人教版八年级下册数学概念定义公式总结
人教版八年级下册数学概念定义公式总结
人教版八年级下册数学概念定义公式总结Jenny was compiled in January 2021八年级下册数学概念、定义、公式归纳1.2.3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。
分子和分母没有公因式的分式叫做最简分式。
4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。
通分一般要找各分式的最简公分母。
()5.6.7.8.9.10.11.12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。
勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。
13.题设、结论正好相反的两个命题称为互逆命题。
其中一个叫原命题,另一个叫逆命题。
14.平行四边形的性质:①对边平行且相等②对角相等,邻角互补③对角线互相平分15.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形。
②两组对边分别相等的四边形是平行四边形。
③两组对角分别相等的四边形是平行四边形。
④一组对边平行且相等的四边形是平行四边形。
⑤对角线互相平分的四边形是平行四边形。
16.矩形的性质:①两组对边平行且相等。
②四个角都是直角。
③对角线互相平分且相等17.矩形的判定方法:①一个角是直角的平行四边形是矩形。
②对角线相等的平行四边形是矩形。
③三个角都是直角的四边形是矩形。
18.菱形的性质:①四条边都相等②对角相等,邻角互补③对角线互相垂直平分,且每一条对角线平分一组对角19.菱形的判定方法:①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四边相等的四边形是菱形。
20.正方形的性质:①四条边都相等,对边平行②四个角都是直角③对角线相等且互相垂直平分,且每一条对角线平分一组对角21.正方形的判定方法:①一组邻边相等的矩形是正方形。
八年级数学下册知识点总结(全)
八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
八年级数学下册知识点总结
八年级数学下册知识点总结一、二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”叫做二次根号,a叫做被开方数。
例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。
2. 二次根式有意义的条件。
- 被开方数必须是非负数,即对于√(a),a≥slant0时二次根式有意义。
例如在√(x - 2)中,x - 2≥slant0,解得x≥slant2时该二次根式有意义。
3. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(3))^2=3。
- √(a^2)=| a|=<=ft{begin{array}{l}a(a≥slant0) - a(a < 0)end{array}right.。
例如√((-2)^2)=| - 2| = 2。
4. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b > 0)。
例如(√(8))/(√(2))=√(frac{8){2}}=√(4)=2。
5. 二次根式的加减。
- 先把二次根式化成最简二次根式,再合并同类二次根式。
- 最简二次根式满足两个条件:被开方数不含分母;被开方数中不含能开得尽方的因数或因式。
例如√(8)=√(4×2)=2√(2),2√(2)就是最简二次根式。
- 同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
例如√(12)=2√(3)与√(27)=3√(3)是同类二次根式,可以合并,2√(3)+3√(3)=(2 + 3)√(3)=5√(3)。
人教版数学八年级下册数学全册知识清单梳理+经典例题练习(含答案)
八年级数学下册 知识清单二次根式1.定义及存在意义的条件: 定义:形如)0(≥a a 的式子叫做二次根式;有意义的条件:a ≥0. 2.根式化简及根式运算: 最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式; (2)被开方数中的因数或因式不能再开方。
同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
根式化简公式:a a =2,2)(a =a ;根式运算: 乘法公式:)0,0(≥≥⋅=⋅b a b a b a ;b a b a ⋅=2除法公式:)0,0(>≥=⇔=b a b a ba b a b a 分母有理化:把分母中的根号化去,叫做分母有理化。
分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。
常见分母有理化公式:b a ba ba a a a --=+=1,1 二次根式加减运算的步骤: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式。
(2)找出其中的同类二次根式。
(3)合并同类二次根式。
3.双重非负性:002==⇒=+y x y x 且;00==⇒=+y x y x 且;000==⇒=+y x y x 且【典型例题1】 1、使代数式有意义的自变量x 的取值范围是( )A.x ≥3B.x >3且x ≠4C.x ≥3且x ≠4D.x >3 2、若式子-+1有意义,则x 的取值范围是( )A.x ≥21 B.x ≤21 C.x =21 D.以上答案都不对【典型例题2】3、已知x 、y 为实数,且y=﹣+4.+=( )A.13B.1C.5D.6 4、下列式子中,属于最简二次根式的是( )A. B. C. D.5、下列根式中,最简二次根式是( ) A.B.C.D.6、下列根式中与不是同类二次根式的是( )A. B. C. D.【典型例题3】7、化简的结果为()A. B. C.D.8、把根号外的因式移到根号内,得()A. B. C. D.9、计算的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间10、若,则( )A.1-2aB.1C.-1D.以上答案都不对【典型例题4】11、已知,,则代数式的值是()A.9B.±3C.3D.512、若m=,则m5﹣2m4﹣2016m3=()A.2015B.2016C.2017D.0【典型例题5】13、已知:实数a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.14、若的整数部分是a,小数部分是b ,求的值.15、已知△ABC的三边长a,b,c均为整数,且a和b 满足试求△ABC的c边的长.勾股定理1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
人教版八年级下册数学平行四边形知识点总结
平行四边形、矩形、菱形、正方形知识点总结杭信一中何逸冬一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4个面积相等=⨯的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补对角:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=12 ab.③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .平行四边形 矩形 菱形 正方形 图形性质1.对边且 ;2.对角 ; 邻角 ;3.对角线; 1.对边且 ;2.对角且四个角都是 ;3.对角线;1.对边 且四条边都 ;2.对角 ; 3.对角线 且每 条对角线 ;1.对边 且四条边都 ;2.对角 且四个角都是 ; 3.对角线 且每条对角线 ;面积【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
八年级下册数学重点知识归纳
八年级下册数学重点知识归纳摘要:一、引言二、数轴与实数1.数轴的定义与性质2.实数的分类与性质三、代数式与代数表达式1.代数式的基本概念2.代数表达式的运算规则四、方程与不等式1.一元一次方程的解法2.一元二次方程的解法3.不等式的基本概念与解法五、函数1.函数的基本概念2.函数的图像与性质3.函数的解析式与应用六、几何知识1.点、线、面的基本概念2.直线与角的关系3.三角形的基本性质与证明4.四边形的分类与性质七、数据的收集与分析1.数据的收集方法2.数据的整理与展示3.数据的分析与推断八、概率与统计1.概率的基本概念2.事件的概率3.统计的基本概念与方法九、综合应用1.实际问题与数学建模2.数学在生活中的应用十、总结与展望正文:【引言】数学是科学的基础,也是工具。
在八年级下册的数学课程中,我们将学习一系列重要的数学知识,为以后的学习打下坚实的基础。
本篇文章将对这些重点知识进行归纳总结,帮助大家更好地掌握数学知识。
【数轴与实数】数轴是数学中的一个基本概念,它是一个直线,规定了原点、正方向和单位长度。
实数是数学中的基本对象,可以分为有理数和无理数。
有理数又可分为整数、分数和小数。
无理数是不能表示为有理数的实数,如圆周率π。
【代数式与代数表达式】代数式是由数、字母和运算符号组成的式子,如3x+2y。
代数表达式是在代数式的基础上,应用运算律和运算方法得到的式子,如(3x+2y)^2。
【方程与不等式】方程是一个含有未知数的等式,如x+3=5。
解方程就是求出方程中未知数的值。
不等式是表示大小关系的式子,如x>3。
解不等式就是找出满足不等式的所有x 的值。
【函数】函数是一种特殊的关系,它将一个或多个变量映射到另一个变量。
例如,y=2x+1 是一个一次函数,它将x 映射到y。
函数的解析式是表示函数关系的式子。
【几何知识】几何是数学的一个重要分支,主要研究点、线、面的性质和它们之间的关系。
在八年级下册,我们将学习直线与角的关系,三角形的性质和证明,以及四边形的分类和性质。
新人教版八年级数学全册知识点总结
新人教版八年级数学上册知识点总结第十一章 三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯=⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn nab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:mnm na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭8.整数指数幂: ⑴mnm na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1nn aa-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).新人教版八年级数学下册知识点总结第16章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
完整版)八年级数学公式及概念
完整版)八年级数学公式及概念八年级数学公式及概念第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。
2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。
3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8/3等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60°等。
二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零)。
从数轴上看,互为相反数的两个数所对应的点关于原点对称。
如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数。
若|a|=a,则a≥0;若|a|=-a,则a≤0.3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1.零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算。
三、平方根、算数平方根和立方根21、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。
全】人教版初中数学八年级下册知识点总结
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
新人教版八年级下册数学知识点归纳
新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。
2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。
人教版八年级下册数学知识点总结
人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
八年级下册数学二次根式概念总结
八年级下册数学二次根式概念总结
一、二次根式的定义。
形如√(a)(a≥0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
1. 被开方数的取值范围。
- 被开方数必须是非负数。
这是因为在实数范围内,负数没有平方根。
例如,√(-2)在实数范围内是无意义的,而√(2)是有意义的二次根式。
2. 二次根式的双重非负性。
- 二次根式√(a)中,√(a)≥0(算术平方根的非负性),a≥0(被开方数的非负性)。
例如,若√(x - 3)有意义,则x - 3≥0,即x≥3;同时√(x - 3)≥0。
二、二次根式的简单性质。
1. (√(a))^2=a(a≥0)
- 这个性质表明,一个非负数的算术平方根的平方等于它本身。
例如,
(√(5))^2 = 5。
- 注意:当a<0时,√(a)无意义,所以这个性质中a的取值范围是a≥0。
2. √(a^2)=| a|=a(a≥0) -a(a < 0)
- 例如,当a = 3时,√(3^2)=√(9)=3;当a=-3时,√((-3)^2)=√(9)=3=-(-3)。
- 这个性质在化简二次根式时经常用到,例如化简√(4x^2),因为x^2≥0,所以√(4x^2)=2| x|=2x(x≥0) -2x(x < 0)。
人教版八年级数学知识点总结
人教版八年级数学知识点总结人教版八年级数学知识点分式方程一、理解定义1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四总结”3、增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根;注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
二、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
1、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
3、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
人教版八年级下册数学目录
人教版八年级下册数学目录第一章知识梳理基本概念回顾1.正数、负数、零2.绝对值3.数轴有理数1.有理数的概念2.有理数的比较3.有理数加减法4.有理数乘法5.有理数除法实数1.无理数2.实数的概念3.实数的分类4.实数的运算第二章图形基础平面直角坐标系1.平面直角坐标系的概念2.平面直角坐标系的表示方法3.平面图形在平面直角坐标系中的表示点、直线、线段、射线1.点的概念2.直线的概念3.线段、射线的概念4.平面图形中的点、直线、线段、射线等基本概念角、度、弧1.角的概念2.度的定义3.角度的转化4.角的性质5.弧的概念6.弧长、弧度制7.圆心角、平分线、垂直平分线第三章勾股定理勾股定理1.勾股定理的概念2.勾股定理的证明3.勾股定理的逆定理勾股定理的应用1.利用勾股定理求三角形的边长2.利用勾股定理判断三角形的形状勾股定理的推广1.射影定理2.正弦定理、余弦定理第四章面积平面图形的面积1.平面图形的面积的概念2.平面图形的面积公式三角形面积1.三角形面积的计算方法2.三角形面积公式多边形的面积1.多边形的概念2.规则多边形的面积公式3.不规则多边形的面积计算方法第五章立体图形立体图形的概念1.立体图形的定义2.几何体的命名、表示和比较3.正方体、长方体、棱柱、棱锥、棱台、圆柱、圆锥的概念和性质立体图形的表面积和体积1.公式的推导与运用第六章概率初步概率的概念和相关概念1.简单随机事件与样本空间2.随机事件的概念和性质概率的概念与性质1.等可能性原理2.概率的定义公式3.概率的性质4.概率的计算方法事件的关系1.事件的包含关系、相等关系、互不相交关系条件概率1.条件概率的概念2.条件概率的公式3.乘法公式的应用独立性与事件的运算法则1.独立事件的概念2.事件的加法公式和乘法公式第七章向量向量的基本概念1.向量的定义和表示2.向量的相等和大小向量的运算1.向量的加法、减法和数乘2.平面向量的数量积向量的应用1.向量和坐标系2.平面向量的共线性、垂直性和夹角的计算3.平面向量的应用第八章一次函数函数的概念1.函数的定义和符号2.自变量、因变量一次函数的概念和性质1.一次函数的定义和符号2.函数图象3.函数的单调性一次函数的运算1.一次函数的加、减、乘、除2.一次函数的复合函数与反函数一次函数的应用1.一元一次方程2.解决实际问题第九章线性方程组线性方程组1.线性方程组的概念和解的含义2.线性方程组的一般形式和矩阵形式3.线性方程组的三种解的情况线性方程组的解法1.高斯消元法2.矩阵法线性方程组的应用1.解决实际问题第十章二次函数二次函数的概念1.二次函数的定义和符号2.二次函数的图像3.二次函数的对称轴和顶点二次函数的性质1.二次函数的单调性和极值2.二次函数的零点和交点二次函数的运算1.二次函数的加、减、乘、除2.复合函数和反函数二次函数的应用1.抛物线及其性质第十一章模型初步探究数学建模1.数学建模的意义和方法2.常见数学模型常见数学模型的应用1.样本调查的分析和描述2.资料分析与整理3.预测和决策问题的解决第十二章统计初步统计的基本概念1.基本统计概念2.频数分布、频率分布、累计频率数据描述的方法1.统计表格和图形2.比率、比例的概念和计算统计学的应用1.样本调查2.社会经济问题的分析3.文化体育问的量化分析第十三章考试复习这一章主要是对全书内容的总结和复习,包括知识点梳理、重点难点归纳、例题讲解、历年考试题等。
人教版七、八年级下册数学知识点公式大全
人教版七、八年级下册数学知识点公式大全人教版七年级数学下册知识点公式大全第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6像这样具有相同位置关系的一对角叫做同位角。
内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。
同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学概念定义公式总结
文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)
八年级下册数学概念、定义、公式归纳
1.
2.
3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。
分子和分母没有公因式的分式叫做最简分式。
4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。
通分一般要找各分式的最简公分母。
()
5.
6.
7.
8.
9.
10.
11.
12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。
勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。
13.题设、结论正好相反的两个命题称为互逆命题。
其中一个叫原命题,另一个叫逆命题。
14.平行四边形的性质:
①对边平行且相等
②对角相等,邻角互补
③对角线互相平分
15.平行四边形的判定方法:
①两组对边分别平行的四边形是平行四边形。
②两组对边分别相等的四边形是平行四边形。
③两组对角分别相等的四边形是平行四边形。
④一组对边平行且相等的四边形是平行四边形。
⑤对角线互相平分的四边形是平行四边形。
16.矩形的性质:
①两组对边平行且相等。
②四个角都是直角。
③对角线互相平分且相等
17.矩形的判定方法:
①一个角是直角的平行四边形是矩形。
②对角线相等的平行四边形是矩形。
③三个角都是直角的四边形是矩形。
18.菱形的性质:
①四条边都相等
②对角相等,邻角互补
③对角线互相垂直平分,且每一条对角线平分一组对角
19.菱形的判定方法:
①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四边相等的四边形是菱形。
20.正方形的性质:
①四条边都相等,对边平行
②四个角都是直角
③对角线相等且互相垂直平分,且每一条对角线平分一组对角
21.正方形的判定方法:
①一组邻边相等的矩形是正方形。
②一个角是直角的菱形是正方形。
③对角线相等且互相垂直平分的四边形是正方形。
22.等腰梯形的性质:
①同一底边上的两个角相等。
②两条对角线相等。
23.等腰梯形的判定方法:
①两腰相等的梯形是等腰梯形。
②对角线相等的梯形是等腰梯形。
③同一底上两个角相等的梯形是等腰梯形。
24.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
25.直角三角形斜边上的中线等于斜边的一半。
26.菱形、正方形特有的面积算法:两条对角线长度乘积的一半。
27.
28.
29.
30.一组数据中出现次数最多的数据叫做这组数据的众数。
31.
32.一组数据中最大数据与最小数据的差叫做这组数据的极差。
33.
34.方差越大,数据的波动越大,越不稳定;方差越小,数据的波动越小,越稳定。