工程热力学(1-lx)

合集下载

工程热力学课件完整版

工程热力学课件完整版
的热消失时,必产生相应量的功;消耗一定量的功时 ,必出现与之对应的一定量的热。
第三章 理想气体的性质
基本要求: 1、熟练掌握并正确应用理想气体状态方程式; 2、正确理解理想气体比热容的概念,熟练应用比热容计算理想 气体热力学能、焓、熵及过程热量; 3、掌握有关理想气体的术语及其意义; 4、掌握理想气体发生过程; 5、了解理想气体热力性质图表的结构,并能熟练应用它们获得 理想气体的相关状态参数。
T
不可逆过程的熵增(过程角度)
q
T
0
克劳休斯积分不等式(循环角度)
dsiso 0
孤立系统角度
ds sf sg 非孤立系统角度
熵、热力学第二定律的数学表达式
1. 熵的定义
ds qre
T
2. 循环过程的熵
3. 可逆过程的熵变
qre Tds
ds 0,则 q 0 可逆过程中ds 0,则 q 0
dv
q cndT Tds
T s
n
T cn
T ,定容过程 cV
T ,定压过程 cp
4个基本过程中的热量和功的计算
2
2
1、定容过程
w pdv 0 1
wt 1 vdp v( p2 p1)
2、定压过程
qv u cv (T2 T1)
2
w 1 pdv p(v2 v1)
热力学上统一规定:外界向系统传热为正,系统向外界传热为负。
可逆过程的热量
T
1
B
qre = Tds
T
A
2
q
ds qrev
T
S1
S dS S2
q “+”
q “-”
热力循环
功:工质从某一初态出发,经历一系列热力状态后,又回到原来 初态的热力过程称为热力循环,即封闭的热力过程,简称循环。

工程热力学全套课件(第一章)

工程热力学全套课件(第一章)
突然去掉重物 最终 p2 = p 0 T2 = T0
p
1.
.
p,T
2 v
2、准静态过程
p1 = p0+重物 T1 = T0
假如重物有无限多层 每次只去掉无限薄一层
系统随时接近于平衡态
p0
p
1.
.
.2
p,T v
★ 准静态过程可以在状态参
数坐标图上确切地表示出来。
、 无穷小
定义:准平衡过程—系统经历一系 列无限接近平衡状态的过程。
平衡不一定均匀,但均匀一定平衡
对于单相,平衡态则一定是均匀的
为什么引入平衡概念?
如果系统平衡,则可用一组确切的状 态参数描述系统所处的状态。 如果系统不平衡,则不能! 工程热力学研究的正是这种平衡状态。
二、状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
0.01 水三相点 0 冰熔点
-17.8 -273.15
盐水熔点 0
459.67
0
-459.67
0
温标的换算
T [ K ] t[ C ] 273.15
O
5 t[ C ] (t[ F ] 32) 9 t[ F ] t[ R] 459.67
O
测温仪表

日常:水银温度计,酒精温度计, 工业:热电偶 热电阻 辐射温度计
简单可压缩系统:N = n + 1 =2 绝热简单可压缩系统 N = ?
2、状态方程
状态方程 基本状态参数(p,v,T)之间 的关系 简单可压缩系统:N = 2
v f ( p, T )
f ( p , v, T ) 0

工程热力学第一章

工程热力学第一章
循环过程——工质从某一初态出发,经历一系列状态变化,最后又回到初始状态的全过程为循环过程(简称为循环)。 如图:循环1-2-3-4-1
1-5 热力循环
P
V
0
1
2
4
3
循环概念
循环过程的特点——经一个循环后系统的内能不变。 净功 A = 循环过程曲线所包围的面积
V
0
A
a
2
分度方法:认定测温物质的测温属性随温度的变化是线性 的。0℃与100℃这两个基准点之间分成100等分, 每一等分为1度。
基 准 点:纯水的汽、液、固三相平衡共存的状态点(三相 点)为基准点,并规定它的温度为273.16K。
t = T—273.15
二、可逆过程
可逆过程的实现
准静态过程 + 无耗散效应 = 可逆过程
无不平衡势差
通过摩擦使功 变热的效应(摩阻,电阻,非弹性变性,磁阻等)
不平衡势差 不可逆根源 耗散效应
耗散效应
典型的不可逆过程
不等温传热
节流过程 (阀门)
二、状态公里
闭口系:
不平衡势差 状态变化 能量传递
消除一种不平衡势差 达到某一方面平衡 消除一种能量传递方式
而不平衡势差彼此独立
独立参数数目N=不平衡势差数 =能量转换方式的数目 =各种功的方式+热量= n+1
2
1
1
2
逆循环的评价指标
逆循环:净效应(对内作功,放热)
Wnet
T0
Q1
Q2
T2
制冷循环:制冷系数
制热循环:制热系数
实际过程不是可逆过程,但为了研究方便,先按理想情况(可逆过程)处理,用系统参数加以分析,然后考虑不可逆,因素加以修正。

工程热力学 课件 第一章 基本概念

工程热力学 课件 第一章 基本概念
第一章 基本概念
1-1 热能在热机中转变成机械能的过程
➢ 热能动力装置
▪ 从燃料燃烧中得到热能,以及利用热能得到动力的 整套设备(包括辅助设备)统称为热能动力装置
▪ 燃气动力装置—内燃机,由气缸和活塞组成 ▪ 蒸气动力装置,由锅炉、汽轮机、冷凝器、泵等组
成 ▪ 共性:用某种媒介物质(工质)从某个能源(高温
2.取全部气体为热力系,利用理想气体状态方程
m p1,minV1 p2 V1 VB
RgT1
RgT2
3.气球排斥大气作功,界面上反力为恒值,可用如下公式
计算
W p0V2 V1
➢ 过程热量
▪ 热力学中把热量定义为热力系和外界之间仅仅由 于温度不同而通过边界传递的能量
▪ 热量的单位是J(焦尔),工程上常用kJ(千焦)
➢ 可逆过程和不可逆过程
▪ 当完成了某一过程之后,如果有可能使工质沿相 同的路径逆行而回复到原来状态,并使相互作用 中所涉及到的外界亦回复到原来状态而不留下任 何改变,这一过程就叫做可逆过程
▪ 不满足上述条件的过程为不可逆过程
▪ 可逆过程的基本特征:是准平衡过程,满足热的 和力的平衡条件,同时过程中没有任何耗散效应
m
2
w12 1 pdv
▪ 工程热力学中约定:气体膨胀所作的功为正值, 外力压缩气体所消耗的功为负值
▪ 功不是状态参数而是过程量,功的数值不仅决定 于工质的初态和终态,还和过程的中间途径有关
▪ 闭口系工质在膨胀过程中所作的功一部分因摩擦 而耗散,一部分反抗大气压力作功,余下部分才 是可被利用的功
w=W/m 单位时间内完成的功称为功率,单位为W(瓦)
1W=1J/s
1kW=1kJ/s
➢ 可逆过程的功

工程热力学第一章基本概念PPT课件

工程热力学第一章基本概念PPT课件
等压过程在工业生产和日常生活中有着广泛的应用。
详细描述
等压过程在各种工业生产过程中发挥着重要作用,如蒸汽机、汽轮机、燃气轮机等热力机械中的工作过程。此外, 在制冷技术、气体压缩、气体分离等领域也广泛应用等压过程。在生活中,等压过程也随处可见,如气瓶的压力 保持、气瓶压力的调节等。
感谢您的观看
THANKS
06
热力学第三定律
绝对零度不能达到原理
绝对零度是热力学的最低温度,理论 上不可能通过任何有限过程达到。
这一定律对于理解热力学的基本概念 和原理非常重要,因为它揭示了热力 学过程不可逆性。
这是由于热力学第三定律指出,熵在 绝对零度时为零,而熵是系统无序度 的量度,因此系统必须经历无限的过 程才能达到绝对零度。
04
热力学第一定律
能量守恒
1 2
能量守恒定律
能量不能凭空产生,也不能消失,只能从一种形 式转化为另一种形式。
热力学能
系统内部能量的总和,包括分子动能、分子位能 和内部势能等。
3
热力学第一定律表达式
ΔU = Q + W,其中ΔU表示系统能量的变化,Q 表示系统吸收的热量,W表示系统对外做的功。
热量与功的转换
是与系统相互作用的其它物质或 能量的总和。
状态与状态参数
状态
描述系统在某一时刻的物理状态,包括宏观和微观状态。
状态参数
描述系统状态的物理量,如压力、温度、体积、内能等。
热力学平衡
热力学平衡
系统内部各部分之间以及系统与外界 之间达到相对静止的一种状态。
热力学平衡的条件
系统内部不存在宏观的净力、净热和 净功。
热力学的应用领域
能源转换
热能转换为机械能: 如内燃机、蒸汽机和 燃气轮机等。

《工程热力学》课程教案

《工程热力学》课程教案

《工程热力学》课程教案*** 本课程教材及主要参考书目教材:沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册:严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书:华北电力大学动力系编,热力实验指导书,2001参考书:曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。

朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。

曾丹苓等编着,工程热力学(第一版),高教出版社,2002年全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等译,工程热力学,科学出版社,2002年。

何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4概论(2学时)1. 教学目标及基本要求从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。

2. 各节教学内容及学时分配0-1 热能及其利用(0.5学时)0-2 热力学及其发展简史(0.5学时)0-3 能量转换装置的工作过程(0.2学时)0-4 工程热力学研究的对象及主要内容(0.8学时)3. 重点难点工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法4. 教学内容的深化和拓宽热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。

5. 教学方式讲授,讨论,视频片段6. 教学过程中应注意的问题特别注意:本课程作为热能与动力工程专业学生进入专业学习的第一门课程(专业基础课),要引导学生的学习兴趣和热情。

另,用例应尽量采用较新的事实和数据。

7. 思考题和习题思考题:工程热力学的宏观研究方法与微观方法的比较作业: (短文,一、二页即可)网络文献综述——能源利用与工程热力学8. 师生互动设计讲授中提问并启发讨论:从本课程教材的四大部分的标题看,对于工程热力学的研究内容有没有一个初步的认识(可以“猜想”)?知道热力学第一、第二定律吗?第三、第零定律呢?请举例并比较:宏观研究方法和微观研究方法。

工程热力学PPT课件

工程热力学PPT课件
另一种表述是,热量不可能自发地从低温物体传到高温物体而不引起其他变化。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。

工程热力学第一章

工程热力学第一章

理想气体的状态方程
pv RT pV mRT
实际工质的状态方程???
热能工程教研室



简单可压缩系 N=2,可用平面坐标图表示
p
说明: 1)系统任何平衡态可表示 在坐标图上
2)过程线中任意一点为平 衡态
v
常见p-v图和T-s图
热能工程教研室
3)不平衡态无法在图上用 实线表示
§1-5
准静态过程、可逆过程
温差 — 热不平衡势 压差 — 力不平衡势 化学反应 — 化学不平衡势
平衡的本质:不存在不平衡势
热能工程教研室
为什么引入平衡概念? 如果系统平衡,可用一组确切的参 数(压力、温度)描述 但平衡状态是“死态”,没有能量交换
能量交换 状态变化
如何描述
热能工程教研室
破坏平衡
状态方程的具体形式
状态方程的具体形式取决于工质的性质
热能工程教研室


在火电厂中,由于工质连续不断地流过热力设备 而膨胀作功,因此,要求工质应有良好的膨胀性 和流动性,此外,还要求工质热力性能稳定、无 毒、无腐蚀性、价廉、易得等。鉴于此,目前火 电厂中采用水蒸气作为工质。水在锅炉中吸热生 成蒸汽,然后在汽轮机中膨胀推动叶片旋转对外 作功,作功后的乏汽在凝汽器中向冷却水放热又 凝结成水。
A p
f p外
dl
1kg工质
w =pdv
热能工程教研室
准静态过程的容积变化功
mkg工质: W =pdV
1kg工质: w =pdv
W pdV
1
2
w pdv
1
2
p
p外 1 2
注意:上式仅适
用于准静态过程

工程热力学ppt课件

工程热力学ppt课件

{
但 T < T0 ,Q不能传回 T 0 。
结论:温差使过程不可逆。
进一步分析,为使Q能传回 T 0 ,需加热泵,但要消耗一 定的功 W泵 ,也不可逆(比较水泵)。
压力差的影响:压力差使过程不可逆。
F α P f
pA > F cos α + f pA = F cos α + f
非准静态过程—nonequilibrium process 非准静态过程 准静态过程, 准静态过程,不可逆 准静态过程, 准静态过程,可逆
定义:工质从中吸取或向之排放热能的物质系统。
热源
{
温度高低
温度变化
{ {
高温热源(热源 — heat source) 低温热源(冷源—heat sink) 恒温热源(constant heat reservoir)
变温热源(variational heat reservoir)
3.1 热力系统(热力系、系统、体系)和 外界及边界 系统(thermodynamic system or system)
3.6 热力系示例图
刚性绝热喷管
取红线为系统—闭口系 取喷管为系统—开口系绝热系?
§1-3 工质的热力状态及基本状态数
• 热力学状态— state of thermodynamic system
— 某一瞬间系统所呈现的宏观物理状况
• 状态参数— state of properties
— 描述系统所处状态的宏观物理量 a) .状态参数是宏观量,反映了大量粒子运动的宏观平均效果, 只有平衡态才有统一的状态参数。 常用的状参有:p, T,V,U,H,S等, 其中p,T,V称为基本状态参数。 b)状态参数的特性:状态的单值函数 物理上:与过程无关 dx ∫ dx = 0, ∫abc dx = ∫adc 数学上:其微分是全微分

工程热力学(第五版)第一章课件

工程热力学(第五版)第一章课件

1.2.5 基本状态参数
U形管式压力计示意图
pb
U形管式压力计示意图
pb
p pb
p pb
p
pg
p pb pg
p
pv
p pb pv
真空度
当工质是处于负压工作状态时,工质的真实压力p低于环境压力pb,
其测量得到的相对压力称为真空度 p v 。
第1章 基本概念
1.2 热力系统的状态和状态参数
1.2.5 基本状态参数
例1-2某刚性容器被分隔为两部分,在容器壁上分别装有三个压力表,表B的 读数为80kPa,表C的读数为100kPa,试问压力表A的读数是多少? 设当地大气压为770mmHg。 已知: pgB 80kPa, pgC 100kPa, pb 770mmHg。 求 : pgA ? 解 由图示依据真实压力、参考压力和 相对压力之间的关系,可写出如下3 个关系式,从中整理出所求量。
物质 (水蒸气)
热力系统
物质 (凝结水)
蒸汽放热给冷却1.2 热力系统的分类
第1章 基本概念
1.1 热力系统 1.1.2 热力系统的分类
开口热力系(水泵示意图)
开口热力系统(水泵示意图)
锅炉给水 来自冷凝器的水
电动机
水 泵
水泵的简化热力学分析模型
水泵的简化热力学分析模型
边 界的特性 可以是真实的,也可以是假想的;可以是固定的,也可以是
运动的。
第1章 基本概念
1.1 热力系统
1.1.1 热力系统的定义
热力系统、界面、外界
热力系、界面、 外界例Ⅳ
界面


界面是真实的、固定不动的
第1章 基本概念
1.1 热力系统

工程热力学

工程热力学

基本概念
工质:把实现热能和机械能相互转化的媒介物质 热源:把工质从中吸取热能的物质 热力系统:人为分割出来以作为热力学分析的对象叫做热力系统, 周围物体统称外界。系统和外界之间的分界面叫做边界。
基本状态参数
把工质在热力变化过程中的某一瞬间所呈现的宏观物理状况称为 工质的热力学状态。 温度是标志物体冷热的程度。 国际上规定热力学温标作为测量温度的最基本温标 热力学温度单位是开尔文,符号为开(K) 热力学摄氏温标 t=T-273.15
热力学第一定律
热力学第一定律是能量守恒与转化定律在热现象上的应用。在工 程热力学的范围内可表述如下:热是能的一种,机械能变热能, 或热能变机械能的时候,它们间的比值是一定的。 物体因热运动而具有的能量叫做内热能。在热力学中把物体的内 热能叫做内能。内能是热力状态的单值函数。 焓是内能与推动功之和。公式H=U+Pv
理想气体的性质
理想气体是一种实际上不存在的假想气体,其分子是 些弹性的、不占据体积的质点,分子相互之间没有作 用力。 理想气体状态方程式(克拉贝隆方程式):pv=RT R——气体常数 单位物量的物体温度升高1度所需的热量叫比热。 比热是与过程特性有关的量。Cv——定容比热 Cp — —定压比热 绝热指数k= Cp/ Cv 熵是状态参数:ds=dq/T 温熵坐标图
湿空气
湿空气是指含有水蒸汽的空气,而干空气则是指完全不含有水蒸 汽的空气。 湿度指湿空气中所含水蒸汽的分量。 绝对湿度是指每一立方米湿空气中所含水蒸汽的质量(千克)。 相对湿度就是湿空气中实际所包含的水蒸汽量和同温度下最大可 能包含的水蒸汽质经过一系列的状态变化,重新回复到原来状态的全 部过程,就叫做一个循环。 将热能转化为机械能的循环叫正向循环,它使外界得到功; 正向循环也叫做热动力循环。是从高温热源得到的热能q1,其中 只有一部分可以转化为功,在这部分热能(q1-q2)转化为功的同 时,必有另一部分q2传向低温热源,后者是使热能经过循环转化 成为功的必要条件,或称补充条件。 热效率:ηt=1- q2/ q1 将机械能转化为热能的循环叫逆向循环. 全部由可逆过程组成的循环就是可逆循环。 热力学第二定律是说明与热现象有关的各种过程进行的方向、条 件、以及进行的限度或深度的定律,其中方向性是其根本内容。 热不可能自发地、不付代价地、从低温物体传至高温物体。

工程热力学第1章基本概念[1]PPT课件

工程热力学第1章基本概念[1]PPT课件
14
状态参数的微分特征
设 z =z (x , y)
dz是全微分
dzxzy dxyy yx
可判断是否 是状态参数
16
§1-3 基本状态参数
压力 p、温度 T、比容 v (容易测量)
1、压力 p 物理中压强,单位: Pa , N/m2 常用单位: 1 bar = 105 Pa 1 MPa = 106 Pa 1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa17
3.对于平衡状态,有确定性:非平衡态,则为变化
量。
13
状态参数的特征:
1、状态确定,则状态参数也确定,反之亦 然 2、状态参数的积分特征:状态参数的变化 量与路径无关,只与初终态有关 3、当热力系经历一封闭的状态变化过程, 又回复到原始状态时,状态的参数变化为0. 4、状态参数的微分特征:全微分
但平衡状态是死态,没有能量交换
能量交换
状态变化
如何描述
破坏平衡 31
§1-5 状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
状态公理:对组元一定的闭口系,
独立状态参数个数 N=n+1
32
状态公理
闭口系: 不平衡势差 状态变化 能量传递
消除一种不平衡势差 达到某一方面平衡 消除一种能量传递方式
压力p测量
一般是工质绝对压力与环境压力的相对值 ——相对压力
注意:只有绝对压力 p 才是状态参数
18
绝对压力与相对压力
当 p > pb 当 p < pb
表压力 pe 真空度 pv

工程热力学教学课件

工程热力学教学课件

工程热力学教学课件工程热力学教学课件第一章、基本概念1、边界边界有一个特点(可变性):可以是固定的、假想的、移动的、变形的。

2、六种系统(重要!)六种系统分别是:开(闭)口系统、绝热(非绝热)系统、孤立(非孤立)系统。

a.系统与外界通过边界:功交换、热交换和物质交换.b.闭口系统不一定绝热,但开口系统可以绝热。

c.系统的取法不同只影响解决问题的难易,不影响结果。

3、三参数方程a.P=B+Pgb.P=B-H这两个方程的使用,首先要判断表盘的压力读数是正压还是负压,即你所测物体内部的绝对压力与大气压的差是正是负。

正用1,负用2。

ps.《工程热力学(第六版)》书8页的系统,边界,外界有详细定义。

第二章、气体热力性质1、各种热力学物理量P:压强[单位Pa]v:比容(单位m^3/kg)R:气体常数(单位J/(kg*K))书25页T:温度(单位K)m:质量(单位kg)V:体积(单位m^3)M:物质的摩尔质量(单位mol)R:8.314kJ/(kmol*K),气体普实常数2、理想气体方程:Pv=RTPV=m*R。

*T/MQv=Cv*dTQp=Cp*dTCp-Cv=R另外求比热可以用直线差值法!第三章、热力学第一定律1、闭口系统:Q=W+△U微元:δq=δw+du(注:这个δ是过程量的微元符号)2、闭口绝热δw+du=03、闭口可逆δq=Pdv+du4、闭口等温δq=δw5、闭口可逆定容δq=du6、理想气体的热力学能公式dU=Cv*dT一切过程都适用。

为什么呢?因为U是个状态量,只与始末状态有关、与过程无关。

U是与T相关的单值函数,实际气体只有定容才可以用6、开口系统ps.公式在书46页(3-12)7、推动功Wf=P2V2-P1V1(算是一个分子流动所需要的微观的能量)a、推动功不是一个过程量,而是一个仅取决于进出口状态的状态量。

b、推动功不能够被我们所利用,其存在的唯一价值是使气体流动成为开系。

8、焓(重要!)微观h=u+PVU分子静止具有的内能PV分子流动具有的能量a、焓是一个状态量,对理想气体仍然为温度T的单值函数。

工程热力学课后题答案

工程热力学课后题答案

kg/m3
假设在烟囱出口处烟囱内外压力相等。则以烟囱外地面处为大气压计算,烟囱内部底部 的真空度为
pv = ρ空 gz − ρ烟 gz =(ρ空 − ρ烟)gz =(1.1891 − 0.735)× 9.81× 30 = 133.6 Pa
1-9设某一气体的状态方程为 f ( p, v, T ) = 0 ,试证明:
=
0.1 +
5 3 ({V }m3
− 0.3)
=
−0.4 +
5 3 {V }m3
,如图所示。
(2)该过程中气体所做的功为
∫ ∫ W12
=
2 1
pdV
= V2 ( 5V V1 3
− 0.4) ×106 dV
= [5 × 3
1 2
× (V22
− V12 ) − 0.4 × (V2
− V1)] ×106
= [ 5 × (0.332 − 0.32 ) − 0.4 × (0.33 − 0.3)] ×106 = 3.75 KJ 6
试求:
1)在室温为22℃时水银柱的长度为多少?
2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,求溶液的温度。
解:假设水银柱长度随温度线性增加。则
1℃间隔的水银柱长度为
∆t ∆z
=
100 24 − 4
=5.00
℃/cm
1)在室温为22℃时水银柱的长度为 z0
+t/
∆t ∆z
=
4 + 22 / 5 = 8.4
习题 1-2 图
解:设表 A、B、C 读出的绝对压力分别为 pA 、 pB 和 pC 。
则根据题意,有
容器左侧的绝对压力为 p左 = pA = pb + pgA = 0.098 + 0.125 = 0.223 MPa

工程热力学第1章基本概念及定义2019

工程热力学第1章基本概念及定义2019
15
第一章 基本概念
1-1 热能和机械能相互转换的过程 1-2 热力系统 1-3 工质的热力学状态及其基本状态参数 1-4 平衡状态、状态方程式、坐标图 1-5 工质的状态变化过程 1-6 过程功和热量 1-7 热力循环
16
1-3 工质的热力学状态和基本状态参数
热力学状态和状态参数
热力学状态 —把工质在热力变化过程中的某一瞬间所呈现的宏观物理 状况称为工质的热力学状态,简称状态
32
工业或一般科研测量:压力传感器
Pressure transducers Piezoelectric effect
高精度测量:活塞压力计
piston manometer
33
比体积和密度
比体积(specific volume)
v V m
密度(density)
m V
单位质量工质的体积 m 3 / k g 单位体积工质的质量 k g /m 3
朗肯温标Rankine scale (W. Rankine, 1820-1872)
24
常用温标之间的关系
绝对K 摄氏℃
华氏F
373.15 100 水沸点
212
朗肯R
671.67
273.16 273.15
37.8
发烧 100
00.01水冰三熔相点点
32
-17.8 盐水熔点 0
559.67 491.67 459.67
1 atm = 760 mmHg = 1.013105 Pa
1 mmHg = 133.3 Pa
1 at = 1 kgf/cm2 = 9.80665104 Pa
28
压力p测量
绝对压力与环境压力的相对值 ——相对压力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. B. C. D.
11
选择题
下列系统中与外界不发生能量交换的系 统是 绝热系统 孤立系统 闭口系统 A+B
A. B. C. D.
12
选择题
下列系统中与外界有功量交换的系统可 能是 开口系统 绝热系统 孤立系统 A+B
A. B. C. D.
13
选择题
下列系统中与外界可能有质量交换的系 统是 开口系统 绝热系统 闭口系统 A+B
工程热力学 Engineering Thermodynamics
北京交通大学机电学院 2016年
1
第一章补充练习
是非题 经不可逆循环,系统与外界均无法完全恢复原态。 工质经任何一种循环,其熵变为零。 若容器中气体的绝对压力为1MPa,而被密封在压力 为0.5MPa的空间中用来测量该容器压力的压力表读 数是0.5MPa。 不可逆过程就是指工质不能恢复原来状态的过程
2
选择题
A.
B.
C. D.
平衡态是指当不存在外部影响时, 系统内外状态都永远不变的状态 系统内部改变较小 系统内外状态参数不随时间而变化 系统内部状态不发生改变.
单元系统平衡态时各点的状态参数 必定是均匀一致的 必定是接近相等的 在不断地变化 不一定是均匀一致的
4
选择题
A.
B.
C. D.
稳定状态 就是平衡态 不一定是平衡态 接近平衡态 是均匀态
5
选择题
均质等截面杆两端的温度由分别维持t1,t2 的两 热源保持t1 ,t2 不变,取此杆为系统,则系统处 于: 平衡状态,因其各截面温度不随时间而改变 非平衡状态,因其各截面温度不等 平衡状态,因其各截面温度不随时间而改变, 且流入系统的热量等于流出系统的热量。 非平衡状态,因其处于重力场中
8
选择题
A.
B.
C. D.
准静态过程就是 平衡过程 可逆过程 不可逆过程 无限接近平衡的过程
9
选择题
A.
B.
C. D.
可逆过程一定是 非平衡过程 存在着损耗的准静态过程 工质能回复到初态的过程 准静态过程
10
选择题
热力系统与外界既有物质交换,又有能 量交换,可能是 闭口系统 开口系统 绝热系统 B或C
6
A. B.
C.
D.
选择题
准静态过程中,系统经过的所有状态都 接近于 初态 环境状态 邻近状态 平衡态
A. B. C. D.
7
选择题
A.
B.
C.
D.
可逆过程与准静态过程主要区别是 可逆过程比准静态过程进行得快得多 准静态过程是进行得无限慢的过程 可逆过程不但是内部平衡,而且与外界 平衡 可逆过程中工质可以恢复为初态
A. B. C. D.
14
选择题
A.
B.
C. D.
质量不可能改变的系统是 闭口系统 开口系统 绝热系统 A+B+C
15
选择题
A.
B.
C. D.
开口系统的质量是 不变的 变化的 B或A 在理想过程中是不变的
16
选择题
A.
B.
C. D.
功和热量是 过程量 强度量 广延量 状态参数
17
相关文档
最新文档