2018-2019学年度九年级上12月月考数学试卷及答案
中学2019届九年级12月份月考数学试题(附答案)
2018—2019学年度上学期九年级十二月份月考数 学 试 卷温馨提示:将选择题、填空题答案写在答题卷上 一、选择题(每小题3分,满分30分)1.二次函数y =x 2-2x +2的顶点坐标是( ) A .(1,1)B .(2,2)C .(1,2)D .(1,3)2.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(2,0),将OA 绕原点逆时针方向旋转60°得OB ,则点B 的坐标为( ) A .(1,3)B .(1,-3)C .(0,2)D .(2,0)w3.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的百分率为( ) A .20%B .15%C .10%D .5%24.下列命题中真命题的个数是( )①不在同一直线上的三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线. A .4B .3C .2D .15.如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC ︵的长等于( ) A .2π3 B .π3C .23π3D .3π36.圆锥的母线长是3,底面半径是1,则这个圆锥的侧面展开图 的圆心角的度数为( ) A .90°B .120°C .150°D .180°7.若二次函数()21212y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( ) A .0B .0或2C .2或﹣2D .0,2或﹣28.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,当蚂蚁运动的时间为t 时,蚂蚁与O 点的距离为s ,则s 关于t的函数图象大致是( )第5题图sA .B .C .D .9.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是( )A .4-πB .(4-π)a 2C .πD .a 2-π10.已知二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①9a ﹣3b +c =0;②4a ﹣2b +c >0;③方程ax 2+bx +c ﹣4=0有两个相等的实数根;④方程a (x ﹣1)2+b (x ﹣1)+c =0的两根是x 1=﹣2,x 2=2.其中正确结论的个数是( ) A .1 B .2 C .3 D .4二、填空题(每小题3分,满分18分)11.若点A (2,m )在抛物线y=x 2上,则点A 关于原点对称点的坐标是 . 12.将抛物线y =2 (x +1)2-3向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为________________________. 13.已知点())()1234,,,2,A y By C y -都在二次函数()22y x k =--+的图象上,则123,,y y y 的大小关系是14.如图,正方形ABCD 的顶点都在☉O 上,P 是弧DC 上的一点,则∠BPC= . 15.如图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 .第9题图第10题图16.在半径为1的⊙O 中,弦AB =2,AC =3,那么∠BAC = .九年级十二月月考数学答题卷一、选择题(30分)1 2 3二、填空题(18分)11._____________________ 12._____________________ 13._____________________ 14._____________________ 15._____________________ 16._____________________三、解答题(本大题共72分) 17.(6分)用合适的方法解下列方程:(1)4x 2+3x -2=0. (2)(x +1)(x -2)=x +1.18.(8分)如图,在Rt △ABC 中,∠BAC =90°.(1)先作∠ACB 的平分线交AB 边于点P ,再以点P 为圆心,PA 长为半径作⊙P (要求:B第14题图第15题图尺规作图,保留作图痕迹,不写作法).(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.19.(8分)已知:x1、x2是关于x的方程x2+(2a﹣1)x+a2=0的两个实数根且(x1+2)(x2+2)=11,求a的值.20.(10分)如图,⊙M交x轴于A(﹣1,0),B(3,0)两点.交y轴于C(0,-3),D(0,1)两点.(1)求点M的坐标;(2)求弧BD的长.21. (8分)如图,已知AB是☉O的直径,DC是☉O的切线,点C是切点,AD⊥DC,垂足为D,且与圆O相交于点E.(1)求证:∠DAC=∠BAC.(2)若☉O的直径为5cm,EC=3cm,求AC的长.22.(10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)(填空)判断△ABC的形状;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.23.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.(本题满分12分)已知抛物线242y mx x m =-++与x 轴交于点()(),0,,0A B αβ,且112αβ+=-.(1)求抛物线的解析式.(3分)(2)抛物线的对称轴为l ,与y 轴的交点为C ,顶点为D ,点C 关于l 的对称点为E .是否存在x 轴上的点M 、y 轴上的点N ,使四边形DNME 的周长最小?若存在,请画出图形,并求出周长的最小值;若不存在,请说明理由.(5分)(3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、E 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标。
江西省萍乡市九年级上学期数学12月月考试卷
江西省萍乡市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·永定期中) 如图,在中,,分别交,于点,.若,,则的值为()A .B .C .D .2. (2分) (2018九上·巴南月考) 将抛物线向左平移3个单位,得到新抛物线的解析式为()A .B .C .D .3. (2分)如图,圆内接四边形ABCD中,圆心角∠1=100°,则圆周角∠ABC等于()A . 100°B . 120°C . 130°D . 150°4. (2分)下列说法中,正确的是()A . 不可能事件在一次实验中也可能发生B . 可能性很小的事件在一次实验中一定发生C . 可能性很大的事件在一次实验中是必然发生D . 可能性很小的事件在一次实验中有可能发生5. (2分)如图,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC∽△ACD的是()A . ∠B=∠ACDB . ∠ADC=∠ACBC . =D . AC2=AD•AB6. (2分) (2017九上·诸城期末) 已知开口向下的抛物线y=ax2﹣3x+a2﹣2a﹣3经过坐标原点,那么a等于()A . ﹣1B . 3C . ﹣3D . 3或﹣17. (2分)如图,扇形AOB中,∠AOB=150°,AC=AO=6,D为AC的中点,当弦AC沿扇形运动时,点D所经过的路程为()A . 3πB .C .D . 4π8. (2分)已知二次函数y=-x2-7x+,若自变量x分别取x1 , x2 , x3 ,且0<x1<x2<x3 ,则对应的函数值y1 , y2 , y3的大小关系是()A . y1>y2>y3B . y1<y2<y3C . y2>y3>y1D . y2<y3<y19. (2分) (2019七上·南浔期中) 法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了,下面两个图框是用法国“小九九”计算8×9和6×7的两个示例,若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A . 2,4B . 3,3C . 3,4D . 2,310. (2分)对于抛物线y=x2﹣m,若y的最小值是1,则m=()A . -1B . 0C . 1D . 2二、填空题 (共6题;共6分)11. (1分)如果两个相似三角形的周长比为4:9,那么它们的面积比是________12. (1分)若将二次函数y=2x2﹣6x变为y=a(x﹣h)2+k的形式,则h•k=________.13. (1分)已知C是线段AB的黄金分割点,若AB=2,则BC=________。
上海市建平中学西校2018-2019学年九年级(上)月考数学试卷(12月份)(解析版)
上海市建平中学西校2018-2019学年九年级(上)月考数学试卷(12月份)一、选择题(本大题共6小题,共18.0分)1.如果两个相似三角形对应中线之比是1:4,那么它们的周长之比是()A. 1:2B. 1:4C. 1:8D. 1:162.在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判定DE∥BC的是()A. ADDB =AEECB. ADAB=AEACC. DBEC=ABACD. ADDB=DEBC3.在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是()A. sinA=√32B. tanA=12C. cosB=√32D. cotB=√334.下列命题正确的是()A. 三点确定一个圆B. 直角三角形外接圆的圆心在斜边上C. 相等的圆心角所对的弧相等D. 长度相等的弧是等弧5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A. ac>0B. 当x>−1时,y<0C. b=2aD. 当x>1时,函数值y随着x的增大而增大6.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AE:EC=1:4,那么S△ADE:S△EBC=()A. 1:24B. 1:20C. 1:18D. 1:16二、填空题(本大题共12小题,共36.0分)7.如果a5=b3,那么a−ba+b的值等于______.8.已知线段MN的长为2厘米,点P是线段MN的黄金分割点,那么较长的线段MP的长是______厘米.9.如图,直线AD∥BE∥CF,BC=23AB,DE=6,那么EF的值是______.10.抛物线y=2(x-1)2-1的顶点坐标是______.11. 如果将抛物线y =x 2+2x -1向上平移,使它经过原点,那么所得抛物线的表达式是______.12. 二次函数y =ax 2+bx +c 的图象如图所示,对称轴为直线x =2,若此抛物线与x 轴的一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是______.13. 已知传送带与水平面所成斜坡的坡度i =1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为______米.14. 如图,正方形DEFG 内接于Rt △ABC ,∠C =90°,AC =2,BC =4,则正方形DEFG 的边长为______.15. 如图,已知DE ∥BC ,且DE 经过△ABC 的重心G ,若BC ⃗⃗⃗⃗⃗ =a⃗ ,那么DE ⃗⃗⃗⃗⃗⃗ =______. 16. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,tan ∠ACD =34,AB =5,那么CD 的长是______.17. 在△ABC 中,AB =AC =5,cosB =35(如图).如果圆O 的半径为√10,且经过点B ,C ,那么线段AO 的长等于______.18. 如图,等边△ABC 中,D 是边BC 上的一点,且BD :DC =1:3,把△ABC 折叠,使点A 落在边BC 上的点D 处,那么AMAN 的值为______.三、解答题(本大题共7小题,共56.0分) 19. 计算:|1-sin30°|+12cot30°•tan60°+21−2cos45∘.20. 已知二次函数y =-2x 2+bx +c 的图象经过点A (0,4)和B (1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式;(2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.21. 已知:如图,⊙O 的半径为5,P 为O 外一点,PB 、PD 与⊙O 分别交于点A 、B 和点C 、D ,且PO 平分∠BPD . (1)求证:CB =AD ; (2)当PA =1,∠BPO =45°时,求PO 的长.22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电线杆PQ 的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)ABCAC =BCBCA =90°E AB24. 如图,抛物线y =14x 2+14x +c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D .(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).25. 如图,△ABC 中,BA =BC =10,BF ⊥AC ,垂足为F ,tan ∠ABF =12,点D 为射线BC 上的点(不与点B 重合),联结AD 交射线BF 于点E ,联结CE . (1)求∠ABC 的余弦值;(2)当点D 在线段BC 上时,设BD =x ,△DEC 面积为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)若△DEC 为直角三角形,求线段BD 长度(直接写出答案)答案和解析1.【答案】B【解析】解:∵两个相似三角形对应中线之比是1:4,∴它们的相似比为1:4,∴它们的周长之比是1:4.故选:B.由两个相似三角形对应中线之比是1:4,根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,可求得其相似比,又由相似三角形的周长比等于相似比,求得答案.此题考查了相似三角形的性质.注意相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,相似三角形的周长比等于相似比.2.【答案】D【解析】解:∵=,∴DE∥BC,选项A不符合题意;∵=,∴DE∥BC,选项B不符合题意;∵=,∴DE∥BC,选项C不符合题意;=,DE∥BC不一定成立,选项D符合题意.故选:D.根据平行线分线段成比例定理对各个选项进行判断即可.本题考查平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边3.【答案】D【解析】解:如图所示:∵∠ACB=90°,BC=1,AB=2,∴AC=,∴sinA=,故选项A错误;tanA==,故选项B错误;cosB=,故选项C错误;cotB=,正确.故选:D.直接利用锐角三角函数关系分别求出即可.此题主要考查了锐角三角函数关系,正确记忆相关比例关系是解题关键.4.【答案】B【解析】解:A不在同一直线上的三点确定一个圆,故错误;B、直角三角形外接圆的圆心在斜边上,正确;C、同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、长度相等的弧不一定是等弧,故错误,故选:B.利用等弧的定义、确定圆的条件、圆周角定理及直角三角形外接圆的知识分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是能够了解等弧的定义、确定圆的条件、圆周角定理及直角三角形外接圆的知识,难度不大.5.【答案】D【解析】解:(A)由图象可知a>0,c<0,∴ac<0,故A错误;(B)x>-1时,y不一定小于0,故B错误;(C)由对称轴可知:,∴b=-2a,故(C)错误;(D)当x>1时,由图象可知:y随着x的增大而增大,故D正确;故选:D.根据二次函数的图象与性质即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.6.【答案】B【解析】解:∵=,∴=,∴S△ABE=S△EBC,∵DE∥BC,∴==,∴=,∴S△BDE=4S△ADE,又∵S△BDE=S△ABE-S△ADE,∴4S△ADE=S△EBC-S△ADE,∴=,故选:B.由已知条件可求得,又由平行线分线段成比例可求得,结合S△BDE=S△ABE-S△ADE可求得答案.本题主要考查平行线分线段成比例的性质及三角形的面积,掌握同高三角形的面积比即为底的比是解题的关键.7.【答案】14【解析】解:由=,得a=.当a=时,===,故答案为:.根据比例的性质,可用b表示a,根据分式的性质,可得答案.本题考查了比例的性质,利用了比例的性质,分式的性质.8.【答案】(√5-1)【解析】解:∵点P是线段MN的黄金分割点,∴较长的线段MP的长=MN=×2=(-1)cm.故答案为(-1).直接根据黄金分割的定义求解.本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.9.【答案】4【解析】解:∵AD∥BE∥CF,,∴=,即,解得:EF=4故答案为:4.根据平行线分线段成比例定理得到,即可得出结果.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.10.【答案】(1,-1)【解析】解:∵y=2(x-1)2+1,∴抛物线顶点坐标为(1,-1),故答案为:(1,-1).由抛物线解析式可求得其顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为直线x=h,顶点坐标为(h,k).11.【答案】y=x2+2x【解析】解:y=x2+2x-1向上平移,使它经过原点y=x2+2x,故答案为:y=x2+2x.根据图象向上平移加,可得答案.本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.12.【答案】(-2,0)【解析】解:(6,0)关于x=2的对称点是(-2,0).故答案是(-2,0).求出点(6,0)关于x=2的对称点即可.本题考查了二次函数的性质,理解二次函数与x轴的两个交点关于对称轴对称是关键.13.【答案】26【解析】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.14.【答案】4√57【解析】解:过C作CM⊥AB于M交DG于N,∵∠C=90°,AC=2,BC=4,∴AB=2,∴CM===,∵四边形DEFG是正方形,∴DG∥AB,∴△CDG∽△CAB,∴=,∴=,∴DG=,故答案为:.过C作CM⊥AB于M交DG于N,根据勾股定理得到AB=2,根据三角形的面积公式得到CM===,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握相似三角形的性质是解题的关键.a⃗15.【答案】23【解析】解:如图,连接AG,延长AG交BC于H.∵G是△ABC的重心,∴AG=2GH,∴AG:AH=2:3,∵DE∥BC,∴===,∴DE=BC,∴=,∴DE=,故答案为.如图,连接AG,延长AG交BC于H.利用重心的性质,由DE∥BC,可得===,由此即可解决问题.本题考查三角形的重心,平面向量,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】125【解析】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=∠BCD+∠B=90°,∴∠B=∠ACD,∵tan∠ACD=,∴tan∠B==,设AC=3x,BC=4x,∵AC2+BC2=AB2,∴(3x)2+(4x)2=52,解得:x=1,∴AC=3,BC=4,∵S△ABC=,∴CD==,故答案为:.根据余角的性质得到∠B=∠ACD,由tan∠ACD=,得到tan∠B==,设AC=3x,BC=4x,根据勾股定理得到AC=3,BC=4,根据三角形的面积公式即可得到结论..本题考查了解直角三角形,勾股定理,三角形的面积公式,熟记三角形的面积公式是解题的关键.17.【答案】3或5【解析】解:分两种情况考虑:(i)如图1所示,∵AB=AC,OB=OC,∴AO垂直平分BC,∴OA⊥BC,D为BC的中点,在Rt△ABD中,AB=5,cos∠ABC=,∴BD=3,根据勾股定理得:AD==4,在Rt△BDO中,OB=,BD=3,根据勾股定理得:OD==1,则AO=AD+OD=4+1=5;(ii)如图2所示,∵AB=AC,OB=OC,∴AO垂直平分BC,∴OD⊥BC,D为BC的中点,在Rt△ABD中,AB=5,cos∠ABC=,∴BD=3,根据勾股定理得:AD==4,在Rt△BDO中,OB=,BD=3,根据勾股定理得:OD==1,则OA=AD-OD=4-1=3,综上,OA的长为3或5.故答案为:3或5分两种情况考虑:(i)如图1所示,由AB=AC,OB=OC,利用线段垂直平分线逆定理得到AO垂直平分BC,在直角三角形ABD中,由AB及cos∠ABC的值,利用锐角三角函数定义求出BD的长,再利用勾股定理求出AD的长,在直角三角形OBD中,由OB与BD的长,利用勾股定理求出OD的长,由AD+DO即可求出AO的长;(ii)同理由AD-OD即可求出AO的长,综上,得到所有满足题意的AO的长.此题考查了垂径定理,勾股定理,等腰三角形的性质,以及直角三角形的性质,熟练掌握定理及性质是解本题的关键.18.【答案】57【解析】解:∵BD:DC=1:3,∴设BD=a,则CD=3a,∵△ABC是等边三角形,∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,由折叠的性质可知:MN是线段AD的垂直平分线,∴AM=DM,AN=DN,∴BM+MD+BD=5a,DN+NC+DC=7a,∵∠MDN=∠BAC=∠ABC=60°,∴∠NDC+∠MDB=∠BMD+∠MBD=120°,∴∠NDC=∠BMD,∵∠ABC=∠ACB=60°,∴△BMD∽△CDN,∴(BM+MD+BD):(DN+NC+CD)=AM:AN,即AM:AN=5:7,故答案为.由BD:DC=1:3,可设BD=a,则CD=3a,根据等边三角形的性质和折叠的性质可得:BM+MD+BD=5a ,DN+NC+DC=7a ,再通过证明△BMD ∽△CDN 即可证明AM :AN 的值.本题考查了等边三角形的性质、全等三角形的判定和性质以及折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】解:|1-sin30°|+12cot30°•tan60°+21−2cos45∘. =|1-12|+12×√3×√3+1−2×√22, =12+32+1−2, =-2√2.【解析】利用特殊角的三角函数值及二次根式的混合运算的顺序求解即可.本题主要考查了二次根式的混合运算及特殊角的三角函数值,解题的关键是熟记特殊角的三角函数值及二次根式的混合运算的顺序.20.【答案】解:(1)将A (0,4)和B (1,-2)代入y =-2x 2+bx +c ,得{−2+b +c =−2c=4,解得{c =4b=−4,所以此函数的解析式为y =-2x 2-4x +4;y =-2x 2-4x +4=-2(x 2+2x +1)+2+4=-2(x +1)2+6;(2)∵y =-2(x +1)2+6,∴C (-1,6),∴△CAO 的面积=12×4×1=2. 【解析】(1)将A (0,4)和B (1,-2)代入y=-2x 2+bx+c 求得b ,c 的值,得到此函数的解析式;再利用配方法先提出二次项系数,然后加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)由顶点式可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO的面积.本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.21.【答案】解:(1)如图,作OM⊥AB于M,ON⊥CD于N,连接OA,OC.∵OP平分∠BPD,OM⊥PB.ON⊥PD,∵OM=ON,∵∠OMA=∠ONC=90°,OA=OC,OM=ON,∴Rt△ONA≌Rt△ONC(HL),∵AM=CN,∵OM⊥AB,ON⊥CD,∴AM=MB,CN=DN,∴AB=CD.(2)在Rt△OPM中,∵∠OMP=90°,∠OPB=45°,∴∠MPO=∠OPOM=45°,∴OM=PM,设OM=PM=x,在Rt△OAM中,∵OA2=AM2+OM2,∴52=(x-1)2+x2,∴x=4或-3(舍弃),∴OM=PM=4,OP=4√2.【解析】(1)作OM⊥AB于M,ON⊥CD于N,连接OA,OC.由Rt△ONA≌Rt△ONC (HL),推出AM=CN,再利用垂径定理即可证明.(2)设OM=PM=x,在Rt△OAM中,根据OA2=AM2+OM2,构建方程即可解决问题.本题考查圆周角定理,垂径定理,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题.22.【答案】解:延长PQ交直线AB于点E,设PE=x米.在直角△ABE中,∠PBE=45°,则BE=PE=x米;∵∠PAE=26.6°在直角△APE中,AE=PE•cot∠PAE≈2x,∵AB=AE-BE=30米,则2x-x=30,解得:x=30.则BE=PE=30米.在直角△BEQ中,QE=BE•tan∠QBE=30×tan33.7°=30×0.67≈20.1米.∴PQ=PE-QE=30-20=10(米).答:电线杆PQ的高度是10米.【解析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.本题考查解直角三角形的应用,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.23.【答案】解:(1)∵在△ABC中,AC=BC,∠BCA=90°,∵EF⊥AB,∴∠BEF=90°,∵∠B=∠B,∴△BEF∽△ABC,∴BE BC =BFAB,∴△△BEC∽△BFA;(2)∵BE=EF,BE:EA=1:2,∴EF AE =12,∴tan∠EAF=12,设EF=k,AE=2k,∴AF=√5,∵△BEC∽△BFA,∴∠BAF=∠BCE,∴cos∠ECF=cos∠EAF=AEAF =2√55.【解析】(1)根据已知条件得到△BEF ∽△ABC ,根据相似三角形的性质得到,根据相似三角形判定定理即可得到结论;(2)由已知条件的,根据三角函数的定义得到tan ∠EAF=,根据相似三角形的性质得到∠BAF=∠BCE ,即可得到结论.本题考查了相似三角形的判定和性质,锐角三角函数的定义,等腰直角三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.【答案】解:(1)把C 点坐标代入抛物线解析式可得152=9+32+c ,解得c =-3,∴抛物线解析式为y =14x 2+14x -3,令y =0可得14x 2+14x -3=0,解得x =-4或x =3,∴A (-4,0),设直线AC 的函数表达式为y =kx +b (k ≠0),把A 、C 坐标代入可得{0=−4k +b 152=6k +b ,解得{k =34b =3, ∴直线AC 的函数表达式为y =34x +3;(2)①∵在Rt △AOB 中,tan ∠OAB =OB OA =34,在RtAOD 中,tan ∠OAD =OD OA =34, ∴∠OAB =∠OAD ,∵在Rt △POQ 中,M 为PQ 的中点,∴OM =MP ,∴∠MOP =∠MPO ,且∠MOP =∠AON ,∴∠APM =∠AON ,∴△APM ∽△AON ;②如图,过点M 作ME ⊥x 轴于点E ,则OE =EP ,∵点M 的横坐标为m ,∴AE =m +4,AP =2m +4,∵tan ∠OAD =34, ∴cos ∠EAM =cos ∠OAD =45, ∴AE AM =45,∴AM =54AE =5(m+4)4, ∵△APM ∽△AON , ∴AM AN =AP AO ,即5(m+4)4AN =2m+44, ∴AN =5m+202m+4.【解析】(1)把C 点坐标代入抛物线解析式可求得c 的值,令y=0可求得A 点坐标,利用待定系数法可求得直线AC 的函数表达式;(2)①在Rt △AOB 和Rt △AOD 中可求得∠OAB=∠OAD ,在Rt △OPQ 中可求得MP=MO ,可求得∠MPO=∠MOP=∠AON ,则可证得△APM ∽△AON ;②过M 作ME ⊥x 轴于点E ,用m 可表示出AE 和AP ,进一步可表示出AM ,利用△APM ∽△AON 可表示出AN .本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、相似三角形的判定和性质、等腰三角形的性质、直角三角形的性质及方程思想等知识.在(1)中注意函数图象上的点的坐标满足函数解析式,以及待定系数法的应用,在(2)①中确定出两对对应角相等是解题的关键,在(2)②中用m 表示出AP 的长是解题的关键,注意利用相似三角形的性质.本题考查知识点较多,综合性较强,难度较大.25.【答案】解:(1)作AN ⊥BC 于N ,如图1所示:∵tan ∠ABF =AF BF =12,∴BF =2AF ,设AF =x ,则BF =2x ,∵BF ⊥AC ,BA =BC =10,∴AF =CF ,由勾股定理得:x 2+(2x )2=102,解得:x =2√5,∴AF =2√5,BF =4√5,AC =4√5,∵△ABC 的面积=12BC ×AN =12AC ×BF ,∴10AN =4√5×4√5, ∴AN =8, 在Rt △ABN 中,由勾股定理得:BN =√AB 2−AN 2=√102−82=6, ∴∠ABC 的余弦值为cos ∠ABC =BN AB =610=35; (2)延长BF 至G ,使GF =BF =4√5,连接AG 、CG ,过点A 作AN ⊥BC 于N ,过点E 作EM ⊥BC 于M ,如图2所示:则EM ∥AN ,∴EM AN =DE DA ,∴EM AN−EM =DE DA−DE ,即EM AN−EM =DE AE ①, ∵AF =CF ,BF =GF ,∴四边形ABCG 是平行四边形, ∵BF ⊥AC ,∴四边形ABCG 是菱形,∴AG =BC =10,AG ∥BC ,∴BD AG =DE AE ②,由①②得:EM AN−EM =BD AG ,即EM 8−EM =x 10,解得:EM =8x 10+x ,∴△DEC 面积为y =12CD ×EM =12(10-x )×8x 10+x=40x−40x 210+x , 即△DEC 面积y 关于x 的函数解析式为y =40x−40x 210+x (0<x <10);(3)分两种情况:①点D 在线段BC 上, 当∠CDE =90°时,由(1)得:BD =6;当∠CED =90°时,延长BF 至G ,使GF =BF =4√5,连接AG 、CG ,如图2所示: 则∠AEC =90°,同(2)得:四边形ABCG 是菱形, ∴AG =BC =10,AG ∥BC ,AE =CE ,GF =BF =4√5, ∴EG =EF +GF =6√5,∴BD AG =BE EG ,△AEF 是等腰直角三角形, ∴EF =AF =2√5,∴BE =BF -EF =2√5,∴BD 10=√56√5=13, 解得:BD =103;②当点P 在线段BC 的延长线上,当∠ECD =90°时,延长BF 至G ,使GF =BF =4√5,连接CG ,如图3所示: 则四边形ABCG 是菱形,∠BCE =90°,∴AG =BC =10,∵菱形是轴对称图形,∴△ABE ≌△CBE ,∴∠BAE =∠BCE =90°,由(1)得:cos ∠ABC =AB BD =35,即10BD =35,∴BD =503;当∠CED =90°时,如图4所示:同①得:AG =10,BE =6√5,GE =2√5,BD AG =BE EG , 即BD 10=6√52√5, 解得:BD =30;综上所述,当△DEC 是直角三角形时,线段BD 的长为6或103或503或30.【解析】(1)作AN ⊥BC 于N ,由三角函数得出BF=2AF ,设AF=x ,则BF=2x ,关键勾股定理去AF=2,BF=4,AC=4,由三角形面积求出AN=8,由勾股定理求出BN=6,即可得出结果;(2)延长BF 至G ,使GF=BF=4,连接AG 、CG ,过点A 作AN ⊥BC 于N ,过点E 作EM ⊥BC 于M ,则EM ∥AN ,由平行线分线段成比例定理得出=①,证出四边形ABCG 是菱形,得出AG=BC=10,AG ∥BC ,得出=②,由①②得出=,求出EM=,即可得出结果;(3)分两种情况:①点D 在线段BC 上,当∠CDE=90°时,由(1)得出BD=6;当∠CED=90°时,延长BF 至G ,使GF=BF=4,连接CG ,则∠AEC=90°,同(2),由平行线得出=,在△AEF 是等腰直角三角形,得出EF=AF=2,BE=BF-EF=2,即可求出BD 的长;②当点P 在线段BC 的延长线上,当∠ECD=90°时,延长BF 至G ,使GF=BF=4,连接CG,则四边形ABCG是菱形,结合三角函数求出BD的长;当∠CED=90°时,同①得:AG=10,BE=6,GE=2,=,代入比例式计算即可.本题是三角形综合题目,考查了等腰三角形的性质、菱形的判定与性质、勾股定理、三角函数、全等三角形的判定与性质、等腰直角三角形的性质、平行线分线段成比例定理、三角形面积公式等知识;本题综合性强,注意分类讨论.。
2018-2019学年度数学第一次月考试题(含答案)
-1Ox =1yx2018--2019学年度(上)九年级第一次月考试卷数学试题(试题卷)说明:1.全卷共23题,共4页,考试时间120分钟,满分150分; 2.答案必须书写在答题卡上,否则不给分。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题有四个选项,其中只有一个是正确的,请把正确的答案填到相应位置上.1、下列方程中是一元二次方程的是( )A .02=++c bx axB .3)2(2++=x x x C .012=-x D .2122=+xx 2.用配方法解方程x 2+2x -1=0时,配方结果正确的是( )A .(x +2)2=2B .(x +2)2=3 C.(x +1)2=3 D .(x +1)2=2 3.对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( )A .对称轴是直线x =1,最小值是2B .对称轴是直线x =-1,最小值是2C .对称轴是直线x =1,最大值是2D .对称轴是直线x =-1,最大值是24.一元二次方程x 2-2x +14=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断 5.二次函数2y ax bx c =++(0a ≠)的图象如右图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( ) 第5题图 A .1个 B .2个 C .3个 D .4个6.组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=21B .21x (x +1)=21 C .21x (x ﹣1)=21 D .x (x ﹣1)=21 7.抛物线y =x 2-2x +m 2+2(m 是常数)的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax( )A .有最大值a 4B .有最大值-a 4C .有最小值a 4D .有最小值-a49.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( )A .7B .10C .11D .10或1110.已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( )A B C D二、填空题(本大题共4小题,每小题5分,满分20分)11.抛物线y =-2(x +5)2-3的顶点是 .12.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =________.13.已知方程ax 2+bx+c=0(a ≠0)的两个根为x 1=2.3和x 2=5.7,那么可知抛物线y=ax 2+bx+c (a ≠0)的对称轴为 .14.点P 1(﹣1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是________.三、(本大题共2小题,每小题8分,满分16分)15.已知一个二次函数y=x 2+bx+c 的图象经过点(4,1)和(-1,6).求这个二次函数的解析式.16.解一元二次方程: 02522=+-x x四、(本大题共2小题,每小题8分,满分16分)17.当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?18.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,当矩形花园的面积为300 m 2时,求AB 的长.第18题图五、(本大题共2小题,每小题10分,满分20分)19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2015年的绿色建筑面积约为950万平方米,2017年达到了1862万平方米.若2016年、2017年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年该市推行绿色建筑面积的年平均增长率;(2)2018年该市计划推行绿色建筑面积达到2400万平方米.如果2018年仍保持相同的年平均增长率,请你预测2018年该市能否完成计划目标.20.如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A,B两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y1>y2的x的取值范围.六、(本题满分12分)21.如图,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数第一象限图像上有一点D(x,y),使S△ABD=S△ABC,则D点的坐标为多少?七、(本题满分12分)22、某玩具店将进价为每个8元的“佩琪”玩偶按每个10元出售,每天可销出100个.玩具店想采用提高售价的办法来增加利润.经试验,发现这种玩偶每个每提价1元,每天的销售量就会减少10个.(1)玩具店要想实现一天的利润为200元,需把这种玩偶每个售价定为多少元?(2)玩具店要想实现一天的利润最大,每个售价需定为多少元?八、(本题满分14分)23.(12分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(1)求抛物线的解析式;(2)如图(1),请在抛物线的对称轴作一点P,使PA+PC的值最小,并求出点P的坐标.(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求直接写出点N的坐标;若不存在,请说明理由.23题图(1)23题图(2)第20题图第20题图参考答案及评分意见一、选择题(本大题共10小题,每小题4分,满分40分) 1--5 C D C A B; 6--10 C A B D A二、填空题(本大题共4小题,每小题5分,满分20分) 11.(-5,-3) 12.-1 13. x=4 14.y 1=y 2>y 3 三、(本大题共2小题,每小题8分,满分16分)15. 由题意得+c =642+b•4+c =1……………3分解这个方程组得c=1b=-4, ……………7分 所以所求二次函数的解析式是y=x 2-4x+1; ……………8分16.(参考) 解:(1)移项,得, ……………1分二次项系数化为1,得, ……………2分配方,得, ……………4分即……………6分∴或,∴,……………8分四、(本大题共2小题,每小题8分,满分16分) 17. 解:由题意,得=(-4)2-4(m -)=0,即16-4m +2=0,解得m =. ……………4分当m =时,方程有两个相等的实数根x 1=x 2=2. ……………8分18. 解:设AB 为x m ,则BC 为(50-2x)m. ……………1分 x(50-2x)=300. ……………4分 解得x 1=10,x 2=15. ……………6分 当x =10时,AD =BC =50-2x =30>25,不合题意,舍去;当x =15时,AD =BC =50-2x =20<25. ……………7分 答:AB 的长15 m. ……………8分五、(本大题共2小题,每小题10分,满分20分)19. 解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x , (1)分950(1+x )2=1862. ……………4分 解得,x 1=0.4,x 2=-2.4(舍去), ……………6分 所以这两年该市推行绿色建筑面积的年平均增长率为40%. ……………8分 (2)1862(1+40%)=2606.8. ∵2606.8>2400,∴2018年我市能完成计划目标.所以如果2018年仍保持相同的年平均增长率,2018年该市能完成计划目标………10分.20.解:(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上,∴4=a·22.∴a =1.则y 2=x 2. ……………4分 又∵A(-1,n)在二次函数y 2=x 2图象上, ∴n =(-1)2.∴n =1.则A(-1,1).又∵A ,B 两点在一次函数y 1=kx +b 图象上, ∴4=2k +b.1=-k +b ,解得b =2.k =1,则y 1=x +2.∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2. ……………8分 (2)根据图象可知:当-1<x<2时,y 1>y 2. ……………10分六、(本题满分12分)21.(1)∵二次函数y=-x 2 +2x+m的图象与x轴的一个交点为A(3,0),∴-9+2×3+m=0,解得:m=3;……………2分(2)∵二次函数的解析式为:y=-x 2 +2x+3,∴当y=0时,-x 2 +2x+3=0,解得:x=3或x=-1,∴B(-1,0);……………6分(3)如图,连接BD、AD,过点D作DE⊥AB,∵当x=0时,y=3,∴C(0,3),若S △ABD =S △ABC ,则可得OC=DE=3,∴当y=3时,-x 2 +2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3).……………12分七、(本题满分12分)22.解:(1)10或18元(6分)(2)14元。
广州执信中学2023-2024学年九年级上学期月考数学试题(原卷版)
2023——2024学年度第一学期初三级数学科12月阶段性检测试卷本试卷分选择题和非选择题两部分,共4页,满分120分.考试用时120分钟,注意事项:1.答卷前,考生务必用黑色字迹的钢笔或者签字笔将自己的姓名和学号填写在答题卡相应的位置上,用2B 铅笔将字迹的学号填涂在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能各在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.第一部分选择题(共30分)一、单选题(本题共10小题,每小题3分,共30分)1. 下列美术字中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.2. 下列说法正确的是( )A. 一颗质地均匀的骰子已连续掷了2018次,其中掷出5点的次数最少,则第2019次一定掷出5点B. 某种彩票中奖的概率是1%,因此买100张该彩票一定会中奖C. 天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D. “任意画一个三角形,其内角和是180°”是必然事件3. 把抛物线2y x =−向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A. 2(1)3y x =−−−B. 2(1)3y x =−+−C. 2(1)3y x =−−+D. 2(1)3y x =−++4. 如图,正六边形ABCDEF 内接于O ,半径为6,则这个正六边形的边心距OM 的长为( )A. 4B.C. D. 35. 在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径圆( )A. 与x 轴相交,与y 轴相切B. 与x 轴相离,与y 轴相交C. 与x 轴相切,与y 轴相交D. 与x 轴相切,与y 轴相离6. 设a ,b 是方程220230x x +−=的两个实数根,则22a a b ++的值为( )A. 2024B. 2021C. 2023D. 20227. 半径为6的圆中,垂直平分半径的弦长为( )A.B.C.D. 8. 如图,直径为10的A 经过点C 和点O ,点B 是y 轴右侧A 优弧上一点,30OBC ∠=°,则点C 的坐标为( ).A. ()0,5B. (C.D. 9. 如图,在平行四边形ABCD 中,E 为CD 上一点,:2:3DE EC =,连接AE BE BD 、、,且AE BD 、交于点F ,则:DEF ABF S S 等于( )A. 23:B. 25:C. 49:D. 425:10. 如图,等腰直角ACB △,AC BC =,点P 在ACB △内,2PC =,3PA =,PAD ACP ∠=∠则PB 的长为( )的A.B.D. 5第二部分非选择题(共90分)二、填空题(本题共6小题,每小题3分,共18分)11. 在平面直角坐标系中,点()3,2A −关于原点对称的点的坐标为_____________.12. 在一个不透明盒子有7枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别.从盒子随机取出一枚棋子,记下颜色后再放回盒中.不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中有______枚白棋子.13. 已知二次函数()2253y x =−+,当x 分别取()1212,x x x x ≠时,函数值相等,则当122x x x +=时,函数值为__________.14. 如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =−++,则铅球推出的水平距离OA 的长是_____m .15. 若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为_____. 16. 如图,点C 在以AB 为直径的半圆上,430AB CBA =∠=°,,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF DE ⊥于点D ,并交EC 的延长线于点F .下列结论:①30F ∠=°;②CE CF =;③线段EF最小值为④当1AD =时,EF 与半圆相切;⑤当点D 从点A 运动到点B 时,线段EF扫过的面积是其中正确的结论的序号为______.的的三、解答题(本题共9小题,满分72分,解答题需写出必要的文字说明,推理过程和演算步骤)17. 解方程:()45x x −=. 18. 如图,在ABC 中,90C ∠=°,30B ∠=°,将ABC 绕点A 顺时针旋转30°得到AED △,AE 交BC 于点F .若3AD =,求AF 长.19. 如图,在边长为1正方形组成的网格中,OAB 的顶点均在格点上,点A 、B 的坐标分别是()4,1A ,()2,2B .OAB 绕点O 逆时针旋转90°后得到OCD (C 与A 对应).(1)画出旋转后的图形;(2)点C 的坐标为__________;(3)求旋转过程中点A 所经过的路径长(结果保留π). 20. 2023年9月23日至10月8日在杭州举办第19届亚运会,吉祥物为“宸宸、琮琮、莲莲”.我校举办了“第19届亚运会”知识竞赛活动,拟将一些吉祥物“A 宸宸、B 琮琮、C 莲莲”作为竞赛奖品.主持人在3张完全相同的卡片上分别写上“、、A B C ”后放入一个盒子里.的的(1)某获奖者随机从盒子里抽取一张卡片恰好抽到“A宸宸”的概率为;(2)某获奖者随机从盒子里抽取一张卡片后放回,再随机抽取一张卡片.请借助列表法或树状图求“两次抽取卡片上字母相同”的概率.沿AE翻折,使点D恰好落在BC边上的点F.21. 在矩形ABCD中,E为DC边上一点,把ADE(1)求证:△∽△;ABF FCEAD=,求EC的长;(2)若AB=1622. 园林部门计划在某公园建一个长方形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD的一边CD长为x米.(1)BC长为________米(包含门宽,用含x的代数式表示);(2)若苗圃ABCD的面积为296m,求x的值;(3)当x为何值时,苗圃ABCD的面积最大,最大面积为多少?23. 如图,在ABC 中,AB BC =,O 是ABC 的外接圆,过点C 作ACD ACB ∠=∠,且交O 于点D .连接BD 交AC 于点E ,延长DC 到F ,使得CF CB =,连接BF .(1)求证:ED EC =.(2)求证:BF 是O 的切线.(3)若点G 为BCD △的内心,10AE AC ⋅=.①利用无刻度的直尺在图中画出点G 的位置.(保留作图痕迹,不写作法) ②求AG 的长.24. 如图,直线122y x =−+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =−++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出:点A 坐标________,点B 坐标________;抛物线的解析式是________;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标; (3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A ′′,若线段O A ′′与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.25. 已知O 的直径是4,弦BD =,点F 是弦BD 上一动点,过点F 作BD 的垂线,交优弧BD 于点A 、交劣弧BD 于点E ,连接AD ,过点B 作BG AD ⊥分别交AF 于点G 、交AD 于点H 、交O 于点C .(1)当点F 在弦BD 的中点处时,在图1补全图,DAF ∠=__________°,AG =__________; (2)如图2,当点F 在弦BD 上运动时,线段AG 的长度是否发生变化?若变化,请说明理由;若不变,求出AG 的长度并说明理由.(3)如图3,若BD 的中点为点P ,求线段PG 长度的最小值.。
河南省桐柏县2018-2019年九年级上数学第二次月考试题含答案
2019年秋期九年级第二次月考数学试题(考试时间:100分钟;满分:120分)题序一二三总分1—8 9—15 16 17 18 19 20 21 22 23得分一.选择题(共8小题,每小题3分,共24分)1.与3是同类二次根式的是().A.2 B.9 C.18 D.312.已知一个直角三角形的两条直角边的长恰好是方程22870x x-+=的两个根,则这个直角三角形的斜边长是()A.3B.3C.6D.93、从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.13B.14C.16D.1124、在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,则下列各式成立的是()A. b=a·sinBB. a=b·cosBC. a=b·tanBD. b=a·tanB5、如右图,在直角坐标系中,矩形OABC的顶点O是坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)6.如右图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B 重合,折痕为DE,则S△BCE:S△BDE等于()A. 2:5B.14:25C.16:25D. 4:257.如果关于x的一元二次方程22(21)10k x k x-++=有两个不相等的实数根,那么k的取值范围是()A.14k>- B.14k>-且0k≠ C.14k<- D.14k≥-且k≠8如右图,在Rt△中,∠°,于点.已知,,那么()A. B. C. D..二.填空题(共7小题,每小题3分,共21分)9.当x时,322-x在实数范围内有意义。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
安徽省桐城市第二中学2019届九年级上学期第二次月考(12月)数学试题(附答案)
桐城二中2018~2019学年度九年级第三次月考数 学 试 卷一、选择题(本大题共10小题,共40分) 1.在中,,,,则边AC 的长是A. B. 3C. D. 132.已知一次函数的图象如图,则二次函数在平面直角坐标系中的图象可能是A B C D3.一个公共房门前的台阶高出地面米,台阶拆除后,换成供轮椅行走的斜坡,数据如下图所示,则下列关系或说法正确的是A. 斜坡AB 的坡度是B.斜坡AB 的坡度是C. 米D.米4.二次函数y=-x 2-2x+c 在的范围内有最小值-5,则c 的值是A.B.C.D.5.下列抛物线的顶点坐标为(3,-4)的是A.B.C.D.6.如图是二次函数的部分图象,由图象可知不等式的解集是A.B.C. 且D. 或7.如图所示:,,,则A. B.C.3D.68.阳光通过窗口AB照射到室内,在地面上留下米的亮如图所示,已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高BC为( )A. 米B. 米C. 4米D. 米9.已知是锐角,且,那么下列各式中正确的是A. B. C. D.10.如图,在矩形中,,,点在上,且,点在上,若,则的长为( )A. B.C.或D.或或二、填空题(本大题共4小题,共20分)11.抛物线y=-2(x-2)(x+3)的对称轴是 。
12.在平面直角坐标系中,点A 坐标为(4,3),那么cos α的值是 。
第12题图 第13题图13.平面直角坐标中,已知点O(0,0),B(1,0),A(0,2)。
点P 是反比例函数图象上的一个动点,过点P 作轴,垂足为Q 若以点O 、P 、Q 为顶点的三角形与相似,则相应的点共有________个。
14.二次函数的图象如下图所示,下列结论:抛物线与x 轴的另一个交点为其中正确的结论是 填写序号三、解答题(本大题共9小题,其中第15-18题每题8分,第19、20每题10分,第21-22每题12分,第23题14分) 15.计算:1)31()53(30tan 331---︒--︒+-16.已知抛物线过,,三点,求该抛物线的解析式,并指出当时函数值的取值范围.17.如图,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且,AE=EB ,求证:∽.18.在平面直角坐标系中xOy中,过点P(0,2)作直线l:12y x b=+(b为常数且b<2)的垂线,垂足为点Q,求tan∠OPQ的值。
安徽省合肥一六八教育集团2018-2019学年九年级(上)第一次月考数学试卷(解析版)
2018-2019学年安徽省合肥一六八教育集团九年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共40分)1.下列函数不属于二次函数的是()A.y=(x﹣1)(x﹣2)B.y=(x+1)2C.y=2(x+3)2﹣2x2D.y=1﹣x22.抛物线y=3(x+1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(﹣1,2)3.设点(﹣1,y1),(2,y2),(3,y3)是抛物线y=﹣2x2+1上的三点,则y1、y2、y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y3>y1>y2D.y1>y2>y34.在同一坐标系中,作y=3x2+2,y=﹣3x2﹣1,y=x2的图象,则它们()A.都是关于y轴对称B.顶点都在原点C.都是抛物线开口向上D.以上都不对5.y=3(x﹣1)2+2与y轴的交点坐标是()A.(0,2)B.(0,5)C.(2,0)D.(5,0)6.在学校运动会上,初三(5)班的运动员掷铅球,铅球的高y(m)与水平距离x(m)之间函数关系式为y=﹣0.2x2+1.6x+1.8,则此运动员的成绩是()A.10m B.4m C.5m D.9m7.抛物线y=2(x﹣3)(x﹣5)的对称轴是直线()A.x=3B.x=5C.x=4D.x=88.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.9.二次函数y=ax2+bx+c的图象如图所示,且P=|a﹣b+c|+|2a+b|,Q=|a+b+c|+|2a﹣b|,则P、Q的大小关系是()A.P>Q B.P<Q C.P=Q D.无法确定10.已知如图在边长为2的正方形OABC中,直线m始终沿着与OB垂直的方向从点O平移到点B停止,速度是1,记直线m在正方形中扫过的区域面积为y,直线运动的时间为x,下列正确的反映y与x函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,共20分)11.二次函数y=x2+4x﹣1的最小值是.12.已知抛物线y=(x﹣1)2+1向右平移2个单位,再向上平移1个单位得到抛物线.13.若y=(m﹣1)x m2+2m﹣1是二次函数,则m的值是.14.如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为.三、解答题(总分90)15.(8分)若二次函数图象经过点A(﹣1,0),B(3,0),C(0,5)三点,求该二次函数解析式.16.(8分)用配方法求出二次函数y=x2﹣x﹣1的顶点坐标.17.(8分)若二次函数y=(m﹣1)x2+2x+1与x轴有交点,求m的取值范围.18.(8分)(1)请在右图的坐标系中画出函数y=x2﹣2x的大致图象;(2)根据图象回答x取何值的时候,y≥0.19.(10分)如图,有长为24米的篱笆,一面利用墙(墙的长度为10米)围成长方形养鸡场.试问:当长方形的长、宽各为多少米时,养鸡场的面积最大,最大面积是多少?20.(10分)已知二次函数y=﹣x2﹣2x+3的图象与x轴相交于A、B两点,与y轴交于C点(如图所示),点D在二次函数的图象上,且D与C关于对称轴对称,一次函数的图象过点B、D;(1)求点D的坐标;(2)求一次函数的解析式;(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.21.(12分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?22.(12分)数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x轴的距离为5,求平移后二次函数图象所对应的函数表达式.23.(14分)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出点A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长;②当m为何值时,四边形PEDF为平行四边形?③设△BCF的面积为S,求S与m的函数关系式,S是否有最大值?如果有,请求出;如果没有,说明理由.2018-2019学年安徽省合肥一六八教育集团九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,共40分)1.下列函数不属于二次函数的是()A.y=(x﹣1)(x﹣2)B.y=(x+1)2C.y=2(x+3)2﹣2x2D.y=1﹣x2【分析】首先把每一个函数式整理为一般形式,进而利用二次函数定义分析得出即可.【解答】解:A.y=(x﹣1)(x﹣2)=x2﹣3x+2,是二次函数,不合题意,故此选项错误;B.y=(x+1)2=x2+2x+1,是二次函数,不合题意,故此选项错误;C.y=2(x+3)2﹣2x2=12x+18,是一次函数,符合题意,故此选项正确;D.y=1﹣x2=﹣x2+1,是二次函数,不合题意,故此选项错误.故选:C.【点评】此题主要考查了二次函数的定义,正确把握定义是解题关键.2.抛物线y=3(x+1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(﹣1,2)【分析】已知抛物线解析式为顶点式,可直接求顶点坐标.【解答】解:∵y=3(x+1)2+2为抛物线的顶点式,∴抛物线的顶点坐标为(﹣1,2).故选:D.【点评】本题考查了二次函数的性质.抛物线的顶点式y=a(x﹣h)2+k的顶点坐标是(h,k).3.设点(﹣1,y1),(2,y2),(3,y3)是抛物线y=﹣2x2+1上的三点,则y1、y2、y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y3>y1>y2D.y1>y2>y3【分析】分别计算自变量为﹣1、2、3对应的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣1时,y1=﹣2x2+1=﹣2×(﹣1)2+1=﹣1,当x=2时,y2=﹣2x2+1=﹣2×22+1=﹣7,当x=3时,y3=﹣2x2+1=﹣2×32+1=﹣17,所以y1>y2>y3.故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.在同一坐标系中,作y=3x2+2,y=﹣3x2﹣1,y=x2的图象,则它们()A.都是关于y轴对称B.顶点都在原点C.都是抛物线开口向上D.以上都不对【分析】从三个二次函数解析式看,它们都缺少一次项,即一次项系数为0,故对称轴x=0,对称轴为y轴.【解答】解:观察三个二次函数解析式可知,一次项系数都为0,故对称轴x=﹣=0,对称轴为y轴,都关于y轴对称.故选:A.【点评】本题考查了二次函数的图象的性质;用到的知识点为:二次函数的一次项系数为0,对称轴是y轴.5.y=3(x﹣1)2+2与y轴的交点坐标是()A.(0,2)B.(0,5)C.(2,0)D.(5,0)【分析】计算出自变量为0对应的函数值可得到抛物线与y轴的交点坐标.【解答】解:当x=0时,y=3(x﹣1)2+2=3(0﹣1)2+2=5,所以抛物线与y轴的交点坐标为(0,5).故选:B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.6.在学校运动会上,初三(5)班的运动员掷铅球,铅球的高y(m)与水平距离x(m)之间函数关系式为y=﹣0.2x2+1.6x+1.8,则此运动员的成绩是()A.10m B.4m C.5m D.9m【分析】铅球落地才能计算成绩,此时y=0,即y=﹣0.2x2+1.6x+1.8=0,解方程即可.在实际问题中,注意负值舍去.【解答】解:由题意可知,把y=0代入解析式得:y=﹣0.2x2+1.6x+1.8=0,解得x1=9,x2=﹣1(舍去),即该运动员的成绩是9米.故选:D.【点评】本题考查二次函数的实际应用,搞清楚铅球落地时,即y=0,测量运动员成绩,也就是求x的值,此题为数学建模题,借助二次函数解决实际问题.7.抛物线y=2(x﹣3)(x﹣5)的对称轴是直线()A.x=3B.x=5C.x=4D.x=8【分析】根据题目中的函数解析式,可以将该函数解析式化为顶点式,从而可以写出对称轴,本题得以解决.【解答】解:∵抛物线y=2(x﹣3)(x﹣5)=2x2﹣16x+30=2(x﹣4)2﹣2,∴该抛物线的对称轴是直线x=4,故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.【分析】可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b <0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.【点评】本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.9.二次函数y=ax2+bx+c的图象如图所示,且P=|a﹣b+c|+|2a+b|,Q=|a+b+c|+|2a﹣b|,则P、Q的大小关系是()A.P>Q B.P<Q C.P=Q D.无法确定【分析】由函数图象可以得出a<0,b>0,c=0,当x=1时,y=a+b+c>0,x=﹣1时,y=a ﹣b+c<0,由对称轴得出2a+b>0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q的值.【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∵﹣>1,∴b+2a>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c<0.p=﹣a+b﹣c+2a+b=a+2b﹣c.Q=a+b+c+b﹣2a=﹣a+2b+c,∴Q﹣P=﹣2a+2c>0∴P<Q,故选:B.【点评】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.10.已知如图在边长为2的正方形OABC中,直线m始终沿着与OB垂直的方向从点O平移到点B停止,速度是1,记直线m在正方形中扫过的区域面积为y,直线运动的时间为x,下列正确的反映y与x函数关系的图象是()A.B.C.D.【分析】根据题意可以求得AC的长,从而可以求得各段对应的函数解析式,进而得到相应的函数图象,本题得以解决.【解答】解:∵正方形OABC的边长为2,∴对角线AC的长为4,当直线m从开始运动到与AC重合的过程中,y=(0≤x≤2),当直线m从AC运动到过点B时,y=(2×2)﹣=8﹣(4﹣x)2=﹣(4﹣x)2+8故选:C.【点评】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题(本大题共4小题,共20分)11.二次函数y=x2+4x﹣1的最小值是﹣5.【分析】将二次函数y=x2+4x﹣1配方,即可得到最小值.【解答】解:y=x2+4x﹣1=x2+4x+4﹣5=(x+2)2﹣5,可见二次函数y=x2+4x﹣1的最小值是﹣5.故答案为:﹣5.【点评】此题考查了二次函数的最值,将一般式化为顶点式,即可直接得出二次函数的最小值.12.已知抛物线y=(x﹣1)2+1向右平移2个单位,再向上平移1个单位得到抛物线y=(x﹣3)2﹣2.【分析】先确定抛物线y=(x﹣1)2+1的顶点坐标为(1,1),再利用点平移的坐标变换规律,把点(1,1)平移后对应点的坐标为(3,2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=(x﹣1)2+1的顶点坐标为(1,1),把点(1,1)向右平移2个单位,再向上平移1个单位得到对应点的坐标为(3,2),所以平移后的抛物线解析式为y=(x﹣3)2﹣2.故答案为y=(x﹣3)2﹣2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.若y=(m﹣1)x m2+2m﹣1是二次函数,则m的值是﹣3.【分析】直接利用二次函数的定义分析得出答案.【解答】解:∵y=(m﹣1)x m2+2m﹣1是二次函数,∴m2+2m﹣1=2,m﹣1≠0,解得:m1=1(舍去),m2=﹣3.故答案为:﹣3.【点评】此题主要考查了二次函数的定义,正确把握定义是解题关键.14.如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为2011.【分析】根据正方形对角线平分一组对角可得OB1与y轴的夹角为45°,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.【解答】解:∵OA1C1B1是正方形,∴OB1与y轴的夹角为45°,∴OB1的解析式为y=x联立,解得或,∴点B1(1,1),OB1==,∵OA1C1B1是正方形,∴OC1=OB1=×=2,∵C1A2C2B2是正方形,∴C1B2的解析式为y=x+2,联立,解得,或,∴点B2(2,4),C1B2==2,∵C1A2C2B2是正方形,∴C1C2=C1B2=×2=4,∴C2B3的解析式为y=x+(4+2)=x+6,联立,解得,或,∴点B3(3,9),C2B3==3,…,依此类推,正方形C2010A2011C2011B2011的边长C2010B2011=2011.故答案为:2011.【点评】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.三、解答题(总分90)15.(8分)若二次函数图象经过点A(﹣1,0),B(3,0),C(0,5)三点,求该二次函数解析式.【分析】根据A与B坐标设出二次函数解析式,把C坐标代入计算即可求出解析式.【解答】解:设二次函数解析式为y=a(x+1)(x﹣3),把(0,5)代入得:﹣3a=5,解得:a=﹣,则二次函数解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+5.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.16.(8分)用配方法求出二次函数y=x2﹣x﹣1的顶点坐标.【分析】根据配方法可以将题目中的函数解析式化为顶点式,从而可以解答本题.【解答】解:∵二次函数y=x2﹣x﹣1=,∴该函数的顶点坐标是:(1,﹣).【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.17.(8分)若二次函数y=(m﹣1)x2+2x+1与x轴有交点,求m的取值范围.【分析】根据题意可以得到关于m的不等式组,从而可以求得m的取值范围,注意二次项系数m﹣1≠0.【解答】解:∵二次函数y=(m﹣1)x2+2x+1与x轴有交点,∴,解得,m≤2且m≠1,即m的取值范围是m≤2且m≠1.【点评】本题考查二次函数图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和不等式的性质解答.18.(8分)(1)请在右图的坐标系中画出函数y=x2﹣2x的大致图象;(2)根据图象回答x取何值的时候,y≥0.【分析】(1)根据二次函数图象的画法画出图象;(2)根据二次函数图象可直接求得.【解答】解:(1)(2)由二次函数图象可得:当x≥2,或x≤0时,y≥0.【点评】本题考查了抛物线与x轴的交点,利用二次函数的性质解决问题是本题的关键.19.(10分)如图,有长为24米的篱笆,一面利用墙(墙的长度为10米)围成长方形养鸡场.试问:当长方形的长、宽各为多少米时,养鸡场的面积最大,最大面积是多少?【分析】根据题意表示出长方形的长与宽,进而得出y与x的函数关系,再利用二次函数增减性得出答案.【解答】解:由题意可得:BC=xm,AB=m,则y=x×=﹣x2+12x=﹣(x2﹣24x)=﹣(x﹣12)2+72,∵墙长为10m,∴0<x≤10,∵a=﹣,∴x<12时,y随x的增大而增大,m2),故当x=10m时,y最大=70(此时AB=CD=7m.答:当长方形的长为10m、宽为7m时,养鸡场的面积最大,最大面积是70m2.【点评】此题主要考查了二次函数的应用,利用二次函数增减性得出其最值是解题关键.20.(10分)已知二次函数y=﹣x2﹣2x+3的图象与x轴相交于A、B两点,与y轴交于C 点(如图所示),点D在二次函数的图象上,且D与C关于对称轴对称,一次函数的图象过点B、D;(1)求点D的坐标;(2)求一次函数的解析式;(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.【分析】根据二次函数的特点求出点C的坐标,再根据对称轴为x=﹣1,由抛物线的对称性得到点D的坐标;根据一次函数的特点列出方程组求出解析式.【解答】解:(1)由y=﹣x2﹣2x+3得到C(0,3),而对称轴为x=﹣1,由抛物线的对称性知:D(﹣2,3);(2)设过点B(1,0)、D(﹣2,3)的一次函数为y=kx+b∴⇒,∴一次函数的解析式为:y=﹣x+1.(3)当x<﹣2或x>1时,一次函数值大于二次函数值.【点评】本题综合考查一次函数与二次函数的图象的特点.利用待定系数法求出解析式.21.(12分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【解答】解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.22.(12分)数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为y=x;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x轴的距离为5,求平移后二次函数图象所对应的函数表达式.【分析】(1)根据题意得出抛物线的顶点坐标,根据待定系数法即可求得;(2)根据平移的规律得出点O1的坐标为(3,1)或(﹣27,﹣9),从而求得解析式.【解答】解:(1)∵当a=﹣1时,抛物线的顶点为(﹣1,﹣),当a=0时,抛物线的顶点为(0,0),∴设直线为y=kx,代入(﹣1,﹣)得,﹣=﹣k,解得k=,∴“抛物线簇”的顶点所在直线的函数表达式为y=x,故答案为y=x.(2)由题意得:点P1的纵坐标为5或﹣5,∴抛物线沿着直线向上平移了1个单位或向下平移了9个单位,∴此时点O1的纵坐标为1或﹣9,代入直线y=x求得横坐标为3或﹣27,∴点O1的坐标为(3,1)或(﹣27,﹣9),∴平移后的二次函数的表达式为y=(x﹣3)2+1或y=(x+27)2﹣9.【点评】本题考查了待定系数法求一次函数的解析式,二次函数的图象与几何变换,求得平移后O1的顶点坐标是解题的关键.23.(14分)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出点A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长;②当m为何值时,四边形PEDF为平行四边形?③设△BCF的面积为S,求S与m的函数关系式,S是否有最大值?如果有,请求出;如果没有,说明理由.【分析】(1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=﹣可得出对称轴的解析式.(2)①PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,得出两函数的值的差就是PF的长;②根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值;③利用S=S△BPF +S△CPF,进而结合二次函数最值求法得出答案.【解答】解:(1)令y=0,则﹣x2+2x+3=﹣(x+1)(x﹣3)=0,解得x=﹣1或x=3,则A(﹣1,0),B(3,0).抛物线的对称轴是:直线x=1.令x=0,则y=0,则C(0,3).综上所述,A(﹣1,0),B(3,0),C(0,3),抛物线的对称轴是x=1;(2)①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:,解得:.所以直线BC的函数关系式为:y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1,2).当x=m时,y=﹣m+3,∴P(m,﹣m+3).在y=﹣x2+2x+3中,当x=1时,y=4.∴D(1,4)当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3)∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m;②∵PF∥DE,∴当PF=ED时,四边形PEDF为平行四边形,由﹣m2+3m=2,解得:m1=2,m2=1(不合题意,舍去),因此,当m=2时,四边形PEDF为平行四边形;③设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3,∵S=S△BPF +S△CPF即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m=﹣(m2﹣3m)=﹣(m﹣)2+(0≤m≤3),故m=时,S有最大值为:.【点评】本题主要考查了二次函数的综合应用以及平行四边形的判定与性质、待定系数法求一次函数解析式等知识,根据二次函数解析式得出相关点的坐标和对称轴的解析式是解题的基础.。
中学2019届九年级12月月考数学试题(附答案)(2)
2018—2019学年度第一学期阶段性质量调研试卷九年级数学 2018.12考试时间:90分钟 满分分值:100分一、选择题(本大题共8小题,每题3分,共计24分):1.下列函数解析式中,一定为二次函数的是 ( )A .31y x =-;B .2y a x b x c=++; C .2221s t t =-+ D .21y x x=+; 2.把抛物线y =12x 2 向下平移2个单位,得到抛物线解析式为 ( ) A .y =12x 2+2B .y =12x 2-2C .y =12( x+2)2D .y =12( x-2)23.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为 ( ) A .60 B .48 C .60π D . 48π4.⊙O 的半径为6,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是 ( ) A .相切B. 相交C. 相离D. 不能确定5.二次函数y =2(x ﹣1)2+3的图象的顶点坐标是 ( ) A .(1,3) B .(-1,3) C .(1,-3) D .(-1,-3) 6.某果园2014年水果产量为100吨,2016年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为 ( ) A .144(1-x )2=100 B .100(1-x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 7.如图,A 、B 、C 是⊙O 上三点,∠ACB =25°,则∠BAO 的度数是 ( ) A .50° B .55° C .60° D .65°8.某超市在迎新年促销活动中,推出一种长方体巧克力礼盒,内装两个上下倒置的精品巧克力,且互不挤压,每个高为4cm ,底面是个直径为6cm的圆,横截面可以近似地看作一第7题第8题HEB第16题个抛物线,为了美观和节省成本,长方体上底面为玻璃纸,其余各面为纸板,包装要尽可能的小,那么要制作这样一个包装盒至少要纸板( ).(图3为俯视图,结果保留一位小数,不计重合部分)A. 252.9 cm 2B.288.6 cm 2C.191.4 cm 2D.206.3 cm 2 二、填空题(本大题共8小题,每题2分,共计16分.)9.将抛物线y =-x 2向上平移2个单位后,得到的图像的函数表达式是 ___ _. 10.抛物线y =(x-2)2+3的顶点坐标是 .11.已知⊙O 的弦AB =8cm ,圆心O 到弦AB 的距离为3cm ,则⊙O 的半径为 cm . 12.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是 . 13.若小唐同学掷出的铅球在场地上砸出一个直径为8cm 、深为2cm 的小坑,则该铅球的直径为_________cm第14题 第15题14.如图,小明用长为2.5m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿、旗杆的顶端的影子恰好落在地面的同一点O .此时,竹竿与这一点O 相距6m 、与旗杆相距12m ,则旗杆AB 的高为___________m .15.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(-2,4),点C 的坐标是(1,3),那么这条圆弧所在圆的圆心坐标是 .16.如图,等边三角形ABC 中,AB =6,动点E 从点B 出发向点C 运动,同时动点F 从点C 出发向点A 运动,点E 、F 运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AE 、BF 相交于点P ,点H 是线段BC 上的中点,则线段PH 的最小值为 . 三、解答题:17.解方程(本题共有2小题,每小题4分,共8分) (1))2(3)2(2-=-x x . (2)x 2-5x -4=0;第12题18.(本题满分8分)如图,在矩形ABCD 中,AB =3,AD =6,点E 在AD 边上且AE =4,EF ⊥BE 交CD 于点F .(1)求证:△ABE ∽△DEF . (2)求EF 的长.19.(本题满分8分)已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F . 求证:(1)AD =BD ;(2)DF 是⊙O 的切线.20.(本题满分6分)如图,在由边长为1个单位长度的小正方形组成的网格图中有格点△ABC .(注:顶点在网格线交点处的三角形叫做格点三角形) (1)图中AC 边上的高为_________个单位长度; (2)只用没有刻度的直尺,按如下要求画图:以点C 为位似中心,作△DEC ∽△ABC ,且相似比为1∶2; 21.(本题满分10分)已知:二次函数的图像经过点A(-1,0)、B (3,0)、C (0,3)求(1)求这个函数的关系式;(2)当x 取何值时,y 有最值;(3)当—3<x <2时,求y 的取值范围?22.(本题满分10分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y (台)与销售单价x (元)的关系为y =﹣2x +1000. (1)该公司每月的利润为w 元,写出利润w 与销售单价x 的函数关系式; (2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?23.(本题满分10分)已知在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A (0,2),B (1,0)分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点,现将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,抛物线y=ax 2+bx+c (a ≠0)经过点D .(1)如图1,若该抛物线经过原点O ,且31- a .①求点D 的坐标及该抛物线的解析式;②连结CD ,问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax 2+bx+c (a ≠0)经过点E (1,1),点Q 在抛物线上,且满足∠QOB 与∠BCD 互余.若符合条件的Q 点的个数是3个,请直接写出a 的值.2018—2019学年度第一学期阶段性质量调研试卷九年级数学 答案一、选择题:1、C2、B3、D4、B5、A6、D7、D8、C 二、填空题:9、y=-x 2+2 10、(2,3) 11、5 12、55° 13、10 14、7.515、(-1,2) 16 三、解答题:17、(1)122,5x x == (2)、125522x x ==18、 ①∵EF ⊥BE ,∠A=90°∴∠ABE=∠DEF(都是∠AEB 的余角)又∠A=∠D ∴△ABE ∽△DEF②AB=3,AE=4 AD=6∴BE=5 DE=2 △ABE ∽△DEF ∴EF:BE=DE:AB ∴EF=19、(1)证法一:连结CD ,∵BC 为⊙O 的直径 ∴CD ⊥AB ∵AC =BC ∴AD =BD .连结OD , ∵OB=OD∴∠BDO =∠B ∵∠B =∠A ∴∠BDO=∠A ∵∠A+∠ADE =90° ∴∠BDO +∠ADE =90° ∴∠ODF=90° ∴DF 是⊙O 的切线.20、21、(1)2y 23x x =-++ (2)当x=1时,y 最大值=4; (3)—12<y ≪4.22、 23、2122max min (20)(21000)21400200000(2)300,400345000350,45000;20025000w x x x x x x x y x y =--+=-+-==+====()y=-2(x-350)当时当时,。
邢台市九年级上学期数学12月月考试卷
邢台市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图案是轴对称图形的有()个A . 1个B . 2个C . 3个D . 4个2. (2分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根为0,则实数a的值为()A . 1B . -1C . 0D . ﹣1或13. (2分) (2016九上·西湖期末) 如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB 的值是()A .B .C .D .4. (2分)如图,点O在MN上,把∠AOB沿着MN的方向平移一定距离后得∠CPD.已知∠AOM=25°,∠DPN=50°,则∠AOB的大小是()A . 75°B . 105°C . 130°D . 155°5. (2分)(2019·桂林模拟) 下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条、4条或1条.其中正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为()A . 0.36π米2B . 0.81π米2C . 2π米2D . 3.24π米27. (2分)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是A .B .C .D .8. (2分) (2019九上·长春月考) 函数y=ax-2 (a≠0).与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题 (共7题;共7分)9. (1分) (2018九上·通州期末) ⊙ 的半径为1,其内接的边,则的度数为________.10. (1分)已知:如图ΔABC中,D、E、F分别是AB、AC、BC的中点.(1)若AB=10cm,AC=6cm,则四边形ADFE的周长为________ cm,(2)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是________ cm,面积是________ cm2 .11. (1分)下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生m次,则事件A发生的概率一定等于;③频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是________(填序号).12. (1分)(2019·哈尔滨模拟) 某扇形的面积为6π,弧长为3π,此扇形的圆心角的度数为________.13. (1分) (2019九上·凤山期中) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题:(1)点B的坐标为________;(2) y随x的增大而减小的自变量x的取值范围为________;(3)方程ax2+bx+c=0的两个根为________;(4)不等式ax2+bx+c<0的解集为________.14. (1分) (2018八上·萧山月考) 如图, ∠A=60°, ∠B=30°, ∠C=35°,则∠D+∠E=________°15. (1分)在平面直角坐标系中,M、N、C三点的坐标分别为,,,点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为,则b的取值范围是________.三、解答题 (共13题;共109分)16. (1分)如图,在平面内将Rt△ABC绕直角顶点C逆时针旋转90°得到Rt△EFC.若AB= ,BC=1,则线段BE的长为________.17. (5分)综合题。
中山市九年级上学期数学12月月考试卷
中山市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2015·江岸) 方程ⅹ(ⅹ-1)=0的解是()A . x=0B . x=1C . x= 0或ⅹ=1D . x=0和ⅹ=12. (2分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A . b2>4acB . ax2+bx+c≥﹣6C . 若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD . 关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣13. (2分)下面图形不是轴对称图形的是()A . 等腰三角形B . 菱形C . 平行四边形D . 正六边形4. (2分)下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等。
A . ①②③B . ③④⑤C . ①②⑤D . ②④⑤5. (2分) (2019九上·日照开学考) 下列说法正确的是()A . 从1,2,3,4,5中随机取出一个数,取得偶数的可能性比取得奇数的大B . 若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则甲组数据比乙组数据稳定C . 数据﹣2,1,3,4,4,5的中位数是4D . 了解重庆市初中学生的视力情况,适宜采用抽样调查的方法6. (2分) (2019九上·寻乌月考) 如图,点 A,B 的坐标分别为(1,4)和(4,4),抛物线 y=a(x﹣m)2+n 的顶点在线段 AB 上运动(抛物线随顶点一起平移),与 x 轴交于 C、D 两点(C 在 D 的左侧),点 C 的横坐标最小值为﹣3,则点 D 的横坐标最大值为()A . ﹣3B . 1C . 5D . 8二、填空题 (共6题;共11分)7. (1分)(2017·赤壁模拟) 对于二次函数y=x2﹣2mx﹣3,有下列结论:①它的图象与x轴有两个交点;②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;③如果将它的图象向左平移3个单位后过原点,则m=1;④如果当x=2时的函数值与x=8时的函数值相等,则m=5.其中一定正确的结论是________.(把你认为正确结论的序号都填上)8. (5分) (2018九上·阆中期中) 已知关于x的方程x2-6x+k=0的两根分别是x1 , x2 ,且满足+=3,则k的值是________.9. (1分) (2016九上·宁海月考) 把底面直径为6㎝,高为4㎝的空心无盖圆锥纸筒剪开摊平在桌面上,摊平后它能遮住的桌面面积是________㎝210. (2分) (2020七下·江阴月考) 如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C =60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.11. (1分)(2019·郫县模拟) 一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.记两次朝上的面上的数字分别为m、n,若把m、n分别作为点P的横坐标和纵坐标,则P(m,n)在双曲线y= 上的概率为________.12. (1分)(2020·广东模拟) 对于一个函数,如果它的自变量x与对应的函数值y满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=-x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,-1)和点B(-1,1),则a的取值范围是________.三、解答题 (共11题;共85分)13. (2分)如果方程与方程有一个公共根是3,求的值,并分别求出两个方程的另一个根.14. (2分) (2019八下·柯桥期末) 如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2) )若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.15. (10分)今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x=________;(2)扇形统计图中m=________,n=________,C等级对应的扇形的圆心角为________度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1 , a2表示)和两名女生(用b1 , b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.16. (10分) (2019七下·普陀期中) 按下列要求画图并填空:(1)过点B画出直线AC的垂线,交直线AC于点D________,那么点B到直线AC的距离是线段________的长.(2)用直尺和圆规作出△ABC的边AB的垂直平分线EF,交边AB、AC于点M、N,联结CM________.那么线段CM是△ABC的________ .(保留作图痕迹)17. (2分) (2019八上·昭通期末) 如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2 ,那么通道的宽应设计成多少m?18. (2分)(2020·通辽) 如图,的直径交弦(不是直径) 于点P ,且.求证:.19. (2分)(2018·常州) 如图,二次函数y=﹣ +bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1) b=________,点B的坐标是________;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.20. (10分)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.21. (15分) (2017八下·丛台期末) 已知y关于x的一次函数y=(2m2﹣32)x3﹣(n﹣3)x2+(m﹣n)x+m+n.(1)若该一次函数的y值随x的值的增大而增大,求该一次函数的表达式,并在如图所示的平面直角坐标系中画出该一次函数的图象;(2)若该一次函数的图象经过点(﹣2,13),求该函数的图象与坐标轴围成的三角形的面积.22. (15分)(2019·贵阳) 如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交AP的延长线于点D.如果∠D=90°,DP=1,求⊙O的直径.23. (15分)(2017·新乡模拟) 抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共11分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共85分)13-1、14-1、14-2、15-1、15-2、15-3、16-1、16-2、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
北京市首都师大附中2018-2019学年初三第一学期数学12月份月考试卷(解析版)
2018-2019学年北京市首都师大附中初三第一学期数学12月份月考试卷一、单选题(每小题3分)1.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)2.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则cos A的值是()A.B.C.D.3.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A.B.C.3D.4.如图,在△OAB绕点O逆时针旋转70°得到△OCD,若∠A=100°,∠D =50°,则∠AOD的度数是()A.20°B.30°C.40°D.50°5.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为()A.B.C.D.26.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上三点,且x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1<0<y2<y3B.y1>0>y2>y3C.y1<0<y3<y2D.y1>0>y3>y2 7.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)8.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),一次函数y=﹣2x+b 与线段AB有公共点,则b的取值范围是()A.3≤b≤6B.3≤b≤4C.1≤b≤2D.﹣2≤b≤﹣1二、填空题(每小题3分)9.方程x(x﹣2)=x的根是.10.在反比例函数y=图象的每一支上,y都随x的增大而减小,则k的取值范围是.11.如图,抛物线y=ax2+bx+c的对称轴为x=1,点P,点Q是抛物线与x轴的两个交点,若点P的坐标为(4,0),则点Q的坐标为.12.已知扇形的圆心角为120°,面积为12π,则扇形的半径是.13.如图,AB是⊙O的直径,DC是⊙O相切于点C,若∠D=30°,OA=2,则CD=.14.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是.15.在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为.16.如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果BC•AB=AC2,那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图2,在“附中博识课程中”,小白菜们沿着紫禁城的中轴线,从内金水桥走到了太和殿,领略了古代建筑的宏伟.太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,设太和门到太和殿之间的距离为x丈,要求x,则可列方程为.三、主观题(第17题-20题每题6分,第21题-24题每题7分)17.(6分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BAC.求作:∠BAC的角平分线AP.小欣的作法如下:(1)如图,在平面内任取一点O;(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;(4)过点P作射线AP.所以射线AP为所求根据小欣设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OPDE∴=()(填推理的依据),∴∠BAP=()(填推理的依据).18.(6分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.19.(6分)如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.20.(6分)如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).(1)求反比例函数的解析式;(2)若点P在直线OA上,且满足P A=2OA,直接写出点P的坐标.21.(7分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE ∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.22.(7分)已知关于x的方程kx2+(3k+1)x+3=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值;(3)在(2)的条件下,设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.23.(7分)问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC 所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC……请按照上面的证明思路,写出该证明的剩余部分;实践应用:(1)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为.(2)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为AB上一点,连接DB,∠ACD=45°,AE⊥CD于点E,△BDC的周长为4+2,BC=2,请求出AC的长.24.(7分)定义:点P是△ABC内部或边上的点(顶点除外),在△P AB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP ∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x 轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、单选题1.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出顶点坐标是(h,k).解:∵抛物线为y=(x﹣2)2+3,∴顶点坐标是(2,3).故选:B.【点评】要求熟练掌握抛物线的顶点式.2.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则cos A的值是()A.B.C.D.【分析】根据余弦的定义计算即可.解:在Rt△ABC中,cos A==,故选:B.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.3.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A.B.C.3D.【分析】本题已知了∠AED=∠B,易证得△ADE∽△ACB,由此可得出关于AE、AB,DE、BC的比例关系式;已知了AE、AB、DE的长,可根据比例关系式求出BC的值.解:∵∠AED=∠B,∠A=∠A∴△ADE∽△ACB∴∵DE=6,AB=10,AE=8∴,即BC=.故选:A.【点评】本题主要考查相似三角形的性质.难度较低.4.如图,在△OAB绕点O逆时针旋转70°得到△OCD,若∠A=100°,∠D =50°,则∠AOD的度数是()A.20°B.30°C.40°D.50°【分析】根据旋转的性质得∠BOD=70°,∠B=∠D=50°,再根据三角形内角和定理计算出∠BOA=30°,然后利用∠AOD=∠BOD﹣∠BOA进行计算即可.解:∵△OAB绕点O逆时针旋转70°得到△OCD,∴∠BOD=70°,∠B=∠D=50°,∴∠BOA=180°﹣∠A﹣∠B=180°﹣100°﹣50°=30°,∴∠AOD=∠BOD﹣∠BOA=70°﹣30°=40°.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.5.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为()A.B.C.D.2【分析】根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.6.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上三点,且x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1<0<y2<y3B.y1>0>y2>y3C.y1<0<y3<y2D.y1>0>y3>y2【分析】根据反比例函数的增减性解答即可.解:∵k=﹣4<0,故反比例函数图象的两个分支在第二四象限,且在每个象限内y随x的增大而增大,又∵(x2,y2),(x3,y3)是双曲线y=上的两点,且0<x2<x3,∴0>y3>y2,又∵x1<0,故(x1,y1)在第二象限,y1>0,∴y1>0>y3>y2.故选:D.【点评】在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.7.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)【分析】根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.解:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,﹣1),根据旋转变换的性质,点(1,﹣1)即为旋转中心.故旋转中心坐标是P(1,﹣1).故选:B.【点评】本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,熟练掌握网格结构,找出对应点的位置是解题的关键.8.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),一次函数y=﹣2x+b 与线段AB有公共点,则b的取值范围是()A.3≤b≤6B.3≤b≤4C.1≤b≤2D.﹣2≤b≤﹣1【分析】求得A和B分别在直线上时对应的k的值,根据一次函数y=﹣2x+b 的图象与线段AB有公共点,即可得出k的范围.解:当(1,1)在y=﹣2x+b上时,b=3,当(2,2)在y=﹣2x+b的图象上时,b=6.若一次函数y=﹣2x+b与线段AB有公共点,则b的取值范围是3≤b≤6.故选:A.【点评】本题主要考查一次函数与系数的关系,确定出一次函数y=﹣2x+b的两个特殊位置时b的值是解题的关键.二、填空题(每小题3分)9.方程x(x﹣2)=x的根是x1=0,x2=3.【分析】观察原方程,可先移项,然后用因式分解法求解.解:原方程可化为x(x﹣2)﹣x=0,x(x﹣2﹣1)=0,x=0或x﹣3=0,解得:x1=0,x2=3.【点评】只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.10.在反比例函数y=图象的每一支上,y都随x的增大而减小,则k的取值范围是k>.【分析】根据反比例函数的性质得出不等式,求出不等式的解集即可.解:∵在反比例函数y=图象的每一支上,y都随x的增大而减小,∴3k﹣1>0,∴k>,故答案为:k.【点评】本题考查了反比例函数的性质,能熟记反比例函数的性质的内容是解此题的关键.11.如图,抛物线y=ax2+bx+c的对称轴为x=1,点P,点Q是抛物线与x轴的两个交点,若点P的坐标为(4,0),则点Q的坐标为(﹣2,0).【分析】根据抛物线的对称轴结合点P的横坐标,即可求出点Q的横坐标,此题得解.解:∵抛物线的对称轴为直线x=1,点P的坐标为(4,0),∴点Q的横坐标为1×2﹣4=﹣2,∴点Q的坐标为(﹣2,0).故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点以及二次函数的性质,牢记抛物线的对称性是解题的关键.12.已知扇形的圆心角为120°,面积为12π,则扇形的半径是6.【分析】根据扇形的面积公式S=,得R=.解:根据扇形的面积公式,得R===6,故答案为6.【点评】本题考查了扇形面积的计算,属于基础题,解答本题的关键是能够灵活运用扇形的面积公式.13.如图,AB是⊙O的直径,DC是⊙O相切于点C,若∠D=30°,OA=2,则CD=2.【分析】直接利用切线的性质得出∠OCD=90°,进而勾股定理得出DC的长.解:连接CO,∵DC是⊙O相切于点C,∴∠OCD=90°,∵∠D=30°,OA=CO=2,∴DO=4,∴CD==2.故答案为:2.【点评】此题主要考查了切线的性质以及勾股定理,正确得出DO的长是解题关键.14.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是R ≥3.6.【分析】根据图象中的点的坐标先求反比例函数关系式,再由电流不能超过10A 列不等式,求出结论,并结合图象.解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.【点评】本题是反比例函数的应用,会利用待定系数法求反比例函数的关系式,并正确认识图象,运用数形结合的思想,与不等式或等式相结合,解决实际问题.15.在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为12<r<13.【分析】熟记“设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”即可求解,解:如果以点A为圆心作圆,使点C在圆A内,则r>12,点B在圆A外,则r<13,因而圆A半径r的取值范围为12<r<13.故答案为12<r<13.【点评】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.16.如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果BC•AB=AC2,那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图2,在“附中博识课程中”,小白菜们沿着紫禁城的中轴线,从内金水桥走到了太和殿,领略了古代建筑的宏伟.太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,设太和门到太和殿之间的距离为x丈,要求x,则可列方程为x2=100(100﹣x).【分析】根据黄金分割的概念列出比例式,计算即可.解:设太和门到太和殿的距离为x丈,∵BC•AB=AC2,∴可得,x2=100(100﹣x),故答案为:x2=100(100﹣x).【点评】本题考查了黄金分割的概念和性质,把线段AB分成两条线段AC和BC (AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.三、主观题(第17题-20题每题6分,第21题-24题每题7分)17.(6分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BAC.求作:∠BAC的角平分线AP.小欣的作法如下:(1)如图,在平面内任取一点O;(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;(4)过点P作射线AP.所以射线AP为所求根据小欣设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OPDE∴=(垂直于弦的直径平分弦,并且平分弦所对的两条弧)(填推理的依据),∴∠BAP=∠CAP(等弧所对圆周角相等)(填推理的依据).【分析】从画法(1)(2)可知点A、D、E为以点O为圆心,AO为半径的圆上的点,得∠DAE为圆O的圆周角,DE为弦,由垂径定理得=,然后由同弧或等弧所对的圆周角相等得∠DAP=∠CAP,再由角平分线的定义即可得AP是∠BAC的角平分线.解:(1)作图如下:(2)证明:作图依据是:从画法(1)(2)可知点A、D、E为以点O为圆心,AO为半径的圆上的点,∴∠DAE为圆O的圆周角,DE为弦从画法(3)可知半径OP垂直于弦DE,∵OPDE∴=(垂直于弦的直径平分弦,并且平分弦所对的两条弧),∴∠DAP=∠CAP(等弧或同弧所对的圆周角相等),即∠BAP=∠CAP,故AP是∠BAC的角平分线(角平分线的定义).故答案为;垂直于弦的直径平分弦,并且平分弦所对的两条弧;∠CAP;等弧所对圆周角相等.【点评】本题主要考查了作角平分线的基本作图,作图时借助圆的垂径定理作出,理解和正确利用垂径定理是解题关键.从画法(1)(2)可知点A、D、E为以点O为圆心,AO为半径的圆上的点,得∠DAE为圆O的圆周角,DE为弦,18.(6分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.【分析】根据m是方程x2﹣x﹣2=0的一个实数根,然后对题目中所求式子进行变形即可解答本题.解:∵m是方程x2﹣x﹣2=0的一个实数根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴(m2﹣m)(m﹣+1)===2×(1+1)=2×2=4.【点评】本题考查一元二次方程的解,解答本题的关键是明确题意,利用方程的思想解答.19.(6分)如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.【分析】先利用勾股定理计算出AC=2,则CE=2,所以=,再证明∠BAC=∠DCE.然后根据相似三角形的判定方法可判断△ABC∽△CED.证明:∵∠B=90°,AB=4,BC=2,∴AC==2,∵CE=AC,∴CE=2,∵CD=5,∵==,=,∴=,∵∠B=90°,∠ACE=90°,∴∠BAC+∠BCA=90°,∠BCA+∠DCE=90°.∴∠BAC=∠DCE.∴△AB C∽△CED.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.20.(6分)如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).(1)求反比例函数的解析式;(2)若点P在直线OA上,且满足P A=2OA,直接写出点P的坐标.【分析】(1)把A的坐标代入函数解析式即可求得m的值,即可得到反比例函数解析式;(2)P A=2OA,则P在以A为圆心,以2OA为半径的圆上,圆与直线OA的交点就是P.解:(1)∵点A(1,m)在一次函数y=3x的图象上,∴m=3.∴点A的坐标为(1,3).∵点A(1,3)在反比例函数的图象上,∴k=3.…(2分)∴反比例函数的解析式为.(2)点P的坐标为P(3,9)或P(﹣1,﹣3).【点评】本题主要考查了待定系数法求反比例函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.21.(7分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE ∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.【分析】(1)先得出∠ABD=∠CBD,进而得出OD⊥DF,即可得出结论;(2)连接DC,利用全等三角形的判定得出△ABD≌△CBD,进而解答即可.(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∴OD⊥DF.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD.∴CD=AD=4,AB=BC.∵DE=5,∴,EF=DE=5.∵∠CBD=∠BDE,∴BE=DE=5.∴BF=BE+EF=10,BC=BE+EC=8.∴AB=8.∵DE∥AB,∴△ABF∽△MEF.∴.∴ME=4.∴DM=DE﹣EM=1.【点评】主要考查了切线的判定,关键是根据全等三角形的判定和性质解答.22.(7分)已知关于x的方程kx2+(3k+1)x+3=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值;(3)在(2)的条件下,设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.【分析】(1)分k=0时,方程为一元一次方程,有解,k≠0时,表示出根的判别式,再根据非负数的性质判断出△≥0,得到一定有实数根;(2)令y=0,解关于x一元二次方程,求出二次函数图象与x轴的两个交点的横坐标都是整数求出k值为1;(3)先根据(2)中的k值写出二次函数解析式并整理成顶点式形式,然后写出点P的坐标,然后写出直线OP的解析式,再根据平移的性质设平移后的抛物线顶点坐标为(h,h),然后写出抛物线的顶点式形式为y=(x﹣h)2+h,再分①抛物线经过点C时,然后把点C的坐标代入抛物线求出h的值,再根据函数图象写出h的取值范围;②直线与抛物线只有一个交点时,联立直线与抛物线解析式消掉未知数y,利用根的判别式△=0列式求出h的值,然后求出交点坐标,从而得解.(1)证明:①当k=0时,方程为x+3=0,所以x=﹣3,方程有实数根,②当k≠0时,△=(3k+1)2﹣4k•3,=9k2+6k+1﹣12k,=9k2﹣6k+1,=(3k﹣1)2≥0,所以,方程有实数根,综上所述,无论k取任何实数时,方程总有实数根;(2)令y=0,则kx2+(3k+1)x+3=0,解关于x的一元二次方程,得x1=﹣3,x2=,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1;(3)由(2)得抛物线的解析式为y=x2+4x+3,配方得y=(x+2)2﹣1,∴抛物线的顶点M(﹣2,﹣1),∴直线OD的解析式为y=x,于是设平移后的抛物线的顶点坐标为(h,h),∴平移后的抛物线解析式为y=(x﹣h)2+h,①当抛物线经过点C时,令x=0,则y=9,∴C(0,9),∴h2+h=9,解得h=,∴当≤h<时,平移后的抛物线与射线CD只有一个公共点;②当抛物线与直线CD只有一个公共点时,由方程组,消掉y得,x2+(﹣2h+2)x+h2+h﹣9=0,∴△=(﹣2h+2)2﹣4(h2+h﹣9)=0,解得h=4,此时抛物线y=(x﹣4)2+2与射线CD唯一的公共点为(3,3),符合题意,综上所述:平移后的抛物线与射线CD只有一个公共点时,顶点横坐标的值或取值范围是h=4或≤h<.【点评】本题是二次函数的综合题型,主要考查了根的判别式,二次函数与x 轴的交点问题,二次函数与不等式的关系,(3)根据CD是射线,要分情况讨论.23.(7分)问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC 所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC……请按照上面的证明思路,写出该证明的剩余部分;实践应用:(1)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为BE=CE+AC.(2)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为AB上一点,连接DB,∠ACD=45°,AE⊥CD于点E,△BDC的周长为4+2,BC=2,请求出AC的长.【分析】首先证明△MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案;(1)直接根据阿基米德折弦定理得出结论;(2)根据阿基米德折弦定理得出CE=BD+DE,进而求出CE,最后用勾股定理即可得出结论.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG,∵M是的中点,∴MA=MC.在△MBA和△MGC中,,∴△MBA≌△MGC(SAS),∴MB=MG,又∵MD⊥BC,∴BD=GD,∴DC=GC+GD=AB+BD;实践应用(1)如图3,依据阿基米德折弦定理可得:BE=CE+AC;故答案为:BE=CE+AC;(2)∵AB=AC,∴A是的中点,∵AE⊥CD,根据阿基米德折弦定理得,CE=BD+DE,∵△BCD的周长为4+2,∴BD+CD+BC=4+2,∴BD+DE+CE+BC=2CE+BC=4+2,∵BC=2,∴CE=2,在Rt△ACE中,∠ACD=45°,∴AE=CE=2,∴AC=4.【点评】此题是圆的综合题,考查了全等三角形的判定与性质以及等腰三角形的性质,理解和应用阿基米德折弦定理是解题关键.24.(7分)定义:点P是△ABC内部或边上的点(顶点除外),在△P AB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP ∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x 轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P 在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠MON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ON cos60°=,∴OD=OP cos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。
2018-2019学年安徽省庐江县第二中学九年级(上)第一次月考数学试卷(解析版)
2018-2019学年安徽省庐江县第二中学九年级(上)第一次月考数 学 试 卷考试范围:第21、22章;考试时间:120分钟;满分:120学校:___________姓名:___________班级:___________考号:___________一.选择题(共12小题,满分36分,每小题3分)1.(3分)方程①2x 2﹣9=0 ②0112=-xx ③xy +x 2 ④7x +6=x 2 ⑤ax 2+bx +c=0中,一元二次方程的个数是( )A .1个B .2个C .3个D .4个2.(3分)一元二次方程x 2+6x ﹣6=0配方后化为( )A .(x ﹣3)2=3B .(x ﹣3)2=15C .(x +3)2=15D .(x +3)2=3 3.(3分)某品牌服装原价为1000元,连续两次降价a%后售价为640元,下列所列方程正确的是( )A .1000(1﹣2a )=640B .1000(1﹣a%)2=640C .1000(1﹣a )2=640D .1000(1﹣2a%)=6404.(3分)从﹣2,﹣1,0,1,23,4这六个数中,随机抽取一个数记为a ,若数a 使关于x 的分式方程23210-=+--x x x ax 有整数解,且使抛物线y=(a ﹣1)x 2+3x ﹣1的图象与x 轴有交点,那么这六个数中所满足条件的a 的值之和为( )A .21-B .23C .25D .211 5.(3分)若二次函数y=ax 2+bx +c 的图象开口向下、顶点坐标为(2,﹣3),则此函数有( )A .最小值2B .最小值﹣3C .最大值2D .最大值﹣36.(3分)用配方法解3x 2﹣6x=6配方得( )A .(x ﹣1)2=3B .(x ﹣2)2=3C .(x ﹣3)2=3D .(x ﹣4)2=37.(3分)如图,某小区规划在一个长为16m ,宽为9m 的矩形空地上修两条纵向平行和一条横向弯折的小路(所有小路进出口的宽度相等,且每段小路均为平行四边形),其余部分铺设草坪,已知草坪的总面积为112m 2.若设小路的宽度为xm ,则x 满足的方程为( )A .x 2﹣18x +32=0B .x 2﹣17x +16=0C .2x 2﹣25x +16=0D .3x 2﹣22x +32=08.(3分)关于的不等式组⎩⎨⎧-≥+-≤14122k x k x 无解,且二次函数y=2x 2﹣(k ﹣1)x +3,当x >1时,y 随x 的增大而增大,满足条件的所有整数的和为( )A .13B .14C .15D .169.(3分)关于一元二次方程x 2﹣2x ﹣1=0根的情况,下列说法正确的是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根10.(3分)定义:一个工厂一年的生产增长率是:,如果该工厂2020年的产值要达到2018年产值的1.44倍,而且每年的生产增长率都是x ,则x 等于( )A .5%B .10%C .15%D .20%11.(3分)抛物线y=x 2先向左平移1个单位,再向上平移3个单位,得到的抛物线解析式是( )A .y=(x +1)2+3B .y=(x +1)2﹣3C .y=(x ﹣1)2﹣3D .y=(x ﹣1)2+312.(3分)在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣41x 2+bx +c 的一部分(如图),其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是( )A .y=﹣41 x 2+43 x +1 B .y=﹣41 x 2+43 x ﹣1 C .y=﹣41 x 2﹣43 x +1 D .y=﹣41 x 2﹣43 x ﹣1二.填空题(共8小题,满分24分,每小题3分)13.(3分)关于x 的方程6x 2﹣5(m ﹣1)x +m 2﹣2m ﹣3=0有一个根是0,则m 的值为 .14.(3分)若关于x 的一元二次方程x 2+2x +k=0有两个不相等的实数根,则实数k 的取值范围是 .15.(3分)如图,某小区有一块长为30m ,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m 2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm ,则可列方程为 .16.(3分)抛物线y=﹣2x 2﹣1的顶点坐标是 .17.(3分)已知y=﹣x 2+2与x 轴交于A ,B 两点,与y 轴交于C 点,则△ABC 的面积为 .18.(3分)函数y=(x ﹣3)2+4的最小值为 .19.(3分)已知a 是方程x 2﹣x ﹣1=0的一个根,则a 4﹣3a ﹣2的值为 .20.(3分)如图,在平面直角坐标系中,抛物线y=m (x +3)2+n 与y=m (x ﹣2)2+n +1交于点A.过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点C左侧),则线段BC的长为.三.解答题(共6小题,满分60分)21.(8分)用适当的方法解下列方程:(1)x2﹣2x﹣2=0(2)(x﹣3)2+2x(x﹣3)=022.(8分)已知二次函数当x=3时,函数有最大值﹣1,且函数图象与y轴交于(0,﹣4),求该二次函数的关系式.23.(10分)(1)已知关于x的方程2x2﹣mx﹣m2=0有一个根是1,求m的值;(2)已知关于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一个根是0,求另一个根和m的值.24.(10分)已知:二次函数y=﹣2x2+4x+m+1,与x轴的公共点为A,B.(1)如果A与B重合,求m的值;(2)横、纵坐标都是整数的点叫做整点:①当m=﹣1时,求线段AB上整点的个数;②若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n≤8时,结合函数的图象,求m的取值范围.25.(12分)如图,有长为30米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可使用长度a=10米).设花圃的一边AB长为x 米,面积为y平方米.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)如果所围成的花圃的面积为63平方米,试求宽AB的长;(3)按题目的设计要求,(填“能”或“不能”)围成面积为80平方米的花圃.26.(12分)某商人将进价为每件8元的某种商品按每件10元出售,每天可销出100件.他想采用提高售价的办法来增加利润.经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)请写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大?2018-2019学年第一学期庐江县第二中学九年级第一次月考测试题参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】本题根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程,依据定义即可解答.【解答】解:在方程①2x 2﹣9=0 ②0112=-xx ③xy +x 2 ④7x +6=x 2 ⑤ax 2+bx +c=0中,一元二次方程的是①④这2个,故选:B .【点评】本题考查了一元二次方程的概念,解答要判断方程是否是整式方程,若是整式方程,再化简,观察化简的结果是否只含有一个未知数,并且未知数的最高次数是2.2.【分析】先把常数项移到方程左边,再把方程两边加上9,然后把方程左边配成完全平方形式即可.【解答】解:x 2+6x=6,x 2+6x +9=15,(x +3)2=15.故选:C .【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.【分析】等量关系为:原价×(1﹣下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1﹣a%),第二次降价后的价格为1000×(1﹣a%)×(1﹣a%)=1000×(1﹣a%)2,∴方程为1000(1﹣a%)2=640.故选:B .【点评】本题考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .4.【分析】通过解分式方程可得出x=24-a ,由x 为整数可得出a=﹣2、0、1、23或4,再根据二次函数的定义及二次函数图象与x 轴有交点,可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,进而可确定a 的值,将其相加即可得出结论.【解答】解:∵23210-=+--x x x ax , ∴x=24-a . ∵数a 使关于x 的分式方程23210-=+--x x x ax 有整数解, ∴a=﹣2、0、1、23或4. ∵抛物线y=(a ﹣1)x 2+3x ﹣1的图象与x 轴有交点,∴()()⎩⎨⎧≥-⨯-⨯-=∆≠-01143012a a , 解得:a ≥﹣45且a ≠1, ∴a=0、23或4, ∴0+23+4=211. 故选:D .【点评】本题考查了抛物线与x 轴的交点、二次函数的定义以及分式方程的解,通过解分式方程及抛物线与x 轴有交点确定a 值是解题的关键.5.【分析】由抛物线的开口向下和其顶点坐标为(2,﹣3),根据抛物线的性质可直接做出判断.【解答】解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值是﹣3.故选:D .【点评】本题主要考查了二次函数的最值的性质,求二次函数的最大(小)值有三种方法:第一种可由图象直接得出,第二种是配方法,第三种是公式法.6.【分析】根据配方法的一般步骤,可得答案.【解答】解:系数化为1,得x 2﹣2x=2,配方,得(x ﹣1)2=3,故选:A .【点评】本题考查了配方法,配方是解题关键.7.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,112+16x +9×2x ﹣2x 2=16×9,化简,得x 2﹣17x +16=0,故选:B .【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.8.【分析】先根据关于x 的不等式组⎩⎨⎧-≥+-≤14122k x k x 无解,求出k >﹣1,再根据二次函数y=2x 2﹣(k ﹣1)x +3的增减性得出221⨯-k ≤1,求得k ≤5,那么﹣1<k ≤5,进而求解.【解答】解:∵关于x 的不等式组⎩⎨⎧-≥+-≤14122k x k x 无解,可得:k ﹣2<2k ﹣1,解得k >﹣1,∵二次函数y=2x 2﹣(k ﹣1)x +3,当x >1时,y 随x 的增大而增大, ∴221⨯-k ≤1, 解得:k ≤5,∴﹣1<k ≤5,所以符合条件的所有整数k 的值是0,1,2,3,4,5,其和为15;故选:C .【点评】本题考查了二次函数的性质,解一元一次不等式组,求出k 的范围是解题的关键.9.【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b 2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x 2﹣2x ﹣1=0有两个不相等的实数根,故选:C .【点评】本题考查了根的判别式,利用根的判别式是解题关键.10.【分析】关键是设两个未知数,设2018年的产值是a ,2020年的产值就是1.44a ,生产增长率都是x ,根据题意可列方程.【解析】设2018年的产量是a .a (1+x )2=1.44a(1+x )2=1.44x=20%或x=-220%,负值舍去故答案为D11.【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=x 2先向左平移一个单位得到解析式:y=(x +1)2,再向上平移3个单位得到抛物线的解析式为:y=(x +1)2+3.故选:A .【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.12.【分析】根据已知得出B 点的坐标为:(0,1),A 点坐标为(4,0),代入解析式即可求出b ,c 的值,即可得出答案.【解答】解:∵出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m , ∴B 点的坐标为:(0,1),A 点坐标为(4,0),将两点代入解析式得:⎩⎨⎧=++-=0441c b c , 解得:⎪⎩⎪⎨⎧==143c b ,∴这条抛物线的解析式是:y=﹣41x 2+43x +1. 故选:A .【点评】此题主要考查了二次函数的应用,根据已知得出B ,A 两点的坐标是解决问题的关键.二.填空题(共8小题,满分24分,每小题3分)13.【分析】把x=0代入方程6x 2﹣5(m ﹣1)x +m 2﹣2m ﹣3=0得出方程0﹣0+m 2﹣2m ﹣3=0,求出方程的解即可.【解答】解:把x=0代入方程6x 2﹣5(m ﹣1)x +m 2﹣2m ﹣3=0得:0﹣0+m 2﹣2m ﹣3=0, 解得:m 1=﹣1,m 2=3,故答案为:﹣1或3.【点评】本题考查了一元二次方程的解和解一元二次方程的应用,主要考查学生的理解能力和计算能力.14.【分析】根据方程有两个不相等的实数根结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+2x+k=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式,根据方程有两个不相等的实数根结合根的判别式得出4﹣4k>0是解题的关键.15.【分析】设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据矩形的面积公式结合绿地的面积为480m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标,本题得以解决.【解答】解:∵y=﹣2x2﹣1,∴该抛物线的顶点坐标为(0,﹣1),故答案为:(0,﹣1).【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.17.【分析】由于抛物线与x 轴的交点的纵坐标为0,所以把y=0代入函数的解析式中即可求解,再令x=0,求出y 的值即可得解,进而利用三角形面积求出即可.【解答】解:∵抛物线y=﹣x 2+2,∴当y=0时,﹣x 2+2=0,∴x 1=2,x 2=﹣2,∴与x 轴的交点坐标是(2,0),(2 ,0);∵x=0时,y=2,∴抛物线与y 轴的交点坐标为:C (0,2);∴△ABC 的面积为:21×22×2=22. 故答案是:22.【点评】此题主要考查了抛物线与坐标轴交点求法以及三角形面积求法,得出图象与坐标轴交点坐标是解题关键.18.【分析】直接利用顶点式得出二次函数的最值.【解答】解:y=(x ﹣3)2+4的最小值为4.故答案为:4.【点评】此题主要考查了二次函数的最值,正确掌握二次函数的性质是解题关键.19.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a 代入方程可得,a 2﹣a ﹣1=0,即a 2=a +1,∴a 4﹣3a ﹣2=(a 2)2﹣3a ﹣2=(a+1)2﹣3a﹣2=a2﹣a﹣1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取等量关系a2=a+1,然后利用“整体代入法”求代数式的值.解此题的关键是降次,把a4﹣3a﹣2变形为(a2)2﹣3a﹣2,把等量关系a2=a+1代入求值.20.【分析】设抛物线y=m(x+3)2+n的对称轴与线段BC交于点E,抛物线y=m(x﹣2)2+n+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.【解答】解:设抛物线y=m(x+3)2+n的对称轴与线段BC交于点E,抛物线y=m(x ﹣2)2+n+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣3)]=10.故答案为:10.【点评】本题考查了二次函数的性质,利用二次函数图象的对称性解决问题是解题的关键.三.解答题(共6小题,满分60分)21.【分析】(1)利用求根公式计算可得;(2)方程左边提取公因式x﹣3,进一步整理后可得两个关于x的一元一次方程,解之可得.【解答】解:(1)∵a=1、b=﹣2、c=﹣2,∴△=(﹣2)2﹣4×1×(﹣2)=12>0,则x=312322±=±, ∴x 1=1+3、x 2=1﹣3;(2)∵(x ﹣3)2+2x (x ﹣3)=0,∴(x ﹣3)(x ﹣3+2x )=0,即3(x ﹣3)(x ﹣1)=0,则x ﹣3=0或x ﹣1=0,解得:x=3或x=1.【点评】本题考查了解一元二次方程,掌握解一元二次方程的方法:直接开平方法、配方法、公式法以及因式分解法是解题的关键.22.【分析】根据条件可知应该设为顶点式,再利用待定系数法求解析式.【解答】解:根据题意可知顶点坐标为(3,﹣1),设顶点式y=a (x ﹣3)2﹣1,把点(0,﹣4)代入,得﹣4=a (﹣3)2﹣1,解得a=﹣31, ∴y=﹣31(x ﹣3)2﹣1. 【点评】主要考查了用待定系数法去二次函数解析式的方法,要掌握对称轴公式和顶点公式的运用和最值与函数之间的关系.23.【分析】(1)根据方程的解的概念,把x 的值代入方程就可求出m 的值;(2)先求出m 的值,再把m 的值代入方程,就可以求出方程的另一个根.【解答】解:(1)把x=1代入方程2x 2﹣mx ﹣m 2=0得:2﹣m ﹣m 2=0解方程m 2+m ﹣2=0(m +2)(m ﹣1)=0∴m1=﹣2,m2=1(2)把x=0代入方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)得:﹣m=﹣1∴m=1把m=1代入方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)得:(2x﹣1)(x+1)=(3x+1)(x﹣1)整理得:x2﹣3x=0x(x﹣3)=0∴x1=0,x2=3.故另一根为3,m的值为1.【点评】本题考查一元二次方程的解,先把方程的解代入方程求出字母系数的值,然后把字母系数代入就可以求出另一个根.24.【分析】(1)当A、B重合时,抛物线与x轴只有一个交点,此时△=0,从可求出m 的值.(2)①m=1代入抛物线解析式,然后求出该抛物线与x轴的两个交点的坐标,从而可求出线段AB上的整点②由图象可得﹣3<n≤0【解答】解:(1)∵A与B重合,∴二次函数y=﹣2x2+4x+m+1的图象与x轴只有一个公共点,∴方程﹣2x2+4x+m+1=0有两个相等的实数根,∴△=42+4×2(m+1)=24+8m=0,解得:m=﹣3.∴如果A与B重合,m的值为3.(2)①当m=﹣1时,原二次函数为y=﹣2x2+4x+m+1=﹣2x2+4x,令y=﹣2x2+4x=0,则x1=0,x2=2,∴线段AB上的整点有(2,0)、(1,0)和(0,0).故当m=﹣1时,线段AB上整点的个数有3个.②二次函数y=﹣2x2+4x+m+1=﹣2(x﹣1)2+m+3由点A,B之间的部分与线段AB所围成的区域内(包括边界)如图∵1<n≤8∴0<m+3≤3∴﹣3<m≤0【点评】本题考查了二次函数求根公式的应用,考查了二次函数只有一个根时△=0的应用,熟练解二次函数是解题的关键25.【分析】(1)设AB长为x米,则BC长为:(30﹣3x)米,该花圃的面积为:(30﹣3x)x;进而得出函数关系即可;(2)将y=63代入(1)中所求的函数关系式,得出关于x的一元二次方程,解方程求出符合题意的x的值,即是所求AB的长;(3)将y=80代入(1)中所求的函数关系式,得出关于x的一元二次方程,利用根的判别式进行判定即可.【解答】解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x;(2)当y=63时,﹣3x2+30x=63,解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;故所围成的花圃的面积为63平方米时,宽AB的长为7米;(3)不能围成面积为80平方米的花圃.理由:当y=80时,﹣3x2+30x=80,整理得3x2﹣30x+80=0,∵△=(﹣30)2﹣4×3×80=﹣60<0,∴这个方程无实数根,∴不能围成面积为80平方米的花圃.故答案为:不能.【点评】本题考查了二次函数和一元二次方程的实际应用,根据题目的条件,合理地建立函数关系式是解题关键.26.【分析】(1)题中等量关系为:利润=(售价﹣进价)×售出件数,根据等量关系列出函数关系式;(2)将(1)中的函数关系式配方,根据配方后的方程式即可求出y的最大值.【解答】解:(1)根据题中等量关系为:利润=(售价﹣进价)×售出件数,列出方程式为:y=(x﹣8)[100﹣10(x﹣10)],即y=﹣10x2+280x﹣1600(10≤x≤20);(2)将(1)中方程式配方得:y=﹣10(x﹣14)2+360,∴当x=14时,y=360元,最大答:售价为14元时,利润最大.【点评】本题主要考查对与二次函数的应用,要注意找好题中的等量关系.。
武汉梅苑学校2019-2020学年度上学期12月月考九年级数学试题(word版)
武汉市梅苑学校2019~2020学年度上学期十二月质量检测九年级数学试卷考试时间:2019年12月17日7:40~9:40 全卷满分:120分命题人:龙应时审题人:李华★祝考试顺利★考生注意:1、本试卷共4页,满分120分,考试用时120分钟。
2、全部答案必须在答题卷上完成,请认真核对每题答案是否在答题卷的对应框中,答在其他位置无效。
3、答题前请认真阅读答题卡的“注意事项”,考试结束后,请将答题卷上交。
一、选择题(每小题3分,共30分)1. 已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是A.-3 B.3 C.0 D.0或32. 用配方法解方程x2-2x-5=0时,原方程应变形为A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=93. 抛物线y=-(x-8)2+2的顶点坐标是A.(2,8) B.(8,2) C.(—8,2) D.(—8,—2)4. 某个事件发生的概率是0.5,这意味着A.在两次重复实验中该事件必有一次发生B.在一次实验中没有发生,下次肯定发生C.在一次实验中已经发生,下次肯定不发生D.每次实验中事件发生的可能性是50%5. 如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是A.60°B.90°C.72°D..120°第5题图第8题图6. 下列说法中,正确的是A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等7. 根据下列表格对应值:x 3.24 3.25 3.26ax2+bx+c-0.02 0.01 0.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x<3.28 8.如图AB为⊙O的定直径,过圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C(不包括A,B两点)在⊙O上移动时,点PA.到CD的距离保持不变B.位置不变C.等分弧DB D.随C点移动而移动9. 某种动物活到20岁的概率为0.8,活到30岁的概率为0.2,则现年20岁的这种动物活到30岁的概率为A.0.16 B.0.2 C.0.25 D.0.3310.已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为A.6 B.5 C.4 D.3二、填空题(每小题3分,共18分)11. 圆中一条弦把和它垂直的直径分成2 cm和8 cm两部分,则这条弦弦长为______cm.12.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120˚,则圆锥的母线长是______.13.二次函数y=2(x+1)2-3的图象向右平移1个单位,再向上平移3个单位,所得到抛物线的解析式为______.14.⊙I是△ABC的内切圆,切AB,AC分别于点D,F,点E在⊙I上(不同于D,F),若∠A=52°,则∠DEF的度数为______..第14题图第16题图15. 如图,在Rt△ABC中,∠ABC=90˚,∠BAC=30˚,AB=26,点D,点E分别在AC,AB上,且AD=2BE,以AD为直径作⊙M,设BE=x,当⊙M与线段DE有两个公共点时,x的范围为______.16. 已知直线y=x+b与两抛物线:y=x2-2x,y=-x2+4x-4一共有两个交点,则b的范围是______.三、解答题(本大题共8小题,共72分) 17.(本小题满分8分) (1)解下列方程:x 2+4x +1=0;(2)已知关于x 的一元二次方程x 2+(m -2)x -m +2=0有两个相等的实数根.求m 的值.18.(本小题满分8分)如图,在直角坐标系中,矩形ABCD 的边AB =3,AD =2,AB 在x 轴上,点C 在直线y =x -2上. (1)直接写出矩形各顶点坐标; (2)若直线y =x -2与y 轴交于点E ,抛物线过E ,A ,B 三点,求抛物线的解析式.19.(本小题满分8分)如图点A ,B ,C 在小正方形的顶点.(1)在图1中,作出△ABC 的中线AD ;确定一个格点P ,使AP ⊥AB ;(2)在图2中,作出△ABC 的高线CE (说明作图....过程..)20.(本小题满分8分)口袋里有红,绿,黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是31. (1)求口袋里黄球的个数;(2)直接写出任意摸出2个球都是红球的概率.21.(本小题满分8分)如图,AB 为⊙O 的直径,点E 在⊙O 上,∠BAE 的平分线交⊙O 于C ,过C 作AE 的垂线交AE 于D ,交AB 的延长线于F , (1)求证:DF 是⊙O 的切线; (2)若DE =4,CD =8, ①求⊙O 的半径;②在AC 上取一点H ,满足∠AFD =2∠ABH ,求BH 的长.第18题图第19题图1第19题图2第21题图22.(本小题满分10分)如图,抛物线y=x2+ax+b与x轴相交于A(1,0),B(3,0),与y轴相交于点C,点P在抛物线上运动,(1)直接写出抛物线的解析式;(2)若以P为圆心,2为半径的⊙P与坐标轴相切,直接写出点P的坐标;(3)若△PBC的面积等于3,直接写出点P的横坐标.23.(本小题满分10分)在锐角△ABC中,BC=52,∠A=45˚,(1)如图1,求△ABC外接圆的直径;(2)如图2,点I为△ABC的内心,AI的延长线交△ABC外接圆于D,①求证BD=DI,②若AB=6,求△ABC内切圆的半径(不需化简).24.(本小题满分12分)如图1,抛物线y=x2-2x-3与x轴交于A,B,与直线y=2x-3交于C,D两点,点P是抛物线上一动点.(1)直接写出点A,B,C,D的坐标;(2)过点P作PF⊥x轴交直线CD 于点F.若以O,C,P,F为顶点的四边形是平行四边形,求点P的横坐标;(3)如图2,若点P 在直线CD的下方,且∠PCD=45°,请直接写出点P的坐标.第22题图第23题图1 第23题图2第24题图2第24题图1。
湖北省武汉市硚口区2023-2024学年九年级上学期12月月考数学试题(含答案)
2023~2024学年度第一学期12月质量检测数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1. 已知的半径是4,,则点P 与的位置关系是( )A. 点P 在外B. 点P 在上C. 点P 在内D. 不能确定2. 如图,在中,,,则的大小是( )(第2题)A. B. C. D. 3. 如图,四边形ABCD 内接于,,则的大小是()(第3题)A. B. C. D. 4. 如图,已知的半径为4,则该圆内接正六边形ABCDEF 的边心距OG 的值是()(第4题)A. B.C.D. 35. 若圆锥的底面半径为4cm ,母线长为12cm ,则它的侧面展开图的圆心角的大小是( )A. B. C. D.BO 3OP =O O O O OAB AC =70B ∠=︒C ∠20︒40︒70︒110︒O 108B ∠=︒D ∠54︒62︒72︒82︒O 32240︒120︒180︒90︒6. 如图,在中,,过点A 作于点M ,交DE 于点N .若,则的值是()(第6题)A. B. C. D. 7. 如图,这是一个供滑板爱好者使用的U 形池,该U 形池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是弧长为12m 的半圆,其边缘(边缘的宽度忽略不计),点E 在CD 上,.一滑板爱好者从A 点滑到E 点,则他滑行的最短距离是()(第7题)A. 28mB. 24mC. 20mD. 18m8. 《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,.“会圆术”给出AB 的弧长l 的近似值计算公式:.当,时,则l 的值是( )(第8题)A. B. C. D. 9. 如图,在四边形ABCD 中,,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若,则的值是( )BABC △DE BC ∥AM BC ⊥4:9ADE ABC S S =:△△:AN AM 4:93:23:42:320m AB CD ==4m CE =MN AB ⊥2MN l AB OA=+4OA =60AOB ∠=︒11-8-811-AB CD ∥AD AB ⊥13AB CD =ADCD(第9题)A.B.C.D.10. 已知抛物线和直线,若对于任意的x 的值,恒成立,则常数m 的值是( )A. 0B. 2C. -2D. -4二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在答题卡指定位置.11. 如图,在中,圆周角,则的大小是______.(第11题),,,则CD 的长度是______.13. 如图,的内切圆与AB ,BC 分别相切于D ,E 两点,连接DE ,AO 的延长线交DE 于点F ,若,则的大小是______.(第13题)14. 如图,半圆O 的直径.,C ,D 是半圆上的三等分点,E 是OA 的中点,则阴影部分CED 面积是______.A2334()2122y x m x m =-++224y x =-12y y ≥O 30ACB ∠=︒AOB ∠:2:3AC EC =4BC =ABC △O 70ACB ∠=︒AFD ∠10AB =(第14题)15. 二次函数的图象如图所示,下列四个结论:①;②;③;④若方程有四个实数根,则这四个实数根的和为4.其中正确结论是______.(填写序号)(第15题)16. 如图,在中,,,,线段BC 绕点B 旋转,得到BD ,连接AD ,E 为AD 的中点,连接CE ,则CE 的最大值是______.(第16题)三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题8分)如图,在中,,求证:.18.(本小题8分)如图,已知,求证:.A ()20y ax bx c a =++≠0abc >23c b =()()1a b m am b m +>+≠21ax bx c ++=Rt ABC △90ACB ∠=︒30BAC ∠=︒4BC =O AD BC =DC AB =ABC ADE △∽△ABD ACE △∽△19.(本小题8分)如图,在中,,CD 是斜边AB 上的高.(1)求证:;(2)若,,求BD 的长.20.(本小题8分)如图,是的外接圆,AC 为直径,,交DC 的延长线于点E .(1)求证:BE 是的切线;(2)若,,求AD 的长.21.(本小题8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.经过A ,B 两个格点,C 是与格线的交点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)先画直径BG ,再画圆心O ;(2)在上画点M ,使,在上画点F ,连接AF ,使.22.(本小题10分)由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离ARt ABC △90ACB ∠=︒ABC CBD △∽△4AC =3BC =O ABC △ BDAB =BE DC ⊥O 1EC =8CD =1010⨯O O BCBM MC = AC CAF CAB ∠=∠称为“刹车距离”.某公司设计了一款新型汽车,现在对它的刹车性能进行测试,刹车距离S (单位:m )与车速v (单位:km/h )之间存在二次函数关系,测得部分数据如表:车速v (km/h )0306090120刹车距离S (m )7.819.234.252.8(1)直接写出刹车距离S 与车速v 之间的函数关系;(2)某路段实际行车的最高限速为80km/h ,若要求该型汽车的安全车距要大于最高限速时刹车距离的2倍,求安全车距应超过多少米?(3)在某路段上,若要求该型汽车的刹车距离不超过40m ,请问车速应该控制在什么范围内?23.(本小题10分)在矩形ABCD中,,E 是对角线BD (端点除外)上的点,F ,G 在直线BC 上,满足,.(图1) (图2)(1)如图1,若,求证:;(2)如图2,连接AF ,求的值(用含m 的式子表示);(3)连接CE ,当,时,若,直接写出FG 的长.24.(本小题12分)将抛物线:平移,使其顶点为,得到抛物线,抛物线交x 轴的正半轴于A 点,交y 轴于C 点.(图1) (图2)(1)直接写出抛物线的表达式;(2)如图1,抛物线的对称轴与直线AC 相交于点B ,G 为直线AC 上的点,过点G 作交抛物线于点F ,当以B ,D ,G ,F 为顶点的四边形为平行四边形时,求点G 的横坐标;ABm BC=EF AE ⊥EG BE ⊥1m =ABE FGE △≌△EFAF12m =CE CD =4ED =1C 2y x =()1,4D -2C 2C 2C 2C GF BD ∥2C(3)如图2,的顶点M ,N 在抛物线上,点M 在点N 右边,两条直线ME ,NE 与抛物线均有唯一公共点,ME ,NE 均与y 轴不平行.若的面积为16,设M ,N 两点的横坐标分别为m ,n ,求m 与n 的数量关系.2023-2024学年度12月质量检测九年级数学参考答案12345678910C C CABDC DBA11.12. 613. 14.15. ②③④16. 617. 证明:∵,∴,……2分∴,……4分∴,……6分∴.……8分(也可用全等三角形解决)18. 证明:∵,∴,,……2分∴,,……4分∴,……6分∴.……8分19. 证明:(1)∵,∴,……1分∵,∴,……2分又∵,∴.……4分解:(2)∵,,,∴,……5分∵,∴,……7分∴.……8分20.(1)证明:连接OB .由圆内接四边形的性质可知,……1分又∵,∴,……2分∵,∴,∴,∴,……3分∵,∴,∴BE 是的切线.……4分(2)解:过点B 作于点F ,∵,∴,MNE △1C 1C MNE △60︒35︒256πAD BC =AD BC = AD AC BC AC +=+ AB CD=DC AB =ABC ADE △∽△AB ACAD AE =BAC DAE ∠=∠AB AD AC AE=BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD ACE △∽△CD AB ⊥90BDC ∠=︒90ACB ∠=︒ACB BDC ∠=∠B B ∠=∠ABC CBD △∽△90ACB ∠=︒4AC =3BC =5AB =ABC CBD △∽△AB BCBC CD=95BC BC BD AB ⋅==ECB BAD ∠=∠1BAD ∠=∠1ECB ∠=∠OC OB =1CBO ∠=∠CBO ECB ∠=∠EC OB ∥BE EC ⊥BE OB ⊥O BF AC ⊥ BDBA =BD BA =在与中,,∴.……5分∴.由(1)知,在和中,,∴,……6分∴,∴.……7分∵AC 为的直径,∴.在中,由勾股定理,得.……8分(还可以过O 作CD 垂线解决)21.(1)G 点正确,O 点正确(有多种画法)......各2分(2)M 点正确,F 点正确 (2)22. 解:(1);……3分(2)当车速为80km/h 时,刹车距离,∴,答:安全车距应超过57.6m ;……6分(3)当时,,解得,(舍去),……8分∴当时,,∴车速应该控制不超过100km/h 范围内.……10分23.(1)证明:∵在正方形ABCD 中,点E 是对角线BD 上一点,,,∴,,……1分,∴, (2)分ABF △DBE △BAF BDE AFB DEB AB DB ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABF DBE AAS △≌△189AF DE EC CD ==+=+=1ECB ∠=∠Rt BCE △Rt BCF △1BEC BFC ECB BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()BCE BCF AAS △≌△1FC EC ==9110AC AF FC =+=+=O 90ADC ∠=︒Rt ADC△6AD ===20.0020.2s v v =+0.00264000.28028.8S =⨯+⨯=()28.8257.6m ⨯=40s =20.0020.240v v +=1100v =2200v =-40s ≤100v ≤GE BD ⊥AE EF ⊥90AEF GEB ∠=∠=︒90AEB BEF GEF ∠=︒-∠=∠45ABE EBG G ∠=∠=∠=︒BE EG =在和中,,∴;……3分(2)解:∵在矩形ABCD 中,E 是对角线BD 上点,,,∴,,∴,……4分∴,……5分∴.……6分可设,,∴.……7分(3)FG……10分(提示:由(2),可得,过C 作,求出)24. 解:(1);……3分(2)∵,∴,,∴AC :,∵,∴.……4分设,①当点G 在线段AC 上时,点F 在点G 下方,则,∵,∴,解得,或(舍去),则点G 的横坐标为2.……5分②当点G 在线段AC (或CA )延长线上时,点F 在点G 上方,则,∵,∴,解得或E综上可得满足条件的点E 的横坐标为2.……7分(3)设经过的直线解析式为,ABE △FGE △ABE G BE EG AEB FEG ∠=∠⎧⎪=⎨⎪∠=∠⎩ABE FGE △≌△GE BD ⊥AE EF ⊥90AEF GEB ∠=∠=︒90ABE EBG BGE ∠=︒-∠=∠90AEB BEF FEG ∠=︒-∠=∠ABE FGE △∽△EF EG DC ABm AE BE BC BC====EF m =1AE =AF =EF AF =ABE FGE △∽△12FG EF m AB AE ===CH BD ⊥CD =()214y x =--()214y x =--()3,0A ()0,3C -3y x =-()1,4D -()1,2B -(),3G x x -()2,23F x x x --GF DB =()2323242x x x --++=-+=2x =1x =()2,23F x x x --GF DB =()223(3)2x x x ----=x =x =()2,M m m 2()y k x m m =-+,则有,……8分∵直线ME 与有唯一公共点,∴,∴,直线ME 的解析式为,……9分同理可求直线NE 的解析式为,,∴,……10分如图3,过E 作直线轴,分别过M ,N 作l 的垂线,垂足为C ,D ,,∴,……11分∴,∴.……12分图322()y x y k x m m⎧=⎨=-+⎩220x kx km m -+-=2C 22244(2)0k km m k m ∆=-+=-=2k m =22y mx m =-22y nx n =-2222y mx m y nx n⎧=-⎨=-⎩,2m n E mn +⎛⎫⎪⎝⎭l x ∥16NDE MEC MNE MNDC S S S S --==△△△梯形()()()()2222111()22222m n m n n mn m mn m n n mn n m mn m ++⎛⎫⎛⎫⎡⎤-+-⨯---⨯---⨯- ⎪ ⎪⎣⎦⎝⎭⎝⎭16=()364m n -=4m n -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级第二次月考试卷
(本试卷满分:100分,时间:80分钟)
一、选择题(每小题3分,共24分)
1. 下列方程中,不是一元二次方程的是( )
A .01232=++y y
B .x x 312
1
2-=
C .03
2
611012=+-a a D .223x x x =-+
2.下列四个点,在反比例函数x
y 6
=图象上的是( )
A .(1,-6)
B .(2,4)
C .(3,-2)
D .(―6,―1) 3.如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是( )
4. 某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是( )
A .61
B .51
C .4
1
D .31
5. 如图:在等腰梯形ABCD 中,AD ∥BC ,过D 作DF ⊥BC 于F , 若AD =2,BC =4,DF =2,则DC 的长为( ) A . 5 B .3 C .1 D .2
6.某年爆发世界金融危机,某商品原价为200元,连续两次降价a%后,售价为148元,则下面所列方程正确的是( )
A .148%)1(2002=+a
B . 148%)1(2002=-a
C .148%)21(200=-a
D . 148%)1(200=-a
7. 如图,AC 、BD 是矩形ABCD 的对角线,过点D 作DF ∥AC
交BC 的延长线于F ,则图中与△ABC 全等的三角形共有( ) A .1个 B .2个 C .3个 D . 4个
8、已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论: ①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°; ④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )
A.1
B.2
C.3
D.4
二、填空题(每小题3分,共24分)
9. 写出一个以-1为一个根的一元二次方程 .
10. 已知直角三角形中30°角所对的直角边长是2cm ,则斜边的长是 . 11. 如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是 .
12. 如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10,AE=16, 则BE 的长度为 .
13. 如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点.若DE=3,则BC= .
14. 如图:双曲线x
k
y =上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,
则该双曲线的关系式为 .
15.某地区为估计该地区的绵羊只数,先捕捉20只绵羊给它们分别做上记号,然后
放还,待有标记的绵羊完全混合于羊群后第二次捕捉40只绵羊,发现其中有2只有记号,从而估计这个地区有绵羊 只.
16. 如图,矩形ABCD 在第一象限,AB 在x 轴正半轴上,AB=3,BC=1,直线y=
12
x-1经过点C 交x 轴于点E ,双曲线k
y x
=
经过点D ,则k 的值为________. 三、解答题(17、18题10分, 19、20题8分, 21题10分,22题6分)
17.解下列方程:
(1)62)3(2
+=+x x (2)084)1(2
=+--x x
18.如图所示△ACB 和△ECD 都是等腰直角三角形,
A .
B .
C .
D . 第3题图
第5题图
第7题图 第14题图
第12题图
第13题图
第16题图
∠ACB =∠ECD =90°,D 为AB 上一点. (1)求证:△ACE ≌△BCD
(2)若AD =5,BD =12,求DE 的长.
19. 小勇搜集了我省四张著名的旅游景点图片(大小、形状及背面完全形同):太原以南的壶口瀑布和平遥古城,太原以北的云冈石窟和五台山,他与爸爸玩游戏:把这四张图片背面朝上洗匀,随机抽取一张(不放回),再抽取一张,若抽到的两个景点都在太原以南或都在太原以北,则爸爸同意带他到这两个景点旅游,否则只能去一个景点旅游,请你用列表或画树状图的方法求小勇能去两个景点旅游的概率(四张图片分别用H 、P 、Y 、W 表示)
20.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
21.已知正比例函数y=ax 与反比例函数
的图象有一个公共
点A (1,2).
(1)求这两个函数的表达式;
(2)画出草图,根据图象写出正比例函数值大于反比例函数值 时x 的取值范围.
22.阅读下面材料:
小明遇到这样一个问题:如图1,在边长为)2(>a a 的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积。
小明发现:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图2) 请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则
这个新的正方形的边长为__________; (2)正方形MNPQ 的面积为 。
参考小明思考问题的方法,解决问题:
(3)如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ ,若3
3
=∆RPQ S ,则AD 的长为__________。