平方差公式和完全平方公式强化练习答案
平方差公式与完全平方公式练习(基础+提高)

2.2完全平方公式你一定能完成一、精心选一选⒈ )32)(32(42y x y x x +--的计算结果是 【 】A .29yB .—29yC .23yD .2232y x +⒉ .在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b ),如图1-8-1(1),把余下的部分拼成一个矩形如图1-8-1(2),根据两个图形中阴影部分的面积相等,可以验证【 】A.222()2a b a ab b +=++B.222()2a b a ab b -=-+C.22()()a b a b a b -=+-D.22(2)()2a b a b a ab b +-=+-二、耐心填一填:⒈ 利用乘法公式计算:=298 = = ;⒉ 若2542++kx x 是一个完全平方式,则k = .三、用心做一做:⒈ )3)(3()3()3(22b a b a b a b a +--++-,其中1,8-=-=b a .⒉ ⑴ 22)2()2(b a b a +- ⑵ 22)3()3(b a b a +--相信你能完成一、精心选一选⒈已知1222=+b a ,3-=ab ,则2)(b a +的值是 【 】A .6B .18C .3D .12⒉要使等式22)()(b a M b a +=+-成立,代数式M 应是 【 】A .ab 2B .ab 4C .ab 4-D .ab 2-1-8-1(1) (2)平方差公式基础题一、选择题1.下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x-y)B.(2x+3y)(2x-3z)C.(-a-b)(a-b)D.(m-n)(n-m)2.下列计算正确的是( )A.(2x+3)(2x-3)=2x2-9B.(x+4)(x-4)=x2-4C.(5+x)(x-6)=x2-30D.(-1+4b)(-1-4b)=1-16b23.下列多项式乘法,不能用平方差公式计算的是( )A.(-a-b)(-b+a)B.(xy+z)(xy-z)C.(-2a-b)(2a+b)D.(0.5x-y)(-y-0.5x)4.(4x2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x2-5yB.-4x2+5yC.(4x2-5y)2D.(4x+5y)25.a4+(1-a)(1+a)(1+a2)的计算结果是( )A.-1B.1C.2a4-1D.1-2a46.下列各式运算结果是x2-25y2的是( )A.(x+5y)(-x+5y)B.(-x-5y)(-x+5y)C.(x-y)(x+25y)D.(x-5y)(5y-x)二、解答题7. a(a-5)-(a+6)(a-6) 8. ( x+y)( x-y)( x2+y2) 9. 9982-4 10. 2003×2001-20022平方差公式提高题一、选择题:1.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个2.下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④3.乘法等式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、•多项式都可以二、解答题4.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1).5.计算:22222110099989721-+-++- .6.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.二、典型例题例1:计算(1)(2m-3)(2m+3) (2)(a -2b +3c )(a +2b+3c ).(3)20052-2006×2004例2:因式分解(1)16-4a 4 (2)42242y y x x +-(3)22341ab b a a -+- (4)222224)(b a b a -+例3:已知,8=+n m ,15=mn 求22n mn m +-的值三:达标测试(一、选择题)1、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---2、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+3、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++ 4、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±245、已知5-=+y x ,6=xy ,则22y x +的值为( )A 、12B 、13C 、37D 、16(二、填空题)6、分解因式: x 2+y 2-2xy=7、已知x +y =1,那么221122x xy y ++的值为_______.8、在多项式4x2+1中添加,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是(三、计算)9、)yxx-+ 10、4(x+1)2-(2x+5)(2x-5) )(5353(y。
平方差公式和完全平方公式(习题及答案)

③ (2 x + 3 y − 1)(2 x − 3 y + 1) ;
④ ( a − b)3 ;
m m ⑤ + 2 − − 2 ; 3 3
2
2
⑥ 1012 − 992 .
2
思考小结
1. 在利用平方差公式计算时要找准公式里面的 a 和 b, 我们把完 全相同的 “项” 看作公式里的 “_____” , 只有符号不同的 “项” 看作公式里的“ _____” ,比如 ( x + y − z )( x − y − z ) , _______ 是公式里的“a” ,_______是公式里的“b” ;同样在利用完全 平方公式的时候,如果底数首项前面有负号,要把底数转为 它的______去处理,比如 (−a − b) 2 = (_______) 2 2. 根据两大公式填空:
思考小结在利用平方差公式计算时要找准公式里面的a和b我们把完全相同的项看作公式里的只有符号不同的项看作公式里的比如是公式里的a是公式里的b
平方差公式和完全平方公式(习题)
例题示范
例 1:计算: 3(−a + 1)(−a − 1) − 2(a + 1) 2 . 【操作步骤】 (1)观察结构划部分: 3(−a + 1)(−a − 1) − 2(a + 1) 2 ① ② (2)有序操作依法则:辨识运算类型,依据对应的法则运算. 第一部分: −a 和 −a 符号相同,是公式里的“a” ,1 和-1 符号相 反,是公式里的“b” ,可以用平方差公式; 第二部分:可以用完全平方公式,利用口诀得出答案. (3)每步推进一点点. 【过程书写】
若 (2 x + 3 y ) 2 =4 x 2 + 12 xy + n 2 y 2 ,则 n=__________. 若 (ax − y ) 2 = 4 x 2 + 4 xy + y 2 ,则 a=________. 计算:
第03讲 平方差和完全平方公式(知识解读+真题演练+课后巩固)-2023-2024学年八版)(原卷版

第03讲 平方差和完全平方公式1. 掌握平方差和完全平方公式结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差和完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算.4.能用平方差和完全平方公式的逆运算解决问题知识点1:平方差公式平方差公式:语言描述:两个数的和与这两个数的差的积,等于这两个数的平方差. 注意:在这里,既可以是具体数字,也可以是单项式或多项式.知识点2:平方差公式的特征抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )22()()a b a b a b +-=-b a ,=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z2知识点3:完全平方公式完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍注意:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:知识点4:拓展、补充公式2222222a b c ab ac bc =+++++(a+b+c ) 222112a a a±=+±(a );;;.【题型1 平方差公式运算】【典例1】(2023春•渭南期中)计算(3a +2)(3a ﹣2)= . 【变式1-1】(2023春•蕉城区校级月考)若a +b =1,a ﹣b =2022,则a 2﹣b 2= . 【变式1-2】(2023春•双峰县期末)(4a +b )(﹣b +4a )= . 【变式1-3】(2023春•埇桥区期末)计算:(2x ﹣3y )(3y +2x )= . 【典例2】(2023春•佛冈县期中)19992﹣1998×2002.【变式2-1】(2023•皇姑区校级开学)简便运算:20222﹣2020×2024.()2222a b a ab b +=++2222)(b ab a b a +-=-()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+2()()()x p x q x p q x pq ++=+++2233()()a b a ab b a b ±+=±33223()33a b a a b ab b ±=±+±2222()222a b c a b c ab ac bc ++=+++++【变式2-2】(2023春•安乡县期中)计算:20222﹣2021×2023.【变式2-3】(2023春•渭滨区期末)用整式乘法公式计算:899×901+1.【题型2 平方差公式的逆运算】【典例3】(2023春•海阳市期末)已知x+2y=13,x2﹣4y2=39,则多项式x﹣2y的值是.【变式3-1】(2023春•辽阳期末)若m2﹣n2=6,且m+n=3,则n﹣m等于.【变式3-2】(2023春•广饶县期中)已知实数a,b满足a2﹣b2=40,a﹣b=4,则a+b的值为.【变式3-3】(2023春•甘州区校级期末)若m2﹣n2=6,m+n=3,则=.【题型3 平方差公式的几何背景】【典例4】(2023春•东昌府区校级期末)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成垄一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)D.a2﹣b2=(a﹣b)2(2)应用你从(1)选出的等式,完成下列各题:①已知:a+b=7,a2﹣b2=28,求a﹣b的值;②计算:;【变式4-1】(2023春•高明区月考)乘法公式的探究及应用.(1)如图1到图2的操作能验证的等式是.(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2+ab=a(a+b)C.(a﹣b)2=(a+b)2﹣4abD.a2﹣b2=(a+b)(a﹣b)(2)当4m2=12+n2,2m+n=6时,则2m﹣n=;(3)运用你所得到的公式,计算下列各题:①20232﹣2022×2024;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1.【变式4-2】(2023春•清远期末)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)根据上述操作利用阴影部分的面积关系得到的等式:(选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2;B.a2+ab=a(a+b);C.a2﹣b2=(a+b)(a﹣b),D.(a﹣b)2=(a+b)2﹣4ab(2)请应用(1)中的等式,解答下列问题:(1)计算:2022×2024﹣20232;(2)计算:3(22+1)(24+1)(28+1)…(264+1)+1.【变式4-3】(2023春•屏南县期中)乘法公式的探究及应用:如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:;(2)利用上述乘法公式计算:①1002﹣98×102;②(2m+n﹣p)(2m+n+p).【题型4 完全平方公式】【典例5】(2023春•砀山县校级期末)计算:(x+4)2﹣x2=.【变式5-1】(2023春•威宁县期末)已知x2+y2=10,xy=2,则(x﹣y)2=.【变式5-2】(2023春•东港市期中)若(2x﹣m)2=4x2+nx+9,则n的值为.【变式5-3】(2023春•未央区校级月考)计算:(x+2)2+(1﹣x)(2+x).【题型5 完全平方公式下得几何背景】【典例6】(2023秋•绿园区校级月考)为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:=;方法一:S小正方形方法二:S=;小正方形(2)(m+n)2,(m﹣n)2,4mn这三个代数式之间的等量关系为;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a﹣=1,求:的值.【变式6-1】(2023春•甘州区校级期中)图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于.(2)试用两种不同的方法求图2中阴影部分的面积.方法1:;方法2:.(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(x﹣y)2,4xy.(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(x﹣y)2=.【变式6-2】(2023•永修县校级开学)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:;方法二:.(2)根据(1)的结论,请你写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b =6,ab=5,求a﹣b的值.【变式6-3】(2023春•湖州期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b.则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80.解决问题:(1)若x满足(2021﹣x)2+(x﹣2018)2=2020.求(2021﹣x)(x﹣2018)的值;(2)如图,在矩形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x.分别以FC、CE为边在矩形ABCD外侧作正方形CFGH 和CEMN,若矩形CEPF的面积为160平方单位,求图中阴影部分的面积和.【题型6 完全平方公式的逆运算】【典例7】(2023春•永丰县期中)已知:a2+b2=3,a+b=2.求:(1)ab的值;(2)(a﹣b)2的值;(3)a4+b4的值.【变式7-1】(2023春•都昌县期末)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m+2)(n+2)的值;(2)求m2+n2的值.【变式7-2】(2023春•周村区期末)若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【变式7-3】(2022秋•大安市期末)已知m﹣n=6,mn=4.(1)求m2+n2的值.(2)求(m+2)(n﹣2)的值.1.(2023•深圳)下列运算正确的是()A.a3•a2=a6B.4ab﹣ab=4C.(a+1)2=a2+1D.(﹣a3)2=a62.(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5 3.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b24.(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2 5.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是.6.(2023•雅安)若a+b=2,a﹣b=1,则a2﹣b2的值为.7.(2023•江西)化简:(a+1)2﹣a2=.8.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.9.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.10.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.11.(2022•滨州)若m+n=10,mn=5,则m2+n2的值为.12.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.13.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.1.(2023春•市南区校级期中)下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)2.(2022秋•睢阳区期末)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)3.(2022秋•嵩县期末)已知x+y=8,xy=12,则x2﹣xy+y2的值为()A.42B.28C.54D.66 4.(2022秋•海口期末)等式(﹣a﹣1)()=a2﹣1中,括号内应填入.A.a+1B.﹣1﹣a C.1﹣a D.a﹣1 5.(2022秋•离石区期末)若二次三项式x2+kx+4是一个完全平方式,则k的值是()A.4B.﹣4C.±2D.±4 6.(2023春•攸县期末)若x2﹣y2=3,则(x+y)2(x﹣y)2的值是()A.3B.6C.9D.18 7.(2022秋•邹城市校级期末)已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4B.4或﹣2C.±4D.﹣2 8.(2022秋•渝北区校级期末)化简:(x+2y)2﹣(x+y)(3x﹣y).9.(2023春•渭滨区期中)请你参考黑板中老师的讲解,用乘法公式进行简便计算:利用乘法公式有时可以进行简便计算.例1:1012=(100+1)2=1002+2×100×1+1=10201;例2:17×23=(20﹣3)(20+3)=202﹣32=391.(1)9992;(2)20222﹣2021×2023.10.(2022秋•龙湖区期末)请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14.求:①a+b的值;②a2﹣b2的值.11.(2022秋•高安市期末)已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.12.(2022•荆门)已知x+=3,求下列各式的值:(1)(x﹣)2;(2)x4+.13.(2022秋•阳城县期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:.14.(2023春•威海期中)利用简便方法计算:(1)501×499+1;(2)0.125×104×8×104.15.(2022秋•南昌期末)图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)求图2中的阴影部分的正方形的周长;(2)观察图2,请写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系;(3)运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.(4)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.16.(2022秋•丹棱县期末)阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac =38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).。
平方差公式和完全平方公式、因式分解强化练习题

平方差公式、完全平方公式应用例说例1 计算(1))1)(1(+-ab ab ;(2))32)(32(---x x ;(3)1022;(4)992. 解:(1))1)(1(+-ab ab =11)(222-=-b a ab ;(2))32)(32(---x x = )23)(23(x x --+-=22249)2()3(x x -=--;(3)1022= 2)2100(+=1040444001000022100210022=++=+⨯⨯+;(4)992=2)1100(-=98011200100001110021002=+-=+⨯⨯-.例2 计算 (1))1)(1(-+++b a b a ;(2)2)2(p n m +-.解:(1))1)(1(-+++b a b a =121)(]1)][(1)[(222-++=-+=-+++b ab a b a b a b a ;(2)2)2(p n m +-=222)2(2)2(])2[(p p n m n m p n m +⋅-⋅+-=+- =2224244p np mp n mn m +-++-.例3 当2)2()23)(23(1,1b a b a b a b a ---+=-=时,求的值.【点拨】先用乘法公式计算,去括号、合并同类项后,再将a 、b 的值代入计算出结果.解:)44(49)2()23)(23(22222b ab a b a b a b a b a +---=---+=2222228484449b ab a b ab a b a -+=-+--;当时,1,1=-=b a222848)2()23)(23(b ab a b a b a b a -+=---+=8(-1)81)1(42-⨯-+=-4. 例4 求证:当n 为整数时,两个连续奇数的平方差22)12()12(--+n n 是8的倍数.证明:22)12()12(--+n n =)144(14422+--++n n n n=n n n n n 814414422=-+-++,又∵n 为整数,∴8n 也为整数且是8的倍数.例5 观察下列等式:10122=-,31222=-,52322=-,73422=-,……请用含自然数n 的等式表示这种规律为:________________.例6已知2294y Mxy x +-是一个完全平方式,求M 的值.解:根据2)32(y x ±=229124y xy x +±得: 12±=-M .∴12±=M答:M 的值是±12.例7 计算 1584221)211)(211)(211)(211(+++++. 【点拨】若按常规思路从左到右逐个相乘,比较麻烦;如果乘或除以一个数或一个整式,将本来复杂的问题转化成我们已知的、熟悉的,从而找到问题的捷径.解:1584221)211)(211)(211)(211(+++++ =158422121)211)(211)(211)(211)(211(+÷++++- =1584222121)211)(211)(211)(211(+÷+++- =158442121)211)(211)(211(+÷++- =15882121)211)(211(+÷+- =15162121)211(+÷-=2-15152121+=2. 第一种情况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+12)(2x-12) 6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)第二种情况:运用公式使计算简便1、 1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、(100-13)×(99-23)7、(20-19)×(19-89)第三种情况:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-12)(x2+14)(x+12)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a) 7.(ab+1)(-ab+1)第五种情况:每个多项式含三项1.(a+2b+c)(a+2b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)完全平方公式公式:语言叙述:两数的 ,. 。
平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差,完全平方公式练习(有答案)

(4)(x+2)(x2-x-4)=x·x2+x(-x)+x·(-4)+2x2+2·(-x)+2×(-4)=x3-x2-4x+2x2-2x-8=x3+x2-6x-8.
7.解:(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)=4x2+2xy-2xy-y2+2xy-8x2-y2+4xy+2y2-6xy=-4x2.
=a2-9 =4a2-9b2
3. (1+2c)(1-2c) 4. (-x+2)(-x-2)
=1-4C2=x2-42
5. (2x+ )(2x- ) 6. (a+2b)(a-2b)
=4x2- 1/4 =a2-4b2
7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)
=4a2-25b2=4a2-9b2
1、(a+b)(a-b)(a2+b2)
=(a2-b2)(a2+b2)
=a4-b4
2、(a+2)(a-2)(a2+4)
=(a2-4)(a2+4)
=a4-16
3、(x- )(x2+ )(x+ )
=(x2-1/4)((x2+ )=x4-1/16
第四种情况:需要先变形再用平方差公式
1、(-2x-y)(2x-y) 2、(y-x)(-x-y)
10.在(ax2+bx-3)(x2- x+8)的结果中不含x3和x项,则a=,b=
人教版初中数学平方差与完全平方公式练习及参考答案

平方差与完全平方公式练习1、用平方差公式进行计算:
(1) 103×97; (2)118×122 (3) 102×98 (4) 51×49
2、平方差公式在混合运算中的应用:
(3) (4)
利用平方差公式进行证明:
3、对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的整数倍吗?
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.
方法总结:在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系.
4、如果两个连续奇数分别是2n-1,2n+1(其中n为正整数),证明两个连续奇数的平方差是8的倍数.
注意:逆用了平方差公式!5、
6、
7、
8、
9、对于任意一个正整数n,整式A=(4n+1)·(4n-1)-(n+1)·(n-1)能被15整除吗?请说明理由.
10、王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
完全平方公式
1、利用完全平方公式计算:
2、下面各式的计算是否正确?如果不正确,应当怎样改正?
3、利用完全平方公式计算
4、利用完全平方公式的变形求整式的值:
5、填空:
6、
7、
8、(1)(3a+b-2)(3a-b+2) (2)(x-y-m+n)(x-y+m-n) 9、
10、已知x+y=8, x-y=4,求xy.。
平方差公式和完全平方公式强化练习

平方差公式强化练习平方差公式:22ba-+特点是相乘的两个二项式中,a表示-=a)b)(a(b的是完全相同的项,+b和-b表示的是互为相反数的两项。
所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。
一:正用公式的条件是:方法有:1. a(a-5)-(a+6)(a-6)2. ( x+y)( x-y)( x2+y2)3.9982-44.5. 6.(5x2-4y2)(5x2+4y2) 7.(x+x+6)(x-x+6) 8.(2x+y-z+5)(2x-y+z+5) 9:)3ba2(cc)(3+)(--a-b)(++1-3+ba())(a3b10: (1)(2+1)(22+1)(24+1) (2) (3+1)(32+1)(34+1)(3)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(4)(3+1)(32+1)(34+1)…(32008+1)-401632.二:逆用公式的条件是: 计算1.(1)(2m) – (3n) (2)(x+y+z) –(x-y)22)331()331)(3(b a b a --+ (4)(2a +b+c) - (2a+b-c)2.(1)222222221295969798991002-⋅⋅⋅⋅⋅+-+-+-)(三;变形用(整体思想)计算:1.若x 2-y 2=30,且x -y=-5,求 x+y 的值完全平方公式一:正用公式的条件是::方法有: 变符号:(1)(-a-b )2=(2) (-a+b )2=1.(1)()23a b + (2)()23x y -+ (3)212x ⎛⎫+ ⎪⎝⎭变项数:2. (1)()22x y z +- (2)21993. 计算:(1) ()221m -- (2)()()()22a b a b a b -+-(3)()2a b c +- (4)()2220.43m n -(5)()2231a b -+ (6) 472-94×27+272二; 有关配方问题(逆用)逆用公式的条件是:1. 472-94×27+272 =_____.2.若x 2+mx+9是完全平方式,则m=_____.3. 若x 2+12x+m 2是完全平方式,则m=_____.4. 若4x 2-mx+9是完全平方式,则m=_____.5.若(mx)2+12x+9是完全平方式,则m=_____.6.若mx 2+12x+9是完全平方式,则m=_____.7.已知x 2-2(m+1)xy+16y 2是一个完全平方式,那么m 的值是_____.8.已知x 2-2x+y 2+6y+10=0,求x=_____,y=_____,x+y=_____.9.试说明N=x 2-4x+y 2+6y+15永远为正值.10.(1)化简(a-b)2+(b-c)2+(a-c)2(2)利用上题的结论,且a-b=10, b-c=5,求a 2+b 2+c 2-ab-bc-ac 的值.三、整体计算方面1.已知3=+b a ,1=ab ,求22b a +和44a b +2.若5a b -=,4ab =,求22b a +的值;3.()28a b -=,()22a b +=,求 ab4. 若a 2+ b 2=9,ab=4,求3(a+b)2和(a-b)2的值.5.已知x+x 1=4,求x 2+(x 1)2,(x-x 1)2的值.。
平方差公式与完全平方公式练习题含答案

平方差公式一、填空题 1.(x+6)(6-x)= ,11()()22x x -+--= . 2.⋅--)52(b a ( )22254b a -=3.(x-1)(2x +1)( )=4x -1.4.(a+b+c)(a-b-c)=[a+( )][a-( )].5. 18201999⨯= ,403×397= . 二、选择题1.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)-(100-1)A.1个B.2个C.3个D.4个2、下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④3.乘法公式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.数字、单项式、•多项式都可以二、解答题1、(2x+3y)(2x-3y)2、a(a -5)-(a+6)(a -6)3、 ( x+y)( x -y)( x 2+y 2)4、 9982-4完全平方公式一、填空1. (a +2b )2=a 2+ +4b 2.2. (3a -5)2=9a 2+25- .3. a 2-4ab+( )=(a-2b)24. (a+b)2-( )=(a-b)25. (3x+2y)2-(3x-2y)2=6. 49a 2- +81b 2=( +9b )2.7. (-2m -3n )2= .8. (a -b +c )2= .二、选择题1、在括号内选入适当的代数式使等式(5x-y)·( )=25x 2-5xy+y 2成立.A.5x-yB.5x+yC.-5x+yD.-5x-y2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、如果x 2+kx+81是一个完全平方式,那么k 的值是( ).A.9B.18C.9或-9D.18或-184、边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )A.n 2B.2mnC.2mn-n 2D.2mn+n 2三、解答题1.(1)(-2a +5b )2; (2)(x -3y -2)(x +3y -2);(3)(2a +3)2+(3a -2)2;2.用简便方法计算:(1)972; (2)20022;(3)992-98×100; (4)49×51-2499214121212121平方差公式参考答案一.填空题1、236x -2、b a 52+-3、1+x4、)(c b +,)(c b +5、8180399,159991 二、选择题1-3 DCD三、解答题(1)2294y x - (2)、a 536- (3)44y x - (4)、996000 完全平方公式参考答案一、填空1、ab 42、a 303、24b4、ab 45、xy 246、ab 126- ,a 77、229124n mn m ++8、bc ab ac c b a 222222--+++二、选择题 1-4 ACDC三、解答题1、(1)2225204b ab a +- (2) 49422++-y x x (3) 13132+a2、(1)9409 (2)4008004 (3)1 (4)0。
平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式◆基础训练1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.20062-2005×2007的计算结果为()A.1 B.-1 C.2 D.-26.在下列各式中,运算结果是b2-16a2的是()A.(-4a+b)(-4a-b) B.(-4a+b)(4a-b)C.(b+2a)(b-8a) D.(-4a-b)(4a-b)7.运用平方差公式计算.(1)102×98 (2)234×314(3)-2.7×3.3(4)1007×993 (5)1213×1123(6)-1945×2015(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a-2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)(11)(2m-5)(5+2m)+(-4m-3)(4m-3)(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)◆综合应用8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-13.10.运用平方差公式计算:(1)220052005200042006-⨯;(2)99×101×10 001.11.解方程:(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.◆拓展提升13.若a+b=4,a2-b2=12,求a,b的值.完全平方公式◆基础训练1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.2.计算:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.下列计算正确的是()A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算结果为1-2ab2+a2b4的是()A.(-1+ab2)2 B.(1+ab2)2 C.(-1+a2b2)2 D.(-1-ab2)2 8.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy 9.计算(a+1)(-a-1)的结果是()A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-1 10.运用完全平方公式计算:(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2(4)(13a+15b)2(5)(-a-b)2(6)(-a+12)2(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-12n2)2(10)1012(11)1982(12)19.92 11.计算:(1)(a+2b)(a-2b)-(a+b)2(2)(x-12)2-(x-1)(x-2)12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.◆综合应用13.若(a+b)2+M=(a-b)2,则M=_____.14.已知(a-b)2=8,ab=1,则a2+b2=_____.15.已知x+y=5,xy=3,求(x-y)2的值16.一个圆的半径为rcm,当半径减少4cm后,这个圆的面积减少多少平方厘米?◆拓展提升17.已知x+1x=3,试x2+21x和(x-1x)2的值.平方差公式参考答案1.a2 b2 a4-b4 2.-3y2 2x2 9y4-4x43.2323202(23)2 399594.10 0.7 10 0.7 •100 0.49 5.A 6.D7.(1)9996 (2)81516(3)-8.91 (4)999 951(5)14389(6)-399.96 (7)9a2-ab-3b2(8)a4-5a2+4(9)2a2-5b2(10)21y2-3x2(11)-12m2-16 (12)4a2-b28.b-3a b-a+m9.3a2+5a+5 11310.(1)2005 (2)99 999 99911.(1)x=-172(2)x=-212.-48xy-32ax+16bx13.a=3.5,b=0.5完全平方公式参考答案1.a2+2ab+b2 a2-2ab+b2和(或差)平方和这两个数乘积的2倍2.(•1)•2a •2a 1 1 4a2+4a+1 (2)2x 2x 3y 3y 4x2-12xy+9y23.a+6b 2a-3b 4.-•2 •4 5.16 46.C 7.A 8.A 9.A10.(1)a2+6a+9 (2)25x2-20x+4 (3)9a2-6a+1 •(4)19a2+215ab+125b2(5)a2+2ab+b2(6)a4-a2+14(7)x2y4+8xy2+16 (8)2a+1 (9)4m4+2m2n2+14n4(10)10 201 (11)39 204 (12)396.0111.(1)-2ab-5b2(2)2x-7412.x<11 • •13.•-4ab14.1015.1316.(8r-16) cm217.7 5。
平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
(完整版)平方差公式与完全平方公式提高训练

教学过程提高训练一、选择1.若(x+a)(x+b)=x2-kx+ab,则k的值为( )A.a+b B.-a-b C.a-b D.b-a2.计算(2x-3y)(4x2+6xy+9y2)的正确结果是( )A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 3.(x2-px+3)(x-q)的乘积中不含x2项,则( )A.p=q B.p=±q C.p=-q D.无法确定4.若0<x<1,那么代数式(1-x)(2+x)的值是( )A.一定为正B.一定为负C.一定为非负数D.不能确定5.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( ) A.2(a2+2)B.2(a2-2)C.2a3D.2a66.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=407.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=21.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.2.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.3.若a2+a+1=2,则(5-a)(6+a)=__________.4.当k=__________时,多项式x-1与2-kx的乘积不含一次项.5. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.1、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .二、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);(3)(a -2b +3c -1)(a +2b -3c -1); (4)(s -2t )(-s -2t )-(s -2t )2;(4)(5)(t -3)2(t +3)2(t 2+9)2.例1、完全平方式1、若k x x ++22是完全平方式,则k =2、。
平方差公式与完全平方公式提高训练

教学过程提高训练一、选择1.假设(x+a)(x+b)=x2-kx+ab,那么k的值为( )2.A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是( )4.A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y35.(x2-px+3)(x-q)的乘积中不含x2项,那么()6.A.p=q B.p=±q C.p=-q D.无法确信7.假设0<x<1,那么代数式(1-x)(2+x)的值是()8.A.必然为正B.一定为负C.一定为非负数D.不能确定9.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()10.A.2(a2+2)B.2(a2-2)C.2a3D.2a611.方程(x+4)(x-5)=x2-20的解是()12.A.x=0 B.x=-4 C.x=5 D.x=4013.假设2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()14.A.a=2,b=-2,c=-1 B.a=2,b=2,c=-115.C.a=2,b=1,c=-2 D.a=2,b=-1,c=21.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.2.若(x+a)(x+2)=x2-5x+b,那么a=__________,b=__________.3.若a2+a+1=2,那么(5-a)(6+a)=__________.4.当k=__________时,多项式x-1与2-kx的乘积不含一次项.5.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,那么a=_______,b=_______.一、假设(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.二、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);(3)(a -2b +3c -1)(a +2b -3c -1); (4)(s -2t )(-s -2t )-(s -2t )2;(4)(5)(t -3)2(t +3)2(t 2+9)2.例一、完全平方式1、若k x x ++22是完全平方式,那么k =二、.假设x 2-7xy +M 是一个完全平方式,那么M 是3、若是4a 2-N ·ab +81b 2是一个完全平方式,那么N =4、若是224925y kxy x +-是一个完全平方式,那么k = 例二、配方思想1、若a 2+b 2-2a +2b +2=0,那么a 2004+b 2005=_____.二、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______. 4、已知x 、y 知足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______.5.已知014642222=+-+-++z y x z y x ,那么z y x ++= .例3、完全平方公式的变形技术1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
最新平方差公式与完全平方公式试题(含答案)1[1]-2
![最新平方差公式与完全平方公式试题(含答案)1[1]-2](https://img.taocdn.com/s3/m/7374c80cdd88d0d232d46a3d.png)
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式
公式: ( a+b)(a-b)= a 2-b 2
语言叙述:两数的 和乘以这两个数的差等
于这两个数的平方差 , . 。
公式结构特点: 左边: (a+b)(a-b) 右边: a 2-b 2 熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。
(5+6x)(5-6x) 中 (5+6x) 是公式中的a , (5-6x) 是公式中的b (5+6x) (5+6x) 中 (5+6x) 是公式中的a , (5+6x) 是公式中的b (x-2y)(x+2y) 中 (x+2y)是公式中的a , (x-2y)
是公式中的b (-m+n)(-m-n) 中 (-m-n) 是公式中的a , (-m+n) 是公式中的b (a+b+c )(a+b-c)
中 (a+b+c ) 是公式中的a , (a+b-c) 是公式中的b (a-b+c )(a-b-c) 中 (a-b+c ) 是公式中的a , (a-b-c) 是公式中的b (a+b+c )(a-b-c) 中 (a+b+c ) 是公式中的a , (a-b-c) 是公式中的b 填空: 1、(2x-1)( (2x+1 )=4x 2-1 2、(-4x- 7y )( 7y -4x)=16x 2-49y 2 第一种情况:直接运用公式
1.(a+3)(a-3)
2..( 2a+3b)(2a-3b) = a 2-9 =4a 2 -9b 2
3. (1+2c)(1-2c)
4. (-x+2)(-x-2) =1-4C 2 =x 2-42平方差公式和完全平方公式强化练习答案
5. (2x+12)(2x-12)
6. (a+2b)(a-2b) =4x 2-1/4 =a 2-4b 2
7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b) =4a 2-25b 2 =4a 2-9b 2 第二种情况:运用公式使计算简便 1、 1998×2002 2、498×502 =(2000-2)(2000+2) =(500-2)(500+2) =4000000-4 =250000-4 =3999996 =249996 3、999×1001 4、1.01×0.99 =(1000-1)(1000+1) =(1+0.1)(1-0.1) =1000000-1 =1-0.01 =999999 =0.99
5、30.8×29.2
6、(100-13)×(99-23)
=(30+0.8)(30-0.8) = =900-0.64 =899.46
7、(20-19)×(19-89)
=(19+8/9)(19-8/9) =361-64/81 =11032/27 第三种情况:两次运用平方差公式 1、(a+b )(a-b)(a 2+b 2) =(a 2-b 2) (a 2+b 2) =a 4-b 4 2、(a+2)(a-2)(a 2+4) =(a 2-4) (a 2+4) =a 4-16
3、(x- 12)(x 2+ 14)(x+ 12
)
=(x 2-1/4)( (x 2+ 14)
=x 4-1/16
第四种情况:需要先变形再用平方差公式
1、(-2x-y )(2x-y)
2、(y-x)(-x-y) =-(2x+y)(2x-y) =-(y-x)(y+x) =-(4x 2-y 2) = y 2-4x 2 = =-(y 2-x 2)=x 2-y 2 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) =y 2-4x 2 =-(16a 2-1) =1-16a 2 5.(b+2a)(2a-b) 6.(a+b)(-b+a) =4a 2-b 2 =a 2-b 2 7.(ab+1)(-ab+1) =1-a 2b 2
第五种情况:每个多项式含三项
1.(a+2b+c )(a+2b-c)
2.(a+b-3)(a-b+3) =a 2+4ab+4b 2-c 2 =a 2-b 2+6b+9
3.x-y+z)(x+y-z)
4.(m-n+p)(m-n-p) =x 2-y 2+2yz-z 2 =m 2-2mn+n 2-p 2 完全平方公式 公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 语言叙述:两数的 完全平方和(差)等于这两个数各自平方和与这两个数乘积2倍的和(差)。
,
. 。
公式结构特点: 左边: (a+b)2; (a-b)2
右边:a 2+2ab+b 2; a 2-2ab+b 2
熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。
公式变形
1、a 2+b 2=(a+b)2 -2ab =(a-b)2 +2ab
2、(a-b )2=(a+b)2 -4ab (a+b)2=(a-b)2 +4ab
3、(a+b)2 +(a-b )2= 2a 2 +2b 2
4、(a+b)2 --(a-b )2= 4ab
一、计算下列各题:
1、2)(y x +
2、2
)23(y x -
=x 2+2xy+y 2 =9x 2-12xy+4y 2
3、2
)2
1(b a + 4、2)12(--t
=1/4a 2+ab+b 2 =4t 2+4t+1 5、2)313(c ab +- 6、2)2
3
32(y x + =9a 2b 2+2abc+1/9c 2 =4/9x 2+2xy+9/4y 2 =(2/3x+3/2y)2 二、利用完全平方公式计算: (1)1022 (2)1972 =(100+2)2 =(200-3)2
=10000+400+4 =40000-1200+9 =10404 =38809 (3)982 (4)2032 =(100-2)2 =(200+3)2
=10000-400+4) =40000+1200+9 =9604 =41209
三、计算: (1)22)3(x x -+ (2)22)(y x y +-
=x 2+6x+9-x 2 =y 2-x 2-2xy-y 2 =6x+9 =-x 2-2xy (3)()()2
()x y x y x y --+-
=x 2-2xy+y 2-x 2+y 2 = -2xy+2y 2 四、计算: (1))4)(1()3)(3(+---+a a a a
=-3a-5
(2)22
)1()1(--+xy xy =4xy (3))4)(12(3)32(2+--+a a a
=-2a 2-33a+21
五、计算: (1))3)(3(-+++b a b a
=a 2+2ab+b 2-9 (2))2)(2(-++-y x y x
=x 2-y 2+4y-4 (3))3)(3(+---b a b a
= a 2-2ab+b 2-9
(4)()()2323x y z x y z +-++
=x 2-4xy+4y 2-9z 2
六、拓展延伸 巩固提高
1、若22)2(4+=++x k x x ,求k 值。
解:X 2+4x+k= X 2+4x+4 K=4
2、 若k x x ++22是完全平方式,求k 值。
解:因为X 2+2x+k 是完全平方式 所以X 2+2x+k=(x+1)2
即k=1 3、已知1
3a a
+
=,求221a a +的值
解:221
a a
+
=(a+1/a)2-2 =32-2 =7。