让学生巩固所学知识。

5. 小结:总结本节课的主要内容,强调变量和常量的关系。

6. 作业布置:布置课后作业,让学生运用所学知识解决实际问题。

六、板书设计1. 板书《变化的量》2. 板书提纲:a. 变量和常量的概念b. 变量与常量的关系c. 实际问题中变量和常量的应用七、作业设计1. 基础题:让学生判断下列各题中的变量和常量。

2. 提高题:让学生运用所学知识解决实际问题。

3. 拓展题:让学生探讨变量和常量在实际生活中的应用。

八、课后反思本节课通过讲解变量和常量的概念,让学生理解了变量与常量的关系,并能运用所学知识解决实际问题。

在教学过程中,要注意引导学生观察、分析、归纳问题,培养学生的数学思维能力。

同时,要加强课后作业的布置与批改,及时了解学生的学习情况,为下一步教学做好准备。

重点关注的细节是“教学过程”部分。

以下是详细的补充和说明:教学过程是整个教案中最为关键的部分,它直接关系到学生对知识的理解和掌握。

在本节课中,教学过程的设计应该充分考虑到学生的认知特点,通过生活实例、案例分析、练习等环节,引导学生逐步理解变量和常量的概念,以及它们之间的关系。

六年级下册数学优秀教案-《变化的量》北师大版(2023秋)

六年级下册数学优秀教案-《变化的量》北师大版(2023秋)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“变化的量在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
《变化的量》一课的核心素养目标主要包括:培养学生运用数学语言描述现实世界中变化的量的能力,增强其数学抽象和模型构建的核心素养;通过探索变量间的关系,发展学生的数据分析与逻辑推理能力,提升其解决实际问题的数学应用素养;引导学生运用所学的变化规律,进行问题发现与求解,培养其创新意识和问题解决的核心素养。在教学过程中,关注学生主动探究、合作交流的学习方式,以促进其数学思维能力与学科素养的全面提升。
实践活动环节,学生们分组讨论和实验操作都表现得相当积极。他们通过自己的探索,发现了很多变化的量的有趣现象。但在小组讨论中,我也发现有些学生还不够自信,不敢大胆地表达自己的观点。我想在今后的教学中,应该更多地鼓励他们,提高他们的自信心。
让我印象深刻的是,在学生小组讨论环节,大家提出了很多有关变化的量在实际生活中的应用,这让我看到了他们思维的活跃。但同时,我也意识到,对于一些开放性问题的引导还需加强,以便让学生们的思考更加深入。
(3)探索变量之间的关系:能够通过实际情境,探索并描述变量之间的关系,培养数学模型构建能力。
举例:购物时,总价与商品单价、数量的关系。
(4)解决实际问题:运用所学的变化规律解决实际问题,提高数学应用能力。
举例:根据家庭成员身高预测孩子未来身高,运用比例关系进行预测。
2.教学难点

北师大版六年级下册数学 变化的量 教案(教学设计)

北师大版六年级下册数学 变化的量 教案(教学设计)

变化的量教学目标:知识与能力:结合具体情境,体会生活中存在着大量互相依赖的变量。

过程与方法:在具体情境中,尝试用自己的语言描述两个变量之间的关系。

教学重点:体会生活中存在着大量互相依赖的变量。

教学难点:在具体情境中,尝试用自己的语言描述两个变量之间的关系。

教学准备:小黑板教法:引导法学法:自主探究教学过程:(一)创设情境,导入新课。

1、用手势表示出自己从出生到现在身高的变化。

2、用手势表示出自己从出生到现在体重的变化。

3、身高、体重都会变化,这些都是变化的量。

(板书课题)(二)观察表格,感知变量。

1、出示小明的体重变化情况表。

这是小明的体重变化情况表。

(1)从表中你知道了什么信息?(2)上表中哪些量在发生变化?(3)请用折线统计图画出小明的体重变化情况。

(4)说一说小明10周岁前的体重是如何随年龄增长而变化的?2、说一说。

(1)我发现()随()的增加而增加。

(2)我发现()随()的减少而减少。

3、通过你们举的例子,可以发现什么?(三)通过读图,感受变量。

1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

2、出示骆驼体温随时间的变化统计图。

3、读懂统计图。

(1)从图中你知道了什么信息?(2)一天中,骆驼体温最高是多少?最低是多少?4、感受量的周期变化。

(1)一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?(2)第二天8时骆驼的体温与前一天8时的体温有什么关系?(3)第二天,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第三天呢?(4)每天骆驼的体温总是怎样变化的?(四)建立模型,感悟变量。

1、出示蟋蟀叫的次数与气温之间关系的情境。

2、你能用式子表示这个近似关系吗?即气温h=t÷7+3。

3、理解式子中量的变化。

如果蟋蟀叫了7次,这时的气温大约是多少?如果蟋蟀叫了14次,这时的气温大约是多少?如果蟋蟀叫了28次呢?你能发现蟋蟀叫的次数与气温之间是怎样变化的?4、举出而变化的例子。

北师大版六年级数学下册教案-4.1变化的量

北师大版六年级数学下册教案-4.1变化的量

北师大版六年级数学下册教案-4.1变化的量一、教学目标1.了解变化的量的概念及其数学符号。

2.培养学生观察问题、分析问题、解决问题的能力。

3.激发学生学习数学的兴趣。

二、教学重点和难点1.重点:掌握变化的量的概念及其数学符号。

2.难点:能够把所学习的知识应用到实际问题中。

三、教学过程1.导入新知识老师出示一段校园内道路上人的行走速度的视频并介绍视频中拍摄的现象。

让学生通过视频中的人的行走速度来了解变化的量。

2.引入概念1.引入概念“变化的量”及其符号。

2.让学生说说生活中常见的变化的量。

3.概念讲解1.让学生就已经学过的知识,回忆出变化的量的特征。

2.通过校园内道路上人的行走速度的视频来阐述变化的量的概念。

4.练习1.练习板书,规定好变化的量的正负。

以速度的变化作为例。

例如,一辆车以60公里/小时的速度向北行驶,又将速度减小到30公里/小时,这个时候速度的变化量应该为-30公里/小时。

而如果一辆车由60公里/小时的速度加快到90公里/小时,速度的变化量就是30公里/小时。

2.完成练习册中的练习。

5.拓展将视频中校园内道路上人的行走速度的变化场景引用到工艺流程加工工件的例子中,并让学生谈谈变化的量的正负及其意义。

6.小结1.询问学生学习变化的量后的感悟。

2.总结变化的量的概念及其数学符号。

3.让学生给出所学知识在现实中的其他应用场景。

四、教师评价本课时教学内容新颖并且充满趣味性,让学生在观察问题、分析问题、解决问题中逐渐掌握了变化的量的概念及其数学符号。

在教学过程中,也发现一些问题:有些学生在完成作业时常常忽略符号的正负,因此在日后的实践中,需要注意对学生符号的正负认识的纠正。

六年级下册数学教案-4.1 变化的量|北师大版

六年级下册数学教案-4.1 变化的量|北师大版

六年级下册数学教案-4.1 变化的量 | 北师大版一、教学目标1.了解变化量的定义及其意义;2.能够根据变化量的定义,解答数学问题;3.能够通过实例,理解变化量的意义和作用。

二、教学重点1.变化量的概念和定义;2.变化量与数学问题的应用。

三、教学难点1.变化量的意义和作用;2.使用变化量解决数学问题。

四、教学过程1. 导入新知识教师出示一段视频,介绍新的数学概念——变化量,并且提问学生,要求学生思考变化量的定义并回答问题。

问题:什么是变化量?变化量有什么作用?2. 讲解变化量的定义通过现实生活中的实例,引出变化量的概念,例如:小明从家里走到学校,他要走200米,他在学校呆了一段时间后,又走回到家里。

这个过程中,小明实际上走了多少米?这个距离的差,就是小明的变化量。

教师向学生解释:变化量是指某个物体在两个时间或空间点之间发生的变化的量。

举例来说,一辆汽车从A地驶向B地,这个汽车所行驶的路程就是它的变化量,一个地区在某段时间内的人口增减量,也可以表示为它的变化量。

3. 要求学生进行自主探究教师提示问题:对于一件事物的变化,我们能否用一个数值来表示?如果可以,这个数值怎样表示?要求学生进行自主探究,并回答问题。

4. 变化量的计算通过实际例子进行讲解:小明在上学路上,他走了60步,这段路程的长度是200米;下学路上,他走了50步,这段路程的长度是150米。

假设小明在去学校的路上用的时间跟回家路上用的时间是一样长的,请问小明这次走路的总长和总步数?教师通过讲解此例子,引导学生理解如何使用变化量来解决数学问题。

5. 同步练习练习1:一个人在8点钟时站在教室门口,如果他到9点钟时已经走进教室10次,这个人走进教室的次数的变化量是多少?练习2:学校食堂的废水一直流到污水处理厂,每小时流量是20立方米。

如果在一天内废水的流量增加了30%,那么这个增加量对应的变化量是多少?6. 提问请简述变化量的定义,以及变化量在数学上的应用。

六年级下册数学教案-4.1变化的量 北师大版

六年级下册数学教案-4.1变化的量 北师大版

六年级下册数学教案-4.1变化的量一、教学目标1. 知识目标•掌握变化的概念,能够理解和描述变化量的大小和方向;•理解变化量的计算方式及其在实际问题中的应用;•掌握增量和减量的概念,能够进行增量和减量的计算。

2. 能力目标•培养学生观察问题、提出问题、解决问题的能力;•提高学生分析和解决实际问题的能力。

3. 情感目标•培养学生认真负责的态度;•培养学生团结合作、积极参与课堂活动的精神。

二、教学重点•变化的概念和计算方式;•增量和减量的概念和计算方法。

三、教学难点•将变化抽象化,从实际问题中抽象出变化的概念;•通过实际问题引导学生进行变化量的计算,加深对变化的理解。

四、教学方法•案例教学法;•课堂讲解法;•问题解决法。

五、教学过程1. 导入环节•向学生介绍变化的概念:变化是指某个物体或事物的量在时间或空间上发生的不同状态,包括增和减两种情况。

2. 讲解环节•让学生观察实际问题并提出问题,引导学生分析并提出假设;•通过对问题的分析和假设的验证,引导学生理解变化量的计算方式;•引导学生理解增量和减量的概念,逐步掌握增量和减量的计算方法。

3. 练习环节•让学生根据实际情况进行增量和减量的计算练习;•让学生自主设计实际问题,进行变化量的计算。

4. 课堂总结•对本节课的知识点进行总结;•对学生练习中常出现的错误进行纠正和指导。

六、课后作业•练习册上的相关练习题;•自主设计实际问题,进行变化量的计算。

七、教学反思本节课通过对实际问题的引导,让学生了解变化的概念和计算方法,并通过实例让学生深入理解增量和减量的概念和计算方法。

同时,让学生自主设计实际问题,进行变化量的计算,提高了学生的自主学习能力和解决问题的能力。

但是在授课过程中,还需要更多思考如何在知识点的讲解中加入生动有趣的案例,使学生更容易理解和接受知识。

4.1《变化的量》(教案)六年级下册数学北师大版

4.1《变化的量》(教案)六年级下册数学北师大版

4.1《变化的量》(教案)六年级下册数学北师大版教案:4.1《变化的量》一、教学内容本节课的教学内容来自于北师大版六年级下册数学教材,第4章的第1节《变化的量》。

本节课主要让学生理解变化的量及其相关概念,包括正比例和反比例的关系。

通过实例让学生了解两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量;如果这两种量相对应的两个数的乘积一定,这两种量就叫做反比例的量。

二、教学目标1. 让学生理解变化的量,掌握正比例和反比例的概念。

3. 培养学生运用数学知识解决实际问题的能力。

三、教学难点与重点1. 教学难点:正比例和反比例的概念及其应用。

2. 教学重点:让学生通过实例,理解并掌握正比例和反比例的关系。

四、教具与学具准备1. 教具:PPT、黑板、粉笔。

2. 学具:笔记本、练习题。

五、教学过程1. 实践情景引入:上课之初,我提出一个问题:“同学们,你们在生活中有没有遇到过这样的情况,两个数的变化规律是怎样的?”接着,我通过一个实例,讲解两种相关联的量,一种量变化,另一种量也随着变化的情况。

2. 讲解正比例和反比例的概念:在学生理解变化的量的基础上,我讲解正比例和反比例的概念。

正比例是指两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值一定,这两种量就叫做成正比例的量。

反比例是指两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的乘积一定,这两种量就叫做反比例的量。

3. 例题讲解:我选取一些典型的例题,让学生通过观察、分析、归纳,理解并掌握正比例和反比例的关系。

在讲解过程中,引导学生运用数学规律解决问题。

4. 随堂练习:针对讲解的例题,我设计一些随堂练习题,让学生当场练习,巩固所学知识。

同时,我会对学生的练习情况进行及时反馈,解答他们的疑问。

5. 课堂小结:六、板书设计1. 正比例:两种相关联的量,一种量变化,另一种量也随着变化,相对应的两个数的比值一定。

北师大版数学六年级下册4.1《变化的量》教学设计

北师大版数学六年级下册4.1《变化的量》教学设计

北师大版数学六年级下册4.1《变化的量》教学设计一. 教材分析《变化的量》这一节内容,主要让学生初步了解生活中事物的变化,学会用图表来表示事物的变化情况,从而培养学生的数据收集、整理、分析能力。

教材通过生动的实例,让学生感受变化中的数量关系,体会图标在表示变化中的作用。

二. 学情分析六年级的学生已经具备了一定的数据收集、整理和分析的能力,对生活中的变化也有了一定的认识。

但在表示变化方面,学生的经验还不够丰富,需要通过实例来进一步拓展他们的思维。

三. 教学目标1.让学生理解生活中事物的变化,感受变化中的数量关系。

2.学会用图表来表示事物的变化情况。

3.培养学生的数据收集、整理、分析能力。

4.培养学生的合作交流意识。

四. 教学重难点1.重点:让学生感受变化中的数量关系,学会用图表表示事物的变化。

2.难点:如何引导学生发现变化中的规律,培养学生的数据分析能力。

五. 教学方法采用情境教学法、合作交流法、实例分析法等,让学生在实际操作中感受变化,学会用图表表示变化。

六. 教学准备1.准备相关的生活实例。

2.准备图表制作工具,如纸张、彩笔等。

3.准备计时器,用于记录时间。

七. 教学过程1.导入(5分钟)利用生活中的实例,如天气的变化、物体体积的变化等,引导学生关注变化中的数量关系。

让学生举例说明,并尝试用图表来表示这些变化。

2.呈现(10分钟)呈现一组数据,如某班级一周内的出勤情况。

让学生观察数据,尝试发现其中的变化规律。

引导学生用图表来表示这些变化。

3.操练(10分钟)让学生分组,每组选择一个生活实例,如家庭用电量、班级成绩变化等,进行数据收集、整理和分析。

要求每组用图表来表示变化情况。

4.巩固(10分钟)让学生分享自己组的数据分析成果,讨论不同图表在表示变化中的优缺点。

引导学生发现变化中的规律,培养学生的数据分析能力。

5.拓展(10分钟)让学生尝试解决一些实际问题,如根据图表预测未来的变化趋势等。

引导学生运用所学的数据分析方法,解决实际问题。

《变化的量》(教案)2023-2024学年数学六年级下册北师大版

《变化的量》(教案)2023-2024学年数学六年级下册北师大版

《变化的量》(教案)20232024学年数学六年级下册北师大版教案:《变化的量》一、教学内容本节课的教学内容来自于北师大版数学六年级下册第115页至116页。

这部分内容主要介绍了变化的量,包括变量、常量的概念,以及如何用数学式子表示变化的过程。

通过本节课的学习,学生将能够理解变量和常量的概念,学会用数学式子表示变化的过程。

二、教学目标本节课的教学目标有三点:1. 让学生理解变量和常量的概念,能够识别生活中的变化量。

2. 让学生学会用数学式子表示变化的过程。

3. 培养学生的观察能力、分析能力和解决问题的能力。

三、教学难点与重点教学难点:如何让学生理解变量和常量的概念,以及如何用数学式子表示变化的过程。

教学重点:让学生能够识别生活中的变化量,并用数学式子表示出来。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:练习本、笔。

五、教学过程1. 导入:通过一个简单的例子引入本节课的主题,例如:“同学们,你们有没有发现,在我们日常生活中,有些东西是会变化的,有些东西是不会变化的?比如说,我们的身高会随着年龄的增长而变化,但是,圆的周长和半径的比值是一个固定的数,不会变化。

那么,我们怎么来表示这些变化的东西呢?这就是我们今天要学习的变量和常量。

”2. 讲解:详细讲解变量和常量的概念,以及如何用数学式子表示变化的过程。

通过举例子的方式,让学生更好地理解这些概念。

3. 练习:让学生做一些练习题,巩固所学知识。

六、板书设计板书设计如下:变化的量变量:(举例)常量:(举例)如何表示变化的过程:(举例)七、作业设计1. 请举几个生活中的变化量的例子,并用数学式子表示出来。

答案:如,一个人的体重随时间的变化,可以用 W = 50 + 2t 表示,其中 W 表示体重,t 表示时间(年)。

2. 请解释一下变量和常量的概念。

答案:变量是指在变化的过程中,数值发生变化的量;常量是指在变化的过程中,数值不发生变化的量。

八、课后反思及拓展延伸课后反思:拓展延伸:除了本节课学习的变量和常量,我们还可以进一步探讨其他相关的数学概念,如函数、方程等。

北师大版六年级数学下册《变化的量》教案

北师大版六年级数学下册《变化的量》教案

北师大版六年级数学下册《变化的量》教案一、教材分析:本节课是北师大版小学数学六年级下册第四单元正比例与反比例《变化的量》。

通过这一单元的学习,学生将会了解到生活中存在着许多与变化相关的量,并且这些量之间可能存在着正比例或反比例的关系。

学生将通过实际问题的解决,培养数学思维和分析问题的能力。

二、教学目标:1. 让学生体会生活中存在着大量互相依存的变量。

2. 培养学生尝试用自己的语言描述两个变量之间关系的能力。

三、教学重点和教学难点:教学重点:1. 体会生活中存在着大量互相依存的变量。

2. 尝试用自己的语言描述两个变量之间的关系。

教学难点:尝试用自己的语言描述两个变量之间的关系。

四、学情分析:学生已经学习过正比例与反比例的概念,对于直线图的绘制和读取有一定的基础。

他们能够进行简单的数学运算,并且具备一定的分析问题和解决问题的能力。

然而,学生在自己描述两个变量之间关系的能力上可能还需要进一步培养和训练。

五、教学过程:1. 导入老师呈现一个种植花朵的场景,花朵的生长与阳光的照射时间有关。

老师引导学生观察图片,提问:"你们认为花朵的生长和阳光照射时间之间有什么关系?" 学生积极参与回答,例如:"阳光照射时间越长,花朵生长得越好。

" 老师鼓励学生表达自己的观点,并引导他们思考为什么会有这样的关系。

2. 概念解释老师:现在我们来学习正比例和反比例的概念。

请看板书上的定义。

正比例是指两个变量之间的关系,当一个变量增加时,另一个变量也相应增加;反比例则是指两个变量之间的关系,当一个变量增加时,另一个变量相应减少。

这两个概念对于我们理解变量之间的关系非常重要。

例1:小明每天走的路程和时间成正比,每走1小时,他可以走30公里。

这意味着,如果他增加走的时间,路程也会相应增加。

比如,如果他走2小时,根据正比例的关系,我们可以计算出他能走多远呢?学生1:他每小时走30公里,所以走2小时的话,他应该能走60公里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版六年级下册数学教案
《变化的量》
教学目标
1、结合具体情境,体会生活中存在着大量互相依赖的变量。

2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。

教学重点
结合具体情境,体会生活中存在着大量互相依赖的变量并尝试用自己的语言描述两个变量之间的关系。

教学过程
一、创设情境,导入新课。

课件出示一个人从婴儿、幼儿、儿童的成长变化图,让学生观察,并说一说图中的变化情况。

1、用手势表示出自己从出生到现在身高的变化。

2、用手势表示出自己从出生到现在体重的变化。

3、师:身高、体重都会变化,这些都是变化的量。

(板书课题)
在生活中,很多事物在发生变化。

如:每天的气温、人的体温等。

有时候,一个量的变化能引起另一个量的变化。

比如:人的身高一般会随着年龄的变化而变化,汽车行驶的路程会随着时间的变化而变化,我们把这些变化的量,称之为“变量”。

今天这节课,我们就一起来认识变化的量以及它们之间的变化关系。

二、观察表格,感知变量。

淘气和笑笑分别用表格和图表示了妙想6岁前的体重变化情况。

我们一起来看一看。

出示图片,教师引导学生观察,鼓励学生积极发言。

1、从表中你知道了什么?
2、观察表中的数据,哪些量在发生变化?
3、年龄和体重,谁随着谁的变化而变化?
4、说一说妙想6岁前的体重是如何随年龄增长而变化的?
5、体重一直会随年龄的增长而变化吗?
师:在上表中,有体重和年龄两个变量,而且随着年龄的增长,体重也在增长,我们就说体重和年龄是一组相关联的量。

(板书:相关联的量)
三、自主探究,感悟变量。

(一)活动一:骆驼的体温
教师引导学生自主观察骆驼体温随着时间变化统计图,讨论、交流下列问题。

1、图中所反映的是哪两个变化的量?
2、横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。

3、一天中,骆驼的体温最高是多少?最低是多少?
4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
5、第二天8时在图上是哪一个时刻?第二天8时骆驼的体温与前一天8时的体温有什么关系?
6、第三天12时骆驼的体温是多少?
7、骆驼的体温有什么变化的规律吗?
教师小结:骆驼体温随着时间变化而呈周期性的变化。

(二)活动二:蟋蟀的叫声
刚才我们了解到骆驼一些有趣的现象,其实自然界中这种有趣的现象还很多很多,不信,我们来看一看娇小的蟋蟀有什么有趣的现象。

1、请同学们看课本40页第3小题。

2、全班展示,交流。

(h=t÷7+3)
3、理解式子中量的变化。

师:如果蟋蟀叫了7次,这时的气温大约是多少?
如果蟋蟀叫了14次,这时的气温大约是多少?
如果蟋蟀叫了28次呢?
你能发现蟋蟀叫的次数与气温之间是怎样变化的?
(三)课堂小结:
1、观察这三道题,你发现它们之间有什么相同的地方吗?
2、例举一个量随着另一个量变化而变化的例子。

(路程)随着(时间)的变化而变化,(气温)随着(时间)的变化而变化,(工作时间)随着(工作总量)的变化而变化,(汽车载重量)随着(汽车的数量)的变化而变化
五、练习巩固,加深理解。

1、连一连,把相互变化的量连起来。

路程正方形面积
边长购卖数量
总价行驶时间
2、填一填。

(1)香蕉的单价一定,购买的()和()在发生变化。

(2)轮船行驶的速度一定,行驶的()和()在发生变化。

(3)李叔叔从家到厂家骑自行车的()和()在发生变化。

3、判断下面两个变量是不是相关联的量。

(1)人的长相与身高。

(2)正方形的边长与周长。

(3)人的身高与跳绳的速度。

(4)每袋米有50千克,米的袋数与米的总质量。

4、举例说一说,下面这两道题中一个量是怎样随另一个量变化而变化的?(1)一种故事书每本3元,买书的总价与书的本数。

(2)一个长方形的面积是24平方厘米,长方形的长与宽。

六、课堂小结。

这节课就要结束了,能谈谈这节课你的感受或你还有什么问题?。

相关文档
最新文档