三角形角平分线经典习题

合集下载

初中数学-三角形角平分线例题

初中数学-三角形角平分线例题

例01.已知:如图,BD 是ABC 的平分线,BC AB ,P 在BD 上,AD PM ,CD PN .求证:PN PM .分析:要证PN PM ,可以证明点P 在ADC 的平分线上. 证明:因为BD 是ABC 的平分线, 所以CBD ABD . 在ABD 和CBD 中,)()()(已知已证公共边CB AB CBD ABD BD BD 所以)(SAS CBD ABD ,所以CDB ADB (全等三角形的对应角相等) 因为CD PN AD PM ,,所以PN PM (角平分线上的点到角的两边距离相等)说明 本题也可以在证明了CBD ABD 后再证明DPN DPM . 但利用角平分线的性质定理来证明更简洁.今后证明一定要注意灵活运用所学知识.例02.已知:如图,P A 、PC 分别是ABC 外角MAC 和NCA 的角平分线,它们交于P .求证:PB 为MBN 的角平分线.分析:要证BP 为MBN 的角平分线,只须证点P 到BM 、BN 距离相等,而P A 、PC 为外角平分线,故可过P 作AC PE ,BM PD ,BN PF .证明:过点P 作AC PE ,BM PD ,BN PF 于F . 因为P A 、PC 分别是MAC 和NCA 的平分线,且BM PD ,BN PF ,∴PE PD ,PF PE (角平分线上的点到角两边距离相等).∴PF PD .又∵BN PF BM PD ,,∴点P 在MBN 的角平分线上(到角两边距离相等的点在这个角的平分线上) ∴BP 为MBN 的角平分线. 说明 当有角平分线这个条件时,常常经过角平分线上的点向角的两边作垂线,利用“角平分线上的点到角两边距离相等”来证题. 同样,要证明某射线是角平分线时,只要经过射线上一点向角的两边作垂线,再证垂线段相等.本题不能只想到应用三角形全等来解决总是,防止形成思维误区.例03.如图,已知:AD 是ABC 的角平分线,DE 、DF 分别是ABD 和ACD 的高. 求证:AF AE .分析:因为AD 为ABC 的角平分线,DE 、DF 是点D 到AB 、AC 边上的距离,∴有DF DE . 再利用直角三角形全等可证明AF AE .证明:AD 是ABC 的角平分线,DE 、DF 分别是ABD 和ACD 的高. ∴ DF DE (角平分线上的一点到这个角的两边的距离相等) 在ADE Rt 和ADF Rt 中,)()(已证公共边DF DE AD AD ∴ )(HL ADF Rt ADE Rt∴ AF AE (全等三角形的对应边相等)说明:本题也可以用AAS 来证明三角形全等,但直接使用角平分线的性质更简单.例04.已知:如图,在ABC 中, 90C ,BC AC ,AD 是A 的平分线. 求证:AB CD AC .分析:证明AB CD AC . 可用延长的方法或截取的方法,我们用截取的方法证明本题. 在AB 上取一点E ,使AE AC ,则易证ADE ACD ,由此 得到DE CD , 90DEB ,又由 45B ,得CD BE DE . 可证明本命题,那么利用角平分线的性质,作辅助线的时候,也可作AB DE 于E ,可直接得到DE CD .证明:过D 点作AB DE 垂足为E . 则 ∵AD 为角平分线,∴DE CD (角平分线上的一点到这个角的两边的距离相等) 在ACD Rt 和AED Rt 中,)()(已证公共边DE CD AD AD )(HL AED Rt ACD Rt ,∴ AE AC (全等三角形的对应边相等) ∵ CB AC (已知), 90C (已知) ∴ 45CAB B在DEB Rt 中, 90DEB , 45B , ∴ 45B EDB . ∴CD BE DE ∵BE AE AB , ∴CD AC AB .例05.已知:如图,在ABC 中,AD 平分BAC ,AB DE 于E ,AC DF 于F .求证:EF AD .分析:欲证:EF AD ,就要证9021EOF AOE AOB 所以考虑证AFO AEO由题中条件可知AEO 、AFO 已有一边(公共边)一角对应相等,只要证AF AE 即可,所以先证明AFD AED证明:∵AD 是BAC 的平分线. AB DE ,AC DF ∴ DF DE (角平分线上的点到这个两边距离相等) 在AED Rt 和AFD Rt 中)()(公共边已证AD AD DF DE ∴)(HL AFD Rt AED Rt∴AF AE (全等三角形的对应边相等) 在AEO 和AFO 中)()()(公共边已知已证AO AO FAO EAO AF AE ∴)(SAS AFO AEO∴ AOF AOE (全等三角形对应角相等) ∴9021EOF AOE ∴ EF AD (垂直定义)例06.已知:如图,在ABC 中,BE 、CF 分别平分ABC 、ACB ,且交于点O , 求证:点O 在A 的平分线上.分析:要证点O 在A 的平分线上,只需证明点O 到A 的两边的距离相等,即证OG OH .证明:过点O 分别作三边的垂线OD 、OG 、OH ,∵AB OH DC OD ,,BO 平分ABC (已知)∴OD OH (角平分线上的点到这个角两边的距离相等) 同理OG OD , ∴OG OH∴点O 在A 的平分线上(到角两边距离相等的点在这个角的平分线上)例07.写出下列命题的逆命题,并判断真假. (1)同位角相等,两直线平行. (2)如果3 x ,那么92x(3)如果ABC 是直角三角形,那么当每个内角取一个对应外角时,三角形的三个外角只有两个钝角.(4)如果C B A ABC ,那么C B BC ,C A AC ,C B A ABC . 分析:准确理解原命题、逆命题、真命题、假命题等概念,分清题设和结论,是写出逆命题的关键,对于假命题,可以举一个反例,全面地考虑问题.解答:(1)逆命题是:两直线平行,同位角相等,它是一个真命题.(2)逆命题是:如果92x ,那3 x 它是一个假命题∵9)3(2 ,∴3 x 或3 x(3)逆命题是:如果ABC 的三个外角中只有两个钝角,那么ABC 是直角三角形. 它是一个假命题,因为ABC 还可能是钝角三角形.(4)逆命题是:如果ABC 和C B A 中,C B BC ,C A AC ,C B A ABC ,那么C B A ABC ,这是一个假命题,因为有两边及其一边的对角对应相等的两个三角形不一定是全等三角形.角的平分线例1、已知:如图1,△ABC 的角平分线BM 、CN 相交于点P.求证:点P 到三边AB 、BC 、CA 的距离相等.分析:这是证明线段相等问题,由已知利用定理不难证明.证明:(略)说明:已知、求证中都没有具体说明哪些线段是距离,证明它们相等必须标出它们,这一段话要在证明中写出,同辅助线一样处理。

全等三角形+第7讲+角平分线的处理方法+专项训练++2024-2025学年人教版数学八年级上册

全等三角形+第7讲+角平分线的处理方法+专项训练++2024-2025学年人教版数学八年级上册

第7讲角平分线的处理方法板块一角平分线的性质条件:OC 平分∠AOB. PD⊥OA 于点D,PE⊥OB 于点E.结论:PD=PE.典例精讲题型一知两垂【例1】如图,AD 是△ABC 的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,BD=CD.求证:BE=CF.题型二作一垂【例2】如图,在四边形 ABCD 中,∠B=∠C=90°,E 为 BC 上一点,且 AE 平分∠BAD,D E 平分∠ADC.求证:BE=CE.题型三作两垂【例3】如图,在四边形 ABCD 中,∠ABC=90°,BD 平分∠ABC,AD=CD.求证:AD⊥CD.实战演练如图,在四边形ABCD中,∠BAC=∠BDC=36°,∠ADB=72°.求证:AB=AC.类型判定旁心图隐角平分线图形条件PD⊥OA,PE⊥OB,PD=PE.OP 平分∠AOB,AP 平分∠BAD,PD⊥OA,PE⊥OB,PF⊥AB.OP 平分∠AOB,∠OAP+∠BAP=180°.结论OC 平分∠AOB.PB平分∠ABE.①PA 平分∠BAD;②PB平分∠ABE.典例精讲题型一直接用判定【例1】如图,在△ABC 中,AC=BC,E 为△ABC 外一点,且∠CAE=∠CBE.求证:CE 平分△ABE 的外角.题型二旁心【例2】如图,在△ABC中,AP 平分∠BAC,BP 平分∠CBD.(1)求证:CP 平分∠BCE;(2)设∠BAC=α,则∠BPC= (用含α的式子表示).实战演练题型三隐角平分线如图,在四边形 AEDC 中,∠EAC+∠EAD=180°,且 CE 平分∠ACD.若∠EAD=α,求∠DEC 的度数.板块三角平分线与面积法类型1 内心向三边作垂类型2 面积比与边长比条件:I 是△ABC 三条角平分线的交点.方法:过点 I 分别向三边作垂线段.结论:①ID=IE=IF;②S△IBC+S△IAC+S△IAB=S△ABC;③ID=2S△ABC÷(AB+BC+AC).条件:AD 是△ABC的角平分线.方法:过点 D 分别作DE⊥AB,DF⊥AC.结论:①DE=DF;②S△ABD:S△ACD=AB:AC=BD:CD.典例精讲题型一面积法求线段长【例1】如图,在△ABC 中,∠ABC=90°,I 为△ABC 各内角平分线的交点,过点I 作AC 的垂线,垂足为H.若BC=3,AB=4,AC=5,求IH 的长.题型二面积法证线段比【例2】如图,AD 是△ABC 的角平分线.求证:BDCD =ABAC.题型三构全等转化面积【例3】如图,△ABC的角平分线BD,CE 交于点P,∠A=60°,△ABC的面积为 16,四边形AEPD 的面积为5,求△BPC 的面积.实战演练1.如图,在△ABC 中,∠C=90°,O是∠CAB,∠ABC 平分线的交点,且E BC=8cm,AC=6cm6 cm,AB=10cm,求S△AOB.2.如图,在△ABC中,.S ABC=21,∠BAC的角平分线AD 交 BC 于点D,E 为AD 的中点.连接BE,的值.F 为BE 上一点,且 BF=2EF.若S△DEF=2,求ABAC3.如图,在△ABC中,AB=3,AC=4,BC=5,∠BAC=90°,AD平分∠BAC.BAC.求 DC 的长.4.如图,在△ABC中,∠BAC=90°,AB=AC,BD 是△ABC的角平分线,若BD=8,求△BDC1的面积.类型梯形图互补图内心图图形典 例 精 讲题型一 直角梯形遇角平分线【例】如图,在四边形ABCD 中,∠A=∠B=90°,E 为AB 上一点,ED 平分∠ADC,EC 平分∠BCD.(1)求证:DE⊥CE; (2)求证:AE=BE; (3)求证:AD+BC=CD;(4)若AB=12,CD=13,求 S△CDE.实 战 演 练题型二 对角互补遇角平分线1.如图,在四边形ABCD 中,∠ABC+∠D=180°,AC 平分∠BAD,求证:CB=CD.D题型三 内心作垂构对称型全等2.如图,在△ABC 中,AB>AC,AK,BK,CK 分别平分∠BAC,∠ABC,∠ACB,KD⊥BC 于点D.求证:AB-AC=BD-CD.。

中考:角平分线、垂直平分线经典试题

中考:角平分线、垂直平分线经典试题

中考:角平分线、垂直平分线经典试题知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。

精典例题:【例题】如图,已知在△ABC 中,AB =AC ,∠B =300,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。

分析一:要证明CF =2BF ,由于BF 与CF 没有直接联系,联想题设中EF 是中垂线,根据其性质可连结AF ,则BF =AF 。

问题转化为证CF =2AF ,又∠B =∠C =300,这就等价于要证∠CAF =900,则根据含300角的直角三角形的性质可得CF =2AF =2BF 。

分析二:要证明CF =2BF ,联想∠B =300,EF 是AB 的中垂线,可过点A 作AG ∥EF 交FC 于G 后,得到含300角的Rt △ABG ,且EF 是Rt △ABG 的中位线,因此BG =2BF =2AG ,再设法证明AG =GC ,即有BF =FG =GC 。

例题图1 F EC B A例题图2 G F ECB A分析三:由等腰三角形联想到“三线合一”的性质,作AD ⊥BC 于D ,则BD =CD ,考虑到∠B =300,不妨设EF =1,再用勾股定理计算便可得证。

以上三种分析的证明略。

例题图3D F ECB A问题图321ED CB A探索与创新:【问题】请阅读下面材料,并回答所提出的问题: 三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。

如图,△ABC 中,AD 是角平分线。

求证:ACABDC BD =。

分析:要证ACABDC BD =,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似,现在B 、D 、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。

我们注意到在比例式ACABDC BD =中,AC 恰好是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD 交BA 的延长线于E ,从而得到BD 、CD 、AB 的第四比例项AE ,这样,证明ACABDC BD =就可以转化为证AE =AC 。

角平分线的性质练习题

角平分线的性质练习题

角平分线的性质练习题一、选择题1. 在三角形ABC中,BD是角B的平分线,若AB=5,BC=7,AC=6,那么BD的长度为:A. 4B. 6C. 8D. 无法确定2. 如果角平分线将三角形分成两个面积相等的部分,那么这两个部分的底边分别是:A. 相等B. 不相等C. 一个底边是另一个的两倍D. 底边长度无法确定3. 在三角形ABC中,角A的平分线与BC相交于点D,若AD=4,AC=8,那么AB的长度可能是:A. 6B. 8C. 10D. 12二、填空题4. 在三角形ABC中,如果角A的平分线将BC分为BD和DC两段,BD=DC,那么三角形ABD与三角形ACD的面积之比为________。

5. 若角平分线定理告诉我们,在三角形ABC中,如果BD是角B的平分线,则AB:AC=______:______。

6. 在三角形ABC中,如果角A的平分线与BC相交于点D,且AD垂直于BC,那么角B和角C的度数之和为________。

三、简答题7. 描述角平分线定理的内容,并给出一个应用此定理的几何问题。

8. 解释为什么在三角形中,角平分线可以将对边分成的两段长度与相邻两边成比例。

四、计算题9. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且BD=3,DC=4,AB=6,求AC的长度。

10. 在三角形ABC中,角B的平分线BE与AC相交于点E,已知AE=4,EC=6,AB=5,求BC的长度。

五、证明题11. 证明:在三角形ABC中,如果BD是角B的平分线,那么AB/AC = BD/DC。

12. 证明:如果点D在三角形ABC的边BC上,且AD是角A的平分线,那么三角形ABD与三角形ACD的面积相等。

六、综合题13. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且AD=2,BD=3,DC=4,AB=5,求BC的长度,并证明你的结论。

14. 给定三角形ABC,其中角A的平分线AD与BC相交于点D,角B的平分线BE与AC相交于点E。

角平分线练习题

角平分线练习题

角平分线练习题一.选择题〔共22小题〕1.如图,BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是〔〕A.2 B.3 C.4 D.62.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=〔〕A.30° B.35° C.45° D.60°3.观察图中尺规作图痕迹,以下说法错误的选项是〔〕A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,假设BD=2,则AB长为〔〕A.2 B.2C.2D.35.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,假设CD=2,AB=8,则△ABD的面积是〔〕A.6 B.8 C.10 D.126.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于〔〕A.30 B.24 C.15 D.10=15,7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD则CD的长为〔〕A.3 B.4 C.5 D.68.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则以下结论中错误的选项是〔〕A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,假设ON=8cm,则OM长为〔〕A.4cm B.5cm C.8cm D.20cm10.在正方形网格中,∠AOB的位置如下图,到∠AOB两边距离相等的点应是〔〕A.M点B.N点C.P点D.Q点11.如图,直线l、l′、l″表示三条相互穿插的公路,现方案建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有〔〕A.一处B.二处C.三处D.四处12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,假设CD=BD,点D到边AB的距离为6,则BC的长是〔〕A.6 B.12 C.18 D.2413.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有以下结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的选项是〔〕个.A.1 B.2 C.3 D.414.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建的位置是〔〕A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是〔〕A.SAS B.AAA C.SSS D.HL16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.假设BC=4cm,CD=3cm,则点D到AB的距离是〔〕A.2cm B.3cm C.4cm D.5cm17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是〔〕A.1 B.2 C.3 D.418.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,以下结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是〔〕A.①②④B.①②③C.②③④D.①③19.如下图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在〔〕A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则以下结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有〔〕A.2个B.3个C.4个D.1个21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为〔〕A.12 B.18 C.20 D.2422.如图,AD是△ABC的角平分线,DE⊥AB于点E,S=10,DE=2,AB=4,则△ABCAC长是〔〕A.9 B.8 C.7 D.6评卷人得分二.填空题〔共13小题〕=9,23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,假设AB=5,BC=6,S△ABC则DE的长为.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.25.如图,△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是.26.如图,△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,假设AD=6,DE⊥AB,则DE 的长为.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.31.如图,点O在△ABC,且到三边的距离相等,假设∠A=60°,则∠BOC=.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,假设BD=2,AC=8,则△ACD的面积为.33.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.34.把命题“角平分线上的点到这个角两边的距离相等〞改写成“如果…,则…、〞的形式:如果,则.35.Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,假设BC=32,且BD:CD=9:7,则D到AB的距离为.评卷人得分三.解答题〔共5小题〕36.如图,DE⊥AB于E,DF⊥AC于F,假设BD=CD、BE=CF.〔1〕求证:AD平分∠BAC;〔2〕直接写出AB+AC与AE之间的等量关系.37.如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:〔1〕∠ECD=∠EDC;〔2〕OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.〔1〕说明OF与CF的大小关系;〔2〕假设BC=12cm,点O到AB的距离为4cm,求△OBC的面积.40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.〔1〕求证:AC=AE;〔2〕假设点E为AB的中点,CD=4,求BE的长.2018年09月23日tcq372的初中数学组卷参考答案与试题解析一.选择题〔共22小题〕1.如图,BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是〔〕A.2 B.3 C.4 D.6【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,应选:D.2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=〔〕A.30° B.35° C.45° D.60°【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,应选:B.3.观察图中尺规作图痕迹,以下说法错误的选项是〔〕A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.应选:C.4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,假设BD=2,则AB长为〔〕A.2 B.2C.2D.3【解答】解:如图,过B点作BE⊥OA于E,∵OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,BD=2,∴BE=BD=2,在直角△ABE中,∵∠AEB=90°,∠A=45°,∴AB=BE=2.应选:C.5.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,假设CD=2,AB=8,则△ABD的面积是〔〕A.6 B.8 C.10 D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.应选:B.6.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于〔〕A.30 B.24 C.15 D.10【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.应选:C.=15,7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD则CD的长为〔〕A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S=AB•DE=×10•DE=15,△ABD解得DE=3.应选:A.8.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则以下结论中错误的选项是〔〕A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,应选:C.9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,假设ON=8cm,则OM长为〔〕A.4cm B.5cm C.8cm D.20cm【解答】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,应选:C.10.在正方形网格中,∠AOB的位置如下图,到∠AOB两边距离相等的点应是〔〕A.M点B.N点C.P点D.Q点【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.应选A.11.如图,直线l、l′、l″表示三条相互穿插的公路,现方案建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有〔〕A.一处B.二处C.三处D.四处【解答】解:如下图,加油站站的地址有四处.应选:D.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,假设CD=BD,点D到边AB的距离为6,则BC的长是〔〕A.6 B.12 C.18 D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,应选:C.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有以下结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的选项是〔〕个.A.1 B.2 C.3 D.4【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED〔HL〕,∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的选项是①②③④共4个.应选:D.14.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建的位置是〔〕A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:在这个区域修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.应选:C.15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是〔〕A.SAS B.AAA C.SSS D.HL【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP中,∴Rt△ADP≌△AEP〔HL〕,应选:D.16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.假设BC=4cm,CD=3cm,则点D到AB的距离是〔〕A.2cm B.3cm C.4cm D.5cm【解答】解:过D作DE⊥AB于E,∵在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,∴DE=DC=3cm,应选:B.17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是〔〕A.1 B.2 C.3 D.4【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.应选:B.18.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,以下结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是〔〕A.①②④B.①②③C.②③④D.①③【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.应选:A.19.如下图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在〔〕A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.应选:B.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则以下结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有〔〕A.2个B.3个C.4个D.1个【解答】解:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.应选:B.21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为〔〕A.12 B.18 C.20 D.24【解答】解:过D作DE⊥AB,∵Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=,应选:B.=10,DE=2,AB=4,则22.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABCAC长是〔〕A.9 B.8 C.7 D.6【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,=AB×DE=×4×2=4,∵S△ADB∵△ABC的面积为10,∴△ADC的面积为10﹣4=6,∴AC×DF=6,∴AC×2=6,∴AC=6应选:D.二.填空题〔共13小题〕23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,假设AB=5,BC=6,S=9,△ABC则DE的长为.【解答】解:作DF⊥AB于F,∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,,即×5×DE+×6×DE=9,∴×AB×DF+×BC×DE=S△ABC解得,DE=,故答案为:.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为 3 .【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.25.如图,△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是96 .【解答】解:过O作OM⊥AB,ON⊥AC,连接AO,∵OB,OC分别平分∠ABC和∠ACB,∴OM=ON=OD=6,∴△ABC的面积为:×AB×OM+BC×DO+NO=〔AB+BC+AC〕×DO=32×6=96.故答案为:96.26.如图,△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是42 .【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB +S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×〔AB+AC+BC〕=×4×21=42,故答案为:42.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为4cm .【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是16 .【解答】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=16〔角平分线性质〕,故答案为:16.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,假设AD=6,DE⊥AB,则DE的长为 3 .【解答】解:∵∠BAC=60°,AD平分∠BAC,∴∠DAE=∠BAC=30°.在Rt△ADE中,DE⊥AB,∠DAE=30°,∴DE=AD=3.故答案为:3.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 4 处.【解答】解:∵△ABC角平分线的交点到三角形三边的距离相等,∴△ABC角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故答案为:4.31.如图,点O在△ABC,且到三边的距离相等,假设∠A=60°,则∠BOC= 120°.【解答】解:∵点O在△ABC,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=〔∠ABC+∠ACB〕=〔180°﹣∠A〕=〔180°﹣60°〕=60°,在△BCO中,∠BOC=180°﹣〔∠OBC+∠OCB〕=180°﹣60°=120°.故答案为:120°.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,假设BD=2,AC=8,则△ACD的面积为8 .【解答】解:作DH⊥AC于H,∵CD是∠ACD的平分线,∠B=90°,DH⊥AC,∴DH=DB=2,∴△ACD的面积=×AC×DH=×8×2=8,故答案为:8.33.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF= 150°.【解答】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°34.把命题“角平分线上的点到这个角两边的距离相等〞改写成“如果…,则…、〞的形式:如果一个点在角的平分线上,则它到这个角两边的距离相等.【解答】解:如果一个点在角平分线上,则它到角两边的距离相等.35.Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,假设BC=32,且BD:CD=9:7,则D到AB的距离为14 .【解答】解:如图,过点D作DE⊥AB于E,∵BC=32,BD:CD=9:7,∴CD=32×=14,∵∠C=90°,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14.故答案为:14.三.解答题〔共5小题〕36.如图,DE⊥AB于E,DF⊥AC于F,假设BD=CD、BE=CF.〔1〕求证:AD平分∠BAC;〔2〕直接写出AB+AC与AE之间的等量关系.【解答】〔1〕证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;〔2〕AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.37.如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:〔1〕∠ECD=∠EDC;〔2〕OE是CD的垂直平分线.【解答】证明:〔1〕∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∴∠ECD=∠EDC;〔2〕在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE〔HL〕,∴OC=OD,又∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.【解答】解:分别作CG⊥AB与G,CH⊥AD与H,∵AC为∠BAD的角平分线,∴CG=CH,∵AB=AD,∴△ABC面积=△ACD面积,又∵AE=DF,∴△AEC面积=△CDF面积,∴△BCE面积=△ABC面积﹣△AEC面积,△BCE面积=△ACD面积﹣△CDF面积,∴△BCE面积=△ACF面积,∵四边形AECF面积=△AEC面积+△ACF面积,四边形AECF面积=△AEC面积+△BCE面积,∴四边形AECF面积=△ABC面积,又∵四边形ABCD面积=△ABC面积+△ACD面积,又∵四边形ABCD面积=2△ABC面积,∴四边形AECF面积为四边形ABCD面积的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.〔1〕说明OF与CF的大小关系;〔2〕假设BC=12cm,点O到AB的距离为4cm,求△OBC的面积.【解答】解:〔1〕OF=CF.理由:∵BE=EO,∴∠EBO=∠EOB,∵△ABC中,∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∴∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;〔2〕过点O作OM⊥BC于M,作ON⊥AB于N,∵△ABC中,∠ABC与∠ACB的平分线交于点O,点O到AB的距离为4cm,∴ON=OM=4cm,=BC•OM=×12×4=24〔cm2〕.∴S△OBC40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.〔1〕求证:AC=AE;〔2〕假设点E为AB的中点,CD=4,求BE的长.【解答】〔1〕证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,在△ACD和△AED中∴△ACD≌△AED,∴AC=AE;〔2〕解:∵DE⊥AB,点E为AB的中点,∴AD=BD,∴∠B=∠DAB=∠CAD,∵∠C=90°,∴3∠B=90°,.∴∠B=30°,∵CD=DE=4,∠DEB=90°,∴BD=2DE=8,由勾股定理得:BE==4.。

角平分线的性质练习题

角平分线的性质练习题

角平分线的性质练习题角平分线是几何学中一个重要的概念,它在解决各种几何问题中起着重要的作用。

本文将通过一些练习题来探讨角平分线的性质。

练习题一:已知在△ABC中,角A的平分线交边BC于点D,证明AD是角A 的平分线。

解析:首先,我们可以利用角平分线的定义来解决这个问题。

角A的平分线是将角A分成两个相等的角的线段。

假设角BAD和角CAD是角A的平分线所分出的两个角,我们需要证明这两个角是相等的。

根据角平分线的定义,我们可以得出以下两个等式:∠BAD = ∠CAD (角平分线的定义)∠BAD + ∠CAD = ∠BAC (角的和等于整个角)将第一个等式代入第二个等式中,得到:∠CAD + ∠CAD = ∠BAC化简得:2∠CAD = ∠BAC由于∠CAD和∠BAD是同一个角的两个平分角,所以它们是相等的。

因此,AD是角A的平分线。

练习题二:已知在△ABC中,角A的平分线交边BC于点D,且AD=DC,证明△ABC是等腰三角形。

解析:要证明△ABC是等腰三角形,我们需要证明边AB和边AC的长度相等。

由于AD是角A的平分线,所以∠BAD = ∠CAD。

又已知AD=DC,所以△ADC 是一个等腰三角形。

根据等腰三角形的性质,我们可以得出以下结论:∠ADC = ∠ACD (等腰三角形的底角相等)由于∠BAD = ∠CAD,所以∠ADC = ∠ACD。

结合以上两个等式,我们可以得出:∠ADC = ∠ACD = ∠BAD = ∠CAD根据角的和等于整个角的性质,我们可以得到:∠ADC + ∠ACD + ∠BAD + ∠CAD = 180°将上述等式代入,得到:2∠ADC + 2∠ACD = 180°化简得:∠ADC + ∠ACD = 90°由于∠ADC和∠ACD是等腰三角形△ADC的两个底角,它们的和等于90°。

根据等腰三角形的性质,我们可以得出∠DAC = 90°。

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高1.已知,△ABC中,AD是BC边上的高,∠CAD=33°,则∠ACB= °.2.△ABC中,AD,CE是BC,AB边上的高,AD,CE相交于P,∠B=50°,则∠APC 的度数是.3.△ABC中,∠B的外角平分线的与∠C外角平分线相交于点P,且∠BPC=80°,则∠BAP的度数为.4.在Rt△ABC中,∠ACB=90°,∠CAB=30°,∠ACB平分线与∠ABC的外角平分线交于点E,连接AE,则∠AEB= .5.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长相差.&6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(填“锐角三角形”,“直角三角形”,“钝角三角形”)7.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=46°,∠C=72°,则∠EAD= °.8.如图,AD、BE、CF是△ABC的三条中线,若△ABC的周长是a cm.则AE+CD+BF= cm.@9.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D.则∠ECD= .10.角平分线一定垂直于底边.11.在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD= °.12.如图,在△ABC中,BD平分∠ABC,BE是AC边上的中线,如果AC=10cm,则AE=cm,如果∠ABD=30°,则∠ABC= .13.如图六,在△ABC中,∠BAC是钝角,完成下列画图,并用适当的符号在图中表示;(1)AC边上的高;(2)BC边上的高.(在上图中直接画)[14.在△ABC中,AC=3cm,AD是△ABC中线,若△ABD周长比△ADC的周长大2cm,则BA= cm.15.△ABC中,∠A等于80度,则内角∠B、∠C的平分线相交所成的锐角为°.16.如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB上的高和中线,那么∠DCE= 度.·17.直角三角形中,两锐角的角平分线所夹的锐角是度.18.如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,并相交于点D,EG,FG分别是∠AEB和∠AFC的角平分线,并相交于点G,如果∠A=40°,那么∠CDB= ;∠G= .19.如图,△ABC中,AD是BC边上的中线,已知AB=6cm,AC=4cm,则△ABD 和△ACD周长之差为.20.如图,Rt△ABC中,∠ACB=90°,∠A=40°,D为AB中点,CE⊥AB,则∠DCE= 度.》21.三角形中的角平分线、中线、高都是三条特殊的 (填直线、射线、线段)22.如图所示,BD 是△ABC 的中线,AD=2,AB+BC=5,则△ABC 的周长是 .23.三角形一边上的中线把原三角形分成两个 相等的三角形.24.如图,AD 是△ABC 的中线,AE 是△ABD 的中线,若CE=9cm ,则BC= cm .25.点D 是△ABC 中BC 边上的中点,若AB=3,AC=4,则△ABD 与△ACD 的周长之差为 .、26.如图,AC 、BD 相交于O ,BE 、CE 分别平分∠ABD 、∠ACD ,且交于E ,若∠A=60°,∠D=40°,则∠E= .27.如图,根据图形填空:(1)AD 是△ABC 中∠BAC 的角平分线,则∠ =∠ =21∠ . (2)(2)AE 是△ABC 中线,则 = =21 . (3)AF 是△ABC 的高,则∠ =∠ =90°.28.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有 个.29.如图所示:30.(1)在△ABC中,BC边上的高是;31.(2)在△AEC中,AE边上的高是.)32.我们都晓得,三角形的高是比较活泼的,它会出现在三角形的内部,也会出现在三角形的外部,然而,当它与三角形一边相会时,你可能找不到它了,今天就请你猜一猜,如果三角形的高与一边重合了,那么这是什么三角形呢答:三角形.31.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.32.如图,在△ABC中,AD、CE是边BC、AB上的高,若∠B=70°,∠CAD=30°,则∠BCE= ,∠ECA= ..33.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∠BAC=2 ;(2)BC=2 ;(3)=90°.34.如图,∠ABD、∠ACD的平分线交于E,∠E=β1;∠EBD、∠ECD的平分线交于F,∠F=β2;如此下去,∠FBD、∠FCD的平分线的交角为β3;…若∠A=40°,∠D=32°,则β4为度.35.如图所示,在△ABC中,BC边上的高是,AB边上的高是;在△BCE中,BE 边上的高是;EC边上的高是;在△ACD中,AC边上的高是;CD边上的高是.36.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .)37.如图,在△ABC中,AC⊥BC,CD⊥AB于点D.则图中共有个直角三角形.38.已知:如图,在△ABC中,∠ACD是△ABC的外角,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,如果∠A2=m°,那么∠A= °(用含m的代数式表示).39.如图,△ABC的∠B的外角的平分线与∠C的外角的平分线交于点P,连接AP.若∠BPC=50°,则∠PAC= 度.40.已知△ABC 中,∠A=α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C=90°+ 21α;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C= ;请你猜想,当∠B 、∠C 同时n 等分时,(n-1)条等分角线分别对应交于O 1、O 2,…,O n-1,如图(3),则∠BO n-1C= (用含n 和α的代数式表示).41..42.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,若∠BOC=115°, 则∠A= °.42.如图,已知△ABC 中,∠BAC=80°,∠C=60°,AD 、AE 分别是三角形的高和角平分线,则∠CAD=°,∠DAE= °.43.如图,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .44.如图,已知△ABC中,∠B=65°,∠C=45°,AD是∠ABC的高线,AE是∠BAC 的平分线,则∠DAE= .45.如图,点O是△ABC的两条角平分线的交点,且∠A=40°,则∠BOC= .·46.在△ABC中,∠A=80°,I是∠B,∠C的角平分线的交点,则∠BIC= °.47.如果三角形的三条高的交点落在一个顶点上,那么它的形状是.48.如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是cm.49.如图,∠ACB是直角,CD是中线,CD=,BC=3,则AC= .50.BM是△ABC中AC边上的中线,AB=5cm,BC=3cm,那么△ABM与△BCM 的周长之差为cm.。

角平分线的性质专项练习(含解析)

角平分线的性质专项练习(含解析)

角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

角平分线性质练习题

角平分线性质练习题

角平分线性质练习题一、选择题1. 在三角形ABC中,角A的平分线交BC于点D,以下哪个说法是正确的?A. AD是角A的角平分线B. 角BAD等于角CADC. 角BAC等于角DACD. AD是BC的垂直平分线2. 如果在三角形ABC中,角A的平分线和边BC的垂直平分线重合,那么三角形ABC是什么三角形?A. 等腰三角形B. 等边三角形C. 直角三角形D. 不规则三角形3. 在三角形ABC中,角A的平分线交BC于点D,若角B等于角C,那么角BAD和角CAD的大小关系是什么?A. 相等B. 角BAD大于角CADC. 角BAD小于角CADD. 不能确定二、填空题4. 在三角形ABC中,若角A的平分线将角A平分为两个相等的角,那么角BAD等于______。

5. 如果角A的平分线AD交BC于点D,且BD等于DC,那么三角形ABC是一个______三角形。

6. 在三角形ABC中,角A的平分线交BC于点D,若角A等于60度,角B等于40度,则角ADC等于______度。

三、计算题7. 在三角形ABC中,已知角A的平分线AD交BC于点D,且BD等于3厘米,DC等于4厘米,求BC的长度。

8. 在三角形ABC中,角A的平分线AD交BC于点D,已知角A等于70度,角B等于50度,求角BAD的度数。

四、证明题9. 证明:在三角形ABC中,如果角A的平分线AD交BC于点D,那么角BAD等于角CAD。

10. 证明:如果三角形ABC中角A的平分线AD交BC于点D,并且AB 等于AC,那么三角形ABC是一个等腰三角形。

五、应用题11. 在三角形ABC中,已知角A的平分线AD交BC于点D,且角A等于60度,角B等于角C,求角B和角C的度数。

12. 在三角形ABC中,角A的平分线AD交BC于点D,已知BD等于2厘米,DC等于3厘米,且角A等于40度,求AD的长度。

六、开放性问题13. 如果在三角形ABC中,角A的平分线AD交BC于点D,且角A等于90度,讨论三角形ABC的性质。

角平分线练习题

角平分线练习题

》角平分线练习一、选择题1.已知:如图1,B E,C F是△ABC的角平分线,B E,CF相交于D,若∠A=50°,则∠BDC=()°°°°2.已知:如图2,△ABC中,AB = AC,BD为∠ABC的平分线,∠BDC = 60°,则∠A =()A. 10°B. 20°C. 30°D. 40°3.三角形中,到三边距离相等的点是()?A.三条高线交点B.三条中线交点C.三条角平分线的交点D.三边的垂直平分线的交点4.已知P点在∠AOB的平分线上,∠AOB = 60°,OP = 10 cm,那么P点到边OA、OB的距离分别是()A. 5cm、cmB. 4cm、5cmC. 5cm、5cmD. 5cm、10cm5.下列四个命题的逆命题是假命题的是()A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等(C.全等三角形的对应角相等D.相等的两个角是对顶角6.已知:如图3,△ABC中,∠C = 90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB = 10cm,BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于()cmA. 2、2、2 、3、3C. 4、4、4D. 2、3、5二、填空题1.命题:“两直线平行,同旁内角互补”的逆命题是,它是命题。

2.角平分线可以看作是的点的集合。

3.已知:△ABC中,∠C = 90°,角平分线AD分对边BD:DC = 3:2,且BC = 20cm,则点到AB的距离是cm。

!4.命题“如果a = b,那么| a| = | b |”的命题是,它是命题。

三、简答题1.已知:如图4,△ABC的外角∠FAC的平分线为AE,∠1=∠2,AD = AC求证:DC∥AE#2.已知:如图5,△ABC中,∠C= 90°,点D是斜边AB 的中点,AB = 2BC, DE⊥AB交AC于E求证:BE平分∠ABC3.已知线段AB,求线段AB的四等分点。

三角形角平分线部分经典题型

三角形角平分线部分经典题型

1.如图1所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,那么点D 到BC 的距离为________cm .图1图22.如图2所示,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,假设CD =n ,AB =m ,那么ΔABD 的面积是〔〕A .mn 31B .mn 21C .mnD .2mn3.如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,那么点D 到AB 的距离是。

4.如图,BD 是∠ABC 的角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、AC 和AB的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,那么DE 、DF 、DG 的关系是。

5.如图,AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE=2,那么两平行线间AB 、CD 的距离等于。

6.AD 是△BAC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么以下结论中错误的选项是( ) A 、DE=DF B 、AE=AFC 、BD=CDD 、∠ADE=∠ADF7.到三角形三条边的距离都相等的点是这个三角形的〔 〕 A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点8.△ABC 中,∠A=80°,∠B 和∠C 的角平分线交于O 点,那么∠BOC=。

9.如图,相交直线AB 和CD ,及另一直线EF 。

如果要在EF 上找出与AB 、CD 距离相等的点,方法是,这样的点至少有个,最多有个。

3题图DCBADA10.如下图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,那么△DEB 的周长为( )。

三角形内外角平分线定理例题

三角形内外角平分线定理例题

三角形内外角平分线定理例题
1. 嘿,来看这道题!在三角形 ABC 中,AD 是角 A 的平分线,那是不是就能用三角形内角平分线定理啦?比如说角 A 是 60 度,AB 长 5,AC 长 3,那 BD 和 DC 的比不就好求啦!
2. 哇哦,这道题也很典型呀!三角形 DEF 中,EF 边上有角平分线DG,已知一些边长,这不就是三角形内外角平分线定理大显身手的时候嘛!
3. 嘿呀,想想看这个三角形 MNO,角 M 的平分线 NP,通过这个定理就能算出好多线段的关系呢,就像找到了宝藏的钥匙!
4. 哎呀呀,在三角形 PQR 中,QR 上的角平分线 PS,这道题用定理来做不就轻而易举嘛,难道不是吗?
5. 哟呵,看看这个三角形 STU,角 S 的平分线 TV,根据定理马上就能知道相关线段的比例啦,是不是很神奇!
6. 哈哈,这道关于三角形 VWX 的题,角 V 的平分线 WY,利用定理就能快速解题啦,超有趣的呢!
7. 哇塞,三角形 YZA 中,ZA 边上的角平分线 YB,这不就是三角形内外角平分线定理发挥作用的好例子嘛!
8. 嘿嘿,这个三角形 abc 中,bc 边上的角平分线 ad,用定理来解决简直太爽啦,不信你试试!
9. 哎呀,三角形 def 中,ef 边上的角平分线 dg,有了定理,这些题都变得好简单呀!
10. 哇哦,三角形 ghi 中,hi 边上的角平分线 gj,定理一用,答案马上就出来啦,真的很棒呢!
我的观点结论就是:三角形内外角平分线定理在解题中超级好用,能让我们快速找到答案,大家一定要好好掌握呀!。

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题1. 在△ABC中,角A的角平分线交对边BC于点D,若BD=DC,求证:∠B=∠C。

【解答】设∠BAD=∠CAD=x,由于角A的角平分线BD、CD分别相交对边BC于点D,所以AD是△ABC的角平分线。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

根据等边三角形的性质可知∠B=∠C。

2. 在△ABC中,角A的角平分线交对边BC于点D,若∠BAD=30°,求∠B和∠C的度数。

【解答】设∠BAD=∠CAD=x,根据题意可知角A的角平分线BD、CD分别相交对边BC于点D。

由于∠BAD=30°,所以x=30°。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

又由等边三角形的性质可知∠B=∠C,即∠B=∠C=75°。

3. 在△ABC中,角B的角平分线交对边AC于点D,若∠BAD=80°,求∠ABC的度数。

【解答】设∠BAD=∠DAC=x,根据题意可知角B的角平分线AD相交对边AC于点D。

由于∠BAD=80°,所以x=80°。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$又由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

由等边三角形的性质可知∠ABC=∠ACB,设∠ABC=∠ACB=y,则∠ADB=∠ADC=180°-2x=20°。

再由三角形内角和为180°可知∠B+∠ADC=180°,即y+20°=180°,解得y=160°。

所以∠ABC=∠ACB=160°。

4. 在△ABC中,角A的角平分线交对边BC于点D,若∠B=70°,∠C=50°,求∠BAD的度数。

八年级上经典三角形的高中线角平分线内外角练习

八年级上经典三角形的高中线角平分线内外角练习

F E D C B A E DCB AB 'C B A 八年级上角形高、中线、角平分线,内外角练习一、选择题:1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )A.是边BB ′上的中线B.是边BB ′上的高C.是∠BAB ′的角平分线D.以上三种性质合一(1) (2) (3)2.如图2所示,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法正确的是( ) A.DE 是△BCD 的中线 B.BD 是△ABC 的中线 C.AD=DC,BD=EC D.∠C 的对边是DE3.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2 4.在△ABC,∠A=90°,角平分线AE 、中线AD 、高AH 的大小关系为( )A.AH<AE<ADB.AH<AD<AEC.AH ≤AD ≤AED.AH ≤AE ≤AD5.在△ABC 中,D 是BC 上的点,且BD:DC=2:1,S △ACD =12,那么S △ABC 等于( ) A.30 B.36 C.72 D.246.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形 7.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60° 8.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为( )A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90° 9.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A.100° B.120° C.140° D.160° 10.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形 11.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角 12.在△ABC 中,∠A=12∠B=13∠C,则此三角形是( )F E D CBA 654321F E CB A 140︒80︒1 A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 13.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定14.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A.30°B.60°C.90°D.120°15.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120° 16.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形;B.一般的等腰三角形;C.等边三角形;D.等腰钝角三角形 17.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( )A.120°B.115°C.110°D.105°(1) (2) (3)18.如图2所示,在△ABC 中,E,F 分别在AB,AC 上,则下列各式不能成立的是( )A.∠BOC=∠2+∠6+∠A;B.∠2=∠5-∠A;C.∠5=∠1+∠4;D.∠1=∠ABC+∠4 二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC 中,∠B=80°,∠C=40°,AD,AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________.4.⑴三角形的三条中线交于一点,这一点是三角形的_______心,在____________ ⑵三角形的三条角平分线交于一点,这一点是三角形的_______心,在__________ ⑶三角形的三条高线所在直线交于一点,这一点是三角形的_______心,①三角形为锐角三角形,这点在三角形___________ ②三角形为直角三角形,这点在三角形___________ ③三角形为钝角三角形,这点在三角形___________5.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.6.在△ABC 中, 若∠A+∠B >∠C,则此三角形为_______三角形,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B <∠C,则此三角形是_____三角形.7.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.8.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 5.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC 的度数为________ 9.三角形的三个外角中,最多有_______个锐角. 21D CB AD C B AE D C BA10.如图3所示,∠1=_______.11.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是____度. 12.已知等腰三角形的一个外角为150°,则它的底角为_____.13.如图所示,∠ABC,∠ACB 的内角平分线交于点O,∠ABC 的内角平分线与∠ACB 的外角平分线交于点D,∠ABC 与∠ACB 的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=________.14.如图所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC=________.三、基础训练:1.如图所示,在△ABC 中,∠C-∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.2.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.3.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.4321DCBA4.如图所示,在△ABC 中,AD ⊥BC 于D,AE 平分∠BAC(∠C>∠B),试说明∠EAD=12(∠C-∠B).5.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.四、提高训练:1.在△ABC 中,∠A=50°,高BE,CF 所在的直线交于点O,求∠BOC 的度数.E CB A 43P21DCB A21C 'FEC B A2.如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.3.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 求∠EDF 的度数.4.如图,已知,在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D .(1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.五、探索发现:1. 如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s 与n 有什么关系,并求出当n=13时,s 的值.2. 如图所示,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.FE D CBAn=2,s=3n=3,s=6n=4,s=9(1)PC BA (2)PCBA(3)PCBA。

角平分线练习题 (1)

角平分线练习题 (1)

角平分线练习一、选择题1.已知:如图1,B E,C F是△ABC的角平分线,B E,CF相交于D,若∠A=50°,则∠BDC=()A.70°B.120°C.115°D.130°2.已知:如图2,△ABC中,AB = AC,BD为∠ABC的平分线,∠BDC = 60°,则∠A =()A. 10°B. 20°C. 30°D. 40°3.三角形中,到三边距离相等的点是()A.三条高线交点B.三条中线交点C.三条角平分线的交点D.三边的垂直平分线的交点4.已知P点在∠AOB的平分线上,∠AOB = 60°,OP = 10 cm,那么P点到边OA、OB的距离分别是()A. 5cm 、cmB. 4cm、5cmC. 5cm、5cmD. 5cm、10cm5.下列四个命题的逆命题是假命题的是()A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的对应角相等D.相等的两个角是对顶角6.已知:如图3,△ABC中,∠C = 90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB = 10cm,BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于()cmA. 2、2、2B.3、3、3C. 4、4、4D. 2、3、5 二、填空题1.命题:“两直线平行,同旁内角互补”的逆命题是,它是命题。

2.角平分线可以看作是的点的集合。

3.已知:△ABC中,∠C = 90°,角平分线AD分对边BD:DC = 3:2,且BC = 20cm,则点到AB的距离是cm。

4.命题“如果a = b,那么| a| = | b |”的命题是,它是命题。

三、简答题1.已知:如图4,△ABC的外角∠FAC的平分线为AE,∠1=∠2,AD = AC求证:DC∥AE2.已知:如图5,△ABC中,∠C= 90°,点D是斜边AB的中点,AB = 2BC, DE⊥AB交AC于E求证:BE平分∠ABC3.已知线段AB,求线段AB的四等分点。

角平分线的性质与判定的习题

角平分线的性质与判定的习题

B E
M
D
A
FN
C
18.如图,已知△ABC的周长为10,OB、OC 分别平分∠ABC.∠ACB、OD⊥BC于点D, 且OD=2,求△ABC的面积。
A
O
B
D
C
19.如图Rt△ABC中,∠C=90。AC=BC,AD是 ∠BAC
的平分线,DE⊥AB于E,
求证: △DBE的周长等于ABB长
E
D
C
A
4.如图所示,三条公路两两相交,交点分别为 A、B.C,现计划修一个油库,要求到三条公
路的距离相等,可供选择的地址有( D )
A. 一处 B. 二处 C.三处 D. 四处
5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射
线OM上的一个动点,若PA=2,则PQ的最小值为
(B)
A. 1
B. 2
C. 3
用数学语言表示为: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
练习题 :
1.如图,已知△ABC的外角∠CBD和∠BCE的平 分线相交于点F,
求证: 点F在∠DAE的平分线上.
证明:过点F作FG⊥AE于G, FH⊥AD于H, FM⊥BC于M
∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC ∴FG=FM
D. 4
6.如图所示, 在△ABC中, ∠C=90°, AD平分
∠BAC, AE=AC, 下列结论中错误的是( D )
A. DC=DE
B. ∠AED=90°
C. ∠ADE=∠ADC D. DB=DC
7.如图所示, △ABC中, ∠C=90°, AC=BC, AD
平分∠CAB交BC于D, DE⊥AB于E, 且AB=6cm,

三角形中线高角平分线的30题(有答案)ok

三角形中线高角平分线的30题(有答案)ok

三角形高中线角平分线专项练习30题(有答案)⊥于F.1.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD AB⊥于D,DF CE∠;(1)试说明∠BCD=ECD(2)请找出图中所有与∠B相等的角(直接写出结果).2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,求AB和AC的长.4.如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边∠,求∠B的大上的高,又有∠EDA=CDB小.⊥,AE平分5.△ABC中,AD BC∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小.﹣∠是否相等?若相等,请说明理由.(2)若∠B<∠C,则2EAD∠与∠C B6.在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.7.在△ABC中.(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)∠(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+BOC= _________ °,再用你已学过的数学知识加以说明.∠ _________ °.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+BOC=8.在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.求∠ABE、∠ACF和∠BHC的度数.9.如图,△ACB中,∠.∠ACB=90°,∠1=B(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.11.如图,△ABC中,⊥于∠ABC=40°,∠C=60°,AD BCD,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)指出AD是哪几个三角形的高.12.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.13.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线(1)求∠EAD的度数;(2)寻找∠DAE与∠B、∠C的关系并说明理由.14.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,(1)若∠B=47°,∠C=73°,求∠DAE的度数.(2)若∠B=α°,∠C=β° (α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,在△ABC中,AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.17.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交∠.CD、AC于点F、E,求证:∠CFE=CEF18.如图(1),△ABC中,AD是角平⊥于点E.分线,AE BC(1).若∠C=80°,∠B=50°,求∠DAE的度数.﹣∠).(2).若∠C>∠B,试说明∠DAE=(∠C B⊥于点E.此时∠DAE变成∠DA´E,(2)中的(3).如图(2)若将点A在AD 上移动到A´处,A´E BC结论还正确吗?为什么?19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.20.我们知道,任何一个三角形的三条内角⊥分别交AB、AC于点D、E.平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE AI(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度数40°60°90°120°∠BIC的度数∠BDI的度数21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.22.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:(1)BE= _________ = _________(2)∠BAD= _________ _________ (3)∠AFB= _________ =90°(4)S ABC△= _________ S ABE△.23.如图,BM是△ABC的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长是差是多少?24.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.25.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?26.如图,在△ABC中,AC=AB,AD是BC边上的中线,则AD BC⊥,请说明理由.27.如图,∠BAD=CAD∠,则AD是△ABC的角平分线,对吗?说明理由.28.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.29.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.30.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.参考答案:1.(1)∵∠B=70°,CD AB ⊥于D ,∴∠BCD=90°70°=20°﹣,在△ABC 中,∵∠A=30°,∠B=70°,∴∠ACB=180°30°70°=80°﹣﹣,∵CE 平分∠ACB ,∴∠BCE=ACB=40°∠,∴∠ECD=BCE ∠﹣BCD=40°20°=20°∠﹣,∴∠BCD=ECD ∠;(2)∵CD AB ⊥于D ,DF CE ⊥于F ,∴∠CED=90°ECD=90°20°=70°﹣∠﹣,∠CDF=90°ECD=90°20°=70°﹣∠﹣,所以,与∠B 相等的角有:∠CED 和∠CDF .2.(1)∵∠BED 是△ABE 的一个外角,∴∠BED=ABE+BAD=15°+35°=50°∠∠.(2)如图所示,EF 即是△BED 中BD 边上的高.(3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线,∴S BED △=S ABC △=×60=15;∵BD=5,∴EF=2S BED △÷BD=2×15÷5=6,即点E 到BC 边的距离为6.3.∵AD 是BC 边上的中线,∴BD=CD ,∴△ABD 的周长﹣△ADC 的周长=(AB+AD+BD )﹣(AC+AD+CD )=AB AC=4﹣,(2分) 即AB AC=4﹣①,又AB+AC=14②,①+②得.2AB=18,解得AB=9,②﹣①得,2AC=10,解得AC=5,∴AB 和AC 的长分别为:AB=9,AC=5.4.∵DE 是CA 边上的高,∴∠DEA=DEC=90°∠,∵∠A=20°,∴∠EDA=90°20°=70°﹣,∵∠EDA=CDB ∠,∴∠CDE=180°70°×2=40°﹣,在Rt CDE △中,∠DCE=90°40°=50°﹣,∵CD 是∠BCA 的平分线,∴∠BCA=2DCE=2×50°=100°∠,在△ABC 中,∠B=180°BCA A=180°100°﹣∠﹣∠﹣﹣20°=60°.故答案为:605.(1)∵∠B=30°,∠C=70°∴∠BAC=180°B C=80°﹣∠﹣∠∵AE 是角平分线,∴∠EAC=BAC=40°∠∵AD 是高,∠C=70°∴∠DAC=90°C=20°﹣∠∴∠EAD=EAC DAC=40°20°=20°∠∠﹣﹣;(2)由(1)知,∠EAD=EAC ∠﹣DAC=BAC ∠∠﹣(90°﹣C ∠)①把∠BAC=180°B C ﹣∠﹣∠代入①,整理得∠EAD=C B ∠∠﹣,∴2EAD=C B ∠∠∠﹣.6.∵AD 是高,∠C=60°,∴∠CAD=90°C=90°60°=30°﹣∠﹣;∵∠B=20°,∠C=60°,∴∠BAC=180°B C=180°20°60°=100°﹣∠﹣∠﹣﹣,∵AE 是角平分线,∴∠CAE=BAC=×100°=∠50°,∴∠DAE=CAE ∠﹣CAD=50°30°=20°∠﹣.7.(1)∵BD 、CE 分别是边AC ,AB 上的高,∴∠ADB=BEC=90°∠,又∵∠BAC=60°,∴∠ABD=180°ADB A=180°90°60°=30°﹣∠﹣∠﹣﹣,∴∠BOC=EBD+BEO=90°+30°=120°∠∠; (2)如图所示:∠BAC+BOC=180°∠;理由如下:∵BD 、CE 分别是边AC ,AB 上的高,∴∠ADB=BEC=90°∠,∵∠ABD=180°ADB BAD=180°90°﹣∠﹣∠﹣﹣BAD=90°BAD ∠∠﹣,∠O=180°BEO DBA=90°DBA=90°﹣∠﹣∠﹣∠﹣(90°﹣BAD ∠)=BAD ∠,∵∠BAC=180°DAB ﹣∠,∴∠BAC=180°O ﹣∠,∴∠BAC+O=180°∠;(3)由(1)(2)可得∠BAC+BOC=180°∠.8.∵BE 是AC 上的高,∴∠AEB=90°,∵∠ABC=60°,∠ACB=50°,∴∠A=180°60°50°=70°﹣﹣,∴∠ABE=180°90°70°=20°﹣﹣,∵CF 是AB 上的高,∴∠AFC=90°,∴∠ACF=180°90°70°=20°﹣﹣,∵∠ABE=20°,∴∠EBC=ABC ABE=60°20°=40°∠∠﹣﹣,∵∠ACF=20°,∠ACB=50°,∴∠BCH=30°,∴∠BHC=180°40°30°=110°﹣﹣.9.(1)∵∠1+BCD=90°∠,∠1=B ∠∴∠B+BCD=90°∠∴△BDC 是直角三角形,即CD AB ⊥,∴CD 是△ABC 的高;(2)∵∠ACB=CDB=90°∠∴S ABC △=AC•BC=AB•CD ,∵AC=8,BC=6,AB=10,∴CD===10.B=26°∵∠,∠ACD=56°∴∠BAC=30°∵AE 平分∠BAC ∴∠BAE=15°∴∠AED=B+BAE=41°∠∠11.(1)∵AD BC ⊥于D ,∴∠ADB=ADC=90°∠,∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD=30°,∴∠BAC=50°+30°=80°,∵AE 是∠BAC 的平分线,∴∠BAE=40°,∴∠DAE=50°40°=10°﹣.(2)AD 是△ABE 、△ABD 、△ABC 、△AED 、△AEC 、△ADC 的高.12.∵∠ABC=66°,∠ACB=54°,∴∠A=180°ABC ACB=180°66°54°=60°﹣∠﹣∠﹣﹣.又∵BE 是AC 边上的高,所以∠AEB=90°,∴∠ABE=180°BAC AEB=180°90°﹣∠﹣∠﹣﹣60°=30°.同理,∠ACF=30°,∴∠BHC=BEC+ACF=90°+30°=120°∠∠.13.(1)∵在△ABC 中,∠BAC=180°C ﹣∠﹣B=180°20°60°=100°∠﹣﹣,又∵AE 为角平分线,∴∠EAB=BAC=50°∠,在直角△ABD 中,∠BAD=90°B=90°﹣∠﹣60°=30°,∴∠EAD=EAB BAD=50°30°=20°∠∠﹣﹣;(2)根据(1)可以得到:∠EAB=BAC=∠(180°﹣B C ∠∠﹣)∠BAD=90°B ﹣∠,则∠EAD=EAB ∠﹣BAD=∠(180°B ﹣∠﹣C ∠)﹣(90°﹣B ∠)=(∠B C ﹣∠).14.∵AD 是△ABC 的角平分线,∠BAC=60°,∴∠DAC=BAD=30°∠,∵CE 是△ABC 的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°B BAD=180°30°50°=100°﹣∠﹣∠﹣﹣15.(1)∵∠B=47°,∠C=73°,∴∠BAC=180°47°73°=60°﹣﹣,∵AD 是△ABC 的BC 边上的高,∴∠BAD=90°47°=43°﹣,∵AE 是∠BAC 的角平分线,∴∠BAE=BAC=30°∠,∴∠DAE=BAD ∠﹣BAE=43°30°=13°∠﹣;(2))∵∠B=α°,∠C=β°,∴∠BAC=180°α°β°﹣﹣,∵AD 是△ABC 的BC 边上的高,∴∠BAD=90°α°﹣,∵AE 是∠BAC 的角平分线,∴∠BAE=BAC=∠(180°α°β°﹣﹣),∴∠DAE=BAD ∠﹣BAE=90°α°∠﹣﹣(180°﹣α°β°﹣),=90°α°90°+α°+β°﹣﹣,=(βα﹣)° 16.∵∠B=60°,∠C=45°,∴∠BAC=180°60°45°=75°﹣﹣,∵AD 为∠BAC 的角平分线,∴∠BAD=CAD=BAC ∠∠=37.5°,在△ABD 中,∠ADB=180°BAD ﹣∠﹣B=82.5°∠,则∠ADC=180°ADB=97.5°﹣∠.17.∵∠ACB=90°,∴∠1+3=90°∠,∵CD AB ⊥,∴∠2+4=90°∠,又∵BE 平分∠ABC ,∴∠1=2∠,∴∠3=4∠,∵∠4=5∠,∴∠3=5∠,即∠CFE=CEF ∠.18.(1)在△ABC 中,∠BAC =180°B﹣∠C=180°50°80°=50°﹣∠﹣﹣;∵AD 是角平分线,∴∠DAC=BAC=25°∠;在△ADC 中,∠ADC=180°C ﹣∠﹣DAC=75°∠;在△ADE 中,∠DAE=180°ADC AED=15°﹣∠﹣.(2)∠DAE=180°﹣ADC AED=180°∠﹣﹣ADC 90°=90°∠﹣﹣ADC=90°∠﹣(180°C ﹣∠DAC ﹣∠)=90°﹣(180°C BAC ﹣∠﹣∠)=90°[180°﹣C ﹣∠﹣(180°B C ﹣∠﹣∠)]=(∠C B ﹣∠).(3)(2)中的结论仍正确.∠A′DE=B+BAD=B+BAC=B+∠∠∠∠∠(180°B ﹣∠﹣C ∠)=90°+B C ∠∠﹣;在△DA′E 中,∠DA ′E=180°A′ED A ﹣∠﹣∠′DE=180°90°﹣﹣(90°+B C ∠∠﹣)=(∠C B ﹣∠).19.∵AB=6cm ,AD=5cm ,△ABD 周长为15cm ,∴BD=1565=4cm ﹣﹣,∵AD 是BC 边上的中线,∴BC=8cm ,∵△ABC 的周长为21cm ,∴AC=2168=7cm ﹣﹣.故AC 长为7cm .20.(1)填写表格如下:∠BAC 的度数40°60°90°∠BIC 的度数110° 120° 135°∠BDI 的度数110°120°135°(2)∠BIC=BDI ∠,理由如下:∵△ABC 的三条内角平分线相交于点I ,∴∠BIC=180°﹣(∠IBC+ICB ∠)=180°﹣(∠ABC+ACB ∠)=180°﹣(180°﹣BAC ∠)=90+BAC ∠;∵AI 平分∠BAC ,∴∠DAI=DAE ∠.∵DE AI ⊥于I ,∴∠AID=90°.∴∠BDI=AID+DAI=∠∠90°+BAC ∠.∴∠BIC=BDI ∠.21.∵∠A =50°,∠C =60°∴∠ABC=180°50°﹣﹣60°=70°,又∵AD 是高,∴∠ADC=90°,∴∠DAC=180°90°C=30°﹣﹣∠,∵AE 、BF 是角平分线,∴∠CBF=ABF=35°∠,∠EAF=25°,∴∠DAE=DAC EAF=5°∠∠﹣,∠AFB=C+CBF=60°+35°=95°∠∠,∴∠BOA=EAF+AFB=25°+95°=120°∠∠,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.22.(1)∵AE 是中线,∴BE=CE=BC ,(2)∵AD 是角平分线,∴∠BAD=CAD=BAC ∠∠,(3)∵AF 是高,∴∠AFB=AFC=90°∠,(4)S ABC △=,S ABE △=,∵BC=2BE ,∴S ABC △=2S ABE △,故答案为CE ,BC ,∠CAD ,∠BAC ,∠AFC ,223.∵BM 是△ABC 的中线,∴MA=MC ,∴C ABM △C ﹣BCM △=AB+BM+MA BC CM BM ﹣﹣﹣=AB BC=53=2cm ﹣﹣.答:△ABM 与△BCM 的周长是差是2cm .24.方法1:由题意知:AB+AC+BC=34,AB+AD+BD=30,∵AB=AC ,BD=BC ,∴②×2得:2AB+2AD+BC=60③,③﹣①得:2AD=26,∴AD=13cm .方法2:∵AB=AC ,D 是中点,且AB+AC+BC=34,∴BD=BC ,AB=(AB+A C ),∴AB+BD=(AB+AC )+BC=(AB+AC+BC )=17cm (周长的一半).∵AB+BD+AD=30cm ,AD=3017=13cm ﹣.25.能.由题意知:△ABD 的周长=AB+BD+AD ,△ACD 的周长=AC+CD+AD ,又因为AD 是BC 边上的中线,所以BD=CD .∵△ABD 的周长比△ACD 的周长小5,∴AC+CD+AD ﹣(AB+BD+AD )=ACAB=5﹣.即AC与AB的边长的差为526.∵AD是BC边上的中线,∴BD=DC,∵AC=AB,AD=AD,∴△ABD ACD≌△(SSS),∴∠ADB=ADC∠,∵∠ADB+ADC=180°∠,∴∠ADB=ADC=90°∠,∴AD BC⊥.27.错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.28.∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC AB=5cm﹣.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.29.∵AD是△ABC的中线,AE是△ACD的中线,∴BD=CD=2DE=4cm,∴BE=BD+DE=6cm,∴BC=2BD=8cm.30.∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB AC=1﹣.。

三角形角平分线经典习题

三角形角平分线经典习题

例1.如图,已知:AD是ABC∆的角平分线,DE、DF分别是ABD∆和ACD∆的高.求证:AFAE=.例2.已知:如图,BD是ABC∠的平分线,BCAB=,P在BD上,ADPM⊥,CDPN⊥.求证:PNPM=.例3.如图,已知:在ABC∆中AD是BAC∠的平分线,ABDE⊥于E,ACDF⊥于F.求证:EFAD⊥.例4.已知:如图,在ABC∆中,︒=∠90C,BCAC=,AD是A∠的平分线.求证:ABCDAC=+.例5、如图,已知DCAB//,︒=∠=∠90DA,点E在AD上,BE平分ABC∠,CE平分BCD∠。

求证:DCABBC+=。

例6.已知:如图,在ABC∆中,BE、CF分别平分ABC∠、ACB∠,且交于点O,求证:点O在A∠的平分线上.AEDCBA针对性练习1、下列说法正确的有几个()(1)角的平分线上的点到角的两边的距离相等;(2)三角形两个内角的平分线交点到三边距离相等;(3)三角形两个内角的平分线的交点到三个顶点的距离相等;(4)点E、F分别在∠AOB的两边上,P点到E、F两点距离相等,所以P点在∠AOB的平分线上;(5)若OC是∠AOB的平分线,过OC上的点P作OC的垂线,交OB于D,交OA于E,则线段PD、PE的长分别是P点到角两边的距离A.2 B 3 C 4 D 52、在△ABC中,∠C=090,BC=16cm,∠A的平分线AD交BC于D,且CD:DB=3:5,则D到AB的距离等于____3、已知:如图1,BD是∠ABC的平分线,DE⊥AB于E,236cmSABC=∆AB=18cm,BC=12cm,求DE的长4.如图,已知:CDBD=,ACBF⊥于F,ABCE⊥于E.求证:D在BAC∠的平分线上.5、已知:如图2,∠B=∠C=090,M是BC中点,DM平分∠ADC求证:AM平分∠DAB6.如图,ABC∆是等腰直角三角形,︒=∠90A,BD是ABC∠的平分线,BCDE⊥于E,cmBC10=,求DEC∆的周长.CB图1ADEABCDM图2ED CBA 7.如图,已知:在ABC ∆中,外角CBD ∠和BCE ∠的平分线BF ,CF 相交于点F .求证:点F 在DAE ∠的平分线上.8、如图,BC AD //,点E 在线段AB 上,ECB DCE CDE ADE ∠=∠∠=∠,, 求证:BC AD CD +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.如图,已知:AD 是ABC ∆的角平分线,DE 、DF 分别是ABD ∆和ACD ∆的高.
求证:AF AE =.
例2.已知:如图,BD 是ABC ∠的平分线,BC AB =,P 在BD 上,AD PM ⊥,CD PN ⊥.
求证:PN PM =.
例3.如图,已知:在ABC ∆中AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于F .
求证:EF AD ⊥.
例4.已知:如图,在ABC ∆中,︒=∠90C ,BC AC =,AD 是A ∠的平分线.
求证:AB CD AC =+.
例5、如图,已知DC AB //,︒=∠=∠90D A ,点E 在。

求证:DC AB BC +=。

例6.已知:如图,在ABC ∆中,BE 、CF 分别平分ABC ∠、ACB ∠,且交于点O , 求证:点O 在A ∠的平分线上.
E
D C
B
A
1、下列说法正确的有几个( )
(1) 角的平分线上的点到角的两边的距离相等; (2) 三角形两个内角的平分线交点到三边距离相等;
(3) 三角形两个内角的平分线的交点到三个顶点的距离相等;
(4) 点E 、F 分别在∠AOB 的两边上,P 点到E 、F 两点距离相等,所以P 点在∠AOB 的平分线上; (5) 若OC 是∠AOB 的平分线,过OC 上的点P 作OC 的垂线,交OB 于D ,交OA 于E ,则线段PD 、
PE 的长分别是P 点到角两边的距离
A .2
B 3
C 4
D 5 2、在△ABC 中,∠C =0
90,BC =16cm ,∠A 的平分线AD 交BC 于D , 且CD :DB =3:5,则D 到AB 的距离等于____
3、已知:如图1,BD 是∠ABC 的平分线,DE ⊥AB 于E ,2
36cm S ABC =∆
AB =18cm,BC =12cm,求DE 的长
4.如图,已知:CD BD =,AC BF ⊥于F ,AB CE ⊥于E . 求证:D 在BAC ∠的平分线上.
5、已知:如图2, ∠B =∠C =0
90,M 是BC 中点,DM 平分∠ADC
求证:AM 平分∠DAB
6.如图,ABC ∆是等腰直角三角形,︒=∠90A ,BD 是ABC ∠的平分线,BC DE ⊥于E ,cm BC 10=,求DEC ∆的周长.
B 图1
A D E
A
B C D M 图2
O B
F
C
E
A
E
D C
B
A
7.如图,已知:在ABC ∆中,外角CBD ∠和BCE ∠的平分线BF ,CF 相交于点F .
求证:点F 在DAE ∠的平分线上.
8、如图,BC AD //,点E 在线段AB 上,∠, 求证:BC AD CD +=。

9、已知:如图3,在△ABC 中,∠B =0
60,△ABC 的角平分线AD 、CE 线相交于点O
求证:AE+CD =AC
10.如图在 △ABC 中,∠BAC =100°,∠ACB =20°,CE 是∠ACB 的平分线,D 是BC 上一点,若∠DAC =
20°,求∠CED 的度数.
11.在四边形ABCD 中,B C ﹥BA,AD =CD,BD 平分∠ABC,∠C =72°,求∠BAD 的度数 D
C
E D O A B
C E 图3 A B
D C E
F D B A。

相关文档
最新文档