小学生几何图形思维题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)第二个图共12个三角形,要分成四个大小相等,形状相同的图形,每个图形应由12÷4=3个三角形组成;进而分析画出即可;
解:把图分成四个大小相等、形状相同的图形如下图:
点评:此题应结合题意,根据各图的特点,进行分析,然后试画,进而得出问题答案.
5.答案如图,
【解析】
试题分析:本题需要认真的观察,共有12个小正方形,说明4个一组,根据图形的特点,分成正规的小正方形是不可能的,因此只能分成不规则的图形,方案如下.
所以只要这两条直线过正方形中心且相互垂直来自百度文库可,因而有无数种剪法:
点评:本题考查了中心对称及正方形的性质,解决此类问题,要充分考虑题意的要求.
2.根据分析画图如下:
【解析】
试题分析:不论把六边形平均分成几部分,六边形的六条边必须在分成的每一部分的外沿,其他边不可能在六边形的外边,只能处在六边形的内部,从这个角度来计算,分成的每一部分保留的六边形原来边的条数是:
28.如图,一个大长方形左上角缺少一个2×3的小长方形.请把这个图形分成三部分,再拼成一个正方形.
29.有一个大正方形,现在要把它分割为12个小正方形,那么:
(1)要形成2种面积不同的小正方形,可以如何分割?
(2)要形成3种面积不同的小正方形,可以如何分割?
(3)要形成4种面积不同的小正方形,可以如何分割?
解:根据题干分析可得,拼成这个六角形,一共要6+6=12个小三角形,
故答案为:12.
点评:根据六角形的特点,先把这个图形进行分割,即可解答问题.
7.如图所示:红线为切割线:
(1)
(2)
【解析】
试题分析:(1)因为给出的是五个正方形拼成的图形,所以要将图形切分成四块形状、大小都一样的图形,也就是必须把这5个正方形平均分成四份,所以要把其中的正方形切割完成,如下图.
22.用若干个边长为1、2、3、4的正方形纸片互不重叠地拼成一个边长为5的大正方形,那么最少需要纸片多少张?请画出具体的拼法.
23.将图沿格线分割成大小、形状完全相同的四个部分,你能想出几种方法?(如果两个图形通过旋转或翻转后重合,就认为它们的形状、大小是相同的)
24.如图,长方形的长和宽分别是25厘米和16厘米.请把这个长方形剪成两块,再拼成一个正方形.
(2)设正方形的面积为2,则△BEC的面积为1,根据题意,分成的每一个直角梯形的面积为 ,然后找出正方形的中心O,过中心O分别作OF∥AD交AB于点F、作OG∥CD交BE于点H,交BC边于点G,连接OD、HE,即可作出.
解:如图所示:红线为切割线:
(1)
(2)
点评:(1)解答本题的关键是如何将五个正方形平均分成四份,由此根据图形的特点进行分割.
7.图1是由五个相同大小的小正方形拼成的,图2是一个正方形和一个等腰直角三角形拼成的.请把这两个图形分别剪成四个形状、大小都相同的图形.
8.如图,请把一个大正方形分割为两种面积不同的小正方形.
(1)如果要求两种小正方形一共有6个,应该怎么分?
(2)如果要求两种小正方形一共有7个,应该怎么分?
9.如图,有两个面积相等的正方形纸片,现在想把它们剪拼成一个更大的正方形,要求如下:
30.请画出一个三角形,并把它分成大小形状都完全相同的4个小三角形.如果要分为完全相同的16个小三角形,该如何画?
参考答案
1.比较常见的方法:
【解析】
试题分析:前三种是比较常见的方法,又因为正方形是中心对称图形,根据中心对称的性质,正方形一定被经过中心的直线平分据此解答即可.
解:比较常见的方法:
因为只是要求分成形状、大小都相同的四个部分,没要求具体什么图形,
16.将边长分别是3厘米和4厘米的两个正方形切割成四块,然后将它们拼成一个边长是5厘米的大正方形.(先在左下图画出切割示意图,后在右下图画出新拼成的正方形示意图.)
17.请将图剪成三块,再拼成一个正方形.
18.将图分割成四个形状和大小都相同的部分,然后将它们拼接成一个正方形,请在原图上标明分割线,并画出正方形的拼接图.
解:(1)
(2)
点评:此题考查了学生实际操作以及空间想象能力.
9.:如图所示:
(1)
(2)
【解析】
试题分析:(1)分别剪开这两个正方形的对角线,各分成两个直角三角形,把这两个三角形拼成一个大三角形,这样就把四个小直角三角形拼成了两个大直角三角形,再拼成正方形即可.
(2)沿对角线切开,分成四个三角形,把四个三角形拼成一个菱形,找出菱形各边中点,连结即可.
解:答案如图,
点评:本题应结合题意进行分析,分析过程中最好通过实践操作得出问题答案,并进行验证.
6.12个,如图所示:
【解析】
试题分析:观察图形,先把六角形的外部的六个角分割出6个与小三角形完全相同的三角形,则内部是一个正六边形,再把正六边形的六个顶点分别与正六边形的中心连接起来,又可以分割成6个与小三角形完全相同的三角形,所以拼成这个六角形,一共要6+6=12个小三角形,据此即可解答.
试题分析:因为共有24个三角形,沿格线分割成形状、大小都相同的四个部分,每部分包括6个三角形,由此进行划分即可.
解:
点评:此题考查了图形的拆拼,明确每部分包括6个三角形,是解答此题的关键.
13.
【解析】
试题分析:将图分割成形状、大小完全相同的四块,即每个图形的面积占整个图形面积的 ,结合图形,进行分割即可.
25.如图1是一块25×49(单位:厘米)的长方形纸片,现在要沿虚线将它分成三块,再拼成图2的边长为35厘米的正方形纸片.请用实线标明剪切和拼接的方法,在这里,虚线划分成的小长方形的大小均为5×7(单位:厘米).
26.将图沿格线分割成七个形状不同的长方形(包含正方形),请在图中用实线标出分割线.
27.如图是由5个小正方形组成的一个“十字架”.请将它剪成若干块,然后拼成一个大正方形.
12.把图沿格线分割成形状、大小都相同的四个部分,请在图中画出具体的分割办法.
13.将图分割成形状、大小完全相同的四块,请至少画出4种不同的分法.
14.一个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的纸条,请画图说明.
15.将图分成大小、形状都相同的四块,使得每一块中都有A、B、C、D.
(2)本题主要考查了复杂作图,根据面积确定出从正方形的中心入手求解是解题的关键,难度中等,但不容易考虑.
8.(1)
(2)
【解析】
试题分析:(1)将大正方形方的边长平均分成3等份,则可将大正方形分割为9个相等的小正方形,其中4个相邻的组成1个,其余5个小的各成1个.
(2)将大正方形方的边长平均分成4等份,分成3个2×2,4个1×1即可.
解:如图所示:
(1)
(2)
点评:此题考查了图形的拆拼,正确分析图形,做题时最好是先结合实物进行分割,进行观察,然后选出最佳答案.
10.如图:
【解析】
试题分析:因为正方形的四条边都相等,四个角都是直角,所以根据给出的图的特点,进行如下切割和重新拼组为正方形如下.
解:如图:
点评:本题主要考查了学生的拼组的能力,要根据给出的图形的特点和正方形的特点解答.
数学思维训练:几何图形剪拼
1.如图,将一个正方形纸片剪成形状、大小都相同的四块,可以怎么剪?请大家画出尽量多的方法.(如果两个图形通过旋转或翻转后重合,就认为它们的形状、大小是相同的)
2.观察图,ABCDEF是正六边形,O是它的中心,画出线段PQ后,就把正六边形ABCDEF分成了两个形状、大小都相同的五边形.能否画出3条线段,把正六边形分成6个形状、大小都相同的图形?能否画出几条线段,把正六边形分成3个形状、大小都相同的四边形?能否画出几条线段,把正六边形分成3个形状、大小都相同的五边形?
3.如图所示:
【解析】
试题分析:这两个图形都是中心对称图形,找出两个图形的对称中心,过这两个中心做直线,即可把纸片分成面积相等的两部分.
解:如图所示:
点评:解答本题需结合图形,利用中心对称图形的性质即可解决问题.
4.把图分成四个大小相等、形状相同的图形如下图:
【解析】
试题分析:(1)第一个图共12个小方格,要分成四个大小相等,形状相同的图形,每个图形应由12÷4=3个小方格组成;通过观察,画图即可;
(1)如果分别剪开这两个正方形,再拼接成一个大正方形,应该怎么办?
(2)如果只允许剪开一个正方形,再拼接成一个大正方形,应该怎么办?
10.如图是由若干个小正方形组成的图形,你能将其剪成两块,然后拼成一个正方形吗?
11.请在图中标出分割线,把下图沿格线分成形状、大小都相同的四个部分,(如果两个图形通过旋转或翻转后重合,就认为它们的形状、大小是相同的)
11.作图如下
【解析】
试题分析:因为共有16个方格,分成形状、大小都相同的四个部分,那么每个部分就有4个方格,根据原图形状,可分成4个“L”形的图形,解决问题.
解:作图如下
点评:仔细观察图形,根据图形特点,结合“如果两个图形通过旋转或翻转后重合,就认为它们的形状、大小是相同的”即可作出图形.
12.
【解析】
解:
点评:本题要抓住“把该图形要分割成四个大小相等、形状相同的图形,”这条信息,从中得出每个图形要占整个图形面积的 是顺利分割的突破口.
14.最多能剪出12个这样的长方形.
【解析】
试题分析:根据题干中图形的剪切方法可得:在正方形的每条边长上,可以剪出一个长边4厘米,剩下的3厘米可以截成3条1厘米的宽边,如此一共可以剪出3+3+3+3=12个出4厘米、宽1厘米的小长方形,据此即可解答问题.
图(4)把正六边形ABCDEF分成3个形状、大小都相同的五边形,含有原来边的条数是:6÷3=2条,相当于2条边的长度,这就有两种可能,一是:相邻的两条边的长度,二是:相邻的3条边,其中两条边的长度各取一半,所以只有后者才可满足条件.
解:根据分析画图如下:
点评:本题要从平均分成的每一部分图形的特征和规律入手,找到每一部分图形保留原有的边的长度.
解:根据分析,分割如下:
点评:此题主要考查图形的划分,要结合A、B、C、D的位置特征进行划分.
16.如下图所示,即可将这两个正方形拼组成一个边长为5厘米的大正方形:
【解析】
试题分析:大正方形不动,把小正方形切割成宽为1厘米的三部分,即可拼组成一个边长为5厘米的正方形.
解:如下图所示,即可将这两个正方形拼组成一个边长为5厘米的大正方形:
点评:抓住正方形的特点进行讨论拼组.
17.
【解析】
试题分析:依据图示可得:原图中可分为上面边长为3的正方形,以及下面边长为4的正方形,若想把原图分成三块再拼成正方形,拼成正方形的边长一定不能是两个正方形的边长,且一定大于4,故此只能把原图中边长是7的边分开,据此即可解答.
图(2),分成6个形状、大小都相同的正三角形,含有原来边的条数是:6÷6=1条,相当于1条边的长度,所以连接它的中心O,和六个顶点,即可符合要求;
图(3)分成3个形状、大小都相同的四边形,含有原来边的条数是:6÷3=2条,相当于2条边的长度,这就有两种可能,一是:相邻的两条边的长度,二是:相邻的3条边,其中两条边的长度各取一半,所以只有前者才可满足条件.
解:根据题干分析可得,最多能裁出3+3+3+3=12个这样的长方形:
答:最多能剪出12个这样的长方形.
点评:此题利用画图的方法解答更简单、直观,此题也可以利用面积公式解答:7×7÷(4×1)≈12(个).
15.根据分析,分割如下:
【解析】
试题分析:因为每一块中都要带有A、B、C、D各一个.根据A、B、C、D的位置特点,先把A、B、C、D划分出四个部分,再根据A、B、C、D的位置特点将中图形划分出四个完全相同的四个图形即可.
3.如图,在一块正方形纸片中有一个正方形的空洞.现在要求用一条经过大正方形中心点的线段,把纸片分成面积相等的两部分,应该怎么办?
4.请把图中的两个图形分别沿格线剪成四个形状、大小都相同的图形.
5.请把图沿格线分成形状、大小都相同的三部分,使得每部分都恰好含有一个“○”.
6.如图,三角形和六角星的每条边长都相等,那么用多少个三角形可以拼成六角星?请在图中表示出来.
19.如图中长方形的长和宽分别是9厘米和4厘米,请把这个长方形剪成两块再拼成一个正方形.
20.有一张长方形纸片,按图所示剪成了三块,已知这三块纸片可拼成一个正方形,那么正方形的边长为多少?请画出具体的拼法.
21.把七个长为4厘米、宽为3厘米的长方形既互不重叠又不留空隙地拼成一个大长方形,那么这个大长方形的周长最小是多少厘米?请画出具体的拼法.
相关文档
最新文档