机械优化设计考试复习

合集下载

《机械优化设计》试卷及答案 新 全

《机械优化设计》试卷及答案  新 全

《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。

A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。

A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。

A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。

A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。

A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。

A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。

A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。

A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。

A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f (X)=100(x 2— x 12) 2+(1— x 1) 2的最优解时,设X (0)=[—0。

5,0。

5]T ,第一步迭代的搜索方向为 [—47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解.4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)TGd 1=0,则d 0、d 1之间存在共轭关系.8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素.9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K —T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [—2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X )=x 12+x 22—x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 .15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭. 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。

2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。

#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。

如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。

2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。

若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。

#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。

机械优化设计总复习[超详细]

机械优化设计总复习[超详细]
基本思想: 对f(x)任选一个初始点a1及初始步长h, 通过比较这两 点函数值的大小,确定第三点位置,比较这三点的函数 值大小,确定是否为 “高—低—高” 形态。 步骤: (1)选定初始点a1, 初始步长h=h0 > 0,计算 y1=f(a1), y2=f(a1+h)。 (2)比较y1和y2。 (a)如y1>y2, 向右前进;加大步长 h=2 h ,转(3)向前; (b)如y1<y2, 向左后退;h=- h0, 将a1与a2,y1与y2的 值互换。转(3)向后探测; (c)如y1=y2,极小点在a1和a1+h之间。
b
29
*一、黄金分割法 1、在寻找一个区间 [ Xa , Xb ],使函数 f (X)在该区间的极小点 X* ∈ [ Xa , Xb ] 。
2、用黄金分割法在区间[ Xa , Xb ]中寻找 X* 。
X1 X b X b X a X2 Xa Xb Xa
23
K-T条件是多元函数取得约束极值的必 要条件,以用来作为约束极值的判断条件, 又可以来直接求解较简单的约束优化问题。
对于目标函数和约束函数都是凸函数 的情况, 符合K-T条件的点一定是全局最 优点。这种情况K-T条件即为多元函数取
得约束极值的充分必要条件。
24
第三章 一维搜索的最优化方法
试探法 一维搜索方法数值解法分类 插值法
0.618 [ Xa ,X1, X2, Xb ]
• •
如何消去子区间? f (X1) < f (X2) ,消去[X2, Xb],保留[Xa, X2] f (X1) ≥ f (X2) ,消去[Xa, X1],保留[X1, Xb]
30
第三章 一维搜索的最优化方法
一维搜索也称直线搜索。这种方法不仅对 于解决一维最优化本身具有实际意义,而且也 是解多维最优化问题的重要支柱。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。

A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。

A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。

A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。

大学期末考试机械优化设计复习题及其答案

大学期末考试机械优化设计复习题及其答案

1化问题的三要素:设计变量,约束条件, 目标函数。

2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子 3外推法确定搜索区间,函数值形成 高-低-高 区间4数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长5若n 维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。

外点;内点的判别7那三种方法不要求海赛矩阵:最速下降法 共轭梯度法 变尺度法 8、那种方法不需要要求一阶或二阶导数: 坐标轮换法 9、拉格朗日乘子法是 升维法 P3710、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种11,.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦12.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,同时必须是设计变量的可计算函数 。

13.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。

14.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。

15,.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。

16.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。

17二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定18.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。

19,改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩20坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题21.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。

~机械优化设计复习试题与答案

~机械优化设计复习试题与答案

机械优化设计复习题则目标函数的极小值为(g(X)=c+x 0的最优化设计问题, 用外点罚函0.186 C (X)在区间[X 1,X 3]上为单峰函数,X 2为区间中一点,X 4为利用二次插值法公式求得的近似极值点。

如X 4- X 2>0,且F(X 4)>F(X 2),那么为求F(X)的极小值,X 4点在下一次搜索区间内将作为 ()。

一. 单项选择题 1.一个多元函数 X * 附近偏导数连续, 则该点位极小值点的充要条件为A . FX 0 B. 0, H X * 为正定 C . HX 0 D. 0, H X * 为负定2. 为克服复合形法容易产生退化的缺点,对于 维问题来说, 复合形的顶点数 K应( ) K n 1 B. K 2n C. K 2n D. n K 2n 13.目标函数 F (x )=4x 12 +5x 22 ,具有等式约束, 其等式约束条件为h(x)=2x 1+3x 2-6=0,A .1B . 19.05C . D.数法求解时,其惩罚函数表达式①A. aX+b+MB. aX+b+M (k){min [0,c+X ]}2, (k){min [0,c+X ]}2,C. aX+b+M (k){maX [c+X,0 ] }2, D. aX+b+M(k){maX [c+X,0 ]}2,10C. 13A 16 DM (k)为递增正数序列M 为递减正数序列 M (k) 为递增正数序列 hn M (k) 为递减正数序列(X,M (k))为()。

4. 对于目标函数 F(X)=ax+b 受约束于14.外点罚函数法的罚因子为()。

8.内点罚函数法的罚因子为续占八、、(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的()。

A. 凸函数B. 凹函数C. 严格凸函数D.严格凹函数10C. 13A 16 D11.在单峰搜索区间[X 1 X 3] (X 1<X 3)内,取一点X 2,用二次插值法计算得 X 4(在[X 1X 3]内),若X 2>X 4,并且其函数值F ( X 4) <F(X 2),则取新区间为( B.[X 2 X 3] C . [X1X 2] D. [X 4 X 3]n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为()7.已知二元二次型函数 F(X)= 1X T AX ,其中 A= 12 2 2,则该二次型是()的。

机械优化设计复习题最新版

机械优化设计复习题最新版

机械优化设计复习题一、单项选择题5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31) A .负定 B .正定 C .各阶主子式小于零 D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...)i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47) A .等式约束数目 B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51)A . [a 1,b 1]B . [b 1,b]C . [a 1,b]D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。

机械优化设计复习题

机械优化设计复习题

简答题:1.等值线有哪些特点?2.什么是机械优化设计?3.简述传统的设计方法与优化设计方法的关系4.试写出多目标优化问题数学模型的一般形式5.一维搜索优化方法一般分为哪几步进行?6.为什么选择共轭方向作为搜索方向可以取得良好地效果?7.优化设计的数学模型一般包括哪几部分?8.常用的迭代终止准则有哪些?9.常用无约束优化方法有哪些?(写出三种即可)10.常用的约束优化方法有哪些?(写出三种即可)11.选择优化方法一般需要考虑哪些因素?12.黄金分割法缩小区间时的选点原则是什么?为什么要这样选点?13.试证明黄金分割法中区间缩短率为0.61814.试比较黄金分割法、二次插值法以及格点法三种一维优化方法的特点和适用条件15.梯度法的基本原则和特点是什么?16.变尺度法的基本思想是什么?17.在变尺度法中,为使变尺度矩阵与海塞矩阵的逆矩阵相似,并具有容易计算的特点,变尺度矩阵必须满足什么条件?18.分析比较原始牛顿法、阻尼牛顿法和共轭梯度法的特点。

19.共轭梯度法中,共轭方向和梯度之间的关系是怎样的?试画图说明20.为什么说共轭梯度法实质上是对最速下降法进行的一种改进?21.简述随机方向法的基本思路22.什么是库恩-塔克条件?其几何意义是什么?23.多元函数f(x1,x2,x3)在点x*存在极小值的充分必要条件是什么?24.什么是内点法,什么是外点法,它们适用的优化问题是什么?在构造惩罚函数时,内点法和外点法的惩罚因子的选取有何不同?25.在内点罚函数法中,初始罚因子的大小对优化计算过程有何影响?26.简述对优化设计数学模型进行尺度变换有何作用?27.多目标问题的解与单目标问题的解有何不同?如何将多目标问题转化为单目标问题进行求解?28.梯度和方向导数间有何关系?名词解释1.可行域2.起作用约束和不起作用约束3.消极约束4. 二次收敛性5. 离散变量6. 裂解7. 非裂解8. 可行搜索方向9. 设计空间10. 线性规划计算题1. 4。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。

A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。

A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。

A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数 C X B HX X T T ++21的梯度为HX+B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。

A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。

A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

机械优化设计试卷及答案

机械优化设计试卷及答案

百度文库《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(X2-X12)2+(1- X1)2的最优解时,设X(0)=[,]T,第一步迭代的搜索方向为[-47;-50]。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。

3、当优化问题是—凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。

5、包含n个设计变量的优化问题,称为J 维优化问题。

6、函数1X T HX + B T X + C的梯度为HX+B。

7、设G为nxn对称正定矩阵,若n维空间中有两个非零向量d。

,d i,满足(d0)T Gd i=0,则d0、d i之间存在-共轭关系。

8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。

9、对于无约束二元函数f (x ,x2),若在x°(x w,x20)点处取得极小值,其必要条件是梯度为零,充分条件是2海塞矩阵正定。

10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数f (x ) = x 2 -10 x + 36的极小点,初始搜索区间[a,b] = [-10,10],经第一次区间消去后得到的新区间为□。

12、优化设计问题的数学模型的基本要素有设计变量、约束条件目标函数、13、牛顿法的搜索方向d k=,其计算量大,且要求初始点在极小点逼近位置。

14、将函数f(X)=X]2+Xo2-X1X0-10X]-4Xo+60 表示成1X T HX + B T X + C的形12 1212 2式。

15、存在矩阵H,向量d1,向量d2,当满足(d1)TGd2=0 ,向量d1和向量d2是关于H共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r数列,具有由小到大趋于无穷特点。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案一、单项选择题(每题2分,共20分)1. 在机械优化设计中,目标函数通常代表的是()。

A. 设计变量B. 约束条件C. 优化目标D. 优化方法答案:C2. 以下哪一项不是机械优化设计的约束条件?()A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:A3. 机械优化设计中,常用的优化算法有()。

A. 梯度法B. 遗传算法C. 牛顿法D. 所有选项答案:D4. 在进行机械优化设计时,下列哪个因素不是设计者需要考虑的?()A. 材料成本B. 制造工艺C. 产品重量D. 产品颜色答案:D5. 机械优化设计中,目标函数的最小化问题通常指的是()。

A. 成本最小化B. 重量最小化C. 体积最小化D. 所有选项答案:D6. 以下哪个不是机械优化设计中常用的优化目标?()A. 最小化成本B. 最大化寿命C. 最小化尺寸D. 最大化速度答案:D7. 在机械优化设计中,下列哪一项不是常用的设计变量?()A. 尺寸B. 形状C. 材料D. 颜色答案:D8. 机械优化设计中,以下哪一项不是常用的优化方法?()A. 线性规划B. 非线性规划C. 动态规划D. 静态规划答案:D9. 在机械优化设计中,以下哪一项不是常用的优化算法?()A. 模拟退火B. 遗传算法C. 粒子群优化D. 牛顿迭代法答案:D10. 机械优化设计中,以下哪一项不是常用的约束条件?()A. 强度约束B. 刚度约束C. 稳定性约束D. 颜色约束答案:D二、多项选择题(每题3分,共15分)1. 机械优化设计中,常用的设计变量包括()。

A. 尺寸B. 形状C. 材料D. 颜色答案:ABC2. 机械优化设计中,常用的优化目标包括()。

A. 成本最小化B. 重量最小化C. 寿命最大化D. 速度最大化答案:ABC3. 机械优化设计中,常用的约束条件包括()。

A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:ABCD4. 机械优化设计中,常用的优化方法包括()。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X附近偏导数连续;则该点位极小值点的充要条件为A .()*0F X ∇= B. ()*0F X ∇=;()*H X 为正定 C .()*0H X = D. ()*0F X ∇=;()*H X 为负定2.为克服复合形法容易产生退化的缺点;对于n 维问题来说;复合形的顶点数K 应A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数Fx=4x 21+5x 22;具有等式约束;其等式约束条件为hx=2x 1+3x 2-6=0;则目标函数的极小值为A .1B . 19.05C .0.25D .0.14.对于目标函数FX=ax+b 受约束于gX=c+x ≤0的最优化设计问题;用外点罚函数法求解时;其惩罚函数表达式ΦX;M k 为 .. A. ax+b+M k {min0;c+x}2;M k 为递增正数序列 B. ax+b+M k {min0;c+x}2;M k 为递减正数序列 C. ax+b+M k {maxc+x;0}2;M k 为递增正数序列hn D. ax+b+M k {maxc+x;0}2;M k 为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 0.186 C6.FX 在区间x 1;x 3上为单峰函数;x 2为区间中一点;x 4为利用二次插值法公式求得的近似极值点..如x 4-x 2>0;且Fx 4>Fx 2;那么为求FX 的极小值;x 4点在下一次搜索区间内将作为 ..A.x 1B.x 3C.x 2D.x 47.已知二元二次型函数FX=AX X 21T ;其中A=⎥⎦⎤⎢⎣⎡4221;则该二次型是 的.. A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列9.多元函数FX 在点X 附近的偏导数连续;∇FX=0且HX 正定;则该点为FX 的 ..A.极小值点B.极大值点C.鞍点D.不连续点10.FX 为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数;若HX 正定;则称FX 为定义在凸集D 上的 ..A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A11.在单峰搜索区间x 1 x 3 x 1<x 3内;取一点x 2;用二次插值法计算得x 4在x 1 x 3内;若x 2>x 4;并且其函数值Fx 4<Fx 2;则取新区间为 .. A. x 1 x 4 B. x 2 x 3 C. x 1 x 2 D. x 4 x 312.用变尺度法求一n 元正定二次函数的极小点;理论上需进行一维搜索的次数最多为A. n 次B. 2n 次C. n+1次D. 2次 13.在下列特性中;梯度法不具有的是 ..A.二次收剑性B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向14.外点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列15.内点惩罚函数法的特点是 ..A .能处理等式约束问题 B.初始点必须在可行域中C.初始点可以在可行域外D.后面产生的迭代点序列可以在可行域外16.约束极值点的库恩—塔克条件为∇FX=)X (g i q1i i ∇λ-∑=;当约束条件g i X ≤0i=1;2;…;m 和λi ≥0时;则q 应为 ..A.等式约束数目;B.不等式约束数目;C.起作用的等式约束数目D.起作用的不等式约束数目17 已知函数FX=-1222121x 2x x x 2x 2+-+;判断其驻点1;1是 ..A.最小点B.极小点C.极大点D.不可确定18.对于极小化FX;而受限于约束g μX ≤0μ=1;2;…;m 的优化问题;其内点罚函数表达式为 A. ФX; r k=FX-rk11/()gX u u m=∑ B. ФX; r k =FX+rk11/()gX u u m=∑C. ФX; r k =FX-rkmax[,()]01gX u u m=∑ D. ФX; r k =FX-rkmin[,()]01gX u u m=∑19. 在无约束优化方法中;只利用目标函数值构成的搜索方法是A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A20. 利用0.618法在搜索区间a;b 内确定两点a 1=0.382;b 1=0.618;由此可知区间a;b 的值是A. 0;0.382B. 0.382;1C. 0.618;1D. 0;1 21. 已知函数FX=x 12+x 22-3x 1x 2+x 1-2x 2+1;则其Hessian 矩阵是 A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--3223 22. 对于求minFX 受约束于g i x ≤0i=1;2;…;m 的约束优化设计问题;当取λi ≥0时;则约束极值点的库恩—塔克条件为 A. ∇FX=∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子B. -∇F X= ∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子C. ∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数D. -∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数23. 在共轭梯度法中;新构造的共轭方向S k+1为 A. S k+1= ∇FX k+1+βk S K ;其中βk 为共轭系数 B. S k+1=∇FX k+1-βk S K ;其中βk 为共轭系数C. S k+1=-∇FX k+1+βk S K;其中βk为共轭系数D. S k+1=-∇FX k+1-βk S K;其中βk为共轭系数24. 用内点罚函数法求目标函数FX=ax+b受约束于gX=c-x≥0的约束优化设计问题;其惩罚函数表达式为A. ax+b-r kx-c1;r k为递增正数序列B. ax+b-r kx-c1;r k为递减正数序列C. ax+b+ r kx-c1;r k为递增正数序列D. ax+b+r kx-c1;r k为递减正数序列25. 已知FX=x1x2+2x22+4;则FX在点X0=⎭⎬⎫⎩⎨⎧-11的最大变化率为A. 10B. 4C. 2D. 1026.在复合形法中;若映射系数α已被减缩到小于一个预先给定的正数δ仍不能使映射点可行或优于坏点;则可用A.好点代替坏点B.次坏点代替坏点C.映射点代替坏点D.形心点代替坏点1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A27. 优化设计的维数是指A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab软件使用中;如已知x=0:10;则x有______个元素..A. 10B. 11C. 9D. 1229.如果目标函数的导数求解困难时;适宜选择的优化方法是 ..A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 30.在0.618法迭代运算的过程中;迭代区间不断缩小;其区间缩小率在迭代的过程中 ..A .逐步变小B 不变C 逐步变大D 不确定二 填空1.在一般的非线性规划问题中;kuhn-tucker 点虽是约束的极值点;但 是全域的最优点..2.判断是否终止迭代的准则通常有 . 和 三种形式..3.当有两个设计变量时;目标函数与设计变量关系是 中一个曲面..4.函数在不同的点的最大变化率是 ..5.函数()2212144f x x x x =+-+;在点()[]132TX = 处的梯度为 ..6.优化计算所采用的基本的迭代公式为 .. 7.多元函数Fx 在点x 处的梯度▽Fx =0是极值存在的 条件.. 8.函数Fx=3x 21+x 22-2x 1x 2+2在点1;0处的梯度为 .. 9.阻尼牛顿法的构造的迭代格式为 .. 10.用二次插值法缩小区间时;如果p x x <2;p f f >2;则新的区间a;b 应取作 ;用以判断是否达到计算精度的准则是 .. 11.外点惩罚函数法的极小点是从可行域之 向最优点逼近;内点惩罚函数法的极小点是从可行域之 向最优点逼近.. 12.罚函数法中能处理等式约束和不等式约束的方法是 罚函数法..13.Powell 法是以 方向作为搜索方向..14.当有n 个设计变量时;目标函数与n 个设计变量间呈 维空间超曲面关系..1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1三 问答题1. 变尺度法的基本思想是什么2. 梯度法的基本原理和特点是什么3.什么是库恩-塔克条件 其几何意义是什么4. 在内点罚函数法中;初始罚因子的大小对优化计算过程有何影响5. 选择优化方法一般需要考虑哪些因素6. 满足什么条件的方向是可行方向 满足什么条件的方向是下降方向 作图表示..7. 简述传统的设计方法与优化设计方法的关系.. 8. 简述对优化设计数学模型进行尺度变换有何作用.. 9. 分析比较牛顿法.阻尼牛顿法和共轭梯度法的特点 10.为什么选择共轭方向作为搜索方向可以取得良好的效果11.多目标问题的解与单目标问题的解有何不同 如何将多目标问题转化为单目标问题求解12.黄金分割法缩小区间时的选点原则是什么 为何要这样选点四.计算题1.用外点法求解此数学模型2 将()22121212262233f x x x x x x x =+++++写成标准二次函数矩阵的形式..3 用外点法求解此数学模型 :()()()12211221min ..00f X x x s tg X x x g X x =+=-≤=-≤4 求出()221122262420f x x x x x =-+-+的极值及极值点..5 用外点法求解此数学模型 :()()()()31211221min 13..100f X x x s tg X x g X x =++=-+≤=≥6.用内点法求下列问题的最优解:提示:可构造惩罚函数 []∑=-=21)(ln )(),(u u x g r x f r x φ;然后用解析法求解....7.设已知在二维空间中的点[]T x x x 21=;并已知该点的适时约束的梯度[]T g 11--=∇;目标函数的梯度[]T f 15.0-=∇;试用简化方法确定一个适用的可行方向..8. 用梯度法求下列无约束优化问题:Min FX=x 12+4x 22;设初始点取为X 0=2 2T ;以梯度模为终止迭代准则;其收敛精度为5..9. 对边长为3m 的正方形铁板;在四个角处剪去相等的正方形以制成方形无盖水槽;问如何剪法使水槽的容积最大 建立该问题的优化设计的数学模型.. 10. 已知约束优化问题: 试以[][][]T T T x x x 33,14,1230201===为复合形的初始顶点;用复合形法进行一次迭代计算..机械优化设计综合复习题参考答案一.单项选择题1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A 二 填空1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1 三 问答题1.变尺度法的基本思想是:通过变量的尺度变换把函数的偏心程度降低到最低限度;显着地改进极小化方法的收敛性质..2.梯度法的基本原理是搜索沿负梯度方向进行;其特点是搜索路线呈“之”字型的锯齿路线;从全局寻优过程看速度并不快..3.库恩-塔克条件是判断具有不等式约束多元函数的极值条件..库恩—塔克条件的几何意义是: 在约束极小值点*X 处;函数()x F 的负梯度一定能表示成所有起使用约束在该点梯度法向量的非负线性组合..4.初始罚因子0r ;一般来说0r 太大将增加迭代次数;0r 太小会使惩罚函数的性态变坏;甚至难以收敛到极值点..5.选择优化方法一般要考虑数学模型的特点;例如优化问题规模的大小;目标函数和约束函数的性态以及计算精度等..在比较各种可供选用的优化方法时;需要考虑的一个重要因素是计算效率.. 6.可行条件应满足第二式: 7.下降条件应满足第一式:搜索方向应与起作用的约束函数在k x 点的梯度及目标函数的梯度夹角大于或等于900..8.数学模型的尺度变换是一种改善数学模型性态;使之易于求解的技巧..一般可以加速优化设计的收敛;提高计算过程的稳定性.. 9.牛顿法的迭代关系式为:阻尼牛顿法的迭代关系式为: 共轭梯度法的迭代关系式为:牛顿法适合二次型问题;阻尼牛顿法有防止目标函数值上升的阻尼因子;适合非二次型问题;两者均需计算海森矩阵及其逆矩阵;计算量大..共轭梯度法用梯度构造共轭方向;仅需梯度计算且具有共轭性质;收敛速度快;不必计算海森矩阵;使用更加方便..10.根据共轭方向的性质:从任意初始点出发顺次沿n 个G 的共轭方向进行一维搜索;最多经过n 次迭代就可找到二次函数的极小点;具有二次收敛性.. 11.单目标问题的解一般是唯一理想解;多目标的解一般是相对理想解..多目标问题转成单目标问题的常用方法有:主要目标法.线性加权法.理想点法.平方和加权法.分目标乘除法.功率系数法和极大极小法..12.选点原则是插入点应按0.618分割区间..因为这样选点可以保持两次迭代区间的相同比例分布;具有相同的缩短率.. 四.计算题1.提示:先转化为惩罚函数形式 答案1=x 2.二次函数的矩阵标准形式为C x B Gx x T T++21 答案为121[()]()(0,1,2,)k k kk f fk +-=-∇∇=x x x x⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1222421T x x +[]32x +3 3.参考第六章复习题提示 结果为][T x 00= 4. 用梯度计算极值点 答案为][T 15.1 5. 先构造外点罚函数 答案为][T 01- 6. 先构造内点罚函数 答案为][T 317. 用图解法;先画出约束函数梯度及目标函数梯度;做两者的垂线;与两梯度夹角均大于900的任意方向均可..8. 以负梯度为搜索方向进行迭代计算 答案为[]T 00 9. 设剪掉的正方形边长为1x数学模型为 Min []12)23()(x x x F -=10. 提示 先算三点的目标函数值并排序;将最差点沿其余点中心进行反射;计算反射点函数值并判断可行性.. 答案为][T 5.31。

机械优化设计复习题答案

机械优化设计复习题答案

机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。

A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。

A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。

A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。

答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。

答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。

答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。

答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。

2. 描述机械优化设计中约束条件的分类及其意义。

答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。

等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。

这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。

3. 举例说明机械优化设计中设计变量的选择原则。

答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案一、选择题1. 机械优化设计中的“优化”指的是:A. 最小化成本B. 最大化效益B. 达到设计目标D. 以上都是答案:D2. 以下哪项不是机械优化设计的基本步骤?A. 确定设计变量B. 确定目标函数C. 确定约束条件D. 进行材料选择答案:D3. 在机械优化设计中,目标函数通常是用来衡量:A. 设计的可行性B. 设计的安全性C. 设计的经济性D. 设计的最优性答案:D二、填空题4. 机械优化设计通常采用的数学方法包括_______、_______和_______。

答案:线性规划;非线性规划;动态规划5. 机械优化设计中,约束条件可以是等式约束也可以是_______。

答案:不等式约束三、简答题6. 简述机械优化设计中目标函数的作用。

答案:目标函数在机械优化设计中的作用是量化设计目标,为设计提供评价标准,指导设计过程朝着最优解方向进行。

7. 描述机械优化设计中设计变量、目标函数和约束条件之间的关系。

答案:设计变量是优化设计中可以调整的参数;目标函数是设计过程中需要优化或最小化/最大化的量;约束条件是设计过程中必须满足的限制,它们共同定义了优化问题的边界和可行性。

四、计算题8. 假设有一个机械部件的重量W与其尺寸L和宽度H的关系为W = 2LH,成本C与重量W和材料单价P的关系为C = 10W + P。

若L和H 的取值范围均为[1,5],材料单价P为常数,求在满足强度要求的前提下,如何确定L和H的值以最小化成本C。

答案:首先,根据题目给出的关系式,我们可以将成本C表示为C = 10 * 2LH + P = 20LH + P。

由于P为常数,我们只需考虑如何最小化20LH。

由于L和H的取值范围相同,我们可以令L = H,此时C = 20L^2。

在[1,5]的范围内,当L = 1时,C达到最小值,即C_min = 20。

五、论述题9. 论述机械优化设计在现代机械工程中的重要性及其应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直接法:复合形法 随机方向法 间接法:惩罚函数法 增广乘子法二元函数在某点处取得极值的充分条件是 该点处的海赛矩阵为正定。

可行搜索方向是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。

黄金分割选点的原则:对称性和新区间三段与原来的区间的三段保持相同的比例。

优化设计迭代满足下降性和收敛性。

凡满足所有约束条件的设计点在设计空间中的变化范围称为可行域。

1优化问题的三要素:设计变量,约束条件, 目标函数。

2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子 3外推法确定搜索区间,函数值形成 高-低-高 区间 4数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和计算最佳步长5若n 维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。

外点;内点的判别7那三种方法不要求海赛矩阵:最速下降法 共轭梯度法 变尺度法 8、那种方法不需要要求一阶或二阶导数: 坐标轮换法 9、拉格朗日乘子法是 升维法 P3710、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种11,.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦12.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。

13.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。

14.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。

15,.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。

16.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。

17,.二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定18.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无约束优化问题,这种方法又被称为 升维 法。

19,改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩20坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题21.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。

22.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。

23协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。

24.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。

二、解答题1、试述两种一维搜索方法的原理,它们之间有何区别 答:搜索的原理是:区间消去法原理 区别:(1)、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法 (2)、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值。

这种方法称为插值法,又叫函数逼近法。

2、在变尺度法中,为使变尺度矩阵k H 与1-k G 近似,并具有容易计算的特点,k H 必须附加哪些条件?答:(1)必须是对称正定的(2)要求有简单的迭代形式 (3)必须满足拟牛顿条件 3,总结:无约束优化方法 ● 只算函数值方法1,坐标轮换法:小规模,收敛慢(无耦合问题快);2,单形替换法:中小规模,收敛较快, 3,格点法:非凸问题;4,Monte Carlo 法:非凸问题。

● 计算一阶导数方法1, 梯度法:中小规模,开始快;2,共轭梯度法:中大规模,收敛快,程序简单; 2, 变尺度法:中大规模,收敛快;4,Powell 方法:中大规模,收敛快。

● 计算二阶导数方法1, Newton 方法:收敛快,计算难度大;2,共轭方向法:收敛快,计算难度大。

4.共轭梯度法中,共轭方向和梯度之间的关系是怎样的?试画图说明。

. 对于二次函数,()12TT f X X GX b X c =++,从k X 点出发,沿G 的某一共轭方向kd 作一维搜索,到达1k X +点,则1k X +点处的搜索方向j d 应满足()()10Tj k k d gg +-=,即终点1k X +与始点k X 的梯度之差1k k g g +-与k d 的共轭方向jd 正交。

3.为什么说共轭梯度法实质上是对最速下降法进行的一种改进?.答:共轭梯度法是共轭方向法中的一种,在该方法中每一个共轭向量都依赖于迭代点处的负梯度构造出来的。

共轭梯度法的第一个搜索方向取负梯度方向,这是最速下降法。

其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。

所以共轭梯度法的实质是对最速下降法的一种改进。

4.简述随机方向法的基本思路答:随机方向法的基本思路是在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中选择一个能使目标函数值下降最快的随机方向作为可行搜索方向。

从初始点出发,沿搜索方向以一定的步长进行搜索,得到新的X 值,新点应该满足一定的条件,至此完成第一次迭代。

然后将起始点移至X ,重复以上过程,经过若干次迭代计算后,最终取得约束最优解。

5.凸规划:对于约束优化问题 ()min f X ..s t ()0j g X ≤ (1,2,3,,)j m =⋅⋅⋅若()f X 、()jg X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。

6.可行搜索方向是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。

7.设计空间:n 个设计变量为坐标所组成的实空间,它是所有设计方案的组合 8.收敛性:是指某种迭代程序产生的序列(){}0,1,k X k =⋅⋅⋅收敛于1lim k k XX +*→∞=9. 黄金分割法:是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值。

10.可行域:满足所有约束条件的设计点,它在设计空间中的活动范围称作可行域。

三,计算1、求目标函数f(X)=2x 12+3x 22-x 1x 2-2x 2-9在点X 1 =()1,1处的函数变化率最大的方向及其数值。

解:▽f(x 1)=⎥⎦⎤⎢⎣⎡∂∂∂∂x2f(x)x1f(x)=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡33216142-x -6x x -x 41221 []⎥⎦⎤⎢⎣⎡===+T∇∇2222993,3f(x1)f(x1)p ρ数值232^32^3f(x1)=+=∇ 2、求函数f(X)=x 13+x 22-4x 1-2x 2+72在点X 1(2,1)处的二阶泰勒展开式。

解:[][][][][][]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋯⋯⋯⋯⋯⋯+⎥⎦⎤⎢⎣⎡⋯⋯+=⎥⎦⎤⎢⎣⎡⋯⋯⋯⋯=⎥⎦⎤⎢⎣⎡⋯⋯⋯⋯=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∇=+∇+=1-x 2-x 200121-x 2-x 1-x 2-x 081-72x f 200122006x H 082-x 24-2^x 3x f 1-72x f x -x x H x -x x -x T x f x f x f 21212111211111111121T 21)()()()()()()()(x=6x 12+x 22-16x 1+6+723、用共轭梯度法求函数f(X)=2x1^2-x1x2+3x2^2+5的最优解,初始点(1,2),迭代精度02.0=ε解:[][]⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+--=∇==+-∇=⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡--=∴==+-+---⨯=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--+=+=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡+---=-∇==∇∇66168261214)(88309)(1121111221505112311221-212)()(21112211122,1112261214)(,2,1)1()()()0()0()0()1()1()0()0()1()0()(2)0()0()0(2)0()0()1()1()1()0()0()0()0()0()0()1(0)0()0(2)0(2)1()0()0(x x x x x f s x f s x f x f x x x s x x x x x x x f s x x f x f df TTββαααααααααααααα得令)())(()(得代入将初始点[][]⎥⎦⎤⎢⎣⎡-=*⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⨯+⎥⎦⎤⎢⎣⎡==-=+=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡=∇80.1465.780.1465.79720601765500001.0112110001.097206017655011288309661-68)2()()()1()1()1()1()2(1)1()1()1()1()1(x x s x x s s x H s s x f TT最优解为:)(αα4,求函数 的极值。

解 首先,根据极值的必要条件求驻点 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂=∇002242)(0021210x x x x x f x f x f 524),(21222121+--+=x x x x xx f得驻点为再根据极值的充分条件,判断此点是否为极值点。

由于 的一阶主子式和二阶主子式分别为故 为正定矩阵 为极小点,相应的极值为 5.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX=。

初始点为()[]01010TX=,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()0100010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααmin 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦()124.4528302f X =,从而完成第一次迭代。

相关文档
最新文档