常用的限制性内切酶

合集下载

分子生物学实验常用工具酶总结

分子生物学实验常用工具酶总结

现代分子生物学实验手册工具酶基因工程:在人工可以控制条件下,将基因剪切或重新组合,再导入另一生物体内,使这些基因在其中表达并遗传下去的一门技术。

核心:对基因进行人工切割、连接和重新组合,构建重组DNA。

工具酶:在基因工程的重组DNA过程中,所需要用到的酶的统称。

一、限制性内切酶(restriction endonuclease)主要功能:对外源性的双链DNA进行切割、水解,不允许外源性DNA存在于细菌自身细胞内。

(这种酶能对在自身细胞内存在的DNA种类给予限制——限制性内切酶)限制-修饰系统:合成限制性内切酶的细胞,其自身的DNA不受酶的切割,这是因为细菌细胞还会合成一种修饰酶,可以对自身DNA进行修饰,即改变DNA 原来具有的可以被限制性内切酶识别的核酸顺序结构,从而不被限制性内切酶识别及切割、水解。

保护自身遗传物质稳定的机制。

限制性内切酶:从原核生物中发现的,约600种,可识别108种不同的特定DNA顺序。

以内切方式水解核酸链中的磷酸二酯键,产生DNA片段的5’端为P,3’端为- OH。

命名:获得该酶的细菌属名的第一个字母(大写)+该菌种名的前两个字母(小写)+株系的字母(小写)或数字+罗马数字(同一株菌种不同内切酶的编号)例:细菌属名细菌种名菌株名称限制酶名称Arthrobacter luteus Alu I Escherichia coli RY13Eco R IH Ham H IBacillus amyloliquefaciensHaemophilus influenzae Rd Hin d III(一)三种常用内切酶1. I型限制性内切酶同时兼有切割DNA的功能和修饰酶的修饰功能。

在酶的识别位点上,若DNA两条链菌没有发生甲基化,则行使内切酶的功能,对DNA进行切割,同时转变成ATP酶。

若DNA双链中有一条链已发生甲基化,则此类酶显示修饰酶的作用,对另一条DNA进行甲基化修饰,然后在行切割功能。

常用限制性内切酶酶切位点汇总

常用限制性内切酶酶切位点汇总

Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI识别位点BanI识别位点BanII识别位点BbvCI识别位点BbvI识别位点BccI识别位点BceAI识别位点BcgI识别位点BciVI识别位点BclI识别位点BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmrI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点.BsgI识别位点BsiEI识别位点BsiHKAI识别位点BsiWI识别位点BslI识别位点BsmAI识别位点BsmBI识别位点BsmFI识别位点BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点.BstUI识别位点BstXI识别位点BstYI识别位点BstZ17I识别位点Bsu36I识别位点BtgI识别位点BtgZI识别位点BtsCI识别位点BtsI识别位点Cac8I识别位点ClaI识别位点CspCI识别位点CviAII识别位点CviKI-1识别位点CviQI识别位点DdeI识别位点DpnI识别位点DpnII识别位点DraI识别位点DraIII识别位点DrdI识别位点EaeI识别位点EaeI识别位点EagI识别位点EarI识别位点EciI识别位点EcoNI识别位点EcoO109I识别位点.EcoP15I识别位点EcoRI识别位点EcoRV识别位点FatI识别位点FauI识别位点Fnu4HI识别位点FokI识别位点FseI识别位点FspI识别位点HaeII识别位点HaeIIIHgaI识别位点HhaI识别位点HincII识别位点HindIII识别位点HinfI识别位点HinP1I识别位点HpaI识别位点HpaII识别位点HphI识别位点Hpy188I识别位点Hpy188III识别位点Hpy99I识别位点HpyAV识别位点HpyCH4III识别位点HpyCH4IV HpyCH4V识别位点KasI识别位点KpnI识别位点MboI识别位点MboII识别位点.MfeI识别位点MluI识别位点MlyI识别位点MmeI识别位点MnlI识别位点MscI识别位点MseI识别位点MslI识别位点MspA1I识别位点MspI识别位点MwoI识别位点NaeI识别位点NarI识别位点NciI识别位点NcoI识别位点NdeI识别位点NgoMIV识别位点NheI识别位点NlaIII识别位点NlaIV识别位点NmeAIII识别位点NotI识别位点NruI识别位点NsiI识别位点NspI识别位点PacI识别位点PaeR7I识别位点PciI识别位点PflFI识别位点.PflMI识别位点PhoI识别位点PleI识别位点PmeI识别位点PmlI识别位点PpuMI识别位点PshAI识别位点PsiI识别位点PspGI识别位点PspOMI识别位点PspXI识别位点PstI识别位点PvuI识别位点PvuII识别位点RsaI识别位点RsrII识别位点SacI识别位点SacII识别位点SalI识别位点SapI识别位点Sau3AI识别位点Sau96I识别位点SbfI识别位点ScaI识别位点ScrFI识别位点SexAI识别位点SfaNI识别位点SfcI识别位点SfiI识别位点.SfoI识别位点SgrAI识别位点SmaI识别位点SmlI识别位点SnaBI识别位点SpeI识别位点SphI识别位点SspI识别位点StuI识别位点StyD4I识别位点StyI识别位点SwaI识别位点TaqαI识别位点TfiI识别位点TliI识别位点TseI识别位点Tsp45I识别位点Tsp509I识别位点TspMI识别位点TspRI识别位点Tth111I识别位点XbaI识别位点XcmI识别位点XhoI识别位点XmaI识别位点XmnI识别位点ZraI识别位点。

限制性核酸内切酶

限制性核酸内切酶

生理意义
限制作用实际就是限制酶降解外源DNA ,维护宿主遗传稳定的保护 机制。甲基化是常见的修饰作用,可使腺嘌呤A和胞嘧啶C甲基化而受 到保护。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目 的。所以,能产生防御病毒侵染的限制酶的细菌,其自身的基因组中 可能有该酶识别的序列,只是该识别序列或酶切位点被甲基化了。但 并不是说一旦甲基化了,所有限制酶都不能切割。大多数限制酶对 DNA甲基化敏感,因此当限制酶目标序列与甲基化位点重叠时,对酶 切的影响有3种可能,即不影响、部分影响、完全阻止。对甲基化 DNA的切割能力是限制酶内在和不可预测的特性,因此,为有效的切 割DNA,必须同时考虑DNA甲基化和限制酶对该类型甲基化的敏感 性。另外,现在很多商业限制酶专门用于切割甲基化DNA。
E
Escherichia
(属)
co
coli
(种)
R
RY13
(品系)
I
的结构,辅因子的需求切位与作用方式,可将限 制酶分为三种类型,分别是第一型(Type I)、第二型(Type Ⅱ) 及第三型(Type Ⅲ)。
类型
第一型限制酶 同时具有修饰(modification)及识别切割(restriction)的作用;另有识别 (recognize)DNA上特定碱基序列的能力,通常其切割位(cleavage site)距离 识别位(recognition site)可达数千个碱基之远。例如:EcoB、EcoK。
第二型限制酶 只具有识别切割的作用,修饰作用由其他酶进行。所识别的位置多为短的回文 序列(palindrome sequence);所剪切的碱基序列通常即为所识别的序列。是遗 传工程上,实用性较高的限制酶种类。例如:EcoRI、HindⅢ。

基因工程中常用的三种工具酶

基因工程中常用的三种工具酶

一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。

2.类型:来自原核生物,有三种类型。

Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。

Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。

另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。

同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。

与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。

常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。

显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。

但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。

Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。

三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。

NEB常用酶介绍

NEB常用酶介绍

NEB常用酶介绍NEB(New England Biolabs)是一家生物技术公司,专注于酶和相关试剂的研发和生产。

该公司开发了许多常用酶,其中一些被广泛应用于分子生物学和生物技术领域。

下面是一些常见的NEB酶的介绍。

1. 限制性内切酶(Restriction Enzymes):限制性内切酶是一类能够识别特定DNA序列并在特定位点切割DNA的酶。

NEB生产了许多常见的限制性内切酶,如EcoRI、HindIII、BamHI等。

这些酶在DNA分析、克隆以及基因组工程等领域中广泛应用。

2. DNA连接酶(DNA Ligases):DNA连接酶能够将两条DNA分子连接起来,形成一个连续的DNA链。

NEB提供了多种DNA连接酶,如T4 DNA连接酶、Quick DNA连接酶等。

这些酶在DNA克隆和结构修复等实验中起到至关重要的作用。

3. 反转录酶(Reverse Transcriptases):反转录酶能够将RNA模板逆转录合成DNA,从而产生相应的cDNA。

NEB开发了多种反转录酶,如M-MuLV反转录酶、AMV反转录酶等。

这些酶广泛应用于转录组学、基因表达研究以及RT-PCR等实验中。

4. 核酸聚合酶(DNA Polymerases):核酸聚合酶是一类能够在DNA合成过程中将新的核苷酸单元加入到已存在的DNA链上的酶。

NEB提供了多种高质量的核酸聚合酶,如Phusion DNA聚合酶、Taq DNA聚合酶等。

这些酶在PCR、DNA扩增和DNA测序等实验中被广泛使用。

5. 电泳酶(Nucleases):电泳酶能够在DNA或RNA的特定位置切割核酸链。

NEB生产的电泳酶包括RNase A等。

这些酶广泛应用于核酸纯化、RNA降解实验以及电泳分析中。

6. 磷酸二酯酶(Phosphatases):磷酸二酯酶能够催化磷酸二酯键的水解反应,从而使DNA或RNA失去3'末端的磷酸基团。

NEB提供了多种磷酸二酯酶,如CIP碱性磷酸酯酶等。

常用限制性内切酶酶切位点汇总

常用限制性内切酶酶切位点汇总

Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI 识别位点BanI识别位点BanII识别位点BbvCI识别位点BbvI识别位点BccI识别位点BceAI识别位点BcgI识别位点BciVI识别位点BclI识别位点BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmrI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点BsiEI识别位点BsiHKAI识别位点BsiWI识别位点BslI识别位点BsmAI识别位点BsmBI识别位点BsmFI识别位点BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点BstXI识别位点BstYI识别位点BstZ17I识别位点Bsu36I识别位点BtgI识别位点BtgZI识别位点BtsCI识别位点BtsI识别位点Cac8I识别位点ClaI识别位点CspCI识别位点CviAII识别位点CviKI-1识别位点CviQI识别位点DdeI识别位点DpnI识别位点DpnII识别位点DraI识别位点DraIII识别位点DrdI识别位点EaeI识别位点EaeI识别位点EagI识别位点EarI识别位点EciI识别位点EcoNI识别位点EcoO109I 识别位点EcoRI识别位点EcoRV识别位点FatI识别位点FauI识别位点Fnu4HI识别位点FokI识别位点FseI识别位点FspI识别位点HaeII识别位点HaeIIIHgaI识别位点HhaI识别位点HincII识别位点HindIII识别位点HinfI识别位点HinP1I识别位点HpaI识别位点HpaII识别位点HphI识别位点Hpy188I识别位点Hpy188III识别位点Hpy99I识别位点HpyAV识别位点HpyCH4III识别位点HpyCH4IV HpyCH4V识别位点KasI识别位点KpnI识别位点MboI识别位点MboII识别位点MfeI识别位点MluI识别位点MlyI识别位点MmeI识别位点MnlI识别位点MscI识别位点MseI识别位点MslI识别位点MspA1I识别位点MspI识别位点MwoI识别位点NaeI识别位点NarI识别位点NciI识别位点NdeI识别位点NgoMIV识别位点NheI识别位点NlaIII识别位点NlaIV识别位点NmeAIII识别位点NotI识别位点NruI识别位点NsiI识别位点NspI识别位点PacI识别位点PaeR7I识别位点PciI识别位点PflFI识别位点PflMI识别位点PhoI识别位点PleI识别位点PmeI识别位点PmlI识别位点PpuMI识别位点PshAI识别位点PsiI识别位点PspGI识别位点PspOMI识别位点PspXI识别位点PstI识别位点PvuI识别位点PvuII识别位点RsrII识别位点SacI识别位点SacII识别位点SalI识别位点SapI识别位点Sau3AI识别位点Sau96I识别位点SbfI识别位点ScaI识别位点ScrFI识别位点SexAI识别位点SfaNI识别位点SfcI识别位点SfiI识别位点SfoI识别位点SgrAI识别位点SmaI识别位点SmlI识别位点SnaBI识别位点SpeI识别位点SphI识别位点SspI识别位点StuI识别位点StyD4I识别位点StyI识别位点SwaI识别位点TaqαI识别位点TfiI识别位点TseI识别位点Tsp45I识别位点Tsp509I识别位点TspMI识别位点TspRI识别位点Tth111I识别位点XbaI识别位点XcmI识别位点XhoI识别位点XmaI识别位点XmnI识别位点ZraI识别位点Welcome!!!欢迎您的下载,资料仅供参考!。

基因工程基因工程工具酶

基因工程基因工程工具酶

基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。

在基因工程的过程中,基因工程工具酶发挥着关键的作用。

本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。

一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。

它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。

1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。

它们通常识别的序列是4到8个碱基对长,具有一定的对称性。

一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。

1.3 应用限制性内切酶在基因工程中有着广泛的应用。

它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。

通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。

二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。

在基因工程中,连接酶通常被用于连接目标基因和载体。

2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。

它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。

2.3 应用连接酶在基因工程中的应用非常广泛。

它们可以用于构建重组DNA分子、进行目标基因的插入等。

通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。

三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。

在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。

3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。

它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。

3.3 应用修饰酶在基因工程中起着重要的作用。

它们可以用于DNA甲基化的分析、目标基因的修饰等。

常用限制性内切酶酶切位点总结

常用限制性内切酶酶切位点总结

常用限制性内切酶酶切位点总结————————————————————————————————作者:————————————————————————————————日期:Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI识别位点BanI识别位点BanII识别位点BbvCI识别位点BbvI识别位点BccI识别位点BceAI识别位点BcgI识别位点BciVI识别位点BclI识别位点BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmrI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点BsiEI识别位点BsiHKAI识别位点BsiWI识别位点BslI识别位点BsmAI识别位点BsmBI识别位点BsmFI识别位点BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点BstXI识别位点BstYI识别位点BstZ17I识别位点Bsu36I识别位点BtgI识别位点BtgZI识别位点BtsCI识别位点BtsI识别位点Cac8I识别位点ClaI识别位点CspCI识别位点CviAII识别位点CviKI-1识别位点CviQI识别位点DdeI识别位点DpnI识别位点DpnII识别位点DraI识别位点DraIII识别位点DrdI识别位点EaeI识别位点EaeI识别位点EagI识别位点EarI识别位点EciI识别位点EcoNI识别位点EcoO109I识别位点EcoP15I识别位点EcoRI识别位点EcoRV识别位点FatI识别位点FauI识别位点Fnu4HI识别位点FokI识别位点FseI识别位点FspI识别位点HaeII识别位点HaeIIIHgaI识别位点HhaI识别位点HincII识别位点HindIII识别位点HinfI识别位点HinP1I识别位点HpaI识别位点HpaII识别位点HphI识别位点Hpy188I识别位点Hpy188III识别位点Hpy99I识别位点HpyAV识别位点HpyCH4III识别位点HpyCH4IV HpyCH4V识别位点KasI识别位点KpnI识别位点MboI识别位点MboII识别位点MfeI识别位点MluI识别位点MlyI识别位点MmeI识别位点MnlI识别位点MscI识别位点MseI识别位点MslI识别位点MspA1I识别位点MspI识别位点MwoI识别位点NaeI识别位点NarI识别位点NciI识别位点NdeI识别位点NgoMIV识别位点NheI识别位点NlaIII识别位点NlaIV识别位点NmeAIII识别位点NotI识别位点NruI识别位点NsiI识别位点NspI识别位点PacI识别位点PaeR7I识别位点PciI识别位点PflFI识别位点PflMI识别位点PhoI识别位点PleI识别位点PmeI识别位点PmlI识别位点PpuMI识别位点PshAI识别位点PsiI识别位点PspGI识别位点PspOMI识别位点PspXI识别位点PstI识别位点PvuI识别位点PvuII识别位点RsrII识别位点SacI识别位点SacII识别位点SalI识别位点SapI识别位点Sau3AI识别位点Sau96I识别位点SbfI识别位点ScaI识别位点ScrFI识别位点SexAI识别位点SfaNI识别位点SfcI识别位点SfiI识别位点SfoI识别位点SgrAI识别位点SmaI识别位点SmlI识别位点SnaBI识别位点SpeI识别位点SphI识别位点SspI识别位点StuI识别位点StyD4I识别位点StyI识别位点SwaI识别位点TaqαI识别位点TfiI识别位点TseI识别位点Tsp45I识别位点Tsp509I识别位点TspMI识别位点TspRI识别位点Tth111I识别位点XbaI识别位点XcmI识别位点XhoI识别位点XmaI识别位点XmnI识别位点ZraI识别位点。

常见限制性内切酶识别序列

常见限制性内切酶识别序列

常见限制性内切酶识别序列(酶切位点)(BamHI、EcoRI、HindIII、NdeI、XhoI等)Time:2009-10-22 PM 15:38Author:bioer Hits: 7681 times在分子克隆实验中,限制性内切酶是必不可少的工具酶。

无论是构建克隆载体还是表达载体,要根据载体选择合适的内切酶(当然,使用T 载就不必考虑了)。

先将引物设计好,然后添加酶切识别序列到引物5' 端。

常用的内切酶比如BamHI、EcoRI、HindIII、NdeI、XhoI等可能你都已经记住了它们的识别序列,不过为了保险起见,还是得查证一下。

下面是一些常用的II型内切酶的识别序列,仅供参考。

先介绍一下什么是II型内切酶吧。

The Type II restriction systems typically contain individual restriction enzymes and modification enzymes encoded by separate genes. The Type II restriction enzymes typically recognize specific DNA sequences and cleave at constant positions at or close to that sequence to produce 5-phosphates and 3-hydroxyls. Usually they require Mg 2+ ions as a cofactor, although some have more exotic requirements. The methyltransferases usually recognize the same sequence although some are more promiscuous. Three types of DNA methyltransferases have been found as part of Type II R-M systems forming either C5-methylcytosine, N4-methylcytosine or N6-methyladenine.酶类型识别序列ApaIType II restrictionenzyme5'GGGCC^C 3'BamHIType II restrictionenzyme5' G^GATCC 3'BglIIType II restrictionenzyme5' A^GATCT 3'EcoRIType II restrictionenzyme5' G^AATTC 3'HindIIIType II restrictionenzyme5' A^AGCTT 3'KpnIType II restrictionenzyme5' GGTAC^C 3'NcoIType II restrictionenzyme5' C^CATGG 3'NdeIType II restrictionenzyme5' CA^TATG 3'NheIType II restrictionenzyme5' G^CTAGC 3'NotIType II restrictionenzyme5' GC^GGCCGC 3'SacIType II restrictionenzyme5' GAGCT^C 3'SalIType II restrictionenzyme5' G^TCGAC 3'SphIType II restrictionenzyme5' GCATG^C 3'XbaIType II restrictionenzyme5' T^CTAGA 3'XhoIType II restrictionenzyme5' C^TCGAG 3'要查找更多内切酶的识别序列,你还可以选择下面几种方法:1. 查你所使用的内切酶的公司的目录或者网站;2. 用软件如:Primer Premier5.0或Bioedit等,这些软件均提供了内切酶识别序列的信息;3. 推荐到NEB的REBASE数据库去查(网址:/rebase/rebase.html)当你设计好引物,添加上了内切酶识别序列,下一步或许是添加保护碱基了,可以参考:NEB公司网站提供的关于设计PCR引物保护碱基参考表下载(也可见图片)双酶切buffer的选择(MBI、罗氏、NEB、Promega、Takara)再给大家推荐一种新的不需要连接反应的分子克隆方法,优点包括:①设计引物不必考虑选择什么酶切位点;②不必考虑保护碱基的问题;③不必每次都选择合适的酶来酶切质粒制备载体;④而且不需要DNA连接酶;⑤假阳性几率低(因为没有连接反应这一步,载体自连的问题没有了)。

限制性内切酶的说明

限制性内切酶的说明

限制酶使用说明一、分类目前,已被发现的限制酶,根据其反应的必须因子和切断点等特性,被分为以下三大类:类别反应必须因子切点酶例 I 型 s-腺苷基蛋氨酸、ATP、Mg2+识别部位和切点不同,切断部位不定Eco B、Eco KII 型 Mg2+切断识别部位或其附近的特定部位Eco R I、Bam H I III 型 ATP、Mg2+识别部位和切点不同,但切断特定部位Eco P I、Hin f III 应用于基因工程研究用的限制酶,一般全是II型酶,现在市场上销售的酶都属于II型酶, 这些限制酶由于其反应条件和底物DNA种类的不同,其切断状况及出现Star活性的频率等各有不同,并且其程度也根据酶的不同而千差万别。

因而在使用限制酶时,必须对这些要素充分注意,确保目标序列的切断反应能顺利进行,下面具体介绍一下使用限制酶时的一些注意点。

二、注意事项1. 甲基化的影响从带有DNA甲基化酶基因的宿主菌中制备的DNA,其碱基的一部分已经被甲基化,因此即便使用能够识别、切断被甲基化部分的序列的限制酶,也几乎无法切断被甲基化的部分。

被甲基化的部位,根据底物DNA及宿主种类的不同而不同。

例如宿主菌为大肠杆菌的情况下,根据宿主的种类有以下两种情况:在进行转化时,通常使用的菌株为C600、HB101、JM109等,因为都带有dam、dcm甲基化酶,所以使用这些菌株制备的DNA时,必须注意。

另外,动物由来的DNA,CG序列多为5m CG;植物由来的DNA,CG及CNG序列多为5m CG和5m CNG。

2. Star活性限制酶在一些特定条件下使用时,对于底物DNA的特异性可能降低。

即可以把与原来识别的特定的DNA序列不同的碱基序列切断,这个现象叫Star活性。

Star活性出现的频率,根据酶、底物DNA、反应条件的不同而不同,可以说几乎所有的限制酶都具有Star活性。

并且,它们除了识别序列的范围增大之外,还发现了在DNA的一条链上加入切口的单链切口活性,所以为了极力抑制Star活性,一般情况下,即使会降低反应性能,我们也提倡在低甘油浓度、中性pH、高盐浓度条件下进行反应。

常用限制性内切酶酶切位点汇总情况

常用限制性内切酶酶切位点汇总情况

Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI 识别位点BanI识别位点BanII识别位点BbvCI识别位点BbvI识别位点BccI 识别位点BceAI 识别位点BcgI识别位点BciVI识别位点BclI识别位点BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmrI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点BsiEI识别位点BsiHKAI识别位点BsiWI识别位点BslI识别位点BsmAI识别位点BsmBI识别位点BsmFI识别位点BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点BstXI识别位点BstYI识别位点BstZ17I识别位点Bsu36I识别位点BtgI识别位点BtgZI识别位点BtsCI识别位点BtsI识别位点Cac8I识别位点ClaI识别位点CspCI识别位点CviAII识别位点CviKI-1识别位点CviQI识别位点DdeI识别位点DpnI识别位点DpnII识别位点DraI识别位点DraIII识别位点DrdI识别位点EaeI识别位点EaeI识别位点EagI识别位点EarI识别位点EciI识别位点EcoNI识别位点EcoO109I识别位点EcoRI识别位点EcoRV识别位点FatI识别位点FauI识别位点Fnu4HI识别位点FokI识别位点FseI识别位点FspI识别位点HaeII识别位点HaeIIIHgaI识别位点HhaI识别位点HincII识别位点HindIII识别位点HinfI识别位点HinP1I识别位点HpaI识别位点HpaII识别位点HphI识别位点Hpy188I识别位点Hpy188III识别位点Hpy99I识别位点HpyAV识别位点HpyCH4III识别位点HpyCH4IV HpyCH4V识别位点KasI识别位点KpnI识别位点MboI识别位点MboII识别位点MfeI识别位点MluI识别位点MlyI识别位点MmeI识别位点MnlI识别位点MscI识别位点MseI识别位点MslI识别位点MspA1I识别位点MspI识别位点MwoI识别位点NaeI识别位点NarI识别位点NciI识别位点NdeI识别位点NgoMIV识别位点NheI识别位点NlaIII识别位点NlaIV识别位点NmeAIII识别位点NotI识别位点NruI识别位点NsiI识别位点NspI识别位点PacI识别位点PaeR7I识别位点PciI识别位点PflFI识别位点PflMI识别位点PhoI识别位点PleI识别位点PmeI识别位点PmlI识别位点PpuMI识别位点PshAI识别位点PsiI识别位点PspGI识别位点PspOMI识别位点PspXI识别位点PstI识别位点PvuI识别位点PvuII识别位点RsrII识别位点SacI识别位点SacII识别位点SalI识别位点SapI识别位点Sau3AI识别位点Sau96I识别位点SbfI识别位点ScaI识别位点ScrFI识别位点SexAI识别位点SfaNI识别位点SfcI识别位点SfiI识别位点SfoI识别位点SgrAI识别位点SmaI识别位点SmlI识别位点SnaBI识别位点SpeI识别位点SphI识别位点SspI识别位点StuI识别位点StyD4I识别位点StyI识别位点SwaI识别位点TaqαI识别位点TfiI识别位点TseI识别位点Tsp45I识别位点Tsp509I识别位点TspMI识别位点TspRI识别位点Tth111I识别位点XbaI识别位点XcmI识别位点XhoI识别位点XmaI识别位点XmnI识别位点ZraI识别位点。

常用的限制性内切酶

常用的限制性内切酶
切口 :平端切口、粘端切口
HindⅡ
GTCGAC CAGCTG
Bam HⅠ
GGATCC CCTAGTG
平端切口
G+
CCTAG
GATCC G
粘端切口
识别序列一般为4、6、8个碱基对(base pair,bp)
限制性酶切位点出现的概率:
①识别4bp的酶 每1/44bp 即1/256bp
GCCTAG+
GATCC G
同尾酶:
有些限制性内切酶虽然识别序列不完全相 同,但切割DNA后,产生相同的粘性末端,称 为同尾酶。这两个相同的粘性末端称为配伍未 端(compatible end)。
Bam HⅠ
GGATCC CCTAGG
Bg lⅡ
AGATCT TCTAGA
G CCTAG
+
GATCC G
最古老的生物转化,就是利用细菌将乙 醇转化成乙酸的醋酸发酵。
生物转化还可用于把异丙醇转化成甘油 进而二羟基丙酮;葡萄糖转化成葡萄糖酸, 进而转化成2一酮基葡萄糖酸或5一酮基葡 萄糖酸,以及将山梨醇转变成L一山梨糖等。 此外,微生物转化发酵还包括甾类转化和抗 生素的生物转化等等。
其产物具有立体构型单一,转化条件温 和,后处理简便,公害少。
生物合成技术: 基因工程、细胞工程基础上应用发酵法和 酶法合成技术合成生化活性物质。
涉及的反应有50多种:如水解、脱氢、氧 化、羟基化、环氧化、还原、氢化、酯化、 异构化、氮杂基团氧化还原、硫醚开裂等 等。
2、生物半合成技术:
指一个药物其部分结构由天然资源得到, 然后用化学合成法制得最终产品或应用微生 物转化法将化学合成的中间产物,通过某些 生物合成步骤来解决药物合成中难于进行的 化学反应,从而获得最终有效化合物。

常用限制性内切酶酶切位点汇总

常用限制性内切酶酶切位点汇总

Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI识别位点BanI识别位点BanII识别位点BbsI识别位点BbvCI识别位点BbvI识别位点BccI识别位点BcgI识别位点BciVI识别位点BclI识别位点BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BseRI识别位点BseYI识别位点BsgI识别位点BsiEI识别位点BsiHKAI识别位点BsiWI识别位点BslI识别位点BsmAI识别位点BsmBI识别位点BsmFI识别位点。

BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点BstUI识别位点。

BstXI识别位点BstYI识别位点BstZ17I识别位点Bsu36I识别位点BtgI识别位点BtgZI识别位点BtsCI识别位点BtsI识别位点Cac8I识别位点ClaI识别位点CspCI识别位点CviAII识别位点CviKI-1识别位点CviQI识别位点DdeI识别位点DpnI识别位点DpnII识别位点DraI识别位点DraIII识别位点DrdI识别位点EaeI识别位点EaeI识别位点。

常用限制性内切酶酶切位点保护残基

常用限制性内切酶酶切位点保护残基

酶切位点保护碱基-PCR引物设计用于限制性内切酶发布: 2010-05-24 20:19| 来源:生物吧| 编辑:刘浩| 查看: 161 次本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,AflIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,EcoRI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,PacI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI,为什么要添加保护碱基?在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

该如何添加保护碱基?添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。

添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最古老的生物转化,就是利用细菌将乙 醇转化成乙酸的醋酸发酵。
生物转化还可用于把异丙醇转化成甘油 进而二羟基丙酮;葡萄糖转化成葡萄糖酸, 进而转化成2一酮基葡萄糖酸或5一酮基葡 萄糖酸,以及将山梨醇转变成L一山梨糖等。 此外,微生物转化发酵还包括甾类转化和抗 生素的生物转化等等。
其产物具有立体构型单一,转化条件温 和,后处理简便,公害少。
6、因对环境条件敏感,产品均一性(纯 度)的评价是有条件的。不能只凭一种方 法下结论。
(二)生物药物分离纯化方法主要原理:
1、根据不同组分分配率的差别进行分离,如: 溶剂萃取,分配层析,吸附层析,盐析,结晶 等。 小分子生物药物(AA、脂类药物、维生 素和固醇类药物等。
2、根据生物大分子的特性采用多种手段交互进 行分离:
广泛应用于制药工业。
烟酸羟基化微生物转化发酵:
将菌种接种到含烟酸培养液中进行转化 发酵培养,不断添加烟酸到培养液中,维持 浓度在0.1%以上;培养结束后将培养液与 菌体分离,培养液经酸化静置使6-羟基烟酸 结晶析出,将培养液析出的6-羟基烟酸晶体, 洗涤、干燥,得到纯度>90%的6-羟基烟酸 产品。
第十五章
本章内容概要
第一节 生物药物制造的生物化学基础 第二节 药物质量控制的生物化学基础 第三节 药理学研究的生物化学基础 第四节 与药物设计有关的生物化学原理
生化制药的六个阶段:
1、原料的选择和预处理; 2、组织及细胞的破碎; 3、从破碎的细胞中提取有效成分制成粗品; 4、采用多种生化技术从粗品中将目的物精 制出来; 5、干燥及保存; 6、制剂。 以上各阶段在不同的生化药物制备中,根据 所选材料的不同,可灵活取舍选择使用。
1)根据分子大小和形状不同进行分离,如 凝胶过滤法、透析和超滤法、密度梯度离心法 等;
2)根据分子的带电性质进行分离,如离子交换 层析法、电泳法、等电聚焦法; 3)根据分子极性大小及溶解度不同进行分离, 如:等电点沉淀法、盐析法、有机溶剂分级沉 淀法、逆流分配法等; 4)根据配基特异性不同不同进行分离,如亲和 层析法。
1、目的物存在于组成复杂的生物材料中, 无固定工艺可循。
2、生物材料中的目的物含量极微,纯化步 骤多,回收率低。
3、目的物分离后易变性失活,增加制备的难度。
4、各种理化、生物因素影响各组分,制 造工艺可变性很大,必须确定明细流程, 以能重复。
5、为保证生物活性和结构完整,采用温 和的“多阶式”或“逐级分离”。工艺流 程长,操作繁琐。
如应用真菌孢子进行孕酮的11-α-羟基反应。
应用天然获取的青霉素经化学合成氨苄青霉素。
OH R-C-N
O=C N
青霉素
S
青霉素酰化酶
CH3
CH3
COOH
H2N
O=C
R-COOH
S CH3
N
CH3
COOH
6-氨基青霉酸
NH2O H CH-C-N
S CH3
O=C N
CH3 COOH
氨苄青霉素
NH2 CH-COOH
3、酶工程:用酶的催化作用进行物质转化,生 产人们所需产品的技术 。
4、发酵工程:对单一菌种进行培养,产生特定 产品。
❖现代生物技术的核心内容: 重组DNA技术和单克隆抗体技术
(一)重组DNA技术(基因工程)
1、概念: 在体外将分离纯化或人工合成的DNA与载体
DNA结合,成为重组DNA,用以转化宿主(细 菌或其他细胞),然后筛选出能表达重组DNA 的活细胞,加以纯化、传代、扩增,成为克隆 的技术。因此操作过程主要包括:
1)目的基因的获取; 2)基因载体的选择与构建; 3)目的基因与载体的拼接; 4)重组DNA导入受体细胞; 5)筛选并无性繁殖含重组分
子的受体细胞(转化子); 6)工程菌(或细胞)的大量
培养与目的蛋白的生产。
以 质 粒 为 载 体 的 DNA 克 隆 过 程
目录
第一节 生物药物制造的生物化学基础
生化制药的六个阶段: 1、原料的选择和预处理; 2、组织及细胞的破碎; 3、从破碎的细胞中提取有效成分制成粗品; 4、采用多种生化技术从粗品中将目的物精制
出来; 5、干燥及保存; 6、制剂。
第一节 生物药物制造的生物化学基础 一、生物药物制备方法的特点 (一)生物药物制造技术特点
AatII (2622) SspI (2504)
P(BLA) SnoI (2367) DraI (2277) ScaI (2180)
苯甘氨酸
三、生物技术原理
生物技术(biotechnology)——是利用生 物有机体或其组成部分发展新产品或新工 艺的一种技术体系称为生物技术,又称为 生物工程(bioengineering),包括:
1、基因工程:在体外,从DNA合成蛋白质过程。
2、细胞工程:细胞工程可以生产有用的生物产 品或培养有价值的植株,并可以产生新的物种或 品系。
二、基因工程的五大步骤 ——(分、切、接、转、筛)
〈一〉分——载体和目的基因的分离 1、载体:将外源基因导入细胞的DNA 2、常用载体:质粒、λ噬菌体、M13噬菌体 等。此外还有逆转录病毒DNA、昆虫病毒 DNA。
1. 质粒 (plasmid)
特点: 能在宿主细胞内独立自主复制;带有某些遗
传信息, 会赋予宿主细胞一些遗传性状。这也 是筛选转化子细菌的根据。
生物合成技术: 基因工程、细胞工程基础上应用发酵法和 酶法合成技术合成生化活性物质。
涉及的反应有50多种:如水解、脱氢、氧 化、羟基化、环氧化、还原、氢化、酯化、 异构化、氮杂基团氧化还原、硫醚开裂等 等。
2、生物半合成技术:
指一个药物其部分结构由天然资源得到, 然后用化学合成法制得最终产品或应用微生 物转化法将化学合成的中间产物,通过某些 生物合成步骤来解决药物合成中难于进行的 化学反应,从而获得最终有效化合物。
二、 生物合成技术原理
1、生物合成:是利用生物细胞的代谢反应 (如微生物转化反应)来合成化学方法难于 合成的药物或药物中间体。
微生物转化反应:是利用微生物细胞的一种 或多种酶,把一种化合物转变成结构相关的 更有经济价值的产物。
可进行的转化反应包括:脱氢、氧化、脱水、 缩合、脱羧、氨化、脱氨和异构化反应等。
相关文档
最新文档