(易错题精选)初中数学命题与证明的分类汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(易错题精选)初中数学命题与证明的分类汇编
一、选择题
1.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1
a
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2 B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误; C. 若a>|b|,则a2>b2,正确; D. a<1,如a=-1,此时a=1 a ,故D选项错误, 故选C. 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质. 2.下列命题中①等腰三角形底边的中点到两腰的距离相等 ②如果两个三角形全等,则它们必是关于直线成轴对称的图形 ③如果两个三角形关于某直线成轴对称,那么它们是全等三角形 ④等腰三角形是关于底边中线成轴对称的图形 ⑤一条线段是关于经过该线段中点的直线成轴对称的图形 正确命题的个数是() A.2个B.3个C.4个D.5个 【答案】A 【解析】 【分析】 根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可. 【详解】 根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确 全等的三角形不一定是成轴对称,则命题②错误 成轴对称的两个三角形一定全等,则命题③正确 等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误 成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误 综上,正确命题的个数是2个 故选:A. 本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键. 3.下列命题中逆命题是假命题的是() A.如果两个三角形的三条边都对应相等,那么这两个三角形全等 B.如果a2=9,那么a=3 C.对顶角相等 D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等 【答案】C 【解析】 【分析】 首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案. 【详解】 解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题; B、逆命题为:如果a=3,那么a2=9.是真命题; C、逆命题为:相等的角是对顶角.是假命题; D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题. 故选C. 【点睛】 此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可. 4.下列命题是真命题的是() A.如果一个数的相反数等于这个数本身,那么这个数一定是0 B.如果一个数的倒数等于这个数本身,那么这个数一定是1 C.如果一个数的平方等于这个数本身,那么这个数一定是0 D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0 【答案】A 【解析】 【分析】 根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可. 【详解】 A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题; B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题; C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题; D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 【点睛】 此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题. 5.下列命题中真命题是() A2一定成立 B.位似图形不可能全等 C.正多边形都是轴对称图形 D.圆锥的主视图一定是等边三角形 【答案】C 【解析】 【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得. 【详解】A)2,当a<0时不成立,假命题; B、位似图形在位似比为1时全等,假命题; C、正多边形都是轴对称图形,真命题; D、圆锥的主视图不一定是等边三角形,假命题, 故选C. 【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键. 6.下列结论中,不正确的是() A.两点确定一条直线 B.两点之间,直线最短 C.等角的余角相等 D.等角的补角相等 【答案】B 【解析】 【分析】 根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项. 【详解】 A.两点确定一条直线,正确; B.两点之间,线段最短,所以B选项错误; C.等角的余角相等,正确; D.等角的补角相等,正确. 故选B 考点:定理