1.4 角平分线同步培优练习题(含答案解析)

合集下载

北师大版数学八年级下册:1.4 角平分线 同步练习(附答案)

北师大版数学八年级下册:1.4 角平分线  同步练习(附答案)

4 角平分线第1课时 角平分线的性质定理及其逆定理1.下列各图中,OP 是∠MON 的平分线,点E ,F ,G 分别在射线OM ,ON ,OP 上,则可以解释定理“角平分线上的点到角的两边的距离相等”的图形是( )2.如图,点P 是∠AOB 的平分线上一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,连接CD 交OP 于点E ,下列结论不一定正确的是( )A .PC =PDB .OC =OD C .OP 垂直平分CDD .OE =CD第2题图 第3题图3.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A .4B .3C .2D .14.如图,点P 是∠AOC 的平分线上一点,PD ⊥OA ,垂足为D ,且PD =3,点M 是射线OC 上一动点,则PM 的最小值为 .第4题图 第5题图5.如图,BD 平分∠ABC ,DE ⊥BC 于点E ,AB =7,DE =4,则△ABD 的面积为 . 6.已知:如图所示,点O 在∠BAC 的平分线上,OD ⊥AC ,OE ⊥AB ,垂足分别为D ,E ,DO ,EO 的延长线分别交AE ,AD 的延长线于点B ,C ,求证:OB =OC.7.如图,DA⊥AC,DE⊥BC.若AD=5 cm,DE=5 cm,∠ACD=30°,则∠DCE=()A.30°B.40°C.50°D.60°8.如图,BE=CF,DE⊥AB交AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.9.已知D,E分别是△ABC中AB边,AC边上的一点,在△ABC内有一点O,使OE =OD,则AO平分∠CAB吗?解:AO平分∠CAB,理由如下:因为点O到∠CAB两边的距离相等,所以点O在∠CAB的平分线上.所以AO平分∠CAB.以上解法是否正确?若不正确,请说明理由,并写出正确的结论.10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点第10题图第11题图11.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+ 2 B.2+3C.2+ 3 D.312.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥BA于点E,AB=6 cm,则△DEB的周长是cm.13.如图,在四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM 平分∠BAD,DM平分∠ADC.(1)求证:AM⊥DM;(2)若BC=8,求点M到AD的距离.14.已知:如图,锐角△ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.15.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC= 6.若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC2第2课时三角形三个内角的平分线1.到三角形三条边的距离相等的点是三角形________的交点()A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线2.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点O,下面结论中正确的是()A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.∠1=2∠2第2题图第3题图3.如图,在Rt△ABC中,∠ACB=90°,△ABC的三条内角平分线相交于点O,OM ⊥AB于点M.若OM=4,S△ABC=180,则△ABC的周长是.4.如图,在△ABC中,AB+AC=20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于点D,且OD=3,求图中阴影部分的面积.5.如图所示是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点6.如图,某市有一块由三条马路围成的三角形绿地,现准备在其中建一小亭供人们小憩,使小亭中心到三条马路的距离相等,试确定小亭中心的位置.7.如图,在△ABC中,AB=AC,BD,CE分别是∠ABC和∠ACB的平分线,且相交于点F,则下列说法错误的是()A.BF=CFB.点F到∠BAC两边的距离相等C.CE=BDD.点F到A,B,C三点的距离相等第7题图第8题图8.如图,l1,l2,l3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C .3处D .4处9.如图,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于点P ,AE =7 cm ,AP =4 cm ,则点P 到直线AB 的距离是 .10.如图,在△ABC 中,PD ⊥AC ,PE ⊥AB ,PF ⊥BC ,PD =PE =PF ,求证:∠BPC =90°+12∠BAC.11.如图,在Rt △ABC 中,∠C =90°,BD 是Rt △ABC 的一条角平分线,点O ,E ,F 分别在BD ,BC ,AC 上,且四边形OECF 是正方形(四边相等,四个角都是直角).(1)求证:点O 在∠BAC 的平分线上; (2)若AC =5,BC =12,求OE 的长.参考答案:第1课时 角平分线的性质定理及其逆定理1.下列各图中,OP 是∠MON 的平分线,点E ,F ,G 分别在射线OM ,ON ,OP 上,则可以解释定理“角平分线上的点到角的两边的距离相等”的图形是(D)2.如图,点P 是∠AOB 的平分线上一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,连接CD 交OP 于点E ,下列结论不一定正确的是(D)A .PC =PDB .OC =OD C .OP 垂直平分CDD .OE =CD第2题图 第3题图3.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于(C)A .4B .3C .2D .14.如图,点P 是∠AOC 的平分线上一点,PD ⊥OA ,垂足为D ,且PD =3,点M 是射线OC 上一动点,则PM 的最小值为3.第4题图 第5题图5.如图,BD 平分∠ABC ,DE ⊥BC 于点E ,AB =7,DE =4,则△ABD 的面积为14. 6.已知:如图所示,点O 在∠BAC 的平分线上,OD ⊥AC ,OE ⊥AB ,垂足分别为D ,E ,DO ,EO 的延长线分别交AE ,AD 的延长线于点B ,C ,求证:OB =OC.证明:∵点O 在∠BAC 的平分线上,OD ⊥AC ,OE ⊥AB ,∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 和△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO(ASA). ∴OB =OC.7.如图,DA ⊥AC ,DE ⊥BC.若AD =5 cm ,DE =5 cm ,∠ACD =30°,则∠DCE =(A)A .30°B .40°C .50°D .60°8.如图,BE =CF ,DE ⊥AB 交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.证明:∵DE ⊥AB ,DF ⊥AC , ∴∠BED =∠DFC =90°.在Rt △DEB 和Rt △DFC 中,⎩⎨⎧BE =CF ,DB =DC ,∴Rt △DEB ≌Rt △DFC(HL). ∴DE =DF.∴AD 是∠BAC 的平分线.9.已知D ,E 分别是△ABC 中AB 边,AC 边上的一点,在△ABC 内有一点O ,使OE =OD ,则AO 平分∠CAB 吗?解:AO 平分∠CAB ,理由如下:因为点O 到∠CAB 两边的距离相等,所以点O 在∠CAB 的平分线上.所以AO 平分∠CAB.以上解法是否正确?若不正确,请说明理由,并写出正确的结论.解:不正确.以上解法忽视了OD ,OE 分别垂直于AB ,AC 的条件,故产生错误.正确的结论是“AO 不一定平分∠CAB ”.10.在正方形网格中,∠AOB 的位置如图所示,到∠AOB 两边距离相等的点应是(A) A .M 点B .N 点C .P 点D .Q 点第10题图 第11题图11.如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E.若DE =1,则BC 的长为(A)A .2+ 2 B.2+3 C .2+ 3D .312.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥BA 于点E ,AB =6 cm ,则△DEB 的周长是6cm.13.如图,在四边形ABCD 中,∠B =90°,AB ∥CD ,M 为BC 边上的一点,且AM 平分∠BAD ,DM 平分∠ADC.(1)求证:AM ⊥DM ;(2)若BC =8,求点M 到AD 的距离.解:(1)证明:∵AM 平分∠BAD ,DM 平分∠ADC , ∴∠MAD =12∠BAD ,∠ADM =12∠ADC.∵AB ∥CD ,∴∠BAD +∠ADC =180°.∴∠MAD +∠ADM =12(∠BAD +∠ADC)=90°.又∵∠AMD +∠MAD +∠ADM =180°, ∴∠AMD =90°. ∴AM ⊥DM.(2)过点M 作MN ⊥AD 于点N. ∵AB ∥CD ,∠B =90°,∴∠C =90°,即BM ⊥AB ,MC ⊥DC. 又∵AM ,DM 分别平分∠BAD ,∠ADC , ∴BM =MN ,MN =MC. ∴MN =12BC =4.∴点M 到AD 的距离为4.14.已知:如图,锐角△ABC 的两条高BD ,CE 相交于点O ,且OB =OC. (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.解:(1)证明:∵BD ,CE 是△ABC 的高, ∴∠BEC =∠CDB =90°. 又∵∠EOB =∠DOC , ∴∠ABD =∠ACE. ∵OB =OC , ∴∠OBC =∠OCB. ∴∠ABC =∠ACB. ∴AB =AC.∴△ABC 是等腰三角形. (2)点O 在∠BAC 的平分线上.理由:∵∠BEO =∠CDO =90°,∠BOE =∠COD ,OB =OC , ∴△BOE ≌△COD(AAS). ∴OE =OD.又∵OD ⊥AC ,OE ⊥AB ,∴点O在∠BAC的平分线上.15.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC= 6.若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC2第2课时三角形三个内角的平分线1.到三角形三条边的距离相等的点是三角形________的交点(A)A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线2.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点O,下面结论中正确的是(B) A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.∠1=2∠2第2题图第3题图3.如图,在Rt△ABC中,∠ACB=90°,△ABC的三条内角平分线相交于点O,OM ⊥AB于点M.若OM=4,S△ABC=180,则△ABC的周长是90.4.如图,在△ABC中,AB+AC=20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于点D,且OD=3,求图中阴影部分的面积.解:连接OA,过点O作OE⊥AB于点E,OF⊥AC于点F.∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3.同理可得OF=OD=3.∴S阴影=S△AOB+S△AOC=12AB·OE+12AC·OF=12(AB+AC)·OE=12×20×3=30.5.如图所示是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在(C)A.△ABC的三条中线的交点B.△ABC三边垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点6.如图,某市有一块由三条马路围成的三角形绿地,现准备在其中建一小亭供人们小憩,使小亭中心到三条马路的距离相等,试确定小亭中心的位置.解:如图所示,分别作三角形绿地两个角的平分线交于点P,点P即为所求.7.如图,在△ABC中,AB=AC,BD,CE分别是∠ABC和∠ACB的平分线,且相交于点F,则下列说法错误的是(D)A.BF=CFB.点F到∠BAC两边的距离相等C.CE=BDD.点F到A,B,C三点的距离相等第7题图第8题图8.如图,l1,l2,l3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(D)A.1处B.2处C.3处D.4处9.如图,BD垂直平分线段AC,AE⊥BC,垂足为E,交BD于点P,AE=7 cm,AP =4 cm,则点P到直线AB的距离是3_cm.10.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+12∠BAC.证明:∵PD ⊥AC ,PE ⊥AB ,PF ⊥BC ,PD =PE =PF ,∴点P 是△ABC 三个内角平分线的交点.∴CP 平分∠ACB ,BP 平分∠ABC.∴∠PCB =12∠ACB ,∠PBC =12∠ABC. ∴∠BPC =180°-∠PCB -∠PBC=180°-12∠ACB -12∠ABC =180°-12(∠ACB +∠ABC) =180°-12(180°-∠BAC) =90°+12∠BAC. 11.如图,在Rt △ABC 中,∠C =90°,BD 是Rt △ABC 的一条角平分线,点O ,E ,F 分别在BD ,BC ,AC 上,且四边形OECF 是正方形(四边相等,四个角都是直角).(1)求证:点O 在∠BAC 的平分线上;(2)若AC =5,BC =12,求OE 的长.解:(1)证明:过点O 作OM ⊥AB 于点M.∵BD 是△ABC 的一条角平分线,OM ⊥AB ,OE ⊥BC ,∴OE =OM.∵四边形OECF 是正方形,∴OE =OF ,OF ⊥AC.∴OM =OF.∴点O 在∠BAC 的平分线上.(2)∵在Rt △ABC 中,∠C =90°,AC =5,BC =12,∴由勾股定理,得AB =13.易证BE =BM ,AM =AF.∵BE =BC -CE ,AF =AC -CF ,CE =CF =OE ,∴BE=12-OE,AF=5-OE.∵BM+AM=AB,∴BE+AF=13,即12-OE+5-OE=13.解得OE=2,即OE的长为2.。

八年级数学下册《角平分线》同步练习1(含答案)

八年级数学下册《角平分线》同步练习1(含答案)

1.4 角平分线一、判断题1.角的平分线上的点到角的两边的距离相等2.到角的两边距离相等的点在角的平分线上3.角的平分线是到角两边距离相等的点的集合4.角平分线是角的对称轴二、填空题1.如图(1),AD平分∠BAC,点P在AD上,若PE⊥AB,PF⊥AC,则PE______PF.2.如图(2),PD⊥AB,PE⊥AC,且PD=PE,连接AP,则∠BAP_______∠CAP.3.如图(3),∠BAC=60°,AP平分∠BAC,PD⊥AB,PE⊥AC,若AD=3,则PE=__________.(1)(2)(3)4.已知,如图(4),∠AOB=60°,CD⊥OA于D,CE⊥OB于E,若CD=CE,则∠COD+∠AOB=__________度.5.如图(5),已知OM平分∠POQ,MP⊥OP于P,MQ⊥OQ于Q,S△POM=6 cm2,OP=3 cm,则MQ=__________cm.(4)(5)三、选择题1.下列各语句中,不是真命题的是( )A.直角都相等B.等角的补角相等C.点P在角的平分线上D.对顶角相等2.下列命题中是真命题的是( )A.有两角及其中一角的平分线对应相等的两个三角形全等B.相等的角是对顶角C.余角相等的角互余D.两直线被第三条直线所截,截得的同位角相等3.如左下图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么AE+DE等于( )A.2 cmB.3 cmC.4 cmD.5 cm4.如右上图,已知AB=AC,AE=AF,BE与CF交于点D,则①△ABE≌△ACF②△BDF≌△CDE ③D在∠BAC的平分线上,以上结论中,正确的是( )A.只有①B.只有②C.只有①和②D.①,②与③四、解答题1.试用对称的观点分析说明线段的垂直平分线和角平分线的联系与区别.2.如下图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC参考答案一、1.√ 2. × 3.√ 4.×二、1.=2.=3.14.905.4三、1.C 2.A 3.B 4. D四、1.提示:联系:说出线段的垂直平分线和角的平分线所在直线都是相应图形的对称轴即可.区别:说出线段垂直平分线的性质与角平分线的性质即可.2.证明:在△BDF 和△CDE 中⎪⎩⎪⎨⎧=∠=∠︒=∠=∠CD BD CDEBDF CED BFD 90 ∴△BDF ≌△CDE ,∴DF=DE∴D 在∠A 的平分线上,∴AD 平分∠BAC.。

北师大版八年级下册数学1.4角平分线同步练习题(含解析)

北师大版八年级下册数学1.4角平分线同步练习题(含解析)

1.角平分线同步练习2.一.选择题3.,如图AD、BE是△ABC的两条高线,AD与BE交于点O,AD平分∠BAC,BE平分(4)AE+∠ABC,以下结论:〔1〕CD=BD, (2)AE=CE(3)OA=OB=OD=OEBD=AB,其中正确结论的个数是〔〕3.4.5.6.7.8.9.10.11.12.13.14.2.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,15.那么AC的长是〔〕16.17.18.19.20.21.22.A.4B.3C.6D.5如图,在Rt△ABC中,∠ACB=90°,∠CAB=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,那么∠AEB=〔〕°°° D.35°如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S.假设AQ=PQ,PR=PS,以下结论:①AS=AR;②PQ∥AR;③△BRP≌△CSP.其中正确的是〔〕A.①③B.②③C.①②D.①②③5.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在〔〕A.△ABCC.△ABC的三条中线的交点三条高所在直线的交点B.△ABC三边的中垂线的交点D.△ABC三条角平分线的交点6.ABC中,AD是BAC的平分线,且AB ACCD.假设BAC60,那么ABC 的大小为〔〕A.40B.60C.80D.100二.填空题在三角形纸片ABC中,∠C=90°,∠A=30°,AC=3.折叠该纸片,使点A与点B重合,折痕与AB、AC分别相交于点D和点E〔如图〕,折痕DE的长为.8.如图,在△ABC中, A 90,AB AC,CD平分ACB,DE BC于E,假设BC15cm,那么△DEB的周长为cm.9.如下列图,△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,那么△ABC的面积是.12.10.如图△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为3,那么△ACD的面13.积为.14.15.16.17.18.19.20.11.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分21.ADC,∠CED=35°,如图,那么∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.22.23.24.25.26.27.28.29.30.31.如图,在△ABC中,∠ABC=100°,∠ACB=20°,CE平分∠ACB,D为AC上一点,假设∠CBD=20°,那么∠CED=__________.三.解答题13.:如图,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.14.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.15.:如图,在ABC中,AD是△ABC并且有∠EDF+∠EAF=180°.试判断DE 的角平分线,E、F分别是AB、AC上一点,和DF的大小关系并说明理由.(16.:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1〕求证:AM平分∠BAD;(2〕试说明线段DM与AM有怎样的位置关系?3〕线段CD、AB、AD间有怎样的关系?直接写出结果.17.如图,在ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,假设△BCD与△BCA的面积比为3∶8,求△ADE 与△BCA的面积之比.:如图,ABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.参考答案一.选择题1.【答案】C;【解析】〔1〕〔2〕〔4〕是正确的.2.【答案】B;【解析】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.应选:B.3.【答案】B;【解析】可证EA是∠CAB外角平分线.过点E作EF、EM、EN分别垂直于CB、AB、CA,并且交点分别为F、M、N,所以EF=EM=EN.所以EA是∠CAB的外角平分线.4.【答案】C;【解析】依据角平分线的判定定理知AP平分∠BAC,①正确,因AQ=PQ,∠PAQ=∠APQ=∠BAP,所以②正确.5.【答案】D;【解析】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.应选D.6.【答案】A;【解析】在AB边上截取AE=AC,连接DE,可证△ACD≌△AED,可推出CD=DE=BE,2∠B=∠C,所以∠B=40°.二.填空题【答案】1;【解析】由题意设DE=CE=x,BC=BD=AD=3x,AE=2x,AC=3x=3,x=1.【答案】15;【解析】BC=CE+BE=AC+BE=AB+BE=AD+BD+BE=DE+BD+BE=15cm.【答案】30【解析】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×〔AB+BC+AC〕×320×3=3010.【答案】;【解析】解:过点D 作DE ⊥AB ,DF ⊥AC ,AD 平分∠BAC ,∴DE=DF , AB=4,△ABD 的面积为3, ∴S △ABD = AB?DE= ×4×DE=3,解得DE=;DF=,AC=2,S △ACD =AC?DF=×2×=.故答案为: .11.【答案】35°; 【解析】作 EF ⊥AD 于F ,证△DCE ≌△DFE 〔HL 〕,再证△AFE ≌△ABE 〔HL 〕,可得 FEB =180°-70°=110°,∠AEB =55°,∠EAB =35°.12.【答案】10°;【解析】考虑△BDC 中,EC 是∠C 的平分线,EB 是∠B 的外角平分线, 所以E 是△BDC 的一个旁心,于是ED 平分∠BDA.∠CED =∠ADE -∠DCE =1∠ADB -1∠DCB =1∠DBC =1×20°=10°.22 2 2三.解答题 13.【解析】证明:∵OD 平分∠POQ ∴∠AOD =∠BOD 在△AOD 与△BOD 中OA OB AOD BOD ODOD∴△AOD ≌△BOD 〔SAS 〕 ∴∠ADO =∠BDO又∵CM ⊥AD 于M ,CN ⊥BD 于N.∴CM =CN 〔角平分线上的点到角两边的距离相等〕.14.【解析】证明:过C作CF⊥AD于F,AC平分∠BAD,∴∠FAC=∠EAC,CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBCDF=EB,AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE2AE=AB+AD15.【解析】DE=DF.证明:过点D作DM⊥AB于M,DN⊥AC于N,∵AD是△ABC的角平分线,DM=DN∵∠EDF+∠EAF=180°,即∠2+∠3+∠4+∠EAF=180°又∵∠1+∠2+∠3+∠EAF=180°∴∠1=∠4在Rt△DEM与Rt△DFN中4DMDNEMDFNDRt△DEM≌Rt△DFN〔ASA〕DE=DF【解析】〔1〕证明:作M E⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.2〕解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣〔∠1+∠3〕=90°,即DM⊥AM.3〕解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中Rt△DCM≌Rt△DEM〔HL〕,∴CD=DE,同理AE=AB,AE+DE=AD,∴CD+AB=AD.17.【解析】解:∵∠C=90°,BD平分∠ABC,DE⊥AB于E∴DE=CD可证Rt△BCD≌Rt△BED〔HL〕设△BCD的面积=△BED的面积=3x,△BCA的面积为8x,△ADE的面积为8x-6x=2x,∴△ADE与△BCA的面积之比为2x:8x=1:4.【解析】证明:过F点作FM⊥AD,FN⊥AE,FP⊥BC∵ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.FM=FP,FN=FP〔角平分线上的点到角两边的距离相等〕FM=FN∴点F必在∠DAE的平分线上.〔到角两边的距离相等的点在角的平分线上〕。

北师大初二数学8年级下册 第1章(三角形的证明)1.4角平分线 同步提升训练(含解析)

北师大初二数学8年级下册 第1章(三角形的证明)1.4角平分线 同步提升训练(含解析)

北师大版八年级数学下册《1.4角平分线》同步提升训练(附答案)1.如图,已知△ABC的面积是30,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的周长是( )A.30B.25C.20D.152.如图,为了促进当地旅游发展,某地要在三条公路AB,AC,BC两两相交围成的一块平地内修建一个度假村.要使这个度假村到三条公路的距离相等,则度假村应该修在何处?可供选择的位置有( )处.A.一B.二C.三D.四3.如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE的面积等于( )A.15B.12C.10D.144.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是( )A.1B.1.5C.2D.2.55.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=11,AB=6,DE=2,则AC =( )A.7B.6C.5D.46.如图,在△ABC中,BD、AE分别是△ABC的角平分线和高线,过点D作DF⊥AB于点F,若AB=4,BC=6,DF=2,则AE的长为( )A.3B.C.D.7.如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于( )A.11B.8C.12D.38.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P(A、P、C 三点不共线),记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有( )A.S1+S3=S2+S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1=S39.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为( )A.25B.5.5C.7.5D.12.510.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠B,∠DAC,∠ECA三个角的平分线的交点.上述结论中,正确结论的个数有( )A.1个B.2个C.3个D.4个11.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于 .12.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD =8,则四边形ABCD的面积是 .13.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=10,则点P到BC的距离是 .14.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A=70°,则∠BOC= .15.如图,△ABC的外角∠MBC和∠NCB的平分线BP、CP相交于点P,PE⊥BC于E且PE=3cm,若△ABC的周长为14cm,S△BPC=7.5,则△ABC的面积为 cm2.16.如图,∠C=90°,AC=6,BC=8,∠ABC和∠BAC的角平分线的交点是点D,则△ABD 的面积为 .17.如图,在Rt△ABC中,∠ABC=90°.AB=5,AC=13,BC=12,∠BAC与∠ACB的角平分线相交于点D,点M、N分别在边AB、BC上,且∠MDN=45°,连接MN,则△BMN的周长为 .18.如图,BH是钝角三角形ABC的高,AD是角平分线,且2∠C=90°﹣∠ABH,若CD=4,△ABC的面积为12,则AD= .19.如图,点P在∠AOB的平分线上,∠AOB=60°,PD⊥OA于D,点M在OP上,且DM=MP=6,若C是OB上的动点,则PC的最小值是 .20.在四边形ABCD中,∠ADC与∠BCD的角平分线交于点E,∠DEC=115°,过点B 作BF∥AD交CE于点F,CE=2BF,,连接BE,,则CE = .21.如图,△ABC中,∠B>∠A,CD⊥AB于点D,∠ACB的平分线CE交AB于点E.(1)若∠A=55°,∠B=75°,求∠DCE的度数;(2)直接写出∠DCE,∠A,∠B之间的等量关系.22.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.24.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.25.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线交于点P,PD⊥AC于点D,PH⊥BA于点H.(1)若PH=8cm,求点P到直线BC的距离;(2)求证:点P在∠HAC的平分线上.26.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.参考答案1.解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,OD⊥BC于D,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OD=3,OF=OD=3,∵△ABC的面积是30,∵S△ABC=S△AOB+S△BOC+S△AOC,∴S△ABC=×(AB+BC+AC)×3=30,∴AB+BC+AC=20,即△ABC的周长是20,故选:C.2.解:∵度假村到三条公路的距离相等,∴度假村在三条公路AB,AC,BC所组成的角的平分线上,∵△ABC的三条角平分线相交于一点,∴度假村可供选择的位置有一处,故选:A.3.解:过点E作EF⊥AB于点F,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.4.解:过点D作DE⊥BC于E,则DE即为DP的最小值,∵∠BAD=∠BDC=90°,∠ADB=∠C,∴∠ABD=∠CBD,∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,∴DE=AD=2,故选:C.5.解:作DF⊥AC于F,如图,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=2,∵S△ADC+S△ABD=S△ABC,∴×2×AC+×2×6=11,∴AC=5.故选:C.6.解:如图所示,过D作DH⊥BC于H,∵BD平分∠ABC,DF⊥AB,DH⊥BC,∴DF=DH=2,∵AE⊥BC,∴BC×AE=AB×DF+BC×DH,即6AE=4×2+6×2,∴AE=,故选:C.7.解:过E作EF⊥BC于F,∵CD是AB边上的高线,BE平分∠ABC,DE=3,∴EF=DE=3,∴△BCE的面积S==,故选:C.8.解:四边形ABCD,四个内角平分线交于一点P,则P是该四边形内切圆的圆心,如图,可将四边形分成8个三角形,面积分别是a、a、b、b、c、c、d、d,则S1=a+d,S2=a+b,S3=b+c,S4=c+d,∴S1+S3=a+b+c+d=S2+S4,故选:A.9.解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,,∴Rt△ADF≌Rt△ADH(HL),∴S Rt△ADF=S Rt△ADH,在Rt△DEF和Rt△DGH中,∴Rt△DEF≌Rt△DGH(HL),∴S Rt△DEF=S Rt△DGH,∵△ADG和△AED的面积分别为60和35,∴35+S Rt△DEF=60﹣S Rt△DGH,∴S Rt△DEF=.故选:D.10.解:由角平分线性质的逆定理,可得①②③④都正确.故选:D.二.填空题(共10小题)11.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴S△ABC=S△ABD+S△DBC=×AB×DE+×BC×DF==60,∴DF=DE=4.故答案为:4.12.解:过点D作DE⊥BA的延长线于点E,如图所示.∵BD平分∠ABC,∴DE=DC=8,∴S四边形ABCD=S△ABD+S△BCD,=AB•DE+BC•CD,=×12×8+×18×8,=120.故答案为:120.13.解:过点P作PE⊥BC于E,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,AD⊥AB,AD⊥CD,PE⊥BC,∴PA=PE=PD,∵AD=10,∴PE=5,即点P到BC的距离是5,故答案为:5.14.解:∵在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,∴O为△ABC的三内角平分线的交点,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°,故答案为:125°.15.解:如图,过点P作PF⊥AN于F,作PG⊥AM于G,连接AP,∵∠GBC和∠FCB的平分线BP、CP交于P,PE⊥BC,∴PF=PG=PE=3,∵S△BPC=7.5,∴BC•3=7.5,解得BC=5,∵△ABC的周长为14cm,∴AB+AC+BC=14,∴AB+AC=9,∴S△ABC=S△ACP+S△ABP﹣S△BCP=(AB+AC﹣BC)×3=×(9﹣5)×3=6(cm2).故答案为:6.16.解:连接CD,作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,由勾股定理得,AB=,∵点D是∠ABC和∠BAC的角平分线的交点,DE⊥AB,DF⊥AC,DG⊥BC,∴DE=DF=DG,×AB×DE+×AC×DF+×BC×DG=×AC×BC,即×10×DE+×6×DF+×8×DG=×6×8,解得,DE=2,∴△ABD的面积=×10×2=10,故答案为:10.17.解:过D点作DE⊥AB于E,DF⊥BC于F,DH⊥AC于H,如图,∵DA平分∠BAC,∴DE=DH,同理可得DF=DH,∴DE=DF,∵∠DEB=∠B=∠DFB=90°,∴四边形BEDF为正方形,∴BE=BF=DE=DF,在Rt△ADE和Rt△ADH中,∴Rt△ADE≌Rt△ADH(HL),∴AE=AH,同理可得Rt△CDF≌Rt△CDH(HL),∴CF=CH,设正方形BEDF的边长为x,则AE=AH=5﹣x,CF=CH=12﹣x,∵AH+CH=AC,∴5﹣x+12﹣x=13,解得x=2,即BE=2,在FC上截取FP=EM,如图,∵DE=DF,∠DEM=∠DFP,EM=FP,∴△DEM≌△DFP(SAS),∴DM=DP,∠EDM=∠FDP,∴∠MDP=∠EDF=90°,∵∠MDN=45°,∴∠PDN=45°,在△DMN和△DPN中,,∴△DMN≌△DPN(SAS),∴MN=NP=NF+FP=NF+EM,∴△BMN的周长=MN+BM+BN=EM+BM+BN+NF=BE+BF=2+2=4.故答案为4.18.解:∵BH为△ABC的高,∴∠AHB=90°,∴∠BAH=90°﹣∠ABH,而2∠C=90°﹣∠ABH,∴∠BAH=2∠C,∵∠BAH=∠C+∠ABC,∴∠ABC=∠C,∴△ABC为等腰三角形,∵AD是角平分线,∴AD⊥BC,BD=CD=4,∵△ABC的面积为12,∴×AD×BC=12,即×AD×8=12,∴AD=3.故答案为3.19.解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=∠AOB=30°,∴∠DPO=60°,∵PM=DM=6,∴∠MDP=∠DPM=60°,∵∠PDO=90°,∴∠ODM=30°=∠AOP,∴OM=DM=6,∴OP=12,∴PD=OP=6,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=6,故答案为:6.20.解:∵∠CBF=∠BCE,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD∥BF,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65°②,由①②解得,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF⊥EC,∴CE=2BF,设BF=m,则CE=2m,∵S△BCE=•EC•BF=,∴×2m×m=,∴m=或﹣(舍弃),∴CE=2m=5,故答案为5.21.解:(1)∵∠A=55°,∠B=75°,∴∠ACB=50°,∵CE平分∠ACB,∴∠BCE=25°,∵∠B=75°,CD⊥AB,∴∠BCD=15°,∴∠DCE=∠ECB﹣∠BCD=25°﹣15°=10°,即∠DCE的度数是10°;(2)∠DCE=(∠B﹣∠A),理由:∵∠ACB=180°﹣∠A﹣∠B,CE平分∠ACB,∴∠BCE=(180°﹣∠A﹣∠B),∵CD⊥AB,∴∠BCD=90°﹣∠B,∴∠DCE=∠ECB﹣∠BCD=(180°﹣∠A﹣∠B)﹣(90°﹣∠B)=90°﹣∠A﹣∠B﹣90°+∠B=(∠B﹣∠A),即∠DCE=(∠B﹣∠A).22.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.23.(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDF均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.24.(1)解:∵EF⊥AB,∠AEF=50°,∴∠FAE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°;(2)证明:过点E作EG⊥AD于G,EH⊥BC于H,∵∠FAE=∠DAE=40°,EF⊥BF,EG⊥AD,∴EF=EG,∵BE平分∠ABC,EF⊥BF,EH⊥BC,∴EF=EH,∴EG=EH,∵EG⊥AD,EH⊥BC,∴DE平分∠ADC;(3)解:∵S△ACD=15,∴×AD×EG+×CD×EH=15,即×4×EG+×8×EG=15,解得,EG=EH=,∴EF=EH=,∴△ABE的面积=×AB×EF=×7×=.25.(1)解:作PQ⊥BE于Q,如图,∵BP平分∠ABC,∴PH=PQ=8,即点P到直线BC的距离为8cm;(2)证明:∵PC平分∠ACE,∴PD=PQ,而PH=PQ,∴PD=PH,∴点P在∠HAC的平分线上.26.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.。

湘教版八年级数学下册《1.4角平分线的性质》同步测试题带答案

湘教版八年级数学下册《1.4角平分线的性质》同步测试题带答案

湘教版八年级数学下册《1.4角平分线的性质》同步测试题带答案知识点1角平分线的性质定理1.(2024·娄底期末)如图,在△ABC中,∠C=90°,AC=4,DC=12AD,BD平分∠ABC,则点D到AB的距离等于( )A.1B.43C.2D.832.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为( )A.1B.2C.3D.43.(2024·广东中考)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.知识点2角平分线的判定定理4.如图,已知点P到BE,BD,AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠B,∠DAC,∠ECA三个角的平分线的交点.在上述结论中,正确结论的个数有( )A.1个B.2个C.3个D.4个5.(2024·湘潭期末)如图,O是△ABC内一点,且O到三边AB,BC,CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为( )A.100°B.120°C.125°D.130°6.如图,在Rt△ABC中,∠C=90°,AC=AE,DE⊥AB,若∠BDE=46°,则∠DAE=.7.(2024·张家界质检)如图,已知点D,E,F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等.求证:AD平分∠BAC.【B层能力进阶】8.如图,∠ACB的外角平分线与∠ABC的外角平分线相交于点P.则下列结论正确的是( )A.P A平分∠CPBB.AP平分BCC.AP⊥BCD.AP平分∠CAB9.如图,AD是△ABC的角平分线,DE⊥AB,垂足为点E,S△ABC=7,DE=2,AB=4,则AC 长是( )A.6B.5C.4D.310.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”小明的做法,其理论依据为.11.(2024·牡丹江中考)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.12.如图,AB∥CD,O为∠BAC,∠DCA的平分线的交点,OE⊥AC于点E,且OE=2,求AB与CD之间的距离.【C层创新挑战】(选做)13.已知:∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.(1)如图1,当∠B=∠D时,求证:AB+AD=AC;(2)如图2,当∠B≠∠D时,猜想(1)中的结论是否发生改变并说明理由.参考答案【A层基础必会】知识点1角平分线的性质定理1.(2024·娄底期末)如图,在△ABC中,∠C=90°,AC=4,DC=12AD,BD平分∠ABC,则点D到AB的距离等于(B)A.1B.43C.2D.832.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为(B)A.1B.2C.3D.43.(2024·广东中考)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【证明】∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,{OP=OPPD=PE,∴Rt△OPD≌Rt△OPE(HL).知识点2角平分线的判定定理4.如图,已知点P到BE,BD,AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠B,∠DAC,∠ECA三个角的平分线的交点.在上述结论中,正确结论的个数有(D)A.1个B.2个C.3个D.4个5.(2024·湘潭期末)如图,O是△ABC内一点,且O到三边AB,BC,CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为(C)A.100°B.120°C.125°D.130°6.如图,在Rt△ABC中,∠C=90°,AC=AE,DE⊥AB,若∠BDE=46°,则∠DAE= 23°.7.(2024·张家界质检)如图,已知点D,E,F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等.求证:AD平分∠BAC.【解析】略【B层能力进阶】8.如图,∠ACB的外角平分线与∠ABC的外角平分线相交于点P.则下列结论正确的是(D)A.P A平分∠CPBB.AP平分BCC.AP⊥BCD.AP平分∠CAB9.如图,AD是△ABC的角平分线,DE⊥AB,垂足为点E,S△ABC=7,DE=2,AB=4,则AC 长是(D)A.6B.5C.4D.310.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”小明的做法,其理论依据为在角的内部,到角两边距离相等的点在角的平分线上.11.(2024·牡丹江中考)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3.12.如图,AB∥CD,O为∠BAC,∠DCA的平分线的交点,OE⊥AC于点E,且OE=2,求AB与CD之间的距离.【解析】过点O作OF⊥AB于点F,作OG⊥CD于点G,∵O为∠BAC,∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°-∠BAC)+(180°-∠ACD)=180°,∴F,O,G三点共线,∴AB与CD之间的距离=OF+OG=2+2=4.【C层创新挑战】(选做)13.已知:∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.(1)如图1,当∠B=∠D时,求证:AB+AD=AC;(2)如图2,当∠B≠∠D时,猜想(1)中的结论是否发生改变并说明理由.【解析】略。

2020-2021学年北师大版八年级下册数学 1.4角平分线 同步练习 【有答案】

2020-2021学年北师大版八年级下册数学 1.4角平分线 同步练习 【有答案】

1.4角平分线同步练习一.选择题1.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC2.如图.四边形ABCD,AC为四边形的一条对角线,下列说法正确的是()A.若AB=AD,则AC是∠BCD的角平分线B.若BC=CD,则AC是∠BAD的角平分线C.若AC是∠BCD的角平分线,则AB=ADD.若AB⊥BC,AD⊥CD,AC是∠BAD的角平分线,则BC=CD3.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为()A.3B.4C.5D.64.如图,有三条公路l1、l2、l3两两相交,要选择一地点建一座加油站,使加油站到三条公路的距离相等,不考虑其他因素,则符合条件的地点有()个A.1B.2C.3D.45.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC =6cm,则DE=()cm.A.1B.2C.3D.46.如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC于点D,且OD =4.若△ABC的周长是17,则△ABC的面积为()A.34B.17C.8.5D.47.△ABC中,∠C=90°,AC=8,BC=6,角平分线AD、BE相交于点O,则四边形OECD 的面积为()A.5B.C.D.88.已知如图,∠GBC,∠BAC的平分线相交于点F,BE⊥CF于H,若∠AFB=40°,∠BCF的度数为()A.40°B.50°C.55°D.60°9.如图,∠BAC和∠BCA的角平分线相交于点N,∠BDE和∠BED的角平分线相交于点M,连接MN.下列说法错误的是()A.直线MN平分线段AC B.直线MN平分∠ABCC.∠ANC=∠DME D.∠ADE+∠DEC=180°+∠B10.如图,在△ABC中,∠ABC和∠ACB的角平分线相交于点O,过点O作EF∥BC交AB 于E,交AC于F,过点O作OD⊥AC于D,下列五个结论:其中正确的有()(1)EF=BE+CF;(2)∠BOC=90°+∠A;(3)点O到△ABC各边的距离都相等;(4)设OD=m,AE+AF=n,则S△AEF=mn;(5)S△EOB=S FOC.A.2个B.3个C.4个D.5个二.填空题11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=4,则点P到AB的距离是.12.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC 长是.13.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=9cm,BC=11cm,则DE=cm.14.△ABC的三边AB、BC、CA的长分别是20、30、40,其三条角平分线相交于O点,将三角形ABC分为三个三角形,则S△ABO:S△BCO:S△CAO=.15.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=6,△BCD的面积为12,则ED的长为.三.解答题16.如图,∠1=∠2.∠3=∠4.求证:AP平分∠BAC.17.如图所示,已知△ABC中,∠C=90°,AB=5cm,AC=3cm,BC=4cm,AD是∠CAB的平分线,与BC交于D,DE⊥AB于E,则(1)图中与线段AC相等的线段是;(2)与线段CD相等的线段是;(3)△DEB的周长为cm.18.如图,△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE垂足为F,DE交CB的延长线于点G,连接AG.(1)求证:GA平分∠DGB;(2)若S四边形DGBA=6,AF=,求FG的长.1.4角平分线同步练习参考答案与试题解析一.选择题1.解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.2.解:A.若AB=AD,AC=AC,则△ABC与△ADC不一定全等,故AC不一定是∠BCD的角平分线,故不符合题意;B.若BC=CD,AC=AC,则△ABC与△ADC不一定全等,故AC不一定是∠BCD的角平分线,故不符合题意;C.若AC是∠BCD的角平分线,∴∠BAC=∠DAC,∵AC=AC,∴△ADB与△ADC不一定全等,则AB不一定等于AD,故不符合题意;D.若AB⊥BC,AD⊥CD,AC是∠BAD的角平分线,根据“AAS”定理可证得△ABC≌△ADC,则BC=CD,故说法符合题意;故选:D.3.解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,。

2022-2023学年北师大版八年级数学下册《1-4角平分线》解答题专题训练(附答案)

2022-2023学年北师大版八年级数学下册《1-4角平分线》解答题专题训练(附答案)

2022-2023学年北师大版八年级数学下册《1.4角平分线》解答题专题训练(附答案)1.如图,点P在∠AOB的平分线上,PC⊥OA于点C,∠AOB=30°,点D在边OB上,且OD=DP=2.求线段CP的长.2.如图,在Rt△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB,垂足为D,其中CE =4.5,AB=10,(1)求DE的长度.(2)求△ABE的面积.3.如图,A、B两点分别在射线OM,ON上,点C在∠MON的内部,且AC=BC,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)若AD=3,BO=4,求AO的长.4.如图,已知△ABC中,∠B=45°,∠C=75°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)若AB=20,AC=16,DE=6,求S△ABC.5.如图,在△ABC中,AD是∠BAC的平分线,P为线段AD上一个动点,PE⊥AD于点P,交BD的延长线于点E.(1)若∠B=36°,∠ACB=84°,则∠BAD=,∠ADC=;(2)若∠ACB=90°,∠ABC=∠E,求∠B的度数;(3)若∠B=α,∠ACB=β,α<β,求∠DEP.(用含α,β的式子表示)6.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,则△ABE的面积=(直接写出结果,不需要过程)7.如图所示,P是△ABC外一点,过P点分别作PD⊥AB,PE⊥BC,PF⊥AC,垂足分别是D,E,F三点,且PD=PE=PF,过P点作PM∥BC,分别交AB,AC于M,N两点.求证:MN=BM﹣CN.8.四边形ABCD中,AD∥BC,CE平分∠BCD交AB于点E,ED⊥CD于点D,已知∠B =40°,∠BCD=70°.(1)求∠CED的度数;(2)求证:AD=AE.9.如图,点A,B,C三点在一直线上,在BC同侧作△BCD、△BCE,若BE,CE分别平分∠ABD,∠BCD,过点B作∠CBD的平分线交CE于点F.(1)已知∠E=27°,求∠D的度数;(2)若BE∥CD,BD=8,求线段BE的长;(3)在(2)的条件下,若BF=6,求线段CD的长.10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,∠BAC=α.(1)如图①,若∠A=50°,求∠BOC的度数;(2)如图②,连接OA,求证:OA平分∠BAC;(3)如图③,若OC⊥PC,求∠P的度数.(用含α的式子表示)11.如图,在∠AOB的两边OA、OB上分别取点M、N,连接MN.若MP平分∠AMN,NP 平分∠MNB.(1)求证:OP平分∠AOB;(2)若MN=8,且△PMN与△OMN的面积分别是16和24,求线段OM与ON的长度之和.12.如图,△ABC中,三个内角的角平分线交于点O,OH⊥BC垂足为H.(1)求∠ABO+∠BCO+∠CAO的度数;(2)求证:∠BOD=∠COH.13.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠P AD的度数;(2)求证:P是线段CD的中点.14.在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一动点,ME⊥BC,E为垂足,∠AME的平分线交直线AB于点F.(1)如图1,点M为边AC上一点,则BD、MF的位置关系是,并证明;(2)如图2,点M为边CA延长线上一点,则BD、MF的位置关系是,并证明;(3)如图3,点M为边AC延长线上一点,补全图形,并直接写出BD、MF的位置关系是.15.已知:如图,在△ABC中,∠ABC和∠ACB的角平分线相交于点P,且PE⊥AB,PF ⊥AC,垂足分别为E、F.(1)求证:PE=PF;(2)若∠BAC=60°,连接AP,求∠EAP的度数.16.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.17.如图1,△ABC中∠ABC和∠ACB的平分线BE,CF相交于点G,∠BAC=50°.(1)求∠BGC的度数;(2)如图2,连结AG,求证:AG平分∠BAC;(3)若△ABC的∠ABC和∠ACB的外角平分线BM,CN相交于点H,连结AH,那么∠BHC是多少度?AH平分∠BAC吗?(直接写出结论)18.如图,在△ABC中,∠ABC=90°,BD是AC边上的高,AE是∠BAC的角平分线,分别交BD、BC于点G、E,过点B作AE的垂线BF,分别交AE、AC于点H、F.(1)求证:BF平分∠DBC;(2)若∠ABF=3∠C,求∠C的度数.19.已知:如图,点E在线段CD上,EA、EB分别平分∠DAB和∠ABC,∠AEB=90°,设AD=x,BC=y,且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的长.(2)试说线段AD与BC有怎样的位置关系?并证明你的结论.(3)你能求出AB的长吗?若能,请写出推理过程,若不能,说明理由.20.在△ABC中,AE、BF是角平分线,交于O点.(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.(2)如图2,若OE=OF,AC≠BC,求∠C的度数.(3)如图3,若∠C=90°,BC=8,AC=6,AB=10,求S△AOB.参考答案1.解:过P作PE⊥OB于E,∵点P在∠AOB的平分线上,PC⊥OA,∴PC=PE,∠AOP=∠BOP,∵OD=DP,∴∠BOP=∠DPO,∴∠AOP=∠DPO,∴PD∥OA,∴∠PDE=∠AOB,∵∠AOB=30°,∴∠PDE=30°,∵∠PEO=90°,DP=2,∴PE=DP=1,∴PC=1.2.解:(1)∵BE平分∠ABC,DE⊥AB,EC⊥BC,∴DE=EC=4.5,∴DE的长度为4.5;(2)∵DE⊥AB,AB=10,∴△ABE的面积=AB•DE=×10×4.5=22.5,∴△ABE的面积为22.5.3.(1)证明:∵CD⊥OM,CE⊥ON,∴∠ADC=∠CEB=90°,在Rt△ADC和Rt△BEC中,,∴Rt△ADC≌Rt△BEC(HL),∴CD=CE,∵CD⊥OM,CE⊥ON,∴OC平分∠MON;(2)解:∵Rt△ADC≌Rt△BEC,AD=3,∴BE=AD=3,∵BO=4,∴OE=OB+BE=4+3=7,∵CD⊥OM,CE⊥ON,∴∠CDO=∠CEO=90°,在Rt△DOC和Rt△EOC中,,∴Rt△DOC≌Rt△EOC(HL),∴OD=OE=7,∵AD=3,∴OA=OD+AD=7+3=10.4.解:(1)∵∠B=45°,∠C=75°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣45°﹣75°=60°,∵AD是△ABC的角平分线,∴,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=6,又∵AB=20,AC=16,且S△ABC=S△ABD+S△ACD,∴==108.5.解:(1)∵∠B=36°,∠ACB=84°,∴∠BAC=180°﹣∠B﹣∠ACB=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=66°,故答案为:30°,66°;(2)∵∠ACB=90°,∴∠B+∠BAC=90°,∵PE⊥AD,∴∠EDP=90°,∴∠ADC+∠E=90°,∵∠ABC=∠E,∴∠ADC=∠BAC,∵AD平分∠BAC,∴∠BAC=2∠DAC,∴∠ADC=2∠DAC,∵∠ADC+∠DAC=90°,∴∠ADC=60°,∴∠E=90°﹣∠ADC=30°,∴∠B=∠E=30°,∴∠B的度数为30°;(3)∵∠B=α,∠ACB=β,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣α﹣β,∵AD平分∠BAC,∴∠BAD=∠BAC=90°﹣α﹣β,∴∠ADC=∠B+∠BAD=α+90°﹣α﹣β=90°+α﹣β,∵PE⊥AD,∴∠EDP=90°,∴∠DEP=90°﹣∠ADC=90°﹣(90°+α﹣β)=β﹣α,∴∠DEP的度数为β﹣α.6.(1)解:∵∠BAD=100°,∴∠DAF=180°﹣∠BAD=80°,∵EF⊥AB,∴∠AFE=90°,∴∠EAE+∠AEF=90°,∴∠EAF=90°﹣∠AEF=90°﹣50°=40°,∴∠CAD=∠DAF﹣∠EAF=80°﹣40°=40°;(2)证明:如图所示,过点E作EN⊥AD于点N,EM⊥CD于点M,∵∠ABC的平分线交AC于点E,EM⊥CD,EF⊥AB,∴EM=EF,由(1)可得,∠CAD=∠CAF=40°,∴CA平分∠DAF,又∵EN⊥AD,EF⊥AF,∴EF=EN,∴EM=EN,∵EN⊥AD,EM⊥CD,∴DE平分∠ADC;(3)解:由(2)可知,EF=EN=EM,∵S△ADE+S△CDE=S△ACD,∴•AD•EN+•CD•EM=15,即2EF+4EF=15,∴EF=,∴S△ABE=•AB•EF=.7.证明:连接BP、CM、CP,过C作CG⊥PM于G,如图:∵PD⊥AB,PE⊥BC,PF⊥AC,∴S△BMP=BM•PD,S△NPC=CN•PF,∵PM∥BC,∴四边形CGPE是矩形,∴PE=CG,∴S△NMC=MN•CG=MN•PE,∵PM∥BC,∴S△BMP=S△CMP,∴BM•PD=MN•PE+NC•PF,∵PD=PE=PF,∴BM=MN+NC,即MN=BM﹣NC.8.解:(1)∵CE平分∠BCD交AB于点E,∠BCD=70°,∴∠BCE=∠DCE=35°,∵ED⊥CD于点D,∴∠CDE=90°,∴∠CED=90°﹣∠DCE=55°;(2)过E点作EF∥BC,∴∠CEF=∠BCE=35°,∠AEF=∠B=40°,∴∠DEF=∠CED﹣∠CEF=55°﹣35°=20°,∴∠AED=∠AEF﹣∠DEF=20°,∵AD∥BC,∴AD∥EF,∴∠ADE=∠DEF=20°,∴∠AED=∠ADE,∴AD=AE.9.解:(1)BE,CE分别平分∠ABD,∠BCD,∴∠EBD=∠ABD,∠DCE=∠BCD,∵∠ABD=∠D+∠DCB,∴∠EBD=∠D+∠DCB,∵∠E+∠EBD=∠D+∠DCE,∴∠E+∠D+∠DCB=∠D+∠BCD,∴∠D=2∠E=54°;(2)∵BE∥DC,∴∠D=∠EBD,∠DCB=∠EBA,∠E=∠DCE,∵∠EBD=∠EBA,∠DCE=∠BCE,∴∠D=∠DCB,∠E=∠ECB,∴BE=BC,BD=BC,∴BE=BD=8;(3)延长BF交DC于G,作BH⊥EC于H,∵∠EBD=∠ABD,∠DBF=∠DBC,∴∠EBD+∠DBF=(∠ABD+∠DBC),∴∠EBF=∠ABC=90°,∴EF===10,∵EF•BH=BE•BF,∴10BH=8×6,∴BH=4.8,∴CH===6.4,FH===3.6,∴CF=CH﹣FH=2.8,∵BD=BC,BG平分∠CBD,∴BG⊥DC,∵CG2=BC2﹣BG2=CF2﹣FG2,∴82﹣(6+FG)2=2.82﹣FG2,∴FG=1.68,∴CG===2.24,∴CD=2CG=4.48.10.(1)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵∠ABC和∠ACB的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°;(2)证明:过点O作OD⊥BC,OE⊥AB,OF⊥AC,垂足分别为D,E,F,∵∠ABC和∠ACB的平分线交于点O,OD⊥BC,OE⊥AB,OF⊥AC,∴OD=OE,OD=OF,∴OE=OF,∴OA平分∠BAC;(3)解:∵OC⊥CP,∴∠BOC+∠PCD=90°,∵OC平分∠ACB,∴CP平分∠ACD,∵∠P=∠PCD﹣∠PBC,∵∠PCD=90°﹣∠BCO,∵∠OBC+∠OCB=(180°﹣∠A)=90°﹣α,∴∠PBC=90°﹣α﹣∠OCB,∴∠P=∠PCD﹣∠PBC=90°﹣∠BCO﹣(90°﹣α﹣∠OCB)=α,11.(1)证明:过点P作PC⊥OA,垂足为C,过点P作PD⊥MN,垂足为D,过点P作PE⊥OB,垂足为E,∵MP平分∠AMN,PC⊥OA,PD⊥MN,∴PC=PD,∵NP平分∠MNB,PD⊥MN,PE⊥OB,∴PD=PE,∴PC=PE,∴OP平分∠AOB;(2)∵△PMN的面积是16,MN=8,∴MN•PD=16,∴×8•PD=16,∴PD=4,∴PD=PC=PE=4,∵△OMN的面积是24,∴四边形MONP的面积=△PMN的面积+△OMN的面积=16+24=40,∴△POM的面积+△PON的面积=40,∴OM•PC+ON•PE=40,∴OM•4+ON•4=40,∴OM+ON=20,∴线段OM与ON的长度之和为20.12.(1)解:∵AD、BE、CF分别是△ABC的三个内角的角平分线,∴∠ABO=∠ABC,∠BCO=∠ACB,∠CAO=∠CAB.又∵∠ABC+∠ACB+∠CAB=180°,∴∠ABO+∠BCO+∠CAO=(∠ABC+∠ACB+∠CAB)=×180°=90°;(2)证明:∵∠BOD=∠BAO+∠ABO,∠BAO=∠CAO,∴∠BOD=∠CAO+∠ABO=(∠BAC+∠ABC)=(180°﹣∠ACB)=90°﹣∠ACB=90°﹣∠BCO.又∵OH⊥BC,∴∠OHC=90°,∴∠COH=90°﹣∠HCO.∴∠BOD=∠COH.13.(1)解:∵AD∥BC,∴∠C=180°﹣∠D=180°﹣90°=90°,∵∠CPB=30°,∴∠PBC=90°﹣∠B=60°,∵PB平分∠ABC,∴∠ABC=2∠PBC=120°,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠DAB=180°﹣120°=60°,∵AP平分∠DAB,∴∠P AD=∠DAB=30°;(2)证明:过P点作PE⊥AB于E点,如图,∵AP平分∠DAB,PD⊥AD,PE⊥AB,∴PE=PD,∵BP平分∠ABC,PC⊥BC,PE⊥AB,∴PE=PC,∴PD=PC,∴P是线段CD的中点.14.解:BD∥MF,理由如下:(1)过点D作DH⊥BC,∵∠A=∠BHD=90°,∠ABD=∠CBD,BD=BD,∴△ABD≌△HBD(AAS),∴∠ADB=∠HDB,∵ME⊥BC,∴∠EMC=∠HDC,∴∠AMF=∠ADH,∴∠AMF=∠ADB,∴FM∥BD;(2)BD⊥MF,理由如下:延长MF交BD于点H,∵∠BAM=∠BEM=90°,∠AOM=∠BOE,∴∠ABC=∠CME,∴∠AMF=∠ABD.∵∠AFM=∠BFM,∴∠BHM=∠MAB=90°,∴MF⊥BD.(3)如图:MF⊥BD.证明方法同理(2).15.解:(1)过点P作PD⊥BC于D,∵∠ABC和∠ACB的角平分线相交于点P,且PE ⊥AB,PF⊥AC,∴PD=PE,PD=PF,∴PE=PF;(2)∵PE=PF,PE⊥AB,PF⊥AC,∴AP平分∠BAC,∵∠BAC=60°,∴∠EAP==30°.16.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.17.(1)解:∵∠BAC=50°,∴∠ABC+∠ACB=180°﹣∠BAC=130°,∵BE平分∠ABC,CF平分∠ACB,∴∠GBC=∠ABC,∠GCB=∠ACB,∴∠GBC+∠GCB=∠ABC+∠ACB=(∠ABC+∠ACB)=65°,∴∠BGC=180°﹣(∠GBC+∠GCB)=115°,∴∠BGC的度数为115°;(2)证明:过点G作GM⊥AB,GN⊥BC,GQ⊥AC,垂足分别为M,N,Q,∵BE平分∠ABC,GM⊥AB,GN⊥BC,∴GM=GN,∵CF平分∠ACB,GN⊥BC,GQ⊥AC,∴GN=GQ,∴AG平分∠BAC;(3)解:如图:过点H作HP⊥AB,交AB的延长线于点P,过点H作HL⊥AC,交AC 的延长线于点L,过点H作HK⊥BC,垂足为K,∵BM平分∠CBP,BE平分∠ABC,∴∠CBM=∠CBP,∠EBC=∠ABC,∴∠EBH=∠EBC+∠CBH=∠ABC+∠CBP=(∠ABC+∠CBP)=90°,同理可得:∠FCH=90°,∵∠BGC=115°,∴∠BHC=360°﹣∠BGC﹣∠EBH﹣∠FCH=65°,∴∠BHC的度数为65°;AH平分∠BAC,理由:∵BM平分∠CBP,HP⊥AB,HK⊥BC,∴HPHK,∵CN平分∠BCL,HK⊥BC,HL⊥AC,∴HP=HL,∴AH平分∠BAC.18.(1)证明:∵BD⊥AC,∴∠BDC=90°,∵∠ABC=90°,∴∠ABD+∠DBC=90°,∠DBC+∠C=90°,∴∠ABD=∠C,∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠BGE=∠ABD+∠BAE,∠BEG=∠C+∠EAC,∴∠BGE=∠BEG,∴BG=BE,∵BF⊥EG,∴BF平分∠DBC.(2)解:∵∠ABF=3∠C,∠ABD=∠C,BF平分∠DBC,∴∠FBD=∠FBC=2∠C,∴5∠C=90°,∴∠C=18°.19.解:∵(x﹣2)2+|y﹣5|=0,∴x﹣2=0,y﹣5=0,解得x=2,y=5,即AD=2,BC=5;(2)AD∥BC.理由如下:∵EA、EB分别平分∠DAB和∠ABC,∴∠BAE=∠BAD,∠ABE=∠ABC,∴∠BAE+∠ABE=(∠BAD+∠ABC),∵∠AEB=90°,∴∠BAE+∠ABE=90°,∴∠BAD+∠ABC=180°,∴AD∥BC;(3)能.理由如下:延长AE交直线BC于F,如图,∵AD∥BC,∴∠DAF=∠F,而∠DAF=∠BAF,∴∠BAF=∠F,∴BA=BF,∵BE⊥AE,∴AE=FE,∵∠DAE=∠CFE,AE=FE,∠AED=∠CEF,∴△ADE≌△FCE(ASA),∴AD=CF=2,∴AB=BF=5+2=7.20.解:(1)∵AD⊥BC,∴∠ADC=90°,∵∠C=70°,∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°,∴∠BAO=25°,∠ABC=60°,∵BF是∠ABC的角平分线,∴∠ABO=30°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°;(2)连接OC,∵AE、BF是角平分线,交于O点,∴OC是∠ACB的角平分线,∴∠OCF=∠OCE,过O作OM⊥BC,ON⊥AC,则OM=ON,在Rt△OEM与Rt△OFN中,,∴Rt△OEM≌Rt△OFN,(HL),∴∠EOM=∠FON,∴∠MON=∠EOF=180°﹣∠ACB,∵AE、BF是角平分线,∴∠AOB=90°+∠ACB,即90°+∠ACB=180°﹣∠ACB,∴∠ACB=60°;(3)连接OC,过O作OD⊥AB于D,OG⊥BC于G,OH⊥AC于H,∵AE、BF是角平分线,交于O点,∴OD=OG=OH,∴S△ABC=×8×6=×10OD+6×OG+8×OH,∴OD=2,∴S△AOB=10×2=10.。

北师大版八年级数学下册《1.4角平分线》同步练习(含答案)

北师大版八年级数学下册《1.4角平分线》同步练习(含答案)

北师大版八年级数学下册 1.4 角平分线 同步练习一、单选题(共 10 题;共 20 分)1.如图,OP 平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为 A,B。

下列结论中不一定成立的是( )A.PA=PBB.PO 平分∠AOBC.OA=OBD.AB 垂直平分 OP )2.如图, AB∥CD,AP, CP 分别平分∠BAC 和∠ACD, PE⊥AC 于点 E, 且 PE=3cm, 则 AB 与 CD 之间的距离为(A.3 cmB.6 cmC.9 cmD.无法确定3.如图,以∠AOB 的顶点 O 为圆心,适当长为半径画弧,交 OA 于点 C,交 OB 于点 D,再分别以点 C,D 为圆 心,大于 CD 的长为半径画弧,两弧在∠AOB 内部交于点 E,作射线 OE,连接 CD,以下说法错误的是( )A. △ OCD 是等腰三角形 C. CD 垂直平分 OEB. 点 E 到 OA,OB 的距离相等 D. 证明射线 OE 是角平分线的依据是 SSS4.如图,在△ ABC 中,∠ABC 和∠ACB 的平分线相交于点 G,过点 G 作 EF∥BC 交 AB 于 E, 交 AC 于 F, 过点 G 作 GD⊥AC 于 D,下列四个结论:①EF=BE+CF;②∠BGC=90+ AE+AF=n,则△∠A;③点 G 到△ ABC 各边的距离相等;④设 GD=m,=mn.其中正确的结论有()A.1 个B.2 个C.3 个D.4 个5.如图,在△ ABC 中,∠BAC 和∠ABC 的平分线相交于点 O,过点 O 作 EF∥AB 交 BC 于 F,交 AC 于 E,过点 O 作 OD⊥BC 于 D,下列四个结论:① ∠AOB=90°+∠②AE+BF=EF;③当∠C=90°时,E,F 分别是 AC,BC 的中点;④若 OD=a,CE+CF=2b, ) C. ①②④ D. ①③④则 S△ CEF=ab 其中正确的是( A. ①② 则可供选择的地点有( )B. ③④6.如图,直线 l1 , l2 , l3 表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,A.四处B.三处C.两处D.一处7.如图,△ ABC 的三边 AB、BC、CA 长分别是 20、30、40,其三条角平分线将△ ABC 分为三个三角形,则 S△ ABO ︰S△ BCO︰S△ CAO 等于( )A. 1︰1︰1 则 DQ 的最小值( )B. 1︰2︰3C. 2︰3︰4D. 3︰4︰58.如图,在 Rt△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D,若 CD=3,点 Q 是线段 AB 上的一个动点,A. 5B. 4C. 3D. 29.∠AOB 的平分线上一点 P 到 OA 的距离为 4,Q 是 OB 上任一点,则( ) B. PQ>4 D. PQ<4A. PQ≥4C. PQ≤410.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平 分线.如图:一把直尺压住射线 OB,另一把直尺压住射线 OA 并且与第一把直尺交于点 P,小明说:“射线 OP就是∠BOA 的角平分线.”他这样做的依据是()A. 角的内部到角的两边的距离相等的点在角的平分线上 C. 三角形三条角平分线的交点到三条边的距离相等B. 角平分线上的点到这个角两边的距离相等D. 以上均不正确二、填空题(共 6 题;共 8 分)11.如图,要在河流的南边,公路的左侧 M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流 与公路交叉 A 处的距离为 1cm(指图上距离),则图中工厂的位置应在________.12.如图,△ ABC 中,∠ACB=90°,CD⊥AB 于 D,AE 是∠BAC 的平分线,点 E 到 AB 的距离等于 3cm,则 CF=________cm.13.如图,在 Rt△ ABC 中,∠C=90°,AD 是△ ABC 的角平分线,若 CD=4,AC=12,BC=9,则 S△ ABD =________.14.如图, △ ABC 中, ∠A=100°, BI、 CI 分别平分∠ABC, ∠ACB, CM 分别平分∠ABC, 则∠BIC=________, 若 BM、 ∠ACB 的外角平分线,则∠M=________.15.如图,已知相交直线 AB 和 CD 及另一直线 MN,如果要在 MN 上找出与 AB,CD 距离相等的点,则这样的点 至少有________个,最多有________个.16.如图,在△ ABC 中,∠ABC 的平分线与∠ACD 的平分线交于点 A1 , ∠A1BC 的平分线与∠A1CD 的平分线 交于点 A2 , 依此类推….已知∠A=α,则∠An 的度数为________(用含 n、α 的代数式表示).三、解答题(共 6 题;共 55 分)17.如图,直线 l 及 A、B 两点(保留作图痕迹,不写作法)。

2021年北师大版八年级数学下册1.4角平分线自主学习同步测评1(附答案)

2021年北师大版八年级数学下册1.4角平分线自主学习同步测评1(附答案)

2021年北师大版八年级数学下册1.4角平分线自主学习同步测评1(附答案)1.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD =6,则DE的长可以是()A.1B.3C.5D.72.如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()cm2.A.24B.27C.30D.333.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AE+DE =3cm,那么AC等于()A.2cm B.3cm C.4cm D.5cm4.点P在∠AOB的平分线上,点P到OA边距离等于8,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>8B.PQ≥8C.PQ<8D.PQ≤85.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确6.如图,有三条道路围成Rt△ABC,其中BC=1000m,一个人从B处出发沿着BC行走了800m,到达D处,AD恰为∠CAB的平分线,则此时这个人到AB的最短距离为()A.1000m B.800m C.200m D.1800m7.如图,△ABC的三边AB、BC、CA长分别是10、15、20.其三条角平分线交于点O,将△ABC分为三个三角形,S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:58.如图,∠AOB的平分线上一点P到OA的距离为5,Q是OB上任意一点,则()A.PQ≥5B.PQ>5C.PQ≤5D.PQ<59.如图,在Rt△ABC中,BD是角平分线,若CD=4,AB=12,则△ABD的面积是()A.48B.24C.16D.1210.如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为()A.7B.9C.11D.1411.如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于.12.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=3,BC=6,CD =4,则四边形ABCD的面积是.13.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE=2cm,则△BCD的面积为cm2.14.如图,∠C=90°,∠A=30°,BD为角平分线,则S△ABD:S△CBD=.15.如图,AD是△ABC的平分线,DF⊥AB于点F,DE=DG,AG=16,AE=8,若S△ADG =64,则△DEF的面积为.16.如图,OC是∠AOB的角平分线,点P是OC上一点,PM⊥OB于点M,点N是射线OA上的一个动点,若PM=7,则PN的最小值为.17.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离为cm.18.如图所示,已知△ABC的周长是10,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=1,则△ABC的面积是.19.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC边于点D,若AB=12,CD=4,则△ABD的面积为.20.如图,在四边形ABCD中,∠A=90°,AD=5,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP的最小值为.21.如图,已知点D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等.求证:AD平分∠BAC.22.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD 的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC平分∠AOB.请判断小明的做法是否可行?并说明理由.23.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.24.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.25.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.26.如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)求证:BE=FD;(2)若AC=10,AD=8,求四边形ABCF的面积.27.已知,如图,∠C=∠D=90°,E是CD的中点,BE平分∠ABC.求证:AE平分∠DAB.28.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm 的速度向点C运动,设运动时间为t秒(t>0).(1)若点P恰好在∠ABC的角平分线上,求出此时t的值;(2)若点P使得PB+PC=AC时,求出此时t的值.参考答案1.解:过点D作DM⊥AB于点M,如图所示.∵AD平分∠BAC,∠C=90°,DM⊥AB,∴DM=CD=6.又∵E是边AB上一点,∴DE≥DM,∴DE≥6.故选:D.2.解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3,同理可得OF=OD=3,∴S△ABC=S△OAB+S△OBC+S△OAC=×OE×AB+×OD×BC+×OF×AC=(AB+BC+AC),∵△ABC的周长是18,∴S△ABC=×18=27(cm2).故选:B.3.解:∵BE平分∠ABC,∠ACB=90°,DE⊥AB于点D,∴DE=EC,∵AE+DE=3(cm),∴AE+EC=3(cm),即:AC=3cm,故选:B.4.解:∵点P在∠AOB的平分线上,点P到OA边的距离等于8,∴点P到OB的距离为8,∵点Q是OB边上的任意一点,∴PQ≥8.故选:B.5.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.6.解:∵AD恰为∠CAB的平分线,DC⊥AC,∴DC=D点到AB的距离,∵BC=1000m,BD=800m,∴DC=200m,∴D点到AB的最短距离=200m,故选:C.7.解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,故选:C.8.解:作PC⊥OB于C,∵∠AOB的平分线上一点P到OA的距离为5,∴点P到OB的距离PC为5,因为Q是OB上任一点,则PQ≥5,故选:A.9.解:作DE⊥AB于点E,如右图所示,∵在Rt△ABC中,BD是角平分线,DC⊥BC,DE⊥AB,CD=4,AB=12,∴DC=DE=4,∴△ABD的面积是:=24,故选:B.10.解:如图,∵CD:BD=3:4.设CD=3x,则BD=4x,∴BC=CD+BD=7x,∵BC=21,∴7x=21,∴x=3,∴CD=9,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=9,∴点D到AB边的距离是9,故选:B.11.解:作PE⊥OA于E,∵OP平分∠AOB,PD⊥OB,PE⊥OA,∴PE=PD=4,∵OP平分∠AOB,∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ECP=∠AOB=30°,∴PC=2PE=8,故答案为:8.12.解:过点D作DE⊥BA的延长线于点E,如图所示.∵BD平分∠ABC,∴DE=DC=4,∴S四边形ABCD=S△ABD+S△BCD,=AB•DE+BC•CD,=×3×4+×6×4,=18.故答案为:18.13.解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.14.解:作DH⊥AB于H.∵BD平分∠ABC,DC⊥BC,DH⊥AB,∴DC=DH,∵∠DHA=90°,∠A=30°,∴AD=2DH,∴AD=2DC,∴S△ABD:S△CBD═2:1.故答案为2:1.15.解:过D点作DH⊥AC于H,如图,∵S△ADG=64,∴×AG×DH=64,∴DH==8,∵AD是△ABC的平分线,DF⊥AB,DH⊥AC,∵DF=DH=8,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴EF=HG,同理可得Rt△ADF≌Rt△ADH,∴AF=AH,∵EF=AF﹣AE=AH﹣AE=AG﹣HG﹣AE=16﹣EF﹣8,∴EF=4,∴S△DEF=×EF×DF=×4×8=16.故答案为16.16.解:过P作PN'作OA于N',当PN⊥OA时,PN的值最小,则PN=PN',∵OC平分∠AOB,PM⊥OB,∴PM=PN',∵PM=7,∴PN'=7,∴PN的最小值为7,故答案为:7.17.解:∵BC=10,BD=7,∴CD=3.由角平分线的性质,得点D到AB的距离等于CD=3.故答案为:3.18.解:连接OA,过点O作OG⊥AB于G,OH⊥AC于H,∵△ABC的周长是10,∴AB+BC+AC=10,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OG⊥AB,OH⊥AC,∴OG=OH=OD=1,∴△ABC的面积=△ABO的面积+△OBC的面积+△AOC的面积=×AB×OG+×BC×OD+×AC×OH=×10×1=5,故答案为:5.19.解:作DH⊥AB于D,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=4,∴S△ABD=AB×DH=×12×4=24.故答案为:24.20.解:作DH⊥BC于H,如图,∵BD⊥CD,∴∠BDC=90°,∵∠A=90°,∠ADB=∠C,∴∠ABD=∠CBD,∴DH=DA=5,∴DP的最小值为5.故答案为5.21.证明:过D作DM⊥AB于M,DN⊥AC于N,∵△DCE的面积与△DBF的面积相等,∴=,∵CE=BF,∴DM=DN,∴AD平分∠BAC.22.解:小明的做法可行.理由如下:在直角尺DEMN中,DN∥EM,∴∠DPO=∠POM,∵DP=OD,∴∠DPO=∠DOP,∴∠POM=∠DOP,∴OC平分∠AOB.23.证明:∵D是BC的中点,∴BD=CD,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C.24.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.25.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.26.(1)证明:∵AC平分∠BAD,CE⊥AB,CD⊥AD,∴CD=CE,在Rt△CBE和Rt△CFD中,,∴Rt△CBE≌Rt△CFD(HL),∴BE=FD;(2)解:在Rt△ACD中,∵AC=10,AD=8,∴CD==6,∵AC=AC,CD=CE,∴Rt△ACD≌Rt△ACE(HL),∴S△ACD=S△ACE,∵Rt△CBE≌Rt△CFD,∴S△CBE=S△CFD,∴四边形ABCF的面积=S四边形AECD=2S△ACD=2××6×8=48.27.证明:过E点作EF⊥AB于F,如图,∵BE平分∠ABC,EC⊥BC,EF⊥AB,∴EC=EF,∵E是CD的中点,∴ED=EC,∴EF=ED,而EF⊥AB,ED⊥AD,∴AE平分∠DAB.28.解:(1)作PD⊥AB于D,如图,AP=t,∵∠ACB=90°,AB=10,BC=6,∴AC==8,∵BP平分∠ABC,∴PC=PD=8﹣t,∵S△ABP+S△BCP=S△ABC,∴×10×(8﹣t)+×6×(8﹣t)=×6×8,解得t=5,即此时t的值为5s;(2)∵PB+PC=AC,∴PB=P A=t,在Rt△BCP中,∵PC2+BC2=BP2,∴(8﹣t)2+62=t2,解得t=,即此时t的值为.。

北师大版八年级数学下册 1.4.2 三角形三个内角的平分线 培优训练(含答案)

北师大版八年级数学下册    1.4.2 三角形三个内角的平分线   培优训练(含答案)

北师版八年级数学下册1.4.2三角形三个内角的平分线培优训练一、选择题(共10小题,3*10=30)1.到三角形三条边的距离相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点2. 点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,则∠BOC的度数为( ) A.120° B.135° C.145° D.160°3. 如图在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么AE+DE 等于( )A.2cmB.3cmC.4cmD.5cm4 在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD∶CD=9∶7,则D 到AB的距离为( )A.24 B.20C.18 D.155.如图,在△ABC中,∠C=90°,∠B=30°,DE垂直平分AB,交BC于点D,垂足为E.则下列结论错误的是( )A.DE+BD=BC B.BD=2CDC.BE+DE=BC D.BE+AC=AB6. 如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB =()A.30° B.35° C.45° D.60°7.如图,AD⊥OB,BC⊥OA,垂足分别为D,C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小关系是()A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定8. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.429. 如图,在ΔABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则ΔPDE的周长是()A.5cmB.6cmC.8cmD.9cm10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接APB D E CAP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC∶S△ABC=1∶3.A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11. 三角形的三条角平分线相交于一点,并且这一点到________________的距离相等12.三角形中∠B的角平分线和外角的角平分线的夹角是_________.13. 如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=________.14. 已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为.15. 如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是_________.16.如图,△ABC的三边AB,BC,CA的长分别为40,50,60,其三条角平分线交于点O,则S△ABO∶S△BCO∶S△CAO=________________.17.如图,O是△ABC内一点,且点O到△ABC三边AB,BC,AC的距离OD=OE=OF,若∠A=70°,则∠BOC=_______.18. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为_______-.三.解答题(共7小题,46分)19.(6分)如图,AB=AC,PB=PC,PD⊥AB,PE⊥AC,垂足分别是D,E.求证:PD=PE.20.(6分) 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,求BC的长.21.(6分)如图,在四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM 平分∠BAD,DM平分∠ADC.求证:AM⊥DM;22.(6分) 在△ABC中,AB=AC,BD是角平分线,BD=AD,求∠A的度数.23.(6分) 如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,且AD交BC于点D,DE⊥AB于点E.若AB=6 cm,求△DEB的周长.24.(8分)已知:如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.25.(8分)如图,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.参考答案1-5DABCC 6-10 BABAD 11. 三角形的三边12.90°13. 214.135°15. 12mn16. 4∶5∶617. 125°18.2+ 219. 证明:连接AP,∵AB=AC,PB=PC,AP=AP,∴△ABP≌△ACP(SSS),∴∠BAP=∠CAP,又∵PD⊥AB,PE⊥AC,∴PD=PE20. 解:如图,作DF⊥AC于点F.∵AD为∠BAC的平分线,且DE⊥AB于点E,DF⊥AC于点F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴∠CDF=45°=∠C.∴CF=DF=1.∴CD= 2.∴BC=BD+CD=2+ 2.21. 证明:∵AB∥CD,∴∠BAD+∠ADC=180°.∵AM平分∠BAD,DM平分∠ADC,∴∠BAD=2∠MAD,∠ADC=2∠ADM.∴2∠MAD+2∠ADM=180°.∴∠MAD+∠ADM=90°.∴∠AMD=90°,即AM⊥DM.22. 解:设∠A=x°.∵BD=AD ,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC ,∴∠BDC=∠BCD=2x°,∵AB=AC ,∴∠ABC=∠BCD=2x°,在△ABC 中x+2x+2x=180,解得:x=36,∴∠A=36°23. 解:∵AD 平分∠CAB ,∠C =90°,DE ⊥AB ,∴CD =DE ,∠C =∠DEA =90°.在Rt △ACD 和Rt △AED 中,⎩⎪⎨⎪⎧CD =ED ,AD =AD , ∴Rt △ACD ≌Rt △AED(HL).∴AC =AE.∵CD =DE ,∴BC =CD +DB =DE +DB.又∵AC =BC ,∴AE =AC =DE +DB.∴DE +DB +BE =AB =6 cm.∴△DEB 的周长为6 cm.24. 证明:连接BF ,∵F 是角平分线交点,∴BF 也是角平分线,∴MF =FN ,∠DNF =∠EMF =90°,∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°,∴∠DAC =∠BAC =15°,∴∠CDA =75°,∵∠NFC =45°,∠MFN =120°,∴∠MFE =15°,∴∠MEF =75°=∠NDF ,在△DNF 和△EMF 中,⎩⎪⎨⎪⎧∠DNF =∠EMF ,∠NDF =∠MEF ,NF =MF ,∴△DNF ≌△EMF(AAS),∴FE =FD225. 证明:如图,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 交AC 的延长线于点F , ∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF.∵∠B +∠ACD =180°,∠ACD +∠FCD =180°,∴∠B =∠FCD.在△DFC 和△DEB 中,⎩⎪⎨⎪⎧∠F =∠DEB =90°,∠FCD =∠B ,DF =DE ,∴△DFC ≌△DEB.∴DB =DC.。

1.4 角平分线 (解析版)-2020-2021学年八年级数学下册同步提优训练汇编(北师大版)

1.4  角平分线 (解析版)-2020-2021学年八年级数学下册同步提优训练汇编(北师大版)

2020-2021学年八年级数学下册同步提优训练汇编(北师大版)1.4 角平分线一、选择题1.在下列命题中,真命题是( )A .同位角相等B .到线段距离相等的点在线段垂直平分线上C .三角形的外角和是360°D .角平分线上的点到角的两边相等【答案】C2.如图,点P 在∠ABC 的平分线上,PD ⊥BC 于点D ,若PD =4,则P 到BA 的距离为( )A .3B .4C .5D .6【答案】B3.如图,OP 平分AOB ∠,PC OA ⊥,点D 是OB 上的动点,若5PC cm =,则PD 的长可以是()A .2cmB .3cmC .4cmD .6cm【答案】D4.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AC ,垂足为E .若AC =10cm ,CE =4cm ,则AB 的长度为( )A .10cmB .6cmC .4cmD .2cm【答案】B 5.如图,用直尺和圆规作∠AOB 的平分线OP 的过程中,弧①是( )A .以C 为圆心,以12CD 长为半径的弧B .以C 为圆心,以大于12CD 长为半径的弧 C .以D 为圆心,以12CD 长为半径的弧 D .以D 为圆心,以大于12CD 长为半径的弧 【答案】B 6.如图,在OAB 和△OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中一定正确的为( )A .①②③B .①②④C .①③④D .②③④【答案】B7.在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,三个内角的平分线交于点P ,则点P 到AB 的距离PH 为( )A .1cmB .2cmC .3013cmD .6013cm 【答案】B 8.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且120ADC =∠︒,20cm BC =,则AM 的长度为( )A .20cmB .10cmC .5cmD .15cm【答案】A二、填空题 9.如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,△ABC 的面积为60,AB =16,BC =14,则DE 的长等于_____.【答案】4.10.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.【答案】61°11.如图,在ABC ∆中,90ACB ∠=︒,BE 平分ABC ∠,DE AB ⊥于点D ,如果3cm AC =,那么AE DE +等于__________cm .【答案】312.如图,//AB CD 、BAC ∠的平分线AP 与ACD ∠的平分线CP 相交于点P ,作PE AC ⊥于点E .若3PE =,则两平行线AB 与CD 间的距离为________ .【答案】613.如图,已知△ABC 的周长是10,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,则△ABC 的面积是_____.【答案】5三、解答题14.如图,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O ,连接AO ,AO 平分∠CAB .求证:OD =OE【答案】证明见解析【详解】证明:方法1:直接根据角平分线性质可得∵AO 平分∠CAB ,且CD ⊥AB ,BE ⊥AC∴OD =OE方法2:利用三角形全等证明∵CD ⊥AB ,BE ⊥AC ,∴90ODA OEA ∠=∠=︒,∵AO 平分∠CAB ,∴∠1=∠2,在△ADO 和△AEO 中,9012ODA OEA AO AO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADO ≌△AEO (AAS ),∴OD =OE .【点睛】本题考查的是三角形全等的判定与性质,角平分线的性质,掌握以上知识是解题的关键.15.如图,已知ABC 中,,AB AC BD CD =分别平分,,ABE ACE BD ∠∠交AC 于F ,连接AD .(1)当40BAC ∠=︒时,求BDC ∠的度数;(2)请直接写出BAC ∠与BDC ∠的数量关系;(3)求证://AD BE .【答案】(1)20°;(2)2BAC BDC ∠=∠(或12BDC BAC ∠=∠);(3)证明见解析.【详解】解:(1)∵,40AB AC BAC =∠=︒,∴∠ACB =∠ABC =70°,∴∠ACE =110°∵,BD CD 分别平分,ABE ACE ∠∠, ∴1352∠=∠=︒DBC ABC ,1552DCE ACE ∠=∠=︒,∴20BDC DCE DBC ∠=∠-∠=︒(2)2BAC BDC ∠=∠(或12BDC BAC ∠=∠)∵AB =AC ,∴∠ACB =∠ABC ,∵BD ,CD 分别平分∠ABE ,∠ACE ,∴∠DBC =12∠ABC ,∠DCE =12∠ACE , ∴∠BDC =∠DCE −∠DBC =12(∠ACE -∠ABC )=12∠BAC , (3)如图,过点D 作,,DN AB DK AC DM BC ⊥⊥⊥,垂足分别为点N ,K ,M .∵,BD CD 分别平分,,,,ABE ACE DN AB DK AC DM BC ∠∠⊥⊥⊥,∴DM DN DK ==,∴AD 平分GAC ∠,∴GAD DAC ∠=∠,∵,GAC GAD DAC ABC ACB ABC ACB ∠=∠+∠=∠+∠∠=∠,∴GAD ABC ∠=∠,∴//AD BE .【点睛】本题考查了等腰三角形的判定与性质、外角的性质以及平行线的判定与性质;弄清各个角之间的关系进行推理论证与计算是解题的关键.16.在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)如图1,①求证:∠ABO=∠CAD;②AB与AD是否相等?请说明理由;(2)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.【答案】(1)①见解析;②AB=AD,见解析;(2)7【详解】证明:①在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;解:②AB=AD,如图:过点A 作AF ⊥BC 于点F ,作AE ⊥CD 的延长线于点E , ∵B (0,7),C (7,0),∴OB =OC ,∴∠BCO =45°,∵BC ⊥CD ,∴∠BCO =∠DCO =45°,∵AF ⊥BC ,AE ⊥CD ,∴AF =AE ,∠F AE =90°,∴∠BAF =∠DAE ,在△ABF 和△ADE 中,BAF DAE AF AEAFB AED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△ADE (ASA ),∴AB =AD ,(3)过点E 作EH ⊥BC 于点H ,作EG ⊥x 轴于点G ,∵E 点在∠BCO 的邻补角的平分线上,∴EH =EG ,∵∠BCO =∠BEO =45°,∴∠EBC =∠EOC ,在△EBH 和△EOG 中,EBH EOG EHB EGO EH EG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBH ≌△EOG (AAS ),∴EB =EO ,∵∠BEO =45°,∴∠EBO =∠EOB =67.5°,又∠OBC =45°,∴∠BOE =∠BFO =67.5°,∴BF =BO =7.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.中,已知D是BC的中点,过点D作BC的垂线交∠BAC的平分线于点E,EF⊥AB 17.如图,在ABC于点F,EG⊥AC于点G.(1)求证:BF=CG;(2)若AB=12,AC=8,求线段CG的长.【答案】(1)见解析;(2)2【详解】(1)连接EC、EB.∵AE是∠CAB的平分线,EF⊥AB于点F,EG⊥AC于点G,∴EG=EF,又∵ED垂直平分BC,∴EC=EB,∴Rt△CGE≌Rt△BFE(HL),∴BF=CG;(2)在Rt△AEF和Rt△AEG中,AE AE EF EG=⎧⎨=⎩,∴△AEF≌△AEG(HL),∴AF=AG,∵BF=CG,∴AB+AC=AF+BF+AG-CG=2AG,∵AB=12,AC=8,∴AG=10,∴CG=AG-AC=2.【点睛】本题主要考查了全等三角形的判定和性质,在解题时要注意全等三角形的判定和性质的灵活应用以及与角平分线的性质的联系是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 角平分线同步培优练习题一.选择题(共10小题)1.如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为()A.8.5B.15C.17D.342.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2B.2.5C.3D.43.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P 到直线AC的距离为4,则点P到直线AB的距离为()A.4B.3C.2D.14.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,AB=20,CD=6,若∠C=90°,则△ABD面积是()A.120B.80C.60D.405.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则下列结论中错误的是()A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF 6.如图,PM=PN,∠BOC=30°,则∠AOB的度数()A.30°B.45°C.60°D.50°7.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为()A.2B.3C.4D.无法确定8.在△ABC内部取一点P,使得点P到△ABC的三边距离相等,则点P是△ABC的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三边的垂直平分线的交点9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC 的面积是()A.3B.4C.5D.610.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共5小题)11.如图,点O在△ABC内部,且到三边的距离相等.若∠BOC=130°,则∠A=.12.如图,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,若△ABC的面积是30,则OD=.13.如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为.14.如图,AB∥CD,点P到AB,BC,CD距离都相等,则∠P=度.15.如图,在△ABC中,∠C=90°,AB=10,AC=6,角平分线AE与BF相交于点O,则点O到斜边AB的距离为.三.解答题(共7小题)16.在△ABC中,已知∠A=90°,AB=AC,BD平分∠ABC,DE⊥BC于E,请解答下列问题:(1)若AD=2cm,则D点到BC边的距离是.(2)若BC=7cm,则△CDE的周长为.(3)连接AE,试判断线段AE与BD的位置关系,并说明理由.17.已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.18.在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.19.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.20.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.21.在四边形ABCD中,CE平分∠BCD交AD于点E,点F在线段CE上运动.(1)如图1,已知∠A=∠D=90°①若BF平分∠ABC,则∠BFC=°②若∠BFC=90°,试说明∠DEC=∠ABC;(2)如图2,已知∠A=∠D=∠BFC,试说明BF平分∠ABC.22.证明命题“角平分线上的点到角两边的距离相等”,要根据题意,画出图形,并用符号表示已知求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.(1)已知:如图,OC是∠AOB的角平分线,点P在OC上,,.求证:.(请你补全已知和求证)(2)写出证明过程.参考答案一.选择题(共10小题)1.【分析】根据角平分线的性质得到点O到△ABC各边的距离为4,利用三角形面积公式得到×AB×4+×AC×4+×BC×4=34,然后计算出AB+AC+BC即可.【解答】解:∵点O为△ABC的两条角平分线的交点,∴点O到△ABC各边的距离相等,而OD⊥BC,OD=4,∴点O到△ABC各边的距离为4,∵S△ABC=S△AOB+S△BOC+S△AOC,∴×AB×4+×AC×4+×BC×4=34,∴AB+AC+BC=17,即△ABC的周长为17.故选:C.2.【分析】作DE⊥AB于E,如图,先根据勾股定理计算出BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用面积法得到10x=6(8﹣x),然后解方程即可.【解答】解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故选:C.3.【分析】过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,然后根据角平分线上的点到角的两边的距离相等即可得解.【解答】解:如图,过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,∵BD、CE是△ABC的外角平分线,∴PF=PG,PG=PH,∴PF=PG=PH,∵点P到AC的距离为4,∴PH=4,即点P到AB的距离为4.故选:A.4.【分析】根据角平分线的性质得出DE=CD=6,进而利用三角形的面积公式解答即可.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=6,∴△ABD面积=,故选:C.5.【分析】根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,故选:C.6.【分析】由角平分线性质定理的逆定理和角的和差直接求出∠AOB的度数为60°.【解答】解:如图所示:∵点P在∠AOB的内部,PM⊥AO,PN⊥OB,PM=PN,∴点P在∠AOB的角平分线上,∴OC平分∠AOB,∵∠BOC=30°,∴∠AOB=60°,故选:C.7.【分析】当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.再根据角平分线的性质定理可得DP=CD解决问题;【解答】解:当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.由作图可知:AE平分∠BAC,∵DC⊥AC,DP⊥AB,∴DP=CD=2,∴PD的最小值为2,故选:A.8.【分析】根据角平分线的性质解答.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴点P到△ABC的三边距离相等,则点P是△ABC的三条角平分线的交点,故选:B.9.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.∴S△ACD=AC•DF=×3×2=3,故选:A.10.【分析】如图作,PM⊥BC于M,PN⊥BA于N.利用角平分线的判定定理和性质定理可得PB是∠ABC的平分线,由△P AN≌△P AH,△PCM≌△PCH,推出∠APN=∠APH,∠CPM=∠CPH,由∠MPN=180°﹣∠ABC=120°,推出∠APC=∠MPN=60°,由∠BPN=∠CP A=60°,推出∠CPB=∠APN=∠APH即可一一判断.【解答】解:如图作,PM⊥BC于M,PN⊥BA于N.∵∠P AH=∠P AN,PN⊥AD,PH⊥AC,∴PN=PH,同理PM=PH,∴PN=PM,∴PB平分∠ABC,∴∠ABP=∠ABC=30°,故①正确,∵在Rt△P AH和Rt△P AN中,,∴△P AN≌△P AH,同理可证,△PCM≌△PCH,∴∠APN=∠APH,∠CPM=∠CPH,∵∠MPN=180°﹣∠ABC=120°,∴∠APC=∠MPN=60°,故②正确,在Rt△PBN中,∵∠PBN=30°,∴PB=2PN=2PH,故③正确,∵∠BPN=∠CP A=60°,∴∠CPB=∠APN=∠APH,故④正确.二.填空题(共5小题)11.【分析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A.【解答】解:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×(180°﹣∠BOC)=180°﹣2×(180°﹣130°)=80°,故答案为:80°.12.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD,∵△ABC的周长是20,OD⊥BC于D,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×OD=×20×OD=30,解得:OD=3,故答案为:313.【分析】过P作PE⊥OB,根据角平分线的定义和平行线的性质易证得△PCE是等腰直角三角形,得出PE=3,根据角平分线的性质即可证得PD=PE=3.【解答】解:过P作PE⊥OB,∵∠AOP=∠BOP,∠AOB=45°,∴∠AOP=∠BOP=22.5°,∵PC∥OA,∴∠OPC=∠AOP=22.5°,∴∠PCE=45°,∴△PCE是等腰直角三角形,∴PE=PC=×6=3,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE=3,故答案为3.14.【分析】根据到角的两边距离相等的点在角的平分线上可得BP、CP分别是∠ABC和∠BCD的平分线,再根据两直线平行,同旁内角互补和角平分线的定义解答即可.【解答】解:∵点P到AB、BC、CD距离都相等,∴BP、CP分别是∠ABC和∠BCD的平分线,∴∠CBP=∠ABC,∠BCP=∠BCD,∴∠CBP+∠BCP=(∠ABC+∠BCD),∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠CBP+∠BCP=×180°=90°,∴∠P=180°﹣(∠CBP+∠BCP)=180°﹣90°=90°.故答案为:9015.【分析】利用勾股定理列式求出BC,根据角平分线上的点到角的两边距离相等可得点O 到△ABC三边的距离相等,设为h,再利用△ABC的面积列出方程求解即可.【解答】解:∵∠C=90°,AB=10,AC=6,∴BC===8,∵角平分线AE与BF相交于点O,∴点O到△ABC三边的距离相等,设为h,则S△ABC=(10+6+8)h=×6×8,解得h=2,即点O到斜边AB的距离为2.故答案为:2.三.解答题(共7小题)16.【分析】(1)根据角平分线的性质定理解答;(2)证明△ABD≌△EBD,得到BA=BE,根据三角形的周长公式计算即可;(3)根据线段垂直平分线的判定定理解答.【解答】解:(1)∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DE=AD=2cm,故答案为:2cm;(2)在△ABD和△EBD中,,∴△ABD≌△EBD,∴BA=BE,△CDE的周长=CD+CE+DE=CD+AD+CE=AC+CE=AB+CE=BE+CE=BC=7cm,故答案为:7cm;(3)∵DA=DE,BA=BE,∴BD⊥AE.17.【分析】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.18.【分析】先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.【解答】解:过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.19.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.20.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.21.【分析】(1)①先根据∠A+∠D=180°得AB∥CD,可得∠ABC+∠BCD=180°,根据角平分线和三角形的内角和可得结论;②先根据同角的余角可得:∠CBF=∠DEC,由①知:AB∥CD,可得结论;(2)如图2,延长BF交于点M,根据四边形的内角和定理和邻补角的性质可得∠DCF =∠EMF,根据三角形的内角和定理得∠FEM=∠CBF,同理得∠FEM=∠ABF,从而得结论.【解答】解:(1)①∵∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CE平分∠BCD,BF平分∠ABC,∴∠CBF=,∠BCF=,∴∠CBF+∠BCF==90°,∴∠BFC=90°;故答案为:90②∵∠BFC=90°,∴∠CBF+∠BCF=90°,∵∠D=90°,∴∠DCE+∠DEC=90°,∵CE平分∠BCD,∴∠DCE=∠BCF,∴∠CBF=∠DEC,由①知:AB∥CD,∴∠ABC+∠BCD=180°,∴∠CBF=∠ABC,∴∠DEC=∠ABC;(2)如图2,延长BF交于点M,∵∠BFC=∠D,∠BFC+∠CFM=180°,∴∠CFM+∠D=180°,∴∠FMD+∠DCF=180°,∵∠FMD+∠EMF=180°,∴∠DCF=∠EMF,∵CE平分∠BCD,∴∠DCF=∠BCF,∴∠BCF=∠EMF,∵∠EFM=∠BFC,∴∠FEM=∠CBF,∵∠CFB=∠A,同理得∠FEM=∠ABF,∴∠ABF=∠CBF∴BF平分∠ABC.22.【分析】(1)根据题意、结合图形写出已知和求证;(2)证明△OPD≌△OPE,根据全等三角形的性质证明结论.【解答】解:(1)已知:如图,OC是∠AOB的角平分线,点P在OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE,故答案为:PD⊥OA于D;PE⊥OB于E;PD=PE;(2)证明:在△OPD和△OPE中,,∴△OPD≌△OPE(AAS)∴PD=PE.。

相关文档
最新文档