表面与界面
材料表面与界面工程
![材料表面与界面工程](https://img.taocdn.com/s3/m/bd84a9c270fe910ef12d2af90242a8956aecaa7d.png)
材料表面与界面工程是一个繁荣的领域,在材料科学中扮演着至关重要的角色。
表面与界面工程的目的是改善材料表面的特性以及相邻物质之间的相互作用,可以通过多种方法来实现。
一、表面修饰表面修饰是一种改善材料表面特性的方法,通过特定的表面修饰技术,材料的表面性质可以被改善,例如表面粗糙度、化学反应活性、涂层均匀性、粘附性等。
其中,表面粗糙度是表面修饰中最常见的一种方法。
表面粗糙度能够影响材料表面的湿润性、化学反应活性和粘附性等特性,因此表面微纳结构化和表面粗糙度的控制被广泛应用于诸如生物医学、化学传感、机械制造等领域。
二、表面涂层表面涂层是一种表面修饰的方法,它是将一层材料沉积到另一层材料表面上的过程,通常是通过化学气相沉积、磁控溅射等方法实现。
涂层可以改善材料表面的电学、热学、化学和生物性能,并且对于增强材料的机械性能及耐磨性也有很大的帮助。
涂层材料的选择取决于特定应用的需求,例如生物医学、能量储存和环保材料等领域。
三、界面工程在材料科学中,所有的材料都可以被看作是由不同材料的层叠组合而成的复合材料。
因此,界面的性质变化与材料性能息息相关,界面工程就是通过调节相邻物质之间的相互作用来改善界面特性。
这通常需要对多种方面进行调节,包括界面结构、化学反应、电介质、热膨胀等。
界面工程具有许多潜在的应用领域,其中最显著的包括能源和环保材料。
在环保领域中,提高材料间的拉伸、切割和剪切强度非常重要,例如土壤稳定、土地复垦等。
在能源领域中,界面工程可以用于生产能量存储器件,例如锂离子电池、氢燃料电池等,也可以用于制备太阳能电池和光电转换材料。
综上所述,表面与界面工程在材料科学中扮演着至关重要的角色,通过改善材料表面的特性以及相邻物质之间的相互作用来提高材料的性能和应用。
考虑到不同应用领域的需求和材料特性,科学家们将继续发现新的表面及界面工程技术,以进一步改善现有材料的性能和开发新的材料。
第三章 3.3表面及界面
![第三章 3.3表面及界面](https://img.taocdn.com/s3/m/d071e61b0740be1e650e9a8f.png)
12 23 cos 2 31 cos 3 0 1 2 3 2
如果是同一相的晶粒,平衡时晶粒 间最常见的夹角为120o。
2017/5/17
§3.3.3 相界
• 相界:不同相(相: 具有特定的结构和成分组成)之间 的界面。 按相界面上原子间匹配程度分为: 共格界面、半共格界面、非共格界面
100
2017/5/17
§3.3.2 晶界
• 晶界的平衡
晶界能的存在,使晶界有收缩的趋势。 类似与表面张力,单位长度晶界上的收缩力F = ( : 晶界能) 看左图,为了使O点不动,则: grain1
31
grain3 O 3
12
1 2
grain2 23
23 31 12 或: sin 3 sin 1 sin 2
(通过这道题我们可以明白,晶体中的位错线互相缠结构成位错网络。位 错网中位错彼此纠缠,相互钉扎。如果在外切应力作用下让位错移动,类 似于F-R位错源的开动,外切应力需要大于一个临界值,此临界值正比于 1/D,所以如果材料的位错密度越大(即D越小),则材料越难变形。所以高密 度的位错对材料有强化作用。)
② 大角度晶界
大角度晶界结构复杂。绝大部分晶粒间形成的是大角度晶界。 大角度晶界的晶界能与晶粒之间的取向基本无关。
2017/5/17
2.
大角度晶界
大角度晶界(high angle grain boundaries )为原子呈 不规则排列的一过渡层。大多数晶粒之间的晶界都属于大 角度晶界。 重合位置点阵( coincidence site lattice )模型:图 3.67, 该模型说明,在大角度晶界结构中将存在一定数 量重合点阵原子。
材料的表面与界面
![材料的表面与界面](https://img.taocdn.com/s3/m/cefa7f187cd184254a353506.png)
(2)贝尔比层:材料经抛光后,表面形成厚度约5-100nm的光亮而致密层,称为· 金属和合金的贝尔比层往往存在非晶、微晶和金属氧化物.贝尔比层坚硬并且具有 良好的耐腐蚀性. 机械加工后金属表面组织:氧化物层(10-100nm)-贝尔比层(5-100nm)-严重 畸变区(1-2μ m)-强烈畸变区-轻微畸变区
通过晶格的收缩或扩张而形成特殊排列的位错作为两相的过渡区.过渡区的位错称为失配位错.
多晶材料中的界面;(1)多晶材料中的相平衡 两个非共格相界的平衡: ①120︒<ψ <180︒时,第二相在母相中呈圆形,对母相不润湿,呈柱状分布; ②60︒<ψ <120︒时,第二相在母相三晶粒交界处沿晶界部分渗入; ③0︒<ψ <60︒时,第二相在母相三晶粒交界处形成三角状,随二面角减小铺展的越开; ④ψ =0︒时,第二相在母相的晶界区铺开;
旋转对称:旋转角θ =2π /n,n为正整数,称为旋转对称的滑移群:对某一直线作镜像反应后,再沿此线平行方向滑移 半个平移基失.镜像滑移群+点群→17种对称群,称为二位空间群. 原子的表面密度:单胞中某一表面上原子的总面积与该表面积之比.ρ =Aa/As (2)清洁表面:在真空中分开晶体,或将已有表面在真空中经过离子轰击、高温 脱附后得到的表面,这种表面没有吸附其它异类原子,只存在表面原子的排列变化 ①表面重构:形成晶体表面的悬空键的存在,使其处于高能不稳定状态,为了降低 表面自由能,表面原子的位置必然发生变化,这种变化的结果,使得表面原子的 平移对称性与理想表面显著不同,这种表面变化称为表面重构. ②表面弛豫:为了降低体系能量,表面上的原子会发生相对正常位置的上或者下 位移,表面原子的这种位移称为表面弛豫.其显著特征是表面第一层原子和第二层 原子之间的距离改变,越深入体相,弛豫效应越弱,并迅速消失. ③表面台阶结构:存在各种各样的缺陷:TLK模型,T指平台,L表示单原子高度的 台阶,K表示单原子尺度的扭折. (3)吸附表面:除了表面原子几何位置发生变化外,还通过吸附外来原子来降低 表面自由能.包括物理吸附(弱、快、无选择性)和化学吸附(强、慢、选择性). 表面热力学:①表面自由能:自由能极图 ②表面自由能的各向异性影响因素:a.键能Eb; b.单位面积键的数量 ③晶体的稳定形状:表面自由能趋向最小,所以对于各向同性的液体来说,形状 总是趋于球形.定义体积恒定情况下表面自由能最小的形状为平衡形状. 对于各向异性的晶体来说,晶体的平衡形状就是自由能极图的最大内接多边形 实际表面:①表面粗糙度(表面不平整程度小于1mm时)R=Ar/Ag Ag为几何表面积;Ar为包括内表面在内的实际表面积 ②表面杂质的偏析(表面杂质浓度比体内大时)与耗尽(表面浓度比体内小时) 如果杂质原子在表面能使表面自由能降低,则形成偏析,反之形成耗尽; 由热力学条件得出、且偏析尺度为原子尺度(纳米级),称为平衡偏析; 实际上表面的偏析主要发生在几十纳米到几个微米的范围,这种偏析为非平衡 偏析,原因:表面区内存在许多空位、晶格畸变等缺陷,它们形成了明显的应力 场,并引起相应的畸变能,与主成分原子半径不同的各种杂质,进入畸变区域后, 将有利于畸变能的减少,使表面自由能降低,故形成各种非平衡偏析. ③金属与合金的表面组织受环境温度、氧气分压、合金组分浓度等的影响; 表面组织: (1)表面层晶粒尺寸变化:在切磨、抛光等机械加工时,产生大量的热,使表面
材料物理化学-第五章 表面与界面
![材料物理化学-第五章 表面与界面](https://img.taocdn.com/s3/m/c05ed5ea524de518964b7d89.png)
湖南工学院
④n↑或↓ 三、吸附与表面改性 吸附:新鲜的固体表面能迅速地从空气中吸附气体或其它物质来降低其表面能。吸附是 一种物质的原子或分子附着在另一种物质表面现象。 表面改性:通过改变固体表面结构状态和官能团。 表面活性剂:降低体系的表面(或界面)张力的物质。
5.3 无机材料的晶界与相界
液体
开 the contact 两相的化学性能或
F 为润湿张力,θ为润湿角(接触角 angle),由于 所以,润湿先决条件是γSV>γS或γSL很小,当固液 化学结合方式很接近时,是可以满足这一要求。
材料物理化学
固
湖南工学院
改变γSV——减少氧化吸附膜; 改变γSL——两相组成相似; 改变γLV——液体中加入表面活性剂 ⑶浸渍润湿 浸渍润湿指固体浸入液体中的过程。
湖南工学院
第五章
表面与界面
表面的质点由于受力不均衡而处于较高的能阶。这就使物体表面呈现一系列特殊的性 质。高分散度物系比低分散度物系能量高得多,必然使物系由于分散度的变化而使两者在物 理性能(如熔点、沸点、蒸气压、溶解度、吸附、润湿和烧结等)和化学性质(化学活性、 催化、固相反应)方面有很大的差别。随着材料科学的发展,固体表面的结构和性能日益受 到科学界的重视。随着近年来表面微区分析、超高真空技术以及低能电子衍射等研究手段的 发展,使固体表面的组态、构型、能量和特性等方面的研究逐渐发展和深入,并逐渐形成一 门独立学科——表面化学和表面物理。 表面与界面的结构、性质,在无机非金属固体材料领域中,起着非常重要的作用。例如 固相反应、烧结、晶体生长、玻璃的强化、陶瓷的显微结构、复合材料都与它密切相关。 表面:—个相和它本身蒸汽(或真空)接触面称之。 界面:—个相与另一个相(结构不同)接触的分界面称之。 相界:指具有不同组成或结构的两固相间的分界面。 晶界:是指同材料相同结构的两个晶粒之间的边界。 习惯上把液-气界面、固-气界面称为液体表面和固体表面。表面可以由一系列的物理化 学数据来描述(表面积、表面组成、表面张力、表面自由能、熵、焓等),表面与界面的组 成和结构对其性能有着重要的影响。 表面与界面起突出作用的新型材料,如薄膜、多层膜、超晶格、超细微粒与纳米材料等 发展如日中天。
材料表面与界面
![材料表面与界面](https://img.taocdn.com/s3/m/8dfc3ab20029bd64783e2c3b.png)
表界面是由一个相过渡到另一个相的过渡区域。
若其中一相为气体,这种界面通常称为表面。
表面:在真空状态下,物体内部和真空之间的过渡区域,是物体最外面的几层原子和覆盖其上的外来原子和分子所形成的表面层。
表面层有其独特的性质,和物体内部的性质完全不同。
几何概念:表面是具有二维因次的一块面积,无厚度、体积。
界面:两个物体的相态相接触时的过渡区域,由于分子间的相互作用,形成在组成、密度、性质上和两相有交错并有梯度变化的过渡区域。
几何概念:它不同于两边相态的实体,有独立的相、占有一定空间,有固定的位置,有相当的厚度和面积。
弛豫;指表面层之间以及表面和体内原子层之间的垂直间距ds和体内原子层间距d0相比有所膨胀和压缩的现象。
可能涉及几个原子层。
重构:指表面原子层在水平方向上的周期性不同于体内,但在垂直方向上的层间间距d0与体内相同。
这种不平衡作用力使表面有自动收缩的趋势,使系统能量降低的倾向,由此产生表面张力以σ表示,称为表面张力,即:6=f/2l,6=dw/da,σ也可以理解为表面自由能,简称表面能。
例题:20℃时汞的表面张力为4.85×10-1 Jm-2,求在此温度及101.325 kPa 的压力下,将半径1mm的汞滴分散成半径10-5 mm的微小汞滴,至少需要消耗多少功?解:已知:σ=4.85×10-1 Jm-2,r1=1mm, r2=10-5 mm,界面张力的热力学定义。
在恒温、恒压下研究表面性能,故常用下式表示。
广义表面自由能的定义:保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。
狭义表面自由能的定义:保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能,用符号σ表示,单位为J·m-2。
表面张力与表面Gibbs自由能的异同:相同点:数值相同,量纲相同。
不同点:物理意义不同,单位不同。
例:试求25℃,质量m=1g的水形成一个球形水滴时的表面自由能E1。
表面与界面知识点总结 -回复
![表面与界面知识点总结 -回复](https://img.taocdn.com/s3/m/5d454bb08662caaedd3383c4bb4cf7ec4bfeb655.png)
表面与界面知识点总结 -回复
以下是表面与界面的知识点总结:
1. 表面:物质外部与空气、液体、固体等相接触的部分。
通常有分子层之称。
2. 界面:两种不同状态的物质相接触的部分,如气液界面、固液界面等。
3. 表面张力:液体表面对外界的张力。
液体分子内部相互吸引,表面上的液体分子则受到邻居分子的吸引力只能向内收缩,形成一个比内部压力高的膜状物。
例如水滴在菜叶表面停留就是因为水滴表面的张力与菜叶表面的张力相等而凝聚在菜叶上。
4. 比表面积:单位质量内所含有的分子数和面积,即面密度。
比表面积可以反映物质粒子间的作用力。
5. 吸附:物质表面吸附分子或离子的现象。
吸附可分为化学吸附和物理吸附,化学吸附是指吸附过程中发生化学反应,物理吸附是指吸附过程中没有化学反应。
6. 原子层沉积(ALD):是指以原子为单位,将一种气态化合物分子逐层沉积在衬底表面的过程。
这种技术可以制备高质量、均匀、复杂的薄膜,并广泛应用于微电子、光电、生物等领域。
总之,了解表面和界面的知识对于化学、材料学等领域非常重要,能够帮助我们更加深入理解物质的性质、结构和相互作用关系。
材料表面与界面的特性及其应用
![材料表面与界面的特性及其应用](https://img.taocdn.com/s3/m/c3bdc1c68662caaedd3383c4bb4cf7ec4afeb627.png)
材料表面与界面的特性及其应用材料表面和界面性质是材料科学中的重要研究领域,因为这些性质决定了材料的性能和用途。
在本文中,我们将探讨材料表面和界面的特性及其应用。
一、表面和界面的概念表面是指材料外部与环境接触的部分,分为实际表面和几何表面两种。
实际表面是真实的材料表面,几何表面是理想情况下的平滑表面。
材料的表面特性主要包括表面形貌、表面化学组成、表面结构和表面能等。
界面是指两种不同的材料或相同材料的不同部分之间的分界面,它们之间的接触面积和界面能量影响着材料的特性。
材料的界面性质主要包括晶界、异质界面、相界面等,其中晶界是指晶粒之间的界面,异质界面是指不同材料之间的界面,相界面是指同一材料中不同相之间的界面。
二、表面和界面的特性1. 表面形貌表面形貌是指表面的几何形状和表面纹理。
这些形状和纹理决定了材料的摩擦、磨损、润滑性能等。
表面形貌通常通过光学显微镜、扫描电子显微镜等观察技术获得。
2. 表面化学组成表面化学组成是表面化学反应和表面吸附现象的结果,包括化学基团、氧化物、热处理物种等。
表面化学组成影响材料的电子结构、化学反应和材料与环境之间的相互作用。
3. 表面结构表面结构是指表面的晶体结构和缺陷结构。
它们决定了表面的力学强度、疲劳寿命等。
表面结构通常通过X射线衍射、中子衍射、TEM等实验手段获得。
4.表面能表面能是表面分子间相互作用的能量和表面吸附分子的能量。
表面能决定了表面与其他材料之间的亲疏性和黏附性。
表面能通常通过表面张力、接触角等实验技术测量。
5. 总界面能总界面能是指材料界面的总能量,包括界面张力和界面形变能等。
总界面能主要影响材料的界面稳定性,是材料界面优化的重要指标。
三、表面和界面的应用表面和界面的特性在材料科学中具有重要的应用,主要包括以下方面:1. 表面修饰利用表面化学组成和结构的差异,对材料表面进行化学、物理、生物修饰,以达到特定的表面性质。
例如,通过表面修饰可使金属表面耐蚀、增加光电转换效率等。
材料科学中的表面与界面现象
![材料科学中的表面与界面现象](https://img.taocdn.com/s3/m/f9e67b447dd184254b35eefdc8d376eeafaa176a.png)
材料科学中的表面与界面现象引言表面与界面现象是材料科学中一个极为重要的研究领域。
无论是在材料的合成、加工、性能研究还是应用开发中,表面和界面都扮演着至关重要的角色。
本文将从表面与界面的定义、表面和界面的性质以及表面与界面的应用等方面进行探讨,希望能够对读者对材料科学中的表面与界面现象有一个全面的了解。
表面与界面的定义在材料科学中,表面是指材料与外界相接触的边界部分,它是材料与外界进行物质和能量交换的重要场所。
表面能够直接反映材料的性质和特征,并且表面的性质往往与材料的体积相差较大。
界面是指两个或多个不同材料之间的接触面,它是不同材料之间相互作用的场所。
界面处的物理和化学变化可以导致材料的性能发生显著的变化,因此对界面的研究在材料科学中具有重要意义。
表面和界面的性质表面的性质材料表面的性质主要包括表面能、表面形貌和表面化学组成等。
表面能是指材料表面上的内能与外界的能量之间的交换能力,它直接反映了材料与外界的相互作用强度。
表面形貌则是指材料表面的形状和结构特征,它影响着材料的摩擦、磨损、光学和电子等性能。
表面化学组成是指材料表面元素的种类和分布情况,它决定着材料的表面反应活性和化学稳定性。
界面的性质界面的性质主要包括界面能、界面形貌和界面化学组成等。
界面能是指两个不同材料的接触面上的内能与外界能量之间的交换能力。
界面形貌则是指不同材料接触面的形状和结构特征,它对表面应力、界面强度和界面位错等起着重要作用。
界面化学组成是指两个不同材料接触面上化学元素的种类和分布情况,它决定了界面反应的速率和界面附着力。
表面与界面的应用表面与界面的性质在材料科学中具有广泛的应用价值。
以下将介绍几个常见的应用领域。
表面涂层技术表面涂层技术是指将附加层覆盖在材料表面上,以提高材料的性能和增加其使用寿命。
表面涂层技术广泛应用于防腐、耐磨、导热、导电等方面。
例如,汽车制造中常用的喷涂技术可以在汽车外部覆盖一层防腐、防划伤的漆膜,提高汽车的耐用性和外观质量。
表面和界面概述
![表面和界面概述](https://img.taocdn.com/s3/m/42f5e5b42b160b4e777fcfa1.png)
对于单组分系统,这种特性主要来自于同一物质 在不同相中的密度不同;对于多组分系统,则特性来 自于界面层的组成与任一相的组成均不相同。
最简单的例子是液体及其蒸气组成的表面。
液体内部分子所受的力可 以彼此抵销,但表面分子受到 体相分子的拉力大,受到气相 分子的拉力小(因为气相密度 低),所以表面分子受到被拉 入体相的作用力。
这种作用力使表面有自动收缩到最小的趋势,并 使表面层显示出一些独特性质,如表面张力、表面吸 附、毛细现象、过饱和状态等。
界面现象的本质
比表面(specific surface area)
比表面通常用来表示物质分散的程度,有两
种常用的表示方法:一种是单位质量的固体所具
有的表面积;另一种是单位体积固体所具有的表
面积。即:
A0
As m
或
A0
As V
式中,m 和 V 分别为固体的质量和体积,As为其 表面积。目前常用的测定表面积的方法有BET法
和色谱法。
分散度与比表面
把物质分散成细小微粒的程度称为分散度。 把一定大小的物质分割得越小,则分散度越高, 比表面也越大。
1.气-液界面
空气
CuSO4 溶液
气-液 界面
2.气-固界面
气-固界面
3.液-液界面
H2O
Hg
液-液 界面
4.液-固界面
Hg
液-固界面
H2O
玻璃板
5.固-固界面
Cr镀层 铁管
固-固界面
界面现象的本质
表面层分子与内部分子相比所处的环境不同 体相内部分子所受四周邻近相同分子的作用力
材料物理学中的表面和界面现象
![材料物理学中的表面和界面现象](https://img.taocdn.com/s3/m/c34e50b9f605cc1755270722192e453610665bb4.png)
材料物理学中的表面和界面现象材料物理学是研究物质的性质及其与外界相互作用的学科,而表面和界面现象则是材料物理学中一个重要的研究领域。
表面和界面现象的研究对于理解材料的性质和开发新型材料具有重要意义。
本文将从表面和界面的定义、性质以及应用等方面进行探讨。
表面是物质与外界相接触的部分,它通常与内部相比具有较高的能量。
表面现象是指物质的表面所表现出的特殊性质和现象。
表面现象的研究对象包括表面能、表面张力、表面活性等。
表面能是表征物质表面能量的物理量,它是单位面积的表面所具有的能量。
表面张力是指液体表面上的分子间相互作用力,它使液体表面趋向于收缩,形成一个尽可能小的表面积。
表面活性则是指物质在界面上的吸附现象,使界面上的分子排列有序,形成一层分子膜。
界面是两种不同物质之间的接触面,它具有特殊的物理和化学性质。
界面现象是指两种不同物质接触时所表现出的特殊性质和现象。
界面现象的研究对象包括界面能、界面电荷、界面扩散等。
界面能是指两种不同物质接触时所产生的能量变化,它决定了物质在界面上的吸附和反应行为。
界面电荷是指界面上的电荷分布情况,它对于界面的电荷传递和电子转移等过程起着重要作用。
界面扩散是指两种不同物质在界面上的扩散过程,它影响着物质的相互渗透和传输。
表面和界面现象在材料科学和工程中具有广泛的应用价值。
首先,表面和界面现象对于材料的界面反应和界面控制具有重要意义。
在材料加工和制备过程中,界面反应和界面控制是实现材料性能优化的关键环节。
通过研究表面和界面现象,可以有效地控制材料的界面结构和界面性质,从而改善材料的性能和功能。
其次,表面和界面现象在材料的粘附和润湿等方面也具有重要应用。
例如,在涂层材料中,表面张力的控制可以实现涂层的均匀覆盖和附着力的增强;在生物医学领域,通过改变材料表面的亲水性或疏水性,可以实现对生物体的粘附或排斥。
此外,表面和界面现象还在材料的电子输运、热传导和光学性能等方面有着重要的应用。
材料表面与界面
![材料表面与界面](https://img.taocdn.com/s3/m/7e951386d4bbfd0a79563c1ec5da50e2524dd1c8.png)
材料表面与界面
材料的表面和界面性质对其性能具有重要影响,因此对材料表面与界面的研究一直是材料科学领域的热点之一。
材料的表面是指材料与外界相接触的部分,而界面则是指材料内部不同相或不同材料之间的接触面。
材料的表面与界面性质的研究不仅有助于深入理解材料的性能和行为,还对材料的设计、合成和应用具有重要意义。
首先,材料的表面性质对其与外界的相互作用具有重要影响。
例如,材料的表面能影响其与其他材料的粘附性能,直接影响材料的耐磨性、耐腐蚀性等。
此外,材料的表面性质还会影响其光学、电子、热学等性能,因此对材料表面的研究具有重要意义。
其次,材料的界面性质对材料的力学性能和耐久性能具有重要影响。
例如,多相复合材料中不同相之间的界面性质直接影响材料的强度、韧性和断裂行为。
在材料的界面处往往会出现应力集中、裂纹扩展等现象,因此对材料界面的研究对提高材料的力学性能具有重要意义。
此外,材料的表面与界面性质还对材料的加工、成型和应用具有重要影响。
例如,在材料的表面处理过程中,可以通过改变表面的化学成分、形貌和结构来改善材料的表面性能,从而提高材料的耐磨性、耐腐蚀性等。
在材料的界面设计中,可以通过界面改性、界面结构设计等手段来改善材料的力学性能和耐久性能,从而拓展材料的应用领域。
综上所述,材料的表面与界面性质对材料的性能和应用具有重要影响,因此对材料表面与界面的研究具有重要意义。
随着材料科学的不断发展,对材料表面与界面的研究也将不断深入,为材料的设计、合成和应用提供重要支撑。
希望通过对材料表面与界面的研究,能够开发出更加性能优越的新型材料,推动材料科学领域的发展。
材料表面与界面
![材料表面与界面](https://img.taocdn.com/s3/m/b2693806366baf1ffc4ffe4733687e21af45ffb5.png)
材料表面与界面材料表面与界面是材料科学中的重要概念,它们在材料的性能和性质中起着关键作用。
在材料科学领域中,表面和界面性质研究的是材料表面和界面与外界环境相互作用的过程和性能。
材料的表面是与外界接触的一部分,它是材料的外层结构,具有比内部结构更高的能量。
由于表面原子与内部原子存在不完全配位和束缚松弛等因素,使得表面在化学性质、物理性质和力学性质上与体相有很大的差异。
例如,金属的表面抛光后能够产生镜面光泽,而半导体的表面在光照下会发生光致反应。
此外,表面也是材料与外界相互作用的主要位置,很多材料的性质都受到表面的影响。
例如,涂层材料的附着性和耐腐蚀性都与表面的性质密切相关。
而界面是指两个相邻的材料或材料之间的分界面。
界面是材料的内部结构,它不仅在化学性质上有差异,还在物理性质和力学性质上有很大的差异。
例如,金属与金属结合的界面称为金属间隙,它具有高导电性和高热传导性;而陶瓷与金属结合的界面称为金属陶瓷界面,它具有高耐磨性和高耐腐蚀性。
界面在材料科学中起着至关重要的作用,它决定了不同材料之间的结合强度和相互作用方式,直接影响材料的性能和性质。
材料的表面和界面性质都是通过表面和界面层的建立来研究的。
表面和界面层是表面和界面两侧的极薄层,它们具有与材料体相有明显差异的结构和性质。
例如,金属的表面层一般是氧化层或氧化物层,它们具有与金属内部结构不同的物理性质和化学性质。
界面层一般是由材料之间的相互扩散和反应产生的,它们具有与材料体相不同的结构和性质。
通过对表面和界面层的研究,可以揭示表面和界面在材料性能中的作用机制,进一步发展新材料和新技术。
在材料科学中,研究表面和界面性质的方法包括表面分析技术、界面分析技术和界面反应技术等。
表面分析技术主要包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)和表面等离子共振(SPR)等,它们可以用来观察材料表面的形貌和微观结构。
界面分析技术主要包括X射线光电子能谱(XPS)、扫描透射电镜(SPM)、拉曼光谱和红外光谱等,它们可以用来分析材料界面的元素组成和原子结构。
材料科学中的表面和界面现象
![材料科学中的表面和界面现象](https://img.taocdn.com/s3/m/73816456dcccda38376baf1ffc4ffe473368fd89.png)
材料科学中的表面和界面现象表面和界面现象是材料科学领域中最重要的研究方向之一。
在材料工程、物理、化学等领域中,表面和界面现象的研究是其中的核心内容。
表面和界面现象涉及到材料表面和界面的结构、性质、热力学和动力学等方面的内容。
本文将介绍表面和界面现象的基本概念,探究其在材料科学中的重要性,并从多个角度阐述表面和界面现象在材料科学中的应用。
一、表面和界面现象的基本概念表面是指材料与周围环境相接触的部分,是材料的最外层。
表面现象是指固体表面的物理和化学性质与固体本身不同的性质,包括表面能、表面物理化学反应和表面反应动力学等。
界面是指两个物质相互接触的界面,由于接触必然引起界面区域的变化,所以界面现象与表面现象有许多相似之处。
界面现象包括表面张力、粘附力、润湿性等。
表面张力是指基于表面吸附机理,类似于薄膜的张力作用。
粘附力则是由表面间的物理吸附和化学反应产生的相互吸引力,常常涉及界面界面的剪切方面或接触角等方面。
表面和界面现象是由材料表面或界面上的分子作用产生的,其中动力学因素如扩散和迁移等也是相当重要的。
扩散是物质分子的自发移动,在固体表面和界面处的扩散通常比在体积中会大得多。
在材料科学中,表面和界面现象可以用于改良材料的性质和性能。
二、表面和界面现象在材料科学中的重要性表面和界面现象在许多材料科学领域中都有着广泛的应用。
例如,这些现象可以用来控制材料的力学性能、光学性能、热学性能,以及用作催化剂、杀菌剂等方面。
用于工程材料的粘附剂、涂层技术以及材料加工中的冶金技术通常都涉及到表面和界面现象的应用。
表面状态和化学特性对于颗粒物和纳米结构材料的制备和应用有着重要的影响。
表面和界面现象也成为创新材料设计的基础,包括涂层材料的设计、减小接触角的材料(如超疏水、超疏油材料)的制备、双氧水气泡杀菌、合金制备、新催化剂的研究等。
另外,表面和界面现象在电子器件中也起着重要的作用,像皮肤感应器、高分子材料、太阳能电池、传感器、LED材料等。
第三章--表面与界面
![第三章--表面与界面](https://img.taocdn.com/s3/m/75e256782cc58bd63086bd4c.png)
1.双相界面
❖ 相界面如右上图
❖ 定义界面Y:使两边阴影部分的面积 一样大
α(Ⅰ)
2.曲率半径对界面移动的影响
CⅠ
❖ 相界面由Ⅰ→Ⅱ(如下图)
❖ 自由能变化为:
dG=μⅠdm1+ μⅡdm2+γdA=δWrew
平衡时: δWrew=0,dm1=-dm2=dm
α
μⅡ- μⅠ= γdA/dm---相变的驱动力主要为 表面积变化
CⅡ β(Ⅱ)
Y β
ⅠⅡ
表面曲率效应
❖ 平面移动时:dA=0→ μⅡ= μⅠ= μ∞ ❖ 曲面时: μⅡ= μr, μⅠ= μ∞
μr- μ∞= γdA/dm =vγdA/dV 这里:V=ωR3/3,dV= ωR2dR ω为固体角,整个球面为4π
A= ωR2, dA=2ωRdR μr- μ∞=v×2γ/R 讨论:(1)驱动力为2γ/R,即曲率越大,表面能越高。 (2)固体颗粒中存在压应力,也是驱动力。 dμ=-SdT+VdP=VdP (当温度不变时) △P= 2γ/R---粒子越小,粒子内压应力就越大。
固体粒子的熔点
积分:
Sm
Tr dT
T
2V s s,l
r dr / r 2
S m (Tr
T )
SmT
2V s s,l
r
T
2V
s s ,l
Smr
T
2V
s s,lTm
Hmr
3.4 表面能与界面的杂质偏析(Gibbs吸附等温线)
在表面物理中,经常研究的是固体 表面和外来原子或分子的相互作用,例 如化学吸附,外延生长,氧化和多相催 化等。
的原子在界面上部分相接,部分无法相接,因此称 为半共格晶界。
表面化学表面和界面
![表面化学表面和界面](https://img.taocdn.com/s3/m/d58552d90c22590102029da5.png)
用在单位长度相界面上的表面收缩力)。
A 2 l x Fx W ' R A 2 l x F 2 l F 力 2l 界 面 长 度
图7-2 作表面功示意图
∴σ 是沿界面,垂直作用在 单位长度上的表面紧缩力。
2. 影响物质表面张力的因素 ① 表面张力是物质的特性常数,不同种类的物质,分 子间力的大小不同,σ 也不同。
A am m 2 kg1 m 下面举例说明随着分散程度的增大,比表面增大的情况。
A as m 1 V
将边长为1cm的立方体加以切割
立方体边长(cm) 分割而得立方体 数 总表面积(cm2) 比表面(cm-1)
1
1×10-1 1×10-2 1×10-3
1
103 106 109
1.
表面张力 表面层粒子受力不均匀,产生内压力。 表面有自动缩小的趋势,产生表面收缩力。
例:记 f g (m1 m2 ),金属丝移动 到一定位置时,可以保持不再滑动 δW ' ∝ dAs 2ldx f δW ' dAs fdx 2l ——表面张力
l σ m2 f m1
界面分子:靠液体一边,受液体分子作用力大,
靠蒸气一边,∵蒸气分子密度小,
∴作用力小。
三. 分散度和比表面
由于界面分子与内部所处的状态不同,就引起一系列的 表面性质。
例如:多组分体系,界面的组成与内部组成不同……
我们以比表面积(specific surface area)来描述体系的分散程度。 比表面:单位体积(或质量)物质所具有的表面积。
6
60 600 6000
6
6×101 6×102 6×103
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 表面与界面
内容提要:本章讨论了固体表面张力场与表面能。
离子晶体在表面力场作用下,离子的极化与重排过程。
多相体系中的界面化学:如弯曲表面效应、润湿与粘附,表面的改性。
概述了多晶材料中的晶界分类,多晶体的组织,晶界应力与电荷。
介绍了粘土胶粒带电与水化等一系列有表面效应而引起的胶体化学性质如泥浆的流动性和触变性、泥团的可塑性等。
固体的表面能是用晶体中一个原子(离子)移到晶体表面时,自由焓的变化来计算的。
界面化学是研究在相界面发生的各种物理化学过程的一门科学。
在弯曲表面上由于表面张力的存在而产生一个附加压力P ∆。
r P γ2=∆ )11(2
1
r r P +=∆γ
式中γ——表面张力;
21r r 、——曲面主曲率半径。
由上式可见,附加压力P ∆与曲率半径成反比。
润湿是固-液界面上的重要行为,润湿定义为:固体与液体接触后,体系(固+液)的吉布斯自由能降低时称为润湿。
SL SV LV F γγθγ-==cos 式中 F ——润湿张力;
SL SV LV γγγ、、——分别为液-气、固-气、固-液界面张力;
θ——润湿角。
θ>900因润湿张力F 小,固-液不润湿;θ<900固-液润湿;
θ=0润湿张力最大,液体在固相表面上自由铺展。
改善润湿的方法:(1)降低SL γ。
(2)去除固体表面吸附膜,提高SV γ。
(3)改变粗糙度。
当真实接触角θ<900,粗糙度愈大表观接触角愈小,愈易润湿。
当θ>900时粗糙度愈大愈不利润湿。
凡结构相同而取向不同的晶体相互接触,其接触界面称为晶界。
晶界上两晶粒质点排列取向有差异,晶界上原子形成某种过渡排列,因而晶界结构疏松,在多晶体中晶界是原子快速扩散通道,并容易引起杂质原子偏聚。
晶界上有许多空位、位错和键变形等缺陷使之处于应力畸变状态,故能阶较高,使晶界成为固态相变时优先形核区域。
晶界可以按两晶粒之间夹角大小而分为小角度晶界和大角度晶界。
也可以根据晶界两边原子排列的连贯性分为共格晶界、半共格晶界和非共格晶界三种。
固-固-气界面张力平衡关系:SV SS
γγϕ
212
cos =
固-固-液界面张力平衡关系:SL
SS
γγϕ
212
cos =
式中SL SV SS γγγ、、分别为固-固、固-气、固-液界面张力。
ϕ为二面角。
粘土(蒙脱、伊利和高岭)矿物粒度很细,一般在m μ10~1.0范围内,因而它们表现出一系列表面化学的性质。
粘土荷电主要是由于(1)粘土晶格内离子的同晶置换(蒙脱由铝氧八面体中Al 3+
被Mg 2+等二价离子取代,伊利石中硅氧四面体中Si 4+被Al 3+取代),(2)粘土边面断裂,活性边表面上破健而产生两性电荷(高岭土带电主要原因),(3)粘土内腐殖质离解等原因而带负电。
因此,它必然要吸附介质中的阳离子来中和其所带来的负电荷,被吸附的阳离子又能被溶液中其它浓度大、价数高的阳离子所交换,这就是粘土的阳离子交换性质。
粘土的阳离子交换容量用100g 干粘土所吸附阳离子的毫克当量数来表示。
影响
阳离子交换容量的因素有矿物组成、粘土细度、腐殖质含量等,因而粘土的阳离子交换容量波动早一定的范围而不是固定的值。
根据离子价效应及离子水化半径,粘土的阳离子交换容量排列如下:H+>Al3+>Ba2+>Sr2+>Ca2+>Mg2+>NH4+>K+>Na+>Li+
氢离子由于离子半径小,电荷密度大,占交换吸附序首位,在离子浓度相等的水溶液里,位于序列前面的离子能交换出序列后面的离子。
带电粘土胶体分散在水中时,在胶体颗粒和液相的界面上会有扩散双电层出现,在电场作用下粘土质点与带水化阳离子的牢固吸附层向正极移动,而另一部分带水化阳离子的扩散层却向负极移动。
吸附层与扩散层各带相反电荷,相对移动时两者之间存在的电位差称为电动电位或ζ电位。
由不同价阳离子所饱和的粘土其ζ电位次序为M+-土>M2+-土>M3+-土。
同价阳离子所饱和的粘土其ζ电位次序随离子半径增大,ζ电位降低。
粘土表面荷电与水化使粘土-水系统具有一系列胶体化学性质。
粘土泥浆的流动在常见的五类流动:宾汉流动、粘性流动、塑性流动、假塑性流动和膨胀流动中属塑性流动。
泥浆胶溶必须具备的三个条件(即提高泥浆流动性的方法):
(1)介质呈碱性;
(2)必须由一价碱金属阳离子交换粘土原来吸附的高价离子;
(3)阴离子的聚合作用。
泥浆触变是一种凝胶体与溶胶体之间的可逆转化过程。
粘土与适当比例的水混合均匀制成泥团,它受到高于某一数值剪应力作用后,可以塑造成任何形状,当去处应力泥团能保持其形状的这种性质。
称为粘土可塑性。
脊性料的悬浮与塑化主要有两种方法:(1)控制料浆PH值;(2)有机表面活
性物质的吸附。
例题
4-1、何谓表面张力和表面能?在固态和液态这两者有何差别?
解:表面张力是将物体表面增大一个单位面积所需作的功。
也可理解为作用在单位长度上的力。
表面能是在恒温恒压及组成不变的条件下,每增加一个单位的表面积时,体系自由焓的增值。
液体因不能承受剪应力,外力所做的功表现为表面积的扩展。
因而表面能与表面张力的单位及数量都是相同的。
其单位为J /m 2,固体因能承受剪切应力,外力的作用除了表现为表面积的增加外,有一部分变成塑性形变。
因此,固体的表面能与表面张力不等。
4-2、在真空条件下Al 2O 3的表面张力约为0.9 J /m 2,液态铁的表面张力为1.72 J /m 2,
同样条件下的界面张立(液态铁-氧化铝)约为2.3 J /m 2,问接触角有多大?液态铁能否润湿氧化铝?
解:已知SV γ=0.90 J /m 2,LV γ=1.72 J /m 2,SL γ=2.3 J /m 2。
8139.072
.130
.290.0cos -=-=-=
LV SL SV γγγθ 48.144=θ
因为 90>θ,所以液态铁不能润湿氧化铝。
4-3、测定了汉又一个固态氧化物、一个固态硫化物和一个液态硅酸盐的显微结构,
有以下的两面角:(a )两个硫化物颗粒之间的氧化物是112 ;(b )两个硫化物颗粒之间的液体是60 ;(c )两个氧化颗粒之间的硫化物是100 ;(d )一个氧化物和一个硫化物之间的液体是70 。
假如氧化物和氧化物之间界面能是0.9 J /m 2,求其它界面能是多少? 解:按题意绘图如下:
由题意(a ))2112cos(2 SO SS γγ= (c ))2100cos(2 SO O O γγ= 2
100cos 2112cos OO SS
γγ=
78.056cos 50cos =⨯=
OO
SS γγJ /m 2
70.056cos 2== SS SO γγJ /m 2
由题意(d ))2/70cos()2/70cos( O L SL SO γγγ+= (b ))2/60cos(2 SL SS γγ= 45.030cos 2==
SS
SL γγJ /m 2
41.0=OL γJ /m 2
题中SS γ是硫化物之间界面张力;OO γ为氧化物之间界面张力;OL γ是氧化物与液体间界面张力。