有理数加法PPT课件

合集下载

第1课时有理数的加法法则(39张PPT)数学

第1课时有理数的加法法则(39张PPT)数学

B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
解析 -(-1)+|-1|=-(-1)+1=1+1=2,故选B.
3.下列运算正确的是( )A.(-2)+(-2)=0 B.(-6)+(+4)=-10C.0+(-3)=3 D.0.56+(-0.26)=0.3
1
2
3
4
5
6
7
8
9
10
11
答案
同号两数相加,取与 相同的符号,并把 相加;异号两数相加,取 的符号,并用 减去_____________;互为 的两个数相加得0;一个数同0相加,仍得这个数.
类型2
利用有理数的加法法则运算

例2 (教材例1针对训练)计算:
(2)(-39)+(-11).
解 (-39)+(-11)=-(39+11)=-50.

(4)(-10)+0.
解 (-10)+0=-10.
归纳总结 两个有理数相加的运算方法:(1)同号→确定符号(与加数同号)→把绝对值相加;(2)异号→确定符号(取绝对值较大的加数符号)→较大绝对值减较小绝对值;(3)数+0=原数.
0
-8
典例精析
类型1
利用数轴表示两个有理数相加
例1 (教材补充例题)在数轴上表示以下两数相加,并写出结果.(1)(-5)+(+3).

解 (-5)+(+3)=-2.

(2)(-2)+(-4).
解 (-2)+(-4)=-6.
归纳总结 利用数轴表示两个有理数相加的步骤:(1)画数轴;(2)从0开始进行移动;(3)根据终点确定和.

课件有理数的加法PPT_北师大版七年级数学上册PPT精品课件[完整版]

课件有理数的加法PPT_北师大版七年级数学上册PPT精品课件[完整版]

则:
(千米).
答:第二天勘察队在出发点的下游 千米处.
重难易错
7.计算:
(1)(+1.2)+(-0.3)=
(2)(-3.5)+
=
(3)
=
(4)
=
0.9 ; ;
; .
8.下列各式运算正确的是( D ) A. (-7)+(-7)=0 B. C. 0+(-101)=101 D.
三级检测练
一级基础巩固练 9. 下列运算过程正确的是( D ) A. (-3)+(-4)=-3+-4=… B. (-3)+(-4)=-3+4=… C. (-3)+(-4)=3+(-4)=… D. (-3)+(-4)=-(3+4)=…

第7课 知识点2 有理数加法的应用
(2)(-19)+(-3)=-(19+3)=-22.
(3)
=

有理数的加法(1)
(2)
=

(2)绝对值相等的两个数的和等于0.
.
(1)若x的相反数是3,y=5,则x+y=

(2)(-19)+(-3)=-(19+3)=-22.
新课学习
知识点1 借助数轴比较有理数的大小 1.(1)同号两数相加,取相同的符号,并把绝对值相加.
解:-35+50=15(℃).
两个点分别在原点的两侧,这两个点表示的有理数的和是2+(-3)=-1或-2+3=1.
答:求得的和中最小的是-12.
(4) 李老师在4张纸条上分别写上4个有理数:|-3|,-(+4),+|-9|,-8,他让同学们从中抽取2张,并求出其和.

课件有理数的加法ppt_北师大版七年级数学上册ppt

课件有理数的加法ppt_北师大版七年级数学上册ppt

二级能力提升练
11. 已知a是最大的负整数,b是绝对值最小的整数,c
是最小的正整数,则a+b+c等于( B )
A. -1
B. 0
C. 1
D. 2
12. 填空:
(1)绝对值小于2的所有整数的和是 0

(2)已知a是最小的正整数,b是a的相反数,c的绝
对值为3,则a+b+c=
3或-3 .
13.小虫从某点A出发在一直线上来回爬行,假定向右爬
小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:
厘米)+5,-3,+10,
(2)小虫离开原点最远是多少厘米?
第二章 第8课 有理数的加法(2)
答:小虫最后回到出发点A.
有理数及其运算
(1)绝对值小于2的所有整数的和是

答:从A地出发到收工时共耗油33.
(2)若每千米耗油0.5升,从A地出发到收工时共 耗油多少升? (2)|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+
|-2|+|+12|+|+8|+|+5| =10+3+4+2+8+13+2+12+8+5=67, 67×0.5=33.5 (升). 答:从A地出发到收工时共耗油33.5升.
(1)问收工时距A地多远?
第二次爬行距离原点是(+5)+(-3)=2(cm),
第四次爬行距离原点是(+12)+(-8)=4(cm),

人教版七年级数学上册教学有理数的加法优质PPT

人教版七年级数学上册教学有理数的加法优质PPT


-1
0原处 1
2
3
4
5
6
7
8
+3
+4
悟空两次一共向东行走了7千米.
写成算式为:( +3 )+(+4)= + 7
新课导入
情境导入
情景2:如果悟空从原点出发,先向西行走3千米,再继续向西
行走5千米,则悟空两次一共向哪个方向行走了多少千米?
-8

-8
-7
-6
-5
-4
-3
-2
-1
0
1
-5
-3
悟空两次行走一共向西行走了8千米. 写成算式为:( -3)+(-5 )= -8
新课讲解
思考二
如果悟空先向西行走3千米,接着向东行走5千米,则悟空两 次行走一共向 东 走了 2 千米. (规定向东为正)
+2

-5
-4
-3
-3 -2
-1
0
1
2
3
4
+5
写成算式为:
人教版七年级数学上册教学有理数的 加法优 质PPT
( -3 )+( +5 ) = +2
人教版七年级数学上册教学有理数的 加法优 质PPT
有 理
同号两数相加,取相同的符号,并把绝对值相加;
数 加
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,

并用较大的绝对值减去较小的绝对值;


互为相反数的两数相加得0;
一个数同0相加,仍得这个数
1、先判断题的类型(同号`异号) ; 2、再确定和的符号; 3、后进行绝对值的加减运算。

1.6 有理数的加法(第1课时 有理数加法法则)(课件) 七年级数学上册(华东师大版2024)

1.6 有理数的加法(第1课时 有理数加法法则)(课件) 七年级数学上册(华东师大版2024)
A. -5
B. 5
C. -1
D. 1
)
和的绝对值

20
20
20
-20
5. [2023·连云港]如图,数轴上的点 A , B 分别对应数 a , b ,
则a+b

0.(用“>”“<”或“=”填空)
【解析】由数轴可得 a <0< b ,| a |>| b |,根据异号两
数相加,取绝对值较大的数的符号,再用绝对值较大的数减去较小的


【解】因为| a |= ,所以 a =± .




因为| b |= ,所以 b =± .因为 a > b ,






所以 a = , b = 或- .所以 a + b =





.
11. [立德树人 民族精神]在某次抗洪抢险中,解放军战士的冲锋舟沿东西方向的河
流抢救灾民,早晨从甲村出发,晚上到达乙村,约定向东为正方向,当天的航
4
–2 –1 0
1
2
3
4
10
3
Байду номын сангаас
–7 –6 –5 –4 –3 –2 –1 0
7
1
2
3
4
5
–6 –5 –4 –3 –2 –1 0
2
1
2
3
1
2
3
6
–6 –5 –4 –3 –2 –1 0
还有两种特殊情形:
(5)第一次向西走了30米,第二次向东走了30米写成算式是.
(-30)+(+30)=( 0 )
(6)第一次向西走30米,第二次没走.写成算式是.

2024秋季新教材湘教版七年级上册数学1.4.1-第1课时-有理数的加法课件

2024秋季新教材湘教版七年级上册数学1.4.1-第1课时-有理数的加法课件

解:小婷两次一共向西走了 (3 - 1) km. 用算式表示为:
( - 3 ) + 1 = - (3 - 1) .
归纳总结
4 + ( - 1 ) = + (4 - 1) = 3
规定
( - 3 ) + 1 = - (3 - 1) = -4
异号两数相加,
当正数的绝对值较大时,得正数,并用较大的绝 对值减去较小的绝对值;
(2)(-10) + (-1) = -(10 + 1) = -11.
(3)5 + (-5) = 0.
(4)0 + (-2) = -2.
课堂小结
有理数的加法法则:
确定类型
定符号
定大小
同号
相同符号 绝对值相加
异号(绝对值不相等) 取绝对值较大的 加数的符号
绝对值相减
异号(互为相反数)
结果是 0
与 0 相加
七年级上册数学(湘教版)
第1章 有理数
1.4 有理数的加法和减法
1.4.1 有理数加法
第1课时 有理数的加法
÷
教学目标
1. 理解有理数加法的意义,经历有理数加法法则的探索 过程,初步掌握有理数的加法法则.
2. 能正确地进行有理数的加法运算,能运用有理数的加 法解决简单的实际问题.
3. 会用分类和归纳的思想方法探索有理数的加法法则. 重点:会根据有理数加法法则进行有理数的加法运算. 难点:异号两数相加的运算.
归纳总结
( - 2 ) + ( - 3) = -( 2 + 3) = -5
规定 两个负数相加,结果是负数,并把它们 的绝对值相加
典例精析
例1 计算:

有理数的加法ppt课件

有理数的加法ppt课件
在财务管理中,有理数的加法用于计算总收入、总支出和净利润。 例如,一家公司的日收入为200元,支出为150元,净利润是多少呢?
200 + (-150) = 50(元)
Байду номын сангаас
日常生活中的应用
在日常生活中,有理数的加法用于计算购物的总花费、 旅行的总距离等。
例如, 一个人带了100元在超市购物,在超市购买了价值10元、20元 和30元的商品,还有多少钱呢?
0+ (-11) =
加法的结合律
加法的结合律表明,加数的分组方式可以改变,但和不变。 加法结合律: a + (b + c ) = (a + b ) + c
8 + (-10) + (- 8) =[8 + (- 8)] + (- 10) =0 +(- 10) =- 10
有理数加法的实际应用
财务计算中的应用
11 + 0= 11 0+0= 0
有理数加法的运算律
加法的交换律
加法的交换律表明,加数的顺序可以改变,但和不变。 加法交换律: a + b = b + a
5 + 10= 15
10 + 5=
(-11) +(-1) = -12
(-1) + (-11) =
(-5) + 1= -4
1 + (-5)=
(-11) + 0 = -11
加法的基本概念
(1)如果物体沿着一条直线先向左运动3m,再向右运动5m,那 么两次运动的最后结果是什么?如何用算式表示?
(2)如果物体沿着一条直线先向右运动3m,再向左运动5m,那 么两次运动的最后结果是什么?如何用算式表示?

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)
+2 两次运动的最后结果是,物体从起点向右运动了2m, 用算式表示是: (﹣3)+(+5)=+2.
简记为: (﹣3)+5=2. ③
新知探究
问题4:如果物体沿着一条直线先向右运动3m,再向左运动5m,
那么两次运动的最后结果是什么?如何用算式表示?
﹣5
+3
-5 -4 -3 -2 -﹣1 2 0
123
45
当堂巩固
口算下列各题,并说明理由: (+3)+(+5); (﹣3)+(﹣5); (+3)+(﹣5); (﹣3)+(+5); (+4)+(﹣4); (+9)+(﹣2); (﹣9)+(+2); (﹣9)+0.
能力提升
1. 用“> ”或“<”填空: ①如果a>0,b>0,那么a+b > 0; ②如果a<0,b<0,那么a+b < 0; ③如果a>0,b<0,|a|>|b|,那么a+b > 0; ④如果a<0,b>0,|a|<|b|,那么a+b > 0.
+5
-5 -4 -3 -2 -1 0 1 2 3 4 5
﹣5
-5 -4 -3 -2 -1 0 1 2 3 4 5
用算式表示为: 5+0=5或(﹣5)+0=﹣5. ⑥
探索归纳
5+0=5或(﹣5)+0=﹣5. ⑥ 算式⑥表明:一个数与0相加,结果仍是这个数.
思考归纳
有理数加法的分类
5+3=8. (﹣5)+(﹣3)=﹣8.

2.1.1 有理数的加法 第1课时 有理数的加法法则 课件-人教版数学七年级上册

2.1.1 有理数的加法 第1课时 有理数的加法法则 课件-人教版数学七年级上册
(−
)

4
5
0
=___.
1
2
3
4
5
6
7
8
9
10
11
12
13
B组
10.在1,−,−这三个数中,任意两数之和的最大值是( C )
A. 1
1
C. −
B. 0
2
3
4
5
1
2
3
4
5
6
D. −
7
8
9
10
11
12
13
11.下列说法中正确的是( C
)
A. 两数相加,其和大于任何一个加数
B. 异号两数相加,其和小于任何一个加数
= .
(2)(−) + (−);
解:原式= −( + )
= −.
1
2
3
4
5
1
2
3
4
5
6
7
8
9
10
11
12
13
(3)(−. ) + (−. ).
解:原式= −(. + . )
= −. .
1
2
3
4
5
1
2
3
4
5
6
7
8
9
10
11
12
13
2.计算:
(1)(−) + (−);

5
1
2
3
4
5
6
7
8
9
10
11
12
13
知识点3 有理数加法的应用
5.【例3】一艘潜艇所在高度为−米,一条鲨鱼在潜艇上方28米,求鲨

有理数的加法北师大七年级数学上PPT课件

有理数的加法北师大七年级数学上PPT课件
课前复习
1、一个不等于0的有理数可看作由哪 两个部分组成? (符号、绝对值)
+7 +3.2 -4
-2
2、比较下列各组数绝对值哪个大?
(1)-22与15; (2)- (3)2.7与- 3 .5
21与
1 3
第1页/共24页
问题情境
本赛季,凯旋足球队第 一场比赛赢了1个球, 第二场比赛输了1个球, 该队这两场比赛的净胜 球数是多少?
第5页方框中放进3个 + 和2个 ,移 走所有的 + .
+ +
++ +
+
+
因此,3+(-2)=1
第6页/共24页
计算(-4)+4.
+
+
+ +
++ ++
因此,(-4)+4=0.
第7页/共24页
如果向东5米记为+5米,那
么向西3米记为

第8页/共24页
我们也可能利用数轴表示上述加法 运算过程,以原点为起点规定向东的方 向为正方向,向西的方向为负方向 (1)先向西移动2个单位,再向西移 动3个单位,一共向西移动了5个单位. 即(-3)+(-2)=-5
一个数同0相加,仍得这个数
第17页/共24页
2、两个有理数相加,首先判断 加法类型,再确定和的符号,最 后确定和的绝对值。
第18页/共24页
(-2)+(-3)=-5
第19页/共24页
(-3)+2 =-1
第20页/共24页
3+(-2)=1
第21页/共24页
(-4)+4 =0

2.1.1有理数的加法 课件 (16张PPT)人教版(2024)七年级数学 上册

2.1.1有理数的加法 课件 (16张PPT)人教版(2024)七年级数学 上册
(+3)+(-4)= ?-1 -1
思考:从上面问题中,你能得出异号两数相加的方法吗?
结论:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的 绝对值。
问题4:如果星期三那天,水泥进货5吨,同时出货5吨,那么那天的 库存有没有变化?
(+5)+(-5)= 0
结论:互为相反数的两个数相加得零。
学以致用
3、在数轴上表示下列有理数的运算,并求出计算结果.
(1)2+3
(1) −5 (2) −7
(3)
−8 (4) −7
(2)(-5)+(-2) (3)(-8)+(+5) (4)(-6)+6
+2
+3
−4 −3 −2 −1 0 1 2 3 4 5 2+3=5
+5
-2
-5
(-5)+(-2)=-7
−6 −5 −4 -7−3 −2 −1 0
结论:同号两数相加,取与加数相同的符号,并把绝对值相加.
请尝试完成下列问题:
一建筑工地仓库记录星期一和星期二水泥的进货和出货数量如 图,其中进货为正,出货为负(单位:吨):
日期 星期一 星期二
进出货情况
+5
-2
+3
-4
库存变化
问题3:星期一该建筑工地仓库的水泥库存是增加了还是减少了? 星期二该建筑工地仓库的水泥库存是增加了还是减少了?
一建筑工地仓库记录星期一和星期二水泥的 进货和出货数量,如下表,其中进货为正,出货 为负,库存增加为正,库存减少为负(单位:吨).
星期一 星期二 合计
进出货数量
+5 -2
+3 -4
+8
-6
库存变化
+3 -1 +2
根据你的生活经验,填写表中的空格, 然后思考以下问题:

1.6.1 有理数的加法法则(课件)-七年级数学上册(华东师大版2024)

1.6.1 有理数的加法法则(课件)-七年级数学上册(华东师大版2024)
67 × 0.2 = 13.4(升).
答:从A地出发到收工时共耗油13.4升.
课后小结
华东师大版(2024)七年级上册
感谢聆听
主讲:
【详解】解:∵ −13 + −15 + 0 + 20 + −2 = −10,
∴第6位同学小叶的实际成绩超出标准分10分.
∴小叶的实际成绩是80 + 10 = 90分,
答:小叶的实际成绩是90分..
课堂测试
8.(22-23七年级上·河南许昌·阶段练习)某检修小组乘汽车沿公路检修线路,约定前进为
正,后退为负,某天自A地出发到收工时所走路线(单位:千米)为:+10, −3, + 4, +
6) (-5)+13 =
+8
7) (-23)+0 =
-23
8) (-45)+15 = -30
-32
典例分析
例2 子贡:复姓端木名赐,字子贡,华夏族,春秋末年卫国人.孔子的得意门生,生
于公元前520年,比孔子小31岁.现规定公元前记为-,公元后记为+ .则孔子的出生
年份可记为(
A.-551

B.-489
华东师大版(2024)七年级上册
第1章
有理数
1.6.1 有理数的加法法则
主讲:
学习目标
1
目标
1.了解有理数加法的意义.
2.通过观察、比较、归纳等得出有理数加法法则,并会根据法则进行
有理数的加法运算.
3.使学生能运用有理数加法法则解决简单的实际问题.
2
重难点
重点:会根据有理数加法法则进行有理数的加法运算,理解有理数加
30

有理数的加减乘除混合运算PPT课件

有理数的加减乘除混合运算PPT课件
(-1.5) ×3+2 ×3+1.7 ×4+(-2.3) ×2
=-4.5+6+6.8-4.6
=3.7 (万元) 答:这个公司去年全年盈利3.7万元
跟踪练习
一天, 小红与小莉利用温差测量山峰的 高度, 小红在山顶测得温度是-1℃, 小 莉此时在山脚测得温度是5℃. 已知该地 区高度每增加100米,气温大约降低0.8℃, 这个山峰的高度为多少? (山脚海拔0米)
有理数的加减乘除 混合运算
一、复习
有理数加法法则
1、同号两数相加,取相同的符号, 并把绝对值相加
2、异号两数相加,取绝对值较大的加 数的符号,并用较大的绝对值减去较 小的绝对值。 互为相反数的两数相加等于0。
3、一个数同0相加,仍得这个数。
加法运算律
• 加法的交换律 a+b=b+a
• 加法的结合律 (a+b)+c=a+(b+c)
4
3
(3)若a, b互为相反数, c, d互为
倒数, m的倒数是2,
求 a b cd 的值 m
(1)- 3 (2)-1 (3)-2 10
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
20
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
分析:有括号的先算括号里的,同级运算,按照从左 到右的顺序进行. 解:原式 ( 1 ) 4 10
65
4 3
注意:在有理数乘除混合运算中,带分数一般化为假 分数.
四、混合运算的顺序

有理数的加法法则ppt课件

有理数的加法法则ppt课件
这两个算式的结果是多少.
我会解释
(+8) +(-8)=
-8
+8
-8
0
8
点击演示 2
我会解释
(-3.5) +(+3.5)=
+3.5 -3.5
-3.+(-1)=0 8+(-8)=0 (-3.5)+(+3.5)=0
思考:观察上面算式中各个加数的特征及结果,你 有什么发现?
等)
的加数的符号
相加 相减
异号(互为相反数)
结果是0
与0相加
仍是这个数
两个加数的绝对 值相加
( - 9 ) + (+ 2) = - ( 9 - 2) = -7


异号两数相加

较大的绝对值减
取绝对值较大的数的符号 去较小的绝对值
总结归纳
有理数加法法则
(1)同号两数相加,结果取相同符号,并把绝对值相加. (2)异号两数相加,结果取绝对值较大的加数的符号,并将较大 的绝对值减较小的绝对值.互为相反数的两个数相加得0. (3)一个数同0相加,仍得这个数.
(1)如果a>0,b>0,那么a+b
> <
0;
(2)如果a<0,b<0,那么a+b
0;>
(3)如果a>0,b<0,|a|>|b|,那么a+b < 0;
(4)如果a<0,b>0,|a|>|b|,那么a+b
0.
课堂小结
有理数的加法法则:
确定类型
定符号
绝对值
同号 学科相网同符号
异号(绝对值不相 取绝对值较大
游戏规则
+1 表示+1
-1 表示-1

2.1.2.2有理数的加减混合运算 课件(共22张PPT)

2.1.2.2有理数的加减混合运算  课件(共22张PPT)
2.1 有理数的加减法 2.1.2 有理数的减法 2.1.2.2 有理数的加减混合运算
学习目标
1.学会把有理数加减法的算式统一成只有加法的算式. 2.能正确熟练地进行有理数的加减混合运算. 3.通过把减法运算转化为加法运算,体会转化思想.
学习重、难点: 重点:加减法统一成加法. 难点:有理数加法的省略写法和读法.
(2)
.
总结归纳
有理数加减混合运算的步骤:
加法
交换律和加法 结合 律; 加法
有理数加减法混合运算常用方法: (1)正负数结合法; (2)相反数结合法; (3)凑整数结合法; (4)同分母分数结合法等.
典例精析
例 计算:
解:原式=
拆分带分数法
拆分带分数时,拆开的整数与分数必须与原 注意: 分数同号,用字母表示为:
= –40–27+19–24+32
观察以上两个式子,
(2) 原式=(–9)+(+2)+(–3)+(–4)你能发现简化符号的
= –9+2–3-4
规律吗?
规律:数字前“-”号是奇数个取“-”; 数字前“-”号是偶数个取“+”.
练一练
把下列算式改写为省略括号和加号的形式:
(1) (-40)-(+27)+19-24-(-32)
跟踪训练
计算: (1)7.8+(-1.2)-(-0.2)
(2)-5.3-(-6.1)-(-3.4)+7
问题探究
在数轴上,点A,B分别表示数a,b.对于下列各组数a,b:
(1)a=2,b=6;
(2)a=0,b=6;
(3)a=2,b=-6; (4)a=-2,b=-6.
(1)观察点 A,B 在数轴上的位置,你能得出它们之间的
-40-27+19-24+32

人教版七年级数学上册1.3有理数的加法 (共20张PPT)

人教版七年级数学上册1.3有理数的加法 (共20张PPT)

有理数加法法则: 1.同号两数相加,取相同符号,并 把绝对值相加. 2.绝对值不相等的异号两数相加取 绝对值较大的加数的符号,并用较大的绝 对值减去较小的绝对值,互为相反数的两 个数相加得0. 3.一个数同0相加,仍得这个数.
例1 计算:
(1)(3) (9) (2)(4.7) 3.9 解: (1) (3) (9) (3 9) 12 (2)(4.7) 3.9 (4.7 3.9) 0.8
例2 足球循环赛中,红队胜黄队4:1, 黄队胜蓝队1:0,蓝队胜红队1:0,计算各 队的净胜球数. 解:每个队的进球总数记为正数,失球 总数记为负数,这两数的和为这队的净胜球 数. 红队共进4球,失2球,所以红队的净 胜球数为:(4) (2) (4 2) 2 黄队共进 2 球,失 4 球,净胜球数为 (2) (4) = 2. 蓝队共进 1 球,失 1 球,净胜球数为 (1) (1) = 0 .
再计算总计超过多少千克:
905.4 90 10 5.4
例4 10袋小麦称后记录如图所示(单位:kg).10袋小 麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总 计超过多少千克或不足多少千克?
91
91
91.5
89
91.2
解法2:每袋小麦超过90 kg 的千克数记作正数,不足的千克 数记作负数.10袋小麦对应的数分别为 1,1, , , 1.5 1,1.2 1.3, 1.3, 1.2, 1.8,1.1. 1 1 1.5 (1) 1.2 1.3 (1.3) (1.2) 1.8 1.1
5 (5) 0

从算式①②可以看出:符号相同的两个数相加, 结果的符号不变,绝对值 相加. 从算式③④可以看出:符号相反的两个数相加, 结果的符号与绝对值 较大的加数的符号相同,并用 较大的绝对值 减去较小的绝对值. 从算式⑤可以看出:互为相反数的两个数相加, 结果为 0 . 从算式⑥可以看出:一个数同0相加,仍 得 这个数. 如果物体第1s向右(向左)运动5m,第2s 原地不动,2s后物体从起点向右(或向左)运动 了5m. 写成算式就是: 50 5 (或 (5) 0 5) ⑥
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题演变
(1)向东走5米,再向东走3米,两次一共向东
走了多少米? (2)向东走-5米,再向东走-3米,两次一共向东 走了多少米?
(3)向东走5米,再向东走-3米,两次一共向东 走了多少米?
(4)向东走-5米,再向东走3米,两次一共向东 走了多少米?
a
4
问题解决:
问题 (1)向东走5米,再向东走3米,两次一
(1)本节课所学习的主要内容; (2)运用有理数加法法则的关键问题; (3)本节课涉及的数学思想方法。
布置作业
1.教科书56页1题写在作业本上 2.资源与评价32页1-4题
a
15
(-5)+(-3)= -8
结论:同号两数相加,取相同的符 号 并把绝对值相加。
a
6
(3)向东走5米,再向东走-3米, 两次一共向东走了多少米?
异向情况:
+5 -3 -9 -8 -7 -6 -5 –4 -3 –2 -1 0 1 2 3 4 5 6 7 8 9
+2
(+5)+(-3)= +2
(4)向东走-5米,再向东走3米,两 次一共向东走了多少米?
+3 -5 -9 -8 -7 -6 -5 –4 -3 –2 -1 0 1 2 3 4 5 6 7 8 9
-2
(-5)+(+3)= -2
结论:绝对值不相等的异号两数相加,取 绝对值较大的加数的符号,并用较大 的绝对值减去较小的绝对值。
a
8
问题2:在东西走向的马路上,小明从O
点出发,向东走5米,再向东走 -5米,两次一共向东走了多少米?
a
12
巩固练习
1.下列说法正确的是(B) A.两个有理数相加,和一定大于每一个加数 B.两个非零有理数相加,和可能等于零 C.两个有理数的和是负数时,这两个数都是
负数 D.两个负数相加,把绝对值相加
2.土星表面的夜间平均温度是-150°C,白 天比夜间高27 °C ,那么白天的平均气温 是多少?
课程小结
1 共向东走了多少米?
同向情况:
+5
+3
-9 -8 -7 -6 -5 –4 -3 –2 -1 0 1 2 3 4 5 6 7 8 9 +8
(+5)+(+3)= +8
a
5
(2)向东走-5米,再向东走-3米,两次 一共向东走了多少米?
-3
-5
-9 -8 -7 -6 -5 –4 -3 –2 -1 0 1 2 3 4 5 6 7 8 9 -8
(-5)+ 0 = -5
结论:一个数同零相加,仍得这个数。
a
10
有理数加法法则:
(1)同号两数相加,取相同的符号, 并把绝对值相加;
(2) 异号的两个数相加,绝对值相 等时和为0;绝对值不等时,取绝对
值较大的数的符Biblioteka ,并用较大的绝对 值减去较小的绝对值;
(3)一个数同0相加,仍得这个数.
a
11
有理数加法的步骤: (1)判断类型; (2)确定符号; (3)计算绝对值.
北师大版七年级上数学
有理数的加法
学 习 1. 使学生掌握有理数加法法则, 目 并能运用法则进行计算; 标
2. 在 有 理 数 加 法 法 则 的 教 学 过 程中,注意培养学生的观察、 比较、归纳及运算的能力。
a
2
动态演示问题:
在东西走向的的马路上,小明从 O点出发,第一次走5米,第二次走 3米,问两次一共向东走多少米?
-5 +5 -9 -8 -7 -6 -5 –4 -3 –2 -1 0 1 2 3 4 5 6 7 8 9
(+5)+(-5)= 0 结论:互为相反数的两个数相加得零。
问题3:在东西走向的马路上,小明从O
点出发,向东走-5米,再向东走0 米,两次一共向东走了多少米?
-5 -9 -8 -7 -6 -5 –4 -3 –2 -1 0 1 2 3 4 5 6 7 8 9
相关文档
最新文档