相似三角形教案教学内容
三角形相似的判定教学设计(优秀4篇)
三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
27.2相似三角形(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
三角形相似的判定教案范文
三角形相似的判定教案一、教学目标:知识与技能:1. 学生能理解相似三角形的概念,掌握三角形相似的判定方法。
2. 学生能够运用相似三角形的性质解决实际问题。
过程与方法:1. 学生通过观察、操作、交流等活动,培养观察能力、动手能力和表达能力。
2. 学生能够运用转化思想,将复杂几何问题转化为相似三角形问题。
情感态度价值观:1. 学生培养对数学的兴趣,增强自信心,树立克服困难的勇气。
2. 学生学会合作交流,培养团队精神。
二、教学内容:1. 三角形的相似概念:学生通过观察、分析,理解相似三角形的定义。
2. 三角形相似的判定方法:学生掌握SSS、SAS、ASA、AAS四种判定方法,并能灵活运用。
3. 相似三角形的性质:学生了解相似三角形的性质,包括对应边成比例、对应角相等。
三、教学重点与难点:重点:1. 学生掌握三角形相似的判定方法。
2. 学生能够运用相似三角形的性质解决实际问题。
难点:1. 学生理解并灵活运用SSS、SAS、ASA、AAS四种判定方法。
2. 学生解决复杂几何问题,运用转化思想。
四、教学过程:1. 导入:通过展示生活中的实例,引导学生思考三角形相似的概念。
2. 新课导入:介绍三角形相似的定义,引导学生观察、分析,理解相似三角形的性质。
3. 判定方法的学习:讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题让学生动手实践。
4. 课堂练习:设计不同难度的练习题,让学生巩固所学知识。
5. 总结与拓展:总结相似三角形的判定方法,引导学生思考如何运用相似三角形解决实际问题。
五、课后作业:1. 完成课后练习题,巩固三角形相似的判定方法。
教学评价:1. 课后作业的完成情况,检验学生对知识点的掌握。
2. 课堂练习的参与度,观察学生对问题的思考和解决能力。
3. 学生对相似三角形概念的理解,以及对实际问题的运用能力。
六、教学策略与方法:1. 采用问题驱动法,引导学生通过观察、操作、思考、讨论等活动,发现规律,掌握相似三角形的判定方法。
三角形相似的判定教案
三角形相似的判定教案一、教学目标1. 知识与技能:(1)理解三角形相似的概念;(2)掌握三角形相似的判定方法;(3)能够运用三角形相似的知识解决实际问题。
2. 过程与方法:(1)通过观察、操作、交流等活动,培养学生的空间想象能力;(2)学会用三角板和直尺画出相似的三角形;(3)学会用三角板和直尺画出相等的角。
3. 情感态度价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流的意识;(3)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)三角形相似的概念;(2)三角形相似的判定方法。
2. 教学难点:(1)三角形相似的判定条件的理解和运用;(2)用三角板和直尺画出相似的三角形和相等的角。
三、教学准备1. 教具:三角板、直尺、黑板、粉笔。
2. 学具:每个学生准备一套三角板、直尺。
四、教学过程1. 导入新课:(1)复习已学过的图形变换知识,如轴对称、中心对称等;(2)引导学生思考:如何判断两个三角形是否相似?2. 自主探究:(1)让学生用三角板和直尺尝试画出相似的三角形;(2)让学生交流分享画相似三角形的方法和经验。
3. 小组合作:(1)让学生分组讨论,总结出三角形相似的判定方法;(2)每组派代表分享判定方法,全班共同总结。
4. 课堂讲解:(1)讲解三角形相似的概念;(2)讲解三角形相似的判定方法,如AA相似定理、SAS相似定理等;(3)举例讲解如何运用三角形相似的判定方法解决实际问题。
5. 巩固练习:(1)让学生运用三角形相似的判定方法,判断给出的三角形是否相似;(2)让学生解决一些与三角形相似有关的应用题。
五、课后作业1. 完成练习册上的相关练习题;2. 运用三角形相似的知识,解决生活中的一个问题,如测量一个不规则三角形的面积等。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组合作中的表现,了解学生的学习态度和合作精神。
2. 练习完成情况评价:检查学生课后作业的完成质量,包括题目的正确性、解题过程的清晰度等。
相似三角形教案
相似三角形教案一、教学目标1、知识与技能目标理解相似三角形的定义,掌握相似三角形的性质和判定定理。
能够运用相似三角形的性质和判定定理解决简单的几何问题。
2、过程与方法目标通过观察、比较、猜想、验证等数学活动,培养学生的观察能力、逻辑思维能力和创新能力。
经历相似三角形的探索过程,体会数学中的转化思想和分类讨论思想。
3、情感态度与价值观目标让学生在探索相似三角形的过程中,体验成功的喜悦,增强学习数学的信心。
培养学生合作交流的意识和勇于探索的精神。
二、教学重难点1、教学重点相似三角形的定义、性质和判定定理。
相似三角形的应用。
2、教学难点相似三角形判定定理的证明。
灵活运用相似三角形的性质和判定定理解决实际问题。
三、教学方法讲授法、讨论法、探究法四、教学过程1、导入新课展示生活中常见的相似三角形的图片,如金字塔、埃菲尔铁塔等,引导学生观察并思考这些图形的特点。
提问:这些图形有什么共同的特征?从而引出相似三角形的概念。
2、讲解新课(1)相似三角形的定义两个三角形的对应角相等,对应边成比例,这两个三角形叫做相似三角形。
强调相似三角形的对应关系,即对应顶点、对应角、对应边。
(2)相似三角形的表示方法用“∽”表示相似,如△ABC∽△A'B'C'。
(3)相似三角形的性质相似三角形的对应角相等。
相似三角形的对应边成比例。
相似三角形的对应高、对应中线、对应角平分线的比等于相似比。
相似三角形的周长比等于相似比,面积比等于相似比的平方。
(4)相似三角形的判定定理两角分别相等的两个三角形相似。
两边成比例且夹角相等的两个三角形相似。
三边成比例的两个三角形相似。
(5)相似三角形判定定理的证明以“两角分别相等的两个三角形相似”为例,引导学生通过作辅助线,构造全等三角形,证明两个三角形相似。
3、课堂练习出示一些简单的相似三角形的判断题和计算题,让学生巩固所学知识。
例如:判断△ABC 和△A'B'C'是否相似,其中∠A = 60°,∠B =40°,∠A' = 60°,∠C' = 80°。
北师大版九年级数学上册4.7相似三角形的性质(教案)
4.对于学习困难的学生,给予更多的关注和个别辅导,确保他们能够跟上教、角度等。
二、核心素养目标
1.培养学生逻辑推理、数学抽象的核心素养,使学生能够通过观察、分析、归纳相似三角形的性质,并运用这些性质解决相关问题;
2.培养学生空间想象力和几何直观能力,能够通过画图、制作模型等方式,形象地理解相似三角形的性质及其应用;
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定方法和性质这两个重点。对于难点部分,如相似比的应用,我会通过具体例题和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸张,观察相似三角形的形成和性质。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的定义、判定方法和性质,以及它们在实际问题中的应用。通过实践活动和小组讨论,我们加深了对相似三角形性质的理解。希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-熟悉并能够运用相似三角形的性质,包括对应角相等、对应边成比例、对应高的比等于相似比、对应角平分线的比等于相似比等。
-学会通过实际问题的分析,构建相似三角形的模型,并利用相似性质解决问题。
-例:讲解如何判定两个三角形相似,并通过具体例题强调相似三角形的性质在解题中的应用。
2.教学难点
-难点一:相似三角形的判定方法,特别是AA(角角相似)、SAS(边角边相似)、SSS(边边边相似)的判定方法,学生容易混淆。
数学教案三角形相似的判定(优秀3篇)
数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
相似三角形的教案
相似三角形的教案【篇一:《相似三角形》教学设计】《相似三角形》教学设计教学设计说明一、教材分析本节“相似三角形”是北师大版实验教材八年级下册第四章第五节的内容,在此之前学生已经学习了相似多边形,知道了相似多边形的本质特征,为学习本节内容做了铺垫。
本节课旨在由一般到特殊引出相似三角形的概念,并应用这一概念解决一些实际问题,为下一步学习相似三角形的判定定理做感性和理性的准备,因此本节课具有承前启后的联系和纽带作用。
同时本节内容的教学对整章学习掌握起着奠基作用,也为学生今后在学习和生活中更好的用数学作准备,因而它在本章的学习中占有重要地位。
二.设计理念:1.指导思想:本节课是关于相似三角形概念的教学,课本内容较少,如何使知识容量、思维容量尽可能饱和,有效培养学生的创新能力,是设计本节课的指导思想。
2. 设计思路:①.为了使学生能较顺利地在教师的引导下进行先学,在复习相似多边形的基础上,由一般到特殊引出相似三角形的定义,并能在具体情景中深入理解,认识相似三角形的本质并应用它来解决问题。
借助练习,通过合作探究,独立思考来完成本课的目标②.整堂课设置问题,层层深入,给学生充分的思考时间,使学生感受到了自己是课堂的主人,让学生在亲身实践中去体验、去感悟,一切的新知识都是由学生自己发现。
教师只是引导和帮助学生去探索,而没有把现有的知识灌输给学生。
③.根据《数学课程标准》所提出的先进教学理念,用教材教,而不是教教材,让课堂由学生主导,充分发挥学生的主体作用,结合初中生的认知特点,本节课力求形成“创设问题情景→构建模型→合作探究→实践应用”的模式,在重视双基的同时,更关注知识的形成过程。
三.教学目标知识与技能目标:使学生了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,在实际应用中加深对相似三角形的认识和理解。
培养学生的抽象思维能力和解决实际问题的能力。
过程与方法目标:在相似三角形概念及性质的学习过程中,引导学生对问题观察、分析、归纳、猜想,养成良好的思维习惯。
九年级数学上册《相似三角形的性质》教案、教学设计
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。
4.4.3相似三角形的判定定理3教案
3.增加课堂互动,鼓励学生提问和分享解题思路,以提高他们的逻辑思维和表达能力。
4.对于学习困难的学生,制定个性化的辅导计划,确保他们能够跟上课程进度。
-针对难点,教师应采用以下教学方法:
-使用动态几何软件或实物模型,帮助学生直观感受相似三角形的形成过程。
-设计阶梯式问题,引导学生逐步理解判定定理3的每个要素。
-通过小组讨论和同伴互助,让学生在互动中解决难点问题。
-提供多层次的练习题,让学生在不同的难度级别上反复练习,逐步突破难点。
四、教学流程
(一)导入新课(用时5分钟)
然而,我也意识到教学过程中存在的一些不足。例如,对于一些理解能力较弱的学生,我可能需要提供更多的个别辅导和额外的练习机会。此外,我也应该考虑引入更多的直观教具或多媒体资源,来帮助那些对几何图形感知能力较弱的学生。
在未来的教学中,我计划在以下几个方面进行改进:
1.强化学生对定理条件的记忆,通过反复练习和复习,确保他们能够熟练掌握。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形判定定理3在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-着重讲解如何从给定的信息中识别出符合判定定理3的条件,并运用这一条件判断三角形是否相似。
-通过典型例题和练习题,强化学生对定理3的记忆和应用能力。
-举例:给定三角形ABC和三角形DEF,如果∠A=∠D,∠B=∠E,且AB/DE=AC/DF,则证明三角形ABC与三角形DEF相似。
三角形相似的判定数学教学教案
三角形相似的判定数学教学教案第一章:三角形相似的概念介绍1.1 引入新课:通过展示两组形状相似的三角形,让学生观察并思考它们的共同特点。
1.2 讲解三角形相似的定义:两个三角形如果对应角度相等,对应边长成比例,则这两个三角形相似。
1.3 举例说明:通过具体的三角形例子,解释相似三角形的判定条件。
1.4 练习:让学生解决一些判断三角形相似的问题,巩固所学知识。
第二章:AA相似定理2.1 引入新课:通过展示两组形状相似的三角形,引导学生思考它们的边长比例关系。
2.2 讲解AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。
2.3 举例说明:通过具体的三角形例子,解释AA相似定理的应用。
2.4 练习:让学生解决一些判断三角形相似的问题,运用AA相似定理。
第三章:SAS相似定理3.1 引入新课:通过展示两组形状相似的三角形,引导学生思考它们的边长和角度关系。
3.2 讲解SAS相似定理:如果两个三角形的两个角分别相等,并且夹角对应的边成比例,则这两个三角形相似。
3.3 举例说明:通过具体的三角形例子,解释SAS相似定理的应用。
3.4 练习:让学生解决一些判断三角形相似的问题,运用SAS相似定理。
第四章:SSS相似定理4.1 引入新课:通过展示两组形状相似的三角形,引导学生思考它们的边长关系。
4.2 讲解SSS相似定理:如果两个三角形的三条边分别成比例,则这两个三角形相似。
4.3 举例说明:通过具体的三角形例子,解释SSS相似定理的应用。
4.4 练习:让学生解决一些判断三角形相似的问题,运用SSS相似定理。
第五章:三角形相似的应用5.1 引入新课:通过展示一些实际问题,引导学生思考三角形相似的应用。
5.2 讲解三角形相似在实际问题中的应用:例如,通过相似三角形的性质解决几何图形的面积、角度等问题。
5.3 举例说明:通过具体的实际问题,解释三角形相似的应用。
5.4 练习:让学生解决一些实际问题,运用三角形相似的性质。
4.7.1《相似三角形的性质》教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-应用相似三角形性质解决实际问题,如证明几何问题、计算长度等。
-重点举例:
a.证明两个三角形相似,并运用相似性质计算未知长度。
b.利用相似三角形性质解释生活中的实际问题,如建筑设计、摄影等。
2.教学难点
-理解相似三角形的性质及其证明过程Байду номын сангаас尤其是对应高的比相等和对应中线的比相等。
-掌握相似三角形的判定方法,能够正确区分和应用AA、SAS、SSS相似定理。
在学生小组讨论环节,我发现有些小组在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分交流。为了提高讨论效果,我打算在下次教学中增加一些互动环节,引导学生更好地进行思想碰撞,提高他们的沟通能力和逻辑思维能力。
最后,我希望通过这次教学反思,能够让自己在今后的教学中更加得心应手,让学生的学习效果更上一层楼。
相似三角形的判定数学教学教案(10篇)
相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。
2、能运用相似三角形的概念判断两个三角形相似。
3、理解“相似三角形的对应角相等,对应边成比例”的性质。
重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。
知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的对应角相等,对应边成比例。
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。
教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。
问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。
2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。
数学《相似三角形的判定》教案
相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。
从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。
同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。
2、这一内容可分为四课时完成,本教学设计是第一课时。
3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。
教学重点:三角形相似的判定定理1的理解和应用。
教学难点:三角形相似的判定定理1的证明方法。
因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。
二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。
三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。
(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。
4.7相似三角形的性质(教案)
一、教学内容
本节课选自八年级下册数学教材第四章“三角形”中的4.7节“相似三角形的性质”。教学内容主要包括以下两点:
1.相似三角形的定义:对应角相等,对应边成比例的两个三角形称为相似三角形。
2.相似三角形的性质:
a.相似三角形的对应角相等;
b.相似三角形的对应边成比例;
c.解决实际问题时,选择合适的相似三角形:在解决一些平面几何问题时,学生需要能够识别并选择合适的相似三角形,以简化问题。
举例:针对难点a,教师可以通过设计不同形状的三角形,让学生练习判断相似性,并提供判断方法,如AA相似定理、SAS相似定理等;对于难点b,可以通过多个例题的讲解和练习,让学生熟悉相似三角形的性质,并掌握计算方法;对于难点c,可以通过实际案例,指导学生如何识别和应用相似三角形,如在复杂图形中找到关键的相似关系,解决面积和长度的问题。
然而,我也注意到在重点难点解析部分,还是有一部分学生对相似比的计算和应用掌握得不够牢固。这可能是因为我讲解得还不够细致,或者举例不够典型。在今后的教学中,我需要针对这一部分内容进行更多的练习和讲解,确保学生们能够真正理解和掌握。
实践活动环节,学生们分组讨论和实验操作都进行得非常积极。我看到他们通过自己的探索,逐渐理解并能够运用相似三角形的性质解决问题,这让我感到很欣慰。但同时,我也发现有些小组在讨论过程中,可能会有些偏离主题,需要我及时引导回到正轨。
在学生小组讨论环节,我尽量让自己成为一个引导者和协助者,让学生们充分发表自己的观点,并尝试解决问题。我认为这样的方式能够培养学生的独立思考能力和团队协作能力。不过,我也观察到有些学生在讨论中显得比较沉默,可能是因为他们还不够自信或者不知道如何表达自己的观点。我需要在以后的教学中,多关注这部分学生,鼓励他们大胆发言,增强自信。
相似三角形的判定教案
13
三边对应成比例判定法
定理内容:三边对应成比 例的两个三角形相似。
判定步骤
2024/1/28
1. 确定已知条件,包括已 知的三组对应边。
3. 如果三组对应边的比值 相等,则根据三边对应成 比例定理判断两个三角形 是否相似。
2. 计算三组对应边的比值 ,判断是否相等。
14
2024/1/28
在几何、三角函数中,相似三角形都有着广泛的应用,如测量高度、距 离等。
25
思考题与课后作业布置
课后作业
列举生活中应用相似三角形的实 例,并解释其原理。
完成教材上的相关练习题,巩固 相似三角形的判定方法和性质。
思考题:已知两个三角形有两组 对应的角分别相等,那么这两个 三角形是否一定相似?为什么?
2024/1/28
思考并尝试证明:如果两个三角 形的三组对应边成比例,那么这 两个三角形是否一定相似?
26
谢谢您的聆听
THANKS
2024/1/28
27
2024/1/28
2. 测量角度
使用量角器测量这两组对应角 的度数。
实例分析
通过具体图形和角度测量,演 示如何利用两角对应相等判定 两个三角形相似。
17
案例三:利用三边对应成比例判定相似三角形
判定定理
01 如果两个三角形的三组对应边
成比例,则这两个三角形相似 。
1. 标记对应边
02 在两个三角形中,分别标记出
2024/1/28
判定步骤
1. 确定已知条件,包括已知角或已知边 。
12
两角对应相等判定法
判定步骤
定理内容:两角对应相等的 两个三角形相似。
01
1. 确定已知条件,包括已知
三角形相似的判定教案范文
三角形相似的判定教案范文一、教学目标:1. 让学生理解相似三角形的概念,掌握相似三角形的判定方法。
2. 培养学生运用相似三角形解决实际问题的能力。
3. 提高学生对数学知识的理解和运用能力,培养学生的逻辑思维能力。
二、教学内容:1. 相似三角形的定义2. 相似三角形的判定方法3. 相似三角形的性质4. 相似三角形在实际问题中的应用三、教学重点与难点:1. 重点:相似三角形的定义、判定方法和性质。
2. 难点:相似三角形在实际问题中的应用。
四、教学方法:1. 采用讲解法、示范法、练习法、讨论法等教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 组织学生进行小组合作学习,培养学生的团队精神。
五、教学过程:1. 导入新课:通过复习旧知识,引入相似三角形的概念。
2. 讲解相似三角形的定义:引导学生理解相似三角形的含义。
3. 讲解相似三角形的判定方法:a. AA相似判定法b. SSS相似判定法c. SAS相似判定法4. 讲解相似三角形的性质:引导学生掌握相似三角形的性质。
5. 练习与巩固:布置课堂练习题,让学生运用所学知识解决问题。
6. 拓展与应用:结合实际问题,让学生运用相似三角形解决实际问题。
7. 课堂小结:总结本节课所学内容,强调相似三角形的重要性质和应用。
8. 布置作业:布置课后作业,巩固所学知识。
六、教学评价:1. 通过课堂练习和课后作业,评价学生对相似三角形概念和判定方法的理解程度。
2. 观察学生在课堂讨论和小组合作中的表现,评价学生的团队协作能力和逻辑思维能力。
3. 分析学生解决实际问题的能力,评价学生对相似三角形应用的理解和运用。
七、教学反思:1. 反思教学内容安排是否合理,是否有助于学生理解相似三角形的概念和判定方法。
2. 反思教学方法是否适合学生的学习需求,是否能够激发学生的学习兴趣。
3. 反思课堂氛围和组织形式,是否有利于学生的积极参与和思考。
八、教学拓展:1. 探讨相似三角形的其他判定方法,如AAS相似判定法。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
三角形相似的判定教案范文
三角形相似的判定教案范文一、教学目标:知识与技能:1. 学生能够理解相似三角形的概念,并掌握判定两个三角形相似的方法。
2. 学生能够运用相似三角形的性质解决实际问题。
过程与方法:1. 学生通过观察、操作、交流等活动,培养观察能力、推理能力和解决问题的能力。
2. 学生能够运用几何画板等软件工具,直观地演示和验证相似三角形的判定方法。
情感态度价值观:1. 学生培养对数学的兴趣和好奇心,体验数学的乐趣。
2. 学生通过合作交流,培养团队协作能力和沟通能力。
二、教学内容:1. 相似三角形的定义:学生通过观察两个形状相同的三角形,理解相似三角形的概念,即两个三角形的对应角度相等,对应边成比例。
2. 判定两个三角形相似的方法:a. AA相似定理:如果两个三角形的两个角相等,则这两个三角形相似。
b. SSS相似定理:如果两个三角形的三边成比例,则这两个三角形相似。
c. SAS相似定理:如果两个三角形的两边及其夹角相等,则这两个三角形相似。
3. 相似三角形的性质:a. 相似三角形的对应边成比例。
b. 相似三角形的对应角度相等。
c. 相似三角形的面积比等于对应边长的比的平方。
三、教学重点与难点:重点:1. 学生掌握相似三角形的定义和判定方法。
2. 学生能够运用相似三角形的性质解决实际问题。
难点:1. 学生理解并运用AA相似定理、SSS相似定理和SAS相似定理判定两个三角形相似。
2. 学生运用相似三角形的性质解决实际问题。
四、教学方法与手段:1. 教学方法:采用问题驱动法、案例教学法、合作交流法等。
2. 教学手段:几何画板软件、实物模型、PPT演示等。
五、教学过程:1. 导入:通过展示两个形状相同的三角形,引发学生对相似三角形的兴趣,引导学生思考如何判断两个三角形是否相似。
2. 新课导入:介绍相似三角形的定义,引导学生通过观察、操作、交流等活动,理解相似三角形的概念。
3. 判定方法的学习:a. 引导学生通过几何画板软件演示AA相似定理,让学生直观地感受判定两个三角形相似的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5 相似三角形
(一)教学重点:
相似三角形定义的理解和认识。
(二)教学难点:
1.相似三角形的定义所揭示的本质属性的理解和应用;
2.例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。
(三)教法与学法分析:
本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。
学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。
教学目标:
1知识与技能
(1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。
(2). 能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。
2 过程与方法
(1). 领会教学活动中的类比思想,提高学生学习数学的积极性。
(2). 经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形
的定义及表示法,会运用相似比解决相似三角形的边长问题。
3 情感态度与价值观
(1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与
一般的关系。
(2). 深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模
意识,空间观念等,培养学生积极的情感和态度。
三、教学过程分析
第一环节 情景引入 归纳定义
活动内容:回顾与思考(教师展示课件并设问,学生观察类比、自主探索归纳相似三角形的定义)
1.上节课我们学习了相似多边形的定义及记法, 请同学们观察下列图形,并指出哪些图形相似?相似图形的对应边、对应角有什么关系?
2.请问相似三角形是相似多边形吗?请同学们回忆一下什么叫相似多边形?
3.那么由“相似多边形的定义”你能得出“相似三角形的定义”吗?
4.相似三角形的定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形(similar trangles ) .
如△ABC 与△DEF 相似,记作△ABC
∽△DEF 第二环节:运用定义 解决问题 活动内容:想一想 议一议 例1 例2
A
B
C
D
E
F
450
450
A
B
C
D
E
F
1.想一想(展示课件,教师引导、学生自主探索并归纳出相似三角形的性质)
如果△ABC ∽△DEF ,那么哪些角是对应角?哪些边是对应边?对应角有什么关
系? 对应边呢?
解:∠A 与∠D 、∠B 与∠E 、∠C 与∠F. 是对应角
AB 与DE AC 与DF BC 与EF 是对应边
∠A=∠D 、∠B=∠E 、∠C=∠F.
DE AB =DF AC .=EF BC
相似三角形性质:相似三角形的对应角相等,对应边成比例。
2.议一议(展示课件,让学生动手画一画、量一量、算一算,并小组讨论,选代表说明理由) (1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?
两个等腰直角三角形呢?为什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么? 解:(1)两个全等三角形一定相似.
因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定
成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.
A
B
C
D
E
F
(2)两个直角三角形不一定相似. 如图,虽然都是直角三角形, 但也只能确定有一对角即直角相等, 其他的两对角可能相等,也可能不相等, 对应边也不一定成比例,所以它们不一定相似.
两个等腰直角三角形一定相似
. 如图, 在Rt △ABC 和Rt △DEF 中,
∠C=∠F=90°,则∠A=∠B=∠D=∠E=45°,所以有
∠A=∠D ,∠B=∠E ,∠C=∠F. 再设△ABC 中AC=b ,△DEF 中DF=a ,则 AC=BC=b ,AB=2b
DF=EF=a ,DE=2a
DF AC =EF BC =DE AB
=1
所以两个等腰直角三角形一定相似.
(3)如图,两个等腰三角形不一定相似.
如图:因为等腰只能说明一个三角形中有两边相等,
但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似
如图:两个等边三角形一定相似.
因为等边三角形的各边都相等,各角都等于60度, 因此这两个等边三角形一定有对应角相等、
对应边成比例,所以它们一定相似
. 例1 例2(展示课件,教师引导分析、学生自主探索,培养学生应用知识解决问题的能力)
3.如图,有一块呈三角形形状的草坪,其中一边的
长是20 m ,在这个草坪的图纸上,这条边长5 cm ,其他两边
的长都
是3.5 cm ,求该草坪其他两边的实际长度. 解:草坪的形状与其图纸上相应的形状相似, 它们的相似比是2000∶5=400∶1 如果设其他两边的实际长度都是x cm ,
那么5.3x =1400
则 x=3.5×400=1400(cm )=14(m )
所以,草坪其他两边的实际长度都是14 m .
4.如图,已知△ABC ∽△ADE, AE=50 cm, EC=30 cm, BC=70 cm, ∠BAC=45°,
∠ACB=400,求
(1)∠AED 和∠ADE 的度数。
(2)DE 的长. 解:(1)因为△ABC ∽△ADE. 所以由相似三角形对应角相等,得 ∠AED=∠ACB=40° 在△ADE 中,
∠AED+∠ADE+∠A=180°
即40°+∠ADE+45°=180°,
3.5c m
3.5c m
5c m
所以∠ADE=180°-40°-45°=95°.
(2)因为△ABC ∽△ADE ,所以由相似三角形对应边成比例,得
AC AE =BC DE 即305050
+=70DE
所以 DE=305070
50+⨯=43.75(cm)
1.想一想 在例2的条件下,图4-16中有哪些线段成比例?
解:成比例线段有AE EC =AD DB
Θ △ABC ∽△ADE
ΘAE AC =AD AB =DE BC
∴
AE AC =AD AB
∴
AE AE AC -=
AD AD AB - 即AE EC =AD DB
图中有互相平行的线段,即DE
∥BC.因为△ABC ∽△ADE ,所以∠ADE=∠B.由平行线的判定方法知DE ∥BC.
2.合作探究
1. 在下面的两组图形中,各有两个相似三角形,试确定x ,y ,m ,n 的值. 解:在(1)中
Θ ∆ABO ∽∆CDO
∴
48x =3322
∴ x=32
在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,
n=55,m=80, y=320
2.等腰直角三角形ABC 与等腰直角三角形A ′B ′C ′相似,相似比为3∶1,已知斜边
AB=5 cm ,(1) 求 △A ′B ′C ′斜边A ′B ′的长, (2) 求△A ′B ′C ′斜边A ′B ′上的高。
解:(1) 如图所示,因为△ABC ∽△A ′B ′C ′,
A ′且相似比为3∶1. 所以 ''
B A AB =13. 即'
'5
B A =13
A ′
B ′=35(cm ) D (2)
C ′
D ′=21A ′B ′=65
(cm )
3.巩固练习: 略
第四环节 回顾反思 课堂小结
活动内容:1.这一节课你学到了什么?有什么收获?
3.相似三角形的判定方法——定义法 活动目的:培养学生的归纳总结能力,加深对知识的理解和应用能力。
活动实际效果:通过小结发现每个学生都在积极思索这节课的内容,并能正确回答出相似三角形的定义、性质、以及它的表示法。
第五环节 布置作业
活动内容:习题4.6 1 、 2
A ′ A D ′
C ′
B ′ C
B
表示法—相似比(对应边的比)对应边成比例
对应角相等
{
定义
{
相似
三
角形。