七年级数学数轴,相反数与绝对值PPT优秀课件
合集下载
相反数、绝对值ppt课件
数学史导入
符号类型,并且也载入了书本中,成为表达绝对值的一种方式,这种 表达方式为“| |”,既简单也很直接,并且在计算机中使用也很直观, 当然在使用的时候也是有相关规定的。
自主探究
1.请同学们阅读教材27页,思考下列问题:
3与-3有什么关系? 3与- 2
32,5与-5呢?你还能列举一组
这样的数吗?你发现了什么?由此你能得到什么结论
典例精讲
【题型一】求一个数的相反数或绝对值 例1:-2 024的相反数是 2 024 ,绝对值是 2 024 。 变式1:如果a与100互为相反数,那么a= -100 。 变式2:已知一个数的绝对值是4,那么这个数是 ±4 。
【题型二】对绝对值性质的理解
例2:若a≥0,则|a|等于( C )
A.0
和-5米来表示,这两个量除了符号不同,还有什么特点吗?
成语导入 “南辕北辙”这个成语讲的是古代某人要去南方,却向北走了起来, 有人预言他无法到达目的地,他却说“我的马很快,车的质量也很 好”,请问他能到达目的地吗?
数学史导入 绝对值这个概念是七年级接触的第一个最具代数特征的数学概念, 这个概念的确立距今已经一百多年。绝对值概念的产生是基于解析 几何的需要,也就是说目的是表达数轴或坐标系条件下的距离概念, 而这个概念的产生距离正负数的出现足足晚了1 400多年,绝对值的 概念是由德国著名数学家魏尔斯特拉斯首先引用的。绝对值符号来 源于计算机,在计算机中为了能更好的进行表达,研究出了不少的 符号,而这种符号的应用就成为一大关键。在1841年魏尔斯特拉斯 首次使用了这种符号,至此之后该符号不仅成为计算机专用的
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识讲解
知识点1:相反数(重点) 符号不同,数量相等的两个数,我们称其中一个数为另一个数的 相反数,也称这两个数互为相反数。特别地,0的相反数是0。
1.2数轴、相反数与绝对值1.2.2 相反数(课件)湘教版数学七年级上册
2.数轴上与原点的距离是2的点有_2__个,这些点 表示的数是_+_2_和__-__2_; 3.数轴上与原点的距离是2.6的点有__2_个,这些点 表示的数是_+_2_.6_和__-__2_._6_;
新知探究 知识点 相反数 说一说
如图,点A 和点B 分别表示哪个有理数?点A,点 B 到原点的距离相等吗?
【课本P9 练习 第2题】
(1)-(+8)= -8 ;(2)-(+6.7)= -6.7 ;
(3)-(-9)= 9
;(4)-
-
5 3
=
5 3.
随堂练习
【课本P9 练习 第3题】
3. 已知 a 的相反数是3.5,则 a 等于多少?
答:a 等于 -3.5 .
4.已知 a,b 为有理数,它们在数轴上的对应点的位置如 图所示,把 -a,-b 分别在数轴上表示出来.
⑥ 0的相反数是___0___; ⑦ -121与___12_1__互为相反数.
新知探究 知识点 相反数 议一议
-2.6的相反数是2.6,如何用式子表示?
通常把数a的相反数记作“-a”. 于是“-2.6 的相反数是2.6”用式子表 示就是“-(-2.6) = 2.6”.
任意一个数前面添上“-”号,新的数 就表示原数的相反数.
ABo
-6 -5 -4 -3 -2 -1 0 1 2
C
3 45 6
新知探究 知识点 相反数
例2 填空:
①6的相反数是__-__6__;
⑤ _-__1_0_0_与100互为相反数;
②-8与___8___互为相反数; ③ _-__2_._5_与2.5互为相反数; ④ -1.9的相反数是__1_._9__;
新知探究 知识点 相反数
新知探究 知识点 相反数 说一说
如图,点A 和点B 分别表示哪个有理数?点A,点 B 到原点的距离相等吗?
【课本P9 练习 第2题】
(1)-(+8)= -8 ;(2)-(+6.7)= -6.7 ;
(3)-(-9)= 9
;(4)-
-
5 3
=
5 3.
随堂练习
【课本P9 练习 第3题】
3. 已知 a 的相反数是3.5,则 a 等于多少?
答:a 等于 -3.5 .
4.已知 a,b 为有理数,它们在数轴上的对应点的位置如 图所示,把 -a,-b 分别在数轴上表示出来.
⑥ 0的相反数是___0___; ⑦ -121与___12_1__互为相反数.
新知探究 知识点 相反数 议一议
-2.6的相反数是2.6,如何用式子表示?
通常把数a的相反数记作“-a”. 于是“-2.6 的相反数是2.6”用式子表 示就是“-(-2.6) = 2.6”.
任意一个数前面添上“-”号,新的数 就表示原数的相反数.
ABo
-6 -5 -4 -3 -2 -1 0 1 2
C
3 45 6
新知探究 知识点 相反数
例2 填空:
①6的相反数是__-__6__;
⑤ _-__1_0_0_与100互为相反数;
②-8与___8___互为相反数; ③ _-__2_._5_与2.5互为相反数; ④ -1.9的相反数是__1_._9__;
新知探究 知识点 相反数
2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第3课时绝对值课件新版沪科版
因为数 a 在数轴上的对应点在原点左边,所以 a <0.
又因为| a |=4,所以 a =-4.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. 若| a |=- a ,则在下列选项中, a 不可能是(
D
)
-
A. -2
B.
C. 0
D. 5
【点拨】
因为| a |=- a ,
所以 a ≤0,
所以 a 不可能是正数.
数中最小的数是0.
(1)当 x =
时,| x -2 026|有最小值,这个最
2 026
小值是
0
(2)当 x =
1
大值是
;
时,2 026-| x -1|有最大值,这个最
.
2 026
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
易错点
忽略0也是绝对值等于其相反数的数而致错
11. [新考法 逆向思维法]如果| x -2|=2- x ,那么 x 的取
12
13
14
15
14. [新考向 知识情境化]一条直线流水线上依次有5个机器
人,它们站的位置在数轴上依次用点 A1, A2, A3,
A4, A5表示,如图.
在点
上的机器人表示的数的绝对值最大,站
A1
(1)站在点
A2
和点
A5
,点
和点
A3
A4
又因为| a |=4,所以 a =-4.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. 若| a |=- a ,则在下列选项中, a 不可能是(
D
)
-
A. -2
B.
C. 0
D. 5
【点拨】
因为| a |=- a ,
所以 a ≤0,
所以 a 不可能是正数.
数中最小的数是0.
(1)当 x =
时,| x -2 026|有最小值,这个最
2 026
小值是
0
(2)当 x =
1
大值是
;
时,2 026-| x -1|有最大值,这个最
.
2 026
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
易错点
忽略0也是绝对值等于其相反数的数而致错
11. [新考法 逆向思维法]如果| x -2|=2- x ,那么 x 的取
12
13
14
15
14. [新考向 知识情境化]一条直线流水线上依次有5个机器
人,它们站的位置在数轴上依次用点 A1, A2, A3,
A4, A5表示,如图.
在点
上的机器人表示的数的绝对值最大,站
A1
(1)站在点
A2
和点
A5
,点
和点
A3
A4
七年级上册数学课件《相反数,绝对值》
-3 -2 -1 0
1
2
3
4
5
6
一个数a的绝对值就是数
轴上表示这个数的点与原点之
间的距离。
例如:大象离原点4个单位长度: │4│=4
那么两只小狗呢?
如果一个数为-5,则它的绝对值呢?
想一想:
互为相反数的两个数的绝对 值有什么关系?
相等
例1 求下列各数的绝对值:
-21, +4/9, 0, -7.8 .
那么上述五件产品中,哪些是正品?哪些是次品?哪些是废品?
|0.1|<0.18; |-0.15|<0.18; |0.05|<
0.18<|0.2|< 0.22
|0.25|> 0.22
复习:
1、什么是数轴?
数轴是规定了原点、正方向、单位长度的直线
-2 -1 0 1 2
2、数轴的三要素
原点、正方向、单位长度
做一做
3、画出数轴、并用数轴上的点表示 下列各数: -1.5 , 0 , -6 ,2 , +6 ,-3 ,3
解:
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
新课
大象距原 点多远?
两只小狗分别 距原点多远?
- - - 01234 32 1
绝对值: │-5│=5 A
│4│=4
B
-6 -5 4
1 相反数及其表示
1 相反数及其表示
有下列语句: ①-8是相反数; ②-6与+3互为相反数; ③-7是7的相反数; ④+9与-9互为相反数.
2 其中一定正确的有_____个
★ 相反数是成对出现的, 不能单独说某个数是相反数 ★不能把符号不同的两个数 当成相反数,符号不同,其 它均相同才可以
2.3.2绝对值与相反数:相反数(同步课件)-七年级数学上册(苏科版2024)_1
若两个数的绝对值相等,则这两个数相等或互为相反数, 即若|a|=|b|,则a=±b。
03 典例精析
例1、填空: (1)a的相反数是__-a__,-a的相反数是__a__; (2)a+b的相反数是____-_(a_+_b_)_=_-_a_-_b___, a-b的相反数是____-(_a_-_b_)=_-_a_+_b____。 (3)正数的相反数都是_负_数__;负数的相反数都是_正__数_。
例2、在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3) 与-(-3),互为相反数的是___③__④___。(填序号)
【分析】先化简后判断: ①3与3,不互为相反数;②-3与-3,不互为相反数; ③3和-3,互为相反数;④-3和3,互为相反数。
03 典例精析
每组数符号不同,符号后的数值相同。
如图,以+250与-250为例: 数值相同
+250
-250
符号不同
02 知识精讲
相反数的概念
只有符号不同的两个数互为相反数(opposite number),其中一个 数叫做另一个数的相反数。
eg:250与-250互为相反数,也可以说250是-250的相反数, -250是250的相反数。
【分析】 -(-4)表示-4的相反数, 对于任意的数a都有-(-a)=a,即一个数 ∵-4的相反数是4, 的相反数的相反数就是这个数本身。 ∴-(-4)=4。
01 课堂引入 2.算一算,找规律: 1个“+”:+5=5; 2个“+”:+(+5)=____5____; “+”号的个数不影响化简的结果, 3个“+”:+[+(+5)]=____5____; 可以直接省略。 4个“+”:+{+[+(+5)]}=____5____。
相反数 课件(共20张PPT) 2024-2025学年数学沪科版(2024)七年级上册
(5) 相反数等于它本身的数只有0 ( √ );
(6) 符号不同的两个数互为相反数( × ).
2
2
0
0
2
习题4
化简下列各式的符号,并回答问题:
①−(−2)=______;②+(−15)=______;③−[−(−4)]=_____;
−15
−4
2
④−[−(+3.5)]=_____
3.5 ;⑤−{−[−(−5)]}=_______.
个数的相反数,如2与−2互为相反数,即2的相反数是−2,−2的相反数是2.
特别规定:0的相反数是0.
一般地,数a的相反数是-a,这里a表示任意一个数,即它可以是正数、负数或者0.
2
2
0
0
2
在数轴上,−2与+2,−4和+4所对应的点位于原点两侧,且与
原点的距离相等.
想一想:数轴上表示相反数的两个点和原点有什么关系?
2
2
0
0
2
典型例题
例2
化简下列各数:
(1)−(+10);
(2)+(−0.15);
(3)+(+3);
(4)−(−12);
(5)+[−(−1.1)] ; (6)−[+(−7)].
解:(1)−(+10)=−10;
(2)+(−0.15)=−0.15;
(3)+(+3)=3;
(4)−(−12)=12;
(5)+[−(−1.1)]=+(+1.1)=1.1;
0
2
−3 −2 −1
0
1
2
3
4
安徽省怀远县褚集初级中学七年级上册第一章1.2 数轴、相反数和绝对值课件(共17张PPT)
•
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.521.9.5Sunday, September 05, 2021
•
10、阅读一切好书如同和过去最杰出的人谈话。03:46:4503:46:4503:469/5/2021 3:46:45 AM
(4)如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
讲授新课
一 数轴的概念及画法
问题引入
问题1 什么是数轴?
规定了原点、正方向、单位长度的直线叫做数轴.
原点 单位长度
正方向
-3 -2 -1 0 1 2 3
2.注意事项: (1)数轴是一条特殊的直线; (2)通常规定直线上从原点向右(或上)为正方向,从原点 向左(或下)为负方向; (3)选取适当的长度为单位长度.
2.任何一个有理数都可以用数轴上的一个点来表示.
注意 任何一个有理数都可以用数轴上的一个点来表示. 但是数轴上的点不都表示有理数.
当堂练习
1.下列各图是数轴吗?
(1)
-3 -2 -1 0 1 2 3
(2) -3 -2 -1 1 2 3 4 5
(3)
0
(4)
-3 -2 -1 0 1 2
3
不是 不是 不是 不是
30
30
30
25
25
25
20
20
20
15
15
15
10
10
10
5
5
5
0
0
0
-5
-5
-5
-10
-10
-10
2.在一条东西向的马路上,有一个汽车站牌,汽车站牌 东3m和7.5m处有一棵柳树和一棵杨树,汽车站西3m和4.8m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.
相反数与绝对值ppt课件
(2)数轴上表示-4和-2.5的点到原点的距离分别是_______;
(3)数轴上表示0的点到原点的距离是_____.
0
概念(二)
绝对值:在数轴上,表示一个数a的点与原点的距离叫做这个数的绝对值,
记作|a|。
A
-6 -5 -4
B
-3
-2
B
-1
0
1
2
'
A
3
4
'
合作交流
根据绝对值的几何意义,填空:
8 ;| | =_____;|0|=_____;
1
3、一个数的相反数是最大的负整数,这个数是_______;
6
4、当a=-6时,-a=______,
a
5、-a的相反数是_______.
探究(二)
问题3:观察数轴,回答:
A
-6 -5 -4
B
-3
-2
B
-1
0
1
2
'
A
3
'
4
4,2.5
(1)数轴上表示4和2.5的点到原点的距离分别是_______;
4,2.5
1 或 -1
探究(三)
想一想:你会用数轴比较-4和-2.5的大小吗?
两个负数,绝对值大的负数反而小。
总结:比较两个负数大小的方法:(1)利用数轴(2)利用绝对值
【例1】 比较
解:|- |=
因为
<
和
|-|
的大小。
=
,也就是|- |<|- |,
(3)数轴上表示0的点到原点的距离是_____.
0
概念(二)
绝对值:在数轴上,表示一个数a的点与原点的距离叫做这个数的绝对值,
记作|a|。
A
-6 -5 -4
B
-3
-2
B
-1
0
1
2
'
A
3
4
'
合作交流
根据绝对值的几何意义,填空:
8 ;| | =_____;|0|=_____;
1
3、一个数的相反数是最大的负整数,这个数是_______;
6
4、当a=-6时,-a=______,
a
5、-a的相反数是_______.
探究(二)
问题3:观察数轴,回答:
A
-6 -5 -4
B
-3
-2
B
-1
0
1
2
'
A
3
'
4
4,2.5
(1)数轴上表示4和2.5的点到原点的距离分别是_______;
4,2.5
1 或 -1
探究(三)
想一想:你会用数轴比较-4和-2.5的大小吗?
两个负数,绝对值大的负数反而小。
总结:比较两个负数大小的方法:(1)利用数轴(2)利用绝对值
【例1】 比较
解:|- |=
因为
<
和
|-|
的大小。
=
,也就是|- |<|- |,
湘教版七年级数学上册 1.2 数轴、相反数与绝对值(第一章 有理数 学习、上课课件)
的两个点所表示的数互为相反数(0 除外) .
感悟新知
2. 相反数的性质:
知2-讲
任何一个数都有相反数,而且只有一个 .
正数的相反数是负数;负数的相反数是正数;
0 的相反数是 0.
3. 相反数的求法:
求一个数的相反数就是在这个数的前面加上“ -”,即 a
的相反数是 -a,其实质是改变这个数的符号 .
说法错误;
C. 一个数和它的相反数可能相等,例如 0,故该
选项说法正确;
D. 正数与负数互为相反数,例如 -2 和 3,符合
说法,但不是相反数,故该选项说法错误;
答案:C
知2-练
感悟新知
4-1.下面说法:① m的相反数是-m;
②互为相反数的两个数符号一定相反;
③ -(-3.8)的 相 反 数是-3.8;
感悟新知
知1-练
方法点拨:在数轴上识别数的正负性,关键看该数表示
的点与原点的位置关系:若点在原点的右侧,
则该点表示的数是正数;若点在原点的左侧,
则该点表示的数是负数;原点表示的数是 0.
感悟新知
知1-练
3-1.如图,在数轴上有 A, B, C, D 四个点,分别
表示不同的四个数,若从这四点中选一点作为原
点,使得其余三点表示的数中有两个正数和一个
负数,则这个点是(
A.点 A
B.点 B
C.点 C D.点 D
B
)
感悟新知
知识点 2 相反数
知2-讲
1. 定义 : 如果两个数只有符号不同,那么其中一个数叫作另
一个数的相反数,也称这两个数互为相反数 的距离相等
距离;
第 3 步:标出对应点后将数写在数轴的上方 .
相反数与绝对值ppt课件
课后小结
1.和同桌说说你的收获(知识、 方法、思想)
2.你还有哪些疑问?
知识总结
1.相反数 只有符号不同的两个数,叫做互为相反数. 其中一个数是另一个数的相反数.0的相反数是0.
2.绝对值的几何意义
在数轴上,表示一个数的点到原点的距离叫做这个数的绝 对值. 通常把有理数a的绝对值记作| a |.
比较- 3 和- 4
- 3 = 3 = 15 , 4 4 20
4 5
的大小. 总结:比较两个负数的大 小的步骤:
第1步:求出两个数的__绝__对__值_____;
- 4 = 4 = 16 . 5 5 20
15 16 ,即 - 3 - 4 20 20 4 5
第2步:比较两个绝对值的
____大__小______;第3步:根据“两 个负数,绝对值大的负数反而小”
3.绝对值的代数意义
a(a 0) a 0(a 0)
a(a 0)
|a|=|-a|
拓展提升
1.(1)有没有绝对值最大的有理数?没有
有没有绝对值最小的有理数?
有
(2)一个数的相反数是最大1 的负整数,这个数是多少? 1
一个数的绝对值是最小的正整数,这个数是多少?
1
拓展提升
2. 已知 | x - 4 |+| y - 3 | = 0,求 x + y 的值.
思考: 在数轴上,表示4与-4的两个点与原点有怎样的位 置关系?与原点的距离各是多少?2.5和它的相反
数呢?
知识总结
对于任意数a,你能在数轴上画出它的相反数吗? a
01
在数轴上,表示互为相反数(0除外)的两个点,分 别位于原点的 两旁 , 并且它们与原点的距离 相等 .
新湘教版7年级上册数学教学课件 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值
|+5|=____
5
|-5|=____
5
互为相反数的两个数的绝对值相等.
即 |a|=|-a|
若|a|=|b|,则a与b有什么关系?
a=b
或 a=-b
若|a|= 8.7,求 a.
解
因为绝对值等于 8.7 的有理数有 8.7 和 -8.7 两个,
所以 a = 8.7 或 a = -8.7.
如果a表示有理数,那么|a|有什么含义?
6
课堂练习
1.分别求3,3.14, ,-2.8的绝对值.
解
【课本P11 练习第1题】
2. 填空:
(1)-|-2010|= ;(2)| -4.8 | = ;(3) = .
-2010
4.8
【课本P11 练习第2题】
3. 画一条数轴,并分别标出表示绝对值等于 2,3.5 的数的点.
【课本P11 练习第3题】
4.若 | x-3 | + | y-2 | = 0,求 x + y 的值
解:由绝对值的非负性,得x - 3 = 0,y - 2 = 0.所以 x = 3,y = 2.所以 x + y = 3 + 2 = 5.
湘教版·七年级上册
1.2.3 绝对值
复习导入
1. 3到原点的距离是_____,-3到原点的距离是_____,到原点的距离是3的数是________;2. 3的相反数是_____,-3的相反数是_____,0的相反数是_____.
3
3
3和-3
-3
3
0
探索新知
点A 和点B 分别表示哪个有理数?点A、点B 到原点的距离分别是多少?
a
-2
-1
-0.5
5
|-5|=____
5
互为相反数的两个数的绝对值相等.
即 |a|=|-a|
若|a|=|b|,则a与b有什么关系?
a=b
或 a=-b
若|a|= 8.7,求 a.
解
因为绝对值等于 8.7 的有理数有 8.7 和 -8.7 两个,
所以 a = 8.7 或 a = -8.7.
如果a表示有理数,那么|a|有什么含义?
6
课堂练习
1.分别求3,3.14, ,-2.8的绝对值.
解
【课本P11 练习第1题】
2. 填空:
(1)-|-2010|= ;(2)| -4.8 | = ;(3) = .
-2010
4.8
【课本P11 练习第2题】
3. 画一条数轴,并分别标出表示绝对值等于 2,3.5 的数的点.
【课本P11 练习第3题】
4.若 | x-3 | + | y-2 | = 0,求 x + y 的值
解:由绝对值的非负性,得x - 3 = 0,y - 2 = 0.所以 x = 3,y = 2.所以 x + y = 3 + 2 = 5.
湘教版·七年级上册
1.2.3 绝对值
复习导入
1. 3到原点的距离是_____,-3到原点的距离是_____,到原点的距离是3的数是________;2. 3的相反数是_____,-3的相反数是_____,0的相反数是_____.
3
3
3和-3
-3
3
0
探索新知
点A 和点B 分别表示哪个有理数?点A、点B 到原点的距离分别是多少?
a
-2
-1
-0.5
七上数学课件第2章:绝对值与相反数-课件
表示一个数的相反数,可以在这个数的前面添一个“–”
一、绝对值(重点)
➢示例2 (1)3的相反数是(
A.– 3
B. 3
A )
C. –
D.
(2) – 的相反数为( D
A. – B. – C.
D.
)
解析∶
(1)因为与3只有符号不同的数为– 3,所以根据相反数的概念可
知3的相反数为– 3.
解析∶
∵|m+n|+|m|=m,|2m-n-2|=0,
∴m+n=0,2m-n-2=0且m≥0,
即
−
=
+=
,解得:
− =
=
则mn=−
,
典例展示厅
【典例5】 已知a是最大的负整数,b,c满足|b-5|+(c+2)2=0且a,b,c分别是点A,B,C在数轴上对应的
数.
典例展示厅
【典例3】若|x-2|+|y+2|=0,求x-y的相反数
解析∶
∵ − + + =
∴ − = , + =
解得 = , = −
∴ − = − ( − ) =
∴ − 的相反数是−.
典例展示厅
【典例4】已知|m+n|+|m|=m,且|2m-n-2|=0,求mn的值.
点左侧,则M对应的数是-2 .
随堂巩固
1、已知
A.3
∵
= | − |,则a的值是( D ).
一、绝对值(重点)
➢示例2 (1)3的相反数是(
A.– 3
B. 3
A )
C. –
D.
(2) – 的相反数为( D
A. – B. – C.
D.
)
解析∶
(1)因为与3只有符号不同的数为– 3,所以根据相反数的概念可
知3的相反数为– 3.
解析∶
∵|m+n|+|m|=m,|2m-n-2|=0,
∴m+n=0,2m-n-2=0且m≥0,
即
−
=
+=
,解得:
− =
=
则mn=−
,
典例展示厅
【典例5】 已知a是最大的负整数,b,c满足|b-5|+(c+2)2=0且a,b,c分别是点A,B,C在数轴上对应的
数.
典例展示厅
【典例3】若|x-2|+|y+2|=0,求x-y的相反数
解析∶
∵ − + + =
∴ − = , + =
解得 = , = −
∴ − = − ( − ) =
∴ − 的相反数是−.
典例展示厅
【典例4】已知|m+n|+|m|=m,且|2m-n-2|=0,求mn的值.
点左侧,则M对应的数是-2 .
随堂巩固
1、已知
A.3
∵
= | − |,则a的值是( D ).
2.3.1绝对值与相反数:绝对值(课件)七年级数学上册(苏科版2024)
3
4
5
02
知识精讲
绝对值的运算
由于任意一个有理数的绝对值都是非负数,所以两个有理数的绝
对值可以进行小学里学过的各种运算,如:|3|+|-2|=3+2=5。
“绝对值”运算优先于“加减乘除”运算。
02
知识精讲
尝试——计算:
(1)|-1000|-|-197|;
(2)|32|×|-2.5|。
解:(1)原式=1000-197
知识精讲
讨论——1. 的绝对值是____,- 的绝对值是____,0的绝对值是
____;
0
-4
-3
-2
-1
0
1
2
3
4
02
知识精讲
2.绝对值等于5的数是____,绝对值小于5的整数有____个,
±5
9
其中绝对值最小的整数是____。
0
5
-6
-5
-4
-3
5
-2
-1
0
1
2
④m=1,n=4,m-n=-3,
②m=-1,n=4,m+n=3,
∵5>3>-3>-5,
综上,m+n的值±3;
∴m-n的最大值为5。
03
典例精析
例3、我们知道|x|=2,则x=±2。
请你那么运用“类比”的数学思想尝试着解决下面两个问题:
-5或-1
(1)|x+3|=2,则x=________;
看作整体
(2)|- |×|33|+66×|-25%|+0.25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
2021/02/25
13
Mห้องสมุดไป่ตู้
P
Q
-3 -2 -1 0 1 2 3
解: 点M表示 -3; 点P表示-0.5; 点Q表示2.5
2021/02/25
8
1、填空: 数轴上表示-2的点在原点的 左 侧,距原
点的距离是 2个单位 ,表示6的点在原点 的 右 侧,距原点的距离是 6个单位 。
2、判断 数轴上的两个点可以表示同一个有理数 (╳)
2、规定直线上向右的方向为正方向, 3、选取一长度作为单位长度,就得到了数轴。
2021/02/25
6
抽象
总结
从上面的例子受到启发,数学上规定:
画一条直线(通常把它水平放置),在直线上取一点O,把它叫做原点 (origin),用它表示数0。确定一个单位长度,从原电往右距原点1个单位 的点表示1,例如温度表上的1 ℃,公路上的1公里……从原电往左距原点1个 单位的点表示-1,例如温度表上的-1 ℃,公路上的-1公里……
-2 -0.8 0 0.8 2 3
2021/02/25
11
思考题:
一个点在数轴上表示的数是-5,这个 点先向左边移动3个单位,然后再向右边 移动6个单位,这时它表示的数是多少呢? 如果按上面的移动规律,最后得到的点表 示的数是2,则开始时它表示什么数?
2021/02/25
12
THANKS
FOR WATCHING
1.2.1 数 轴
-3 -2 -1 0 1 2 3
2021/02/25
1
观察周围的生活
例1
5 ℃ 2021/02/25
0℃
-10 ℃
22
例2
公园 -1公里
学校 O
家 1公里
外婆家 2.6公里
公园 -1公里
学校 O
家 1公里
外婆家 2.6公里
公园 -1公里
学校 O
家 1公里
外婆家 2.6公里
2021/02/25
3
抽象
由例1中带有刻度的温度表和例2中 带有公里数的笔直的马路,由此联想, 我们是否可以用一条直线上的一些点表 示有理数?
赶快思考啊!!!
2021/02/25
4
在数学中,通常用一条
直线上的点表示数,这条 直线叫做数轴,它满足以 下要求:
2021/02/25
5
01
1、画一条水平直线,在直线上取一点0 (叫原点),
2021/02/25
9
3、下列命题正确的是( B ) A:数轴上的点都表示整数。 B:数轴上表示5与-5的点分别在原点的
两侧,并且到原点的距离都等于5个 单位长度。 C:数轴包括原点与正方向两个要素。 D:数轴上的点只能表示正数和零。
2021/02/25
10
自己画一条数轴,并在数周上表示下 列各数的点:-2,-0.8,0.8,2
这时我们把直线向右的方向(标上箭头)称为正方向。这样规定了原点、单
位长度和正方向的直线叫作数轴(number axis).如下图表示。
-3 -2 -1 0 1 2 3
由此,我们知道 任何有理数都可以用数轴 上 唯一的一个点来表示
2021/02/25
7
练习1 指出数轴上M,P,Q各点分别表示哪个有理数。
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
2021/02/25
13
Mห้องสมุดไป่ตู้
P
Q
-3 -2 -1 0 1 2 3
解: 点M表示 -3; 点P表示-0.5; 点Q表示2.5
2021/02/25
8
1、填空: 数轴上表示-2的点在原点的 左 侧,距原
点的距离是 2个单位 ,表示6的点在原点 的 右 侧,距原点的距离是 6个单位 。
2、判断 数轴上的两个点可以表示同一个有理数 (╳)
2、规定直线上向右的方向为正方向, 3、选取一长度作为单位长度,就得到了数轴。
2021/02/25
6
抽象
总结
从上面的例子受到启发,数学上规定:
画一条直线(通常把它水平放置),在直线上取一点O,把它叫做原点 (origin),用它表示数0。确定一个单位长度,从原电往右距原点1个单位 的点表示1,例如温度表上的1 ℃,公路上的1公里……从原电往左距原点1个 单位的点表示-1,例如温度表上的-1 ℃,公路上的-1公里……
-2 -0.8 0 0.8 2 3
2021/02/25
11
思考题:
一个点在数轴上表示的数是-5,这个 点先向左边移动3个单位,然后再向右边 移动6个单位,这时它表示的数是多少呢? 如果按上面的移动规律,最后得到的点表 示的数是2,则开始时它表示什么数?
2021/02/25
12
THANKS
FOR WATCHING
1.2.1 数 轴
-3 -2 -1 0 1 2 3
2021/02/25
1
观察周围的生活
例1
5 ℃ 2021/02/25
0℃
-10 ℃
22
例2
公园 -1公里
学校 O
家 1公里
外婆家 2.6公里
公园 -1公里
学校 O
家 1公里
外婆家 2.6公里
公园 -1公里
学校 O
家 1公里
外婆家 2.6公里
2021/02/25
3
抽象
由例1中带有刻度的温度表和例2中 带有公里数的笔直的马路,由此联想, 我们是否可以用一条直线上的一些点表 示有理数?
赶快思考啊!!!
2021/02/25
4
在数学中,通常用一条
直线上的点表示数,这条 直线叫做数轴,它满足以 下要求:
2021/02/25
5
01
1、画一条水平直线,在直线上取一点0 (叫原点),
2021/02/25
9
3、下列命题正确的是( B ) A:数轴上的点都表示整数。 B:数轴上表示5与-5的点分别在原点的
两侧,并且到原点的距离都等于5个 单位长度。 C:数轴包括原点与正方向两个要素。 D:数轴上的点只能表示正数和零。
2021/02/25
10
自己画一条数轴,并在数周上表示下 列各数的点:-2,-0.8,0.8,2
这时我们把直线向右的方向(标上箭头)称为正方向。这样规定了原点、单
位长度和正方向的直线叫作数轴(number axis).如下图表示。
-3 -2 -1 0 1 2 3
由此,我们知道 任何有理数都可以用数轴 上 唯一的一个点来表示
2021/02/25
7
练习1 指出数轴上M,P,Q各点分别表示哪个有理数。