高中数学 专题08概率与统计

合集下载

高中数学 概率与统计

高中数学 概率与统计

高中数学概率与统计概率与统计是数学中的一个重要分支,它涉及到生活中很多方面,比如统计调查、学术研究、医学诊断、商业决策等。

在高中数学中,概率与统计是必修内容之一,本文将介绍一些概率与统计中常见的概念、方法和应用。

一、概率概率是描述随机现象发生可能性大小的数值,通常用一个介于0到1之间的实数表示。

假设事件A在n次独立重复试验中发生了m次,则A事件发生的频率为m/n,当n趋近无穷大时,频率将越来越接近于一个数,这个数就是A事件的概率,用P(A)表示。

对于两个事件A和B,它们的联合概率是指事件A和B同时发生的概率,用P(AB)表示。

当A和B相互独立时,它们的联合概率等于它们的乘积,即P(AB)=P(A)P(B)。

两个事件的和事件是指它们中至少有一个发生的事件,用P(A∪B)表示,它等于P(A)+P(B)-P(AB)。

二、离散随机变量随机变量是指一个随机试验的结果所对应的值,离散随机变量是指其可能取值为有限个或可数个的随机变量。

离散随机变量的概率分布可以用概率函数f(x)表示,它满足以下条件:(1) f(x)>=0,对所有x∈R;离散随机变量的期望值E(X)是指其所有可能取值的数值与对应概率的乘积的总和,即E(X)=ΣxP(X=x)。

方差Var(X)表示随机变量离其期望值的偏差的平方值的期望值,即Var(X)=E[(X-E(X))^2]。

(2) ∫f(x)dx=1,其中积分区间为随机变量的取值范围。

连续随机变量的期望值E(X)和方差Var(X)的计算方式类似于离散随机变量。

四、统计推断统计推断是指根据样本数据对总体特征值进行估计与检验的方法。

其中,点估计用样本统计量(如样本均值、样本方差等)估计总体参数的值;区间估计用样本统计量与分布的性质确定总体参数的置信区间;假设检验则根据已知条件(如总体均值、方差等已知)、假设条件(如总体均值、方差等)和样本特征值计算出检验统计量,从而判断原假设是否成立。

五、应用概率与统计在生活中有着广泛的应用。

高中数学知识点总结概率与统计的统计推断

高中数学知识点总结概率与统计的统计推断

高中数学知识点总结概率与统计的统计推断高中数学知识点总结:概率与统计的统计推断概率与统计是高中数学中的一大重要分支,它涉及到统计推断。

统计推断是通过收集一部分数据来推断总体的特征和规律,从而对未知或难以获得的信息进行预测和判断。

本文将简要介绍概率与统计的统计推断相关的知识点。

一、抽样和抽样分布统计推断的基础是抽样,即从总体中随机选择一部分个体进行研究。

抽样要遵循随机性、代表性和独立性的原则,以确保样本的可靠性和有效性。

抽样分布是指随机抽取的各个样本所对应的统计量的分布。

常见的抽样分布有正态分布、t分布和卡方分布等。

二、参数估计参数估计是利用样本数据对总体的未知参数进行估计和推断的过程。

点估计是基于样本数据得出一个具体的数值作为总体参数的估计值,如样本均值、样本比例等。

区间估计则是确定一个区间,以一定的置信水平对总体参数进行估计,如置信区间。

三、假设检验假设检验是用于检验总体参数假设的方法。

根据已有信息和假设条件,利用样本数据对总体参数进行检验,判断假设是否被接受或拒绝。

假设检验包括原假设和备择假设,常见的检验方法有单样本均值检验、两样本均值检验、单样本比例检验等。

四、相关性与回归分析相关性分析主要研究两个变量之间的相关关系,其中常用的衡量指标是相关系数。

回归分析研究一个或多个自变量对因变量的影响程度和变化趋势。

线性回归是其中最常用的,通过最小二乘法来拟合自变量和因变量之间的线性关系。

五、抽样分布的中心极限定理中心极限定理是指当样本容量足够大时,样本均值的抽样分布逼近于正态分布。

它是统计推断的理论基础,使得我们可以基于样本均值进行正态分布的推断,如置信区间估计和假设检验等。

六、样本调查与调查问卷设计统计推断常常涉及到样本调查和调查问卷设计。

在进行统计推断之前,我们需要明确研究的目的、确定调查对象、设计合理的调查问卷,并通过适当的抽样方法进行样本调查。

合理的样本调查与问卷设计可以提高数据质量和统计结果的可信度。

专题08 统计概率(选填题8种考法)(原卷版)

专题08 统计概率(选填题8种考法)(原卷版)

专题08统计概率(选填题8种考法)考法一特征数的解读【例1-1】(2021·全国·统考高考真题)(多选)下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【例1-2】(2023·全国·开滦第二中学校考模拟预测)(多选)体育王老师记录了16名小学生某周课外体育运动的时长(单位:h ),记录如下表.则这16名小学生该周课外体育运动时长的()A .众数为8B .中位数为6.5B .C .平均数为7D .标准差为2【例1-3】(2023·全国·模拟预测)已知一组数据:123,,x x x 的平均数是4,方差是2,则由12331,31,31x x x ---和11这四个数据组成的新数据组的方差是()A .27B .272C .12D .11【例1-4】(2023·全国·校联考模拟预测)已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为38.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则()A .236,48s x =<B .236,48s x =>C .236,48s x ><D .236,48s x <>【例1-5】(2023·四川南充·四川省南充高级中学校考模拟预测)设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,ξ12P12p -122p A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小【例1-6】(2023·福建·统考一模)以下为甲、乙两组按从小到大顺序排列的数据:甲组:14,30,37,a ,41,52,53,55,58,80;乙组:17,22,32,43,45,49,b ,56.若甲组数据的第40百分位数和乙组数据的平均数相等,则4a b -=__________.运动时长456789运动人数122452【例2-1】(2023·全国·模拟预测)(多选)2022年全国多地迎来了罕见的连续高温天气,如图是某市7月1日到15日的每日最高、最低温度(单位:℃)的折线图,若一天的温差不低于10℃,则认为该天为“不舒适天”.根据折线图判断,下列选项正确的是()A.日最高温度的中位数为31℃B.“不舒适天”有6天C.日最低温度低于20℃的有6天D.7月5日的温差最大【例2-2】(2023·全国·模拟预测)(多选)近年来国产品牌汽车发展迅速,特别是借助新能源汽车发展的东风,国产品牌汽车销量得到了较大的提升.如图是2021年1~7月和2022年1~7月我国汽车销量占比饼状图,已知2022年1~7月我国汽车总销量为1254万辆,比2021年增加了99万辆,则2022年1~7月我国汽车销量与2021年1~7月相比,下列说法正确的是()C.国产汽车和其他汽车销量占比之和变大了D.德系汽车销量变少了【例2-3】(2022·全国·统考高考真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【例2-4】(2023·安徽蚌埠·统考二模)(多选)作为世界经济增长的重要引擎,中国经济充满韧性活力,备受世界瞩日.当前,新冠疫情延宕反复,全球通胀攀升,美联储激进加息冲击全球,世界经济下行压力明显增大.在此背景下,中国经济稳住了自身发展势头,不断向世界经济输送宝贵增长动能,续写世界经济发展史上的中国奇迹.中共二十大报告为中国的未来擘画了发展蓝图,让全球经济界人士继续看好中国经济光明前景.根据世界银行最新公布的数据,下列说法正确的是()世界主要国家经济增长率和对世界经济增长的贡献率(单位:%)均增速6.6%,居世界主要经济体前列B.2013-2021年,我国对世界经济增长的年均贡献率达到38.6%,超过表中其他国家年均贡献率的总和,是推动世界经济增长的第一动力C.2021年,我国的经济增长率位居世界第一D.表中“2021年世界主要国家经济增长率”这组数据的75百分位数是7.4考法三线性回归方程与独立性检验【例3-1】(2023·四川成都·统考一模)下列命题中错误的是()A .在回归分析中,相关系数r 的绝对值越大,两个变量的线性相关性越强B .对分类变量X 与Y ,它们的随机变量2K 的观测值k 越小,说明“X 与Y 有关系”的把握越大C .线性回归直线ˆˆˆybx a =+恒过样本中心()x y D .在回归分析中,残差平方和越小,模型的拟合效果越好【例3-2】(2023·四川南充·四川省南部中学校考模拟预测)千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,观察了地区A 的100天日落和夜晚天气,得到如下2×2列联表(单位:天),并计算得到219.05χ≈,下列小波对地区A 天气的判断不正确的是()日落云里走夜晚天气下雨未下雨出现255未出现2545参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++临界值参照表:A .夜晚下雨的概率约为12B .未出现“日落云里走”,夜晚下雨的概率约为514C .有99%的把握判断“日落云里走”是否出现与夜晚天气有关D .出现“日落云里走”,有99%的把握判断夜晚会下雨【例3-3】(2023·吉林通化·梅河口市第五中学校考一模)某地以“绿水青山就是金山银山”理念为引导,推进绿色发展,现要订购一批苗木,苗木长度与售价如下表:苗木长度x (cm )384858687888售价y (元)16.818.820.822.82425.8若苗木长度x (cm )与售价y (元)之间存在线性相关关系,其回归方程为ˆˆ8.9ybx =+,则当售价大约为38.9元时,苗木长度大约为()A .148cmB .150cmC .152cmD .154cm【例3-4】(2023·陕西商洛·校考三模)用模型e kx y a =拟合一组数()(),1,2,,10i i x y i =⋅⋅⋅,若121010x x x +++= ,701210e y y y = ,设ln z y =,得变换后的线性回归方程为4zbx =+ ,则ak =()A .12B .43e C .34e D .7考法四排列组合【例4-1】.(2023·辽宁盘锦·盘锦市高级中学校考一模)有3名男生,4名女生,在下列不同条件下,错误的是()A .任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案有70种B .全体站成一排,男生互不相邻有1440种C .全体站成一排,女生必须站在一起有144种D .全体站成一排,甲不站排头,乙不站排尾有3720种.【例4-2】(2023·四川内江·统考一模)“女排精神”是中国女子排球队顽强战斗、勇敢拼搏精神的总概括,她们在世界杯排球赛中凭着顽强战斗、勇敢拼搏的精神,五次获得世界冠军,为国争光.2019年女排世界杯于9月14日至9月29日在日本举行,中国队以上届冠军的身份出战,最终以11战全胜且只丢3局的成绩成功卫冕世界杯冠军,为中华人民共和国70华诞献上最及时的贺礼.朱婷连续两届当选女排世界杯MVP ,她和颜妮、丁霞、王梦洁共同入选最佳阵容,赛后4人和主教练郎平站一排合影留念,已知郎平站在最中间,她们4人随机站于两侧,则朱婷和王梦洁站于郎平同一侧的概率为()A .12B .13C .14D .16【例4-3】(2023·陕西商洛·校考三模)目前,新型冠状病毒席卷上海,一方有难八方支援,全国各地医疗队伍紧急支援上海,我市某医院决定从8名医生中选派4名分别支援上海四家医院,每家医院各派去1名医生,其中甲和乙不能都去上海,甲和丙只能都去或都不去上海,则不同的选派方案有()种A .360B .480C .600D .720考法五正态分布【例5-1】(2023·山东·潍坊一中校联考模拟预测)设随机变量()2,X N μσ ,且()()0.5,()3P X a P X b P X b ≥=<=≥,则()2P X a b ≤-=()A .0.25B .0.3C .0.5D .0.75【例5-2】(2023·江苏南通·统考一模)已知随机变量X 服从正态分布()2,N μσ,有下列四个命题:甲:(1)(2)P X m P X m >+><-;乙:()0.5P X m >=;丙:()0.5P X m ≤=;丁:(1)(12)P m X m P m X m -<<<+<<+如果只有一个假命题,则该命题为()A .甲B .乙C .丙D .丁【例5-3】(2023·全国·模拟预测)(多选)已知随机变量X 服从二项分布()4,B p ,其方差()1D X =,随机变量Y 服从正态分布(),4N p ,且()()21P X P Y a =+<=,则()A .12p =B .()328P X ==C .()38P Y a <=D .()118P Y a >-=【例5-4】(2023·河北衡水·河北衡水中学校考模拟预测)(多选)工厂生产某零件,其尺寸D 服从正态分布()210,0.01N k (单位:cm ).其中k 由零件的材料决定,且0k >.当零件尺寸大于10.3cm 或小于9.7cm 时认为该零件不合格;零件尺寸大于9.9cm 且小于10.1cm 时认为该零件为优质零件;其余则认为是普通零件.已知当随机变量()2,X N μσ 时,()0.159P X μσ>+≈,()20.023P X μσ>+≈,()30.001P X μσ>+≈,则下列说法中正确的有().A .k 越大,预计生产出的优质品零件与不合格零件的概率之比越小B .k 越大,预计生产出普通零件的概率越大C .若 1.5k =,则生产200个零件约有9个零件不合格D .若生产出优质零件、普通零件与不合格零件盈利分别为3a ,2a ,5a -,则当1k =时,每生产1000个零件预计盈利2580a考法六条件概率【例6-1】(2023·全国·开滦第二中学校考模拟预测)小陈和小李是某公司的两名员工,在每个工作日小陈和小李加班的概率分别为13和14,且两人同时加班的概率为16,则某个工作日,在小李加班的条件下,小陈也加班的概率为()A .112B .12C .23D .34【例6-2】(2023·江苏连云港·统考模拟预测)在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,发现该100名患者中有20名的年龄位于区间[)40,50内.已知该地区这种疾病的患病率为0.15%,年龄位于区间[)40,50内人口占该地区总人口的30%.现从该地区任选一人,若此人年龄位于区间[)40,50内,则此人患该疾病的概率为()A .0.001B .0.003C .0.005D .0.007【例6-3】(2023·河北石家庄·统考模拟预测)甲口袋中有3个红球,2个白球和5个黑球,乙口袋中有3个红球,3个白球和4个黑球,先从甲口袋中随机取出一球放入乙口袋,分别以12,A A 和3A 表示由甲口袋取出的球是红球,白球和黑球的事件;再从乙口袋中随机取出一球,以B 表示由乙口袋取出的球是红球的事件,则下列结论中正确的是()A .()2411P B A =B .事件1A 与事件B 相互独立C .()312P A B =D .3()10P B =【例6-4】(2023·云南昆明·昆明一中校考模拟预测)已知事件A ,B ,C 满足A ,B 是互斥事件,且()()12P A B C ⋃=,()112P BC =,()14P C =,则()P A C 的值等于()A .16B .112C .14D .13【例6-5】(2023·吉林·长春十一高校联考模拟预测)长白飞瀑,高句丽遗迹,鹤舞向海,一眼望三国,伪满皇宫,松江雾凇,净月风光,查干冬渔,是著名的吉林八景,某人打算到吉林旅游,冬季来的概率是23,夏季来的概率是13,如果冬季来,则看不到长白飞瀑,鹤舞向海和净月风光,若夏季来,则看不到松江雾凇和查干冬捕,无论什么时候来,由于时间原因,只能在可去景点当中选择两处参观,则某人去了“一眼望三国”景点的概率为()A .1115B .1645C .1745D .13考法七概念辨析【例7-1】(2021·全国·统考高考真题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立【例7-2】(2023·江苏徐州·徐州市第七中学校考一模)随机掷两个质地均匀的正方体骰子,骰子各个面分别标记有16~共六个数字,记事件A =“骰子向上的点数是1和3”,事件B =“骰子向上的点数是3和6”,事件C =“骰子向上的点数含有3”,则下列说法正确的是()A .事件A 与事件B 是相互独立事件B .事件A 与事件C 是互斥事件C .()()118P A P B ==D .()16P C =【例7-3】(2023·安徽淮北·统考一模)对于一个古典概型的样本空间Ω和事件A ,B ,C ,D ,其中(Ω)60n =,()30n A =,()10n B =,()20n C =,()30n D =,()40n A B = ,()10n A C = ,()60n A D = ,则()A .A 与B 不互斥B .A 与D 互斥但不对立C .C 与D 互斥D .A 与C 相互独立考法八概率的计算【例8-1】(2021·全国·统考高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是()A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【例8-2】(2023·山东威海·统考一模)(多选)已知事件A ,B 满足()0.5P A =,()0.2P B =,则()A .若B A ⊆,则()0.5P AB =B .若A 与B 互斥,则()0.7P A B +=C .若A 与B 相互独立,则()0.9P AB =D .若()|0.2P B A =,则A 与B 相互独立11/11【例8-3】(2023·全国·模拟预测)(多选)某校10月份举行校运动会,甲、乙、丙三位同学计划从长跑,跳绳,跳远中任选一项参加,每人选择各项目的概率均为13,且每人选择相互独立,则()A .三人都选择长跑的概率为127B .三人都不选择长跑的概率为23C .至少有两人选择跳绳的概率为427D .在至少有两人选择跳远的前提下,丙同学选择跳远的概率为57【例8-4】(2023·广东肇庆·统考二模)(多选)随着春节的临近,小王和小张等4位同学准备互相送祝福.他们每人写了一个祝福的贺卡,这四张贺卡收齐后让每人从中随机抽取一张作为收到的新春祝福,则()A .小王和小张恰好互换了贺卡的概率为16B .已知小王抽到的是小张写的贺卡的条件下,小张抽到小王写的贺卡的概率为13C .恰有一个人抽到自己写的贺卡的概率为13D .每个人抽到的贺卡都不是自己写的概率为58【例8-5】(2022·全国·统考高考真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则()A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大。

高中数学概率统计知识点全归纳

高中数学概率统计知识点全归纳

高中数学《概率与统计》知识点总结一、统计1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。

2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。

⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。

②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

3、总体特征数的估计:⑴平均数:nx x x x x n++++= 321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211; 注意:频率分布表计算平均数要取组中值。

⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=−=ni ix xns ;标准差:21)(1∑=−=ni ix xns注:方差与标准差越小,说明样本数据越稳定。

平均数反映数据总体水平;方差与标准差反映数据的稳定水平。

⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧−⎪⎪=⎪⎨−⎪⎪=−⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

二、概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示; ⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果; ⑵古典概型的特点:①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。

高中数学概率与统计的重点知识点整理如何解决概率题目

高中数学概率与统计的重点知识点整理如何解决概率题目

高中数学概率与统计的重点知识点整理如何解决概率题目在解决概率题目方面,高中数学中的概率与统计是一个重要的知识点。

下面将对高中数学概率与统计的重点知识点进行整理和归纳,希望能够帮助你更好地解决概率题目。

1. 随机事件和样本空间随机事件是指在一次实验中可能发生的一个结果,而样本空间是指实验中所有可能出现的结果的集合。

在解决概率题目时,首先要明确随机事件和样本空间的概念,并将问题中的具体情境转化为对应的随机事件和样本空间。

2. 概率的定义与性质概率是指某个随机事件发生的可能性大小。

在高中数学中,概率通常用数值表示,取值范围在0到1之间。

在解决概率题目时,需要熟悉概率的基本性质,如概率的非负性、必然事件的概率为1、事件的互斥性和相加性等。

根据题目的具体情况,可以利用这些性质来求解概率。

3. 相对频率和概率的关系相对频率是指某个事件在大量重复实验中出现的频率。

当实验次数趋于无穷大时,相对频率接近于概率。

在解决概率题目时,可以通过模拟实验或统计数据来估计概率。

4. 互斥事件和对立事件互斥事件是指两个事件不能同时发生的情况,对立事件是指两个事件中必有一个事件发生的情况。

在解决概率题目时,需要注意判断事件之间的互斥关系和对立关系,根据题目给出的条件,采用合适的方法求解。

5. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的计算通常使用乘法定理。

在解决概率题目时,如果题目给出了条件信息,就可以利用条件概率的概念和公式来求解问题。

6. 独立事件独立事件是指两个事件之间相互独立,一个事件的发生不会影响另一个事件的发生。

在解决概率题目时,如果题目给出了事件之间的独立性,就可以利用独立事件的性质来求解概率。

7. 期望值和方差期望值是指随机变量所有可能取值的加权平均值,可以理解为随机变量的平均值。

方差是指随机变量与其期望值之差的平方的平均值,可以理解为随机变量的离散程度。

在解决概率题目时,如果涉及到随机变量和概率分布,就可以利用期望值和方差的概念来计算问题。

高中数学论与概率与统计知识点总结

高中数学论与概率与统计知识点总结

高中数学论与概率与统计知识点总结在高中数学学习过程中,概率与统计是重要的一部分内容。

本文将对概率与统计的相关知识点进行总结,以帮助同学们更好地掌握这一部分内容。

一、概率基础知识1. 随机事件与样本空间:随机事件是指在相同条件下,可能发生也可能不发生的事件;样本空间是指随机试验的所有可能结果的集合。

2. 事件的概率:事件A发生的概率是指在相同条件下,事件A发生的可能性大小。

概率的取值范围在0和1之间,其中0表示不可能事件,1表示必然事件。

3. 事件的互斥与独立:如果两个事件A和B不能同时发生,称它们互斥;如果事件A发生与否不影响事件B发生的概率,称它们独立。

二、概率计算方法1. 相对频率法:通过大量重复实验,计算事件A发生的频率来估计概率。

2. 等可能概型法:当样本空间中各个基本事件发生的机会相等时,可以通过事件A包含的基本事件数除以总的基本事件数来计算概率。

3. 排列与组合:排列是指从n个不同元素中取出m个元素按一定顺序排列的可能性数量;组合是指从n个不同元素中取出m个元素的可能性数量,不考虑元素的顺序。

三、离散和连续型随机变量1. 随机变量:随机变量是定义在样本空间上的实值函数,用来描述随机试验的结果。

2. 离散随机变量:在有限次试验中只取有限个或可列个值的随机变量,称为离散随机变量。

离散随机变量的概率分布可以通过概率质量函数来表示。

3. 连续型随机变量:在某一区间内可以取到任意值的随机变量,称为连续型随机变量。

连续型随机变量的概率分布可以通过概率密度函数来表示。

四、概率分布1. 二项分布:是n个独立重复的伯努利试验中成功次数的离散概率分布。

2. 泊松分布:是描述单位时间或单位面积内随机事件发生次数的离散概率分布。

3. 正态分布:又称为高斯分布,是实数上最常见的连续概率分布之一,具有钟形曲线的特点。

五、统计分析方法1. 参数估计:通过样本数据来估计总体的某些未知参数,如均值、方差等。

2. 假设检验:根据采集的样本数据,对总体的某个特征或假设进行判断和推断。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =m;等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B);特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P ==例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =,∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.离散型随机变量的期望与方差 随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 22)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低. ③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ; (2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01).解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d 至少为81.1635.小结:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f (x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.1、分类加法计数原理发现新知:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.(也称加法原理) 分类加法计数原理特点:分类加法计数原理针对的是“分类”问题,完成一件事的办法要分为若干类,各类的办法法相互独立,各类办法中的各种方法也相对独立,用任何一类办法中的任何一种方法都可以单独完成这件事.分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.(也称乘法原理)分步乘法计数原理的特点:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.思考:分类加法计数原理与分步乘法计数原理有什么异同点?要注意什么问题?相同点:它们都是研究完成一件事情, 共有多少种不同的方法;不同点:分类加法计数原理分类完成一件事,任何一类办法中的任何一个方法都能完成这件事;分步乘法计数原理分步完成一件事,这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结概率与统计是高中数学中的重要内容,为了帮助大家更好地理解和掌握这一部分知识,下面将对高中数学概率与统计的主要知识点进行总结和梳理。

一、概率基本概念概率是指事件发生的可能性大小,通常用一个介于0到1之间的数表示。

在计算概率时,我们需要先确定样本空间,即所有可能的结果组成的集合,并且需要利用概率公式进行计算。

1.1 样本空间与事件样本空间是指一个随机试验中所有可能结果组成的集合。

样本空间中的元素称为样本点。

事件是指样本空间的子集,即某些样本点的集合。

1.2 子事件与互斥事件子事件是指事件的子集,即由某些样本点组成的事件。

互斥事件是指两个事件不可能同时发生的事件。

1.3 事件的概率事件A的概率表示为P(A),计算方式为事件A的样本点数除以样本空间的样本点数。

概率的取值范围在0到1之间,且所有可能事件的概率之和为1。

二、概率计算方法概率的计算方法主要包括古典概型、频率概率和条件概率等几种常用方法。

2.1 古典概型古典概型适用于随机试验的样本点数有限且相等的情况。

在古典概型中,事件A的概率计算公式为P(A) = m/n,其中m为事件A中样本点的个数,n为样本空间中样本点的总个数。

2.2 频率概率频率概率适用于大量重复试验的情况。

频率概率是指事件A发生的频率,计算公式为P(A) = lim(N→∞) (m/N),其中m为事件A发生的次数,N为试验进行的总次数。

2.3 条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。

条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

三、排列与组合排列与组合是概率与统计中常用的计数方法,用于求解事件发生的可能性个数。

3.1 排列排列是指将若干个不同的元素按照一定的顺序排列的方式。

排列的计算公式为A(n, m) = n!/(n-m)!,其中n为元素个数,m为选取的元素个数。

高中数学概率与统计的解题技巧

高中数学概率与统计的解题技巧

高中数学概率与统计的解题技巧概率与统计是高中数学中的一门重要的内容,它涉及到我们日常生活中的各种概率事件以及对数据的处理和分析。

在考试中,概率与统计题型常常出现,因此我们有必要掌握一些解题技巧,以提高我们的解题效率和准确性。

一、概率题型1. 确定概率事件的样本空间和事件集合在解概率题时,首先要明确概率事件的样本空间和事件集合。

样本空间是指所有可能结果的集合,事件集合则是样本空间中我们感兴趣的一部分。

例如,某次抛掷一枚骰子,样本空间为{1, 2, 3, 4, 5, 6},事件集合可以是“出现奇数点数的情况”。

2. 利用排列组合计算概率在一些概率题中,需要计算某个事件发生的概率。

这时,我们可以利用排列组合的知识来计算。

例如,从一副扑克牌中随机抽取5张,求其中有2张红心的概率。

我们可以先计算红心牌的组合数,再计算剩下的两张牌的组合数,最后将两者相除即可得到概率。

3. 利用条件概率解题条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

在解题时,我们可以利用条件概率来计算某个事件的概率。

例如,某班有40名男生和60名女生,从中随机抽取一人,已知被抽到的是男生,求被抽到的是女生的概率。

我们可以利用条件概率公式P(B|A) = P(A∩B) / P(A) 来计算。

二、统计题型1. 数据的收集与整理在统计题中,首先要进行数据的收集与整理。

收集数据时要注意数据的来源和真实性,整理数据时要将其按照一定的规则进行分类和排序,以便后续的分析和计算。

2. 利用频率表解题频率表是指将数据按照一定的规则进行分类,并统计每个类别的频数。

在解题时,我们可以利用频率表来计算频率、相对频率、累积频率等。

例如,某班级的学生身高数据如下:150-160cm:5人160-170cm:12人170-180cm:8人我们可以根据频率表计算出每个身高区间的频率,以及累积频率。

3. 利用直方图解题直方图是一种用矩形表示数据频数的图形。

在解题时,我们可以利用直方图来分析数据的分布情况、比较不同类别的频数、判断数据的集中趋势等。

高中数学统计课件-概率与统计分析PPT

高中数学统计课件-概率与统计分析PPT
高中数学统计课件——概 率与统计分析PPT
让我们一起探索高中数学统计的基本概念和分析方法。从概率的基础知识到 统计量的应用,这个课件将为你提供全面的指导。让数学变得更有趣和易于 理解。
概率基础知识
了解概率的基本概念和术语。探索随机事件,概率空间和计算概率的方法。
随机事件与概率
探讨随机事件的概念,包括样本空间、事件、概率及其运算法则。学习如何计算事件的概率。
古典概型
介绍古典概型和它们在概率计算中的应用。了解简单事件、等可能原理和计 数原理。
几何概型
研究几何概型及其在概率计算中的应用。包括点、线、面等几何对象的概率 的概念。学习如何计算条件概率,以及它在实际场景中的应用。
独立性
研究独立事件及其特征。学习如何检验事件的独立性,以及如何计算多个独 立事件的联合概率。
方差分析
研究方差分析及其在统计推断中的应用。了解如何进行方差分析和解读分析 结果。
相关分析
学习相关分析的概念和计算方法。了解如何衡量两个变量之间的关联程度。
期望值与方差
介绍随机变量的概念。学习如何计算随机变量的期望值和方差,并了解它们 的意义。
离散型随机变量
研究离散型随机变量和它们的概率分布。包括二项分布、泊松分布等常见概 率分布。
连续型随机变量
介绍连续型随机变量和它们的概率密度函数。学习如何计算连续型随机变量的概率。
正态分布
深入研究正态分布及其特性。了解正态分布在统计分析中的应用。
抽样与统计量
学习如何进行样本抽样和构建统计量。了解样本的选取方法和统计量的一些 重要概念。
点估计
探讨点估计方法和点估计量的性质。学习如何使用样本数据对总体参数进行 估计。
区间估计
介绍区间估计的原理和方法。学习如何通过置信区间对总体参数进行估计。

高中数学《统计》与《概率》知识点

高中数学《统计》与《概率》知识点

其次章统计一、简洁随机抽样1.总体和样本在统计学中 , 把探讨对象的全体叫做总体.把每个探讨对象叫做个体.把总体中个体的总数叫做总体容量.为了探讨总体的有关性质,一般从总体中随机抽取一部分:,,,探讨,我们称它为样本.其中个体的个数称为样本容量.2.简洁随机抽样,就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无肯定的关联性和排斥性。

简洁随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。

3.简洁随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)打算抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参与某项活动。

二、系统抽样1.系统抽样(也叫等距离抽样):把总体的单位进行排序,再计算出抽样距离,然后依据这一固定的抽样距离抽取样本。

第一个样本采纳简洁随机抽样的方法抽取。

K(抽样距离)=N(总体)/n(样本个数)前提条件:总体中个体的排列对于探讨的变量来说,应是随机的,即不存在某种与探讨变量相关的规则分布。

可以在调查允许的条件下,从不同的样本起先抽样,对比几次样本的特点。

假如有明显差别,说明样本在总体中的分布有某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简洁。

三、分层抽样1.分层抽样:先将总体中的全部单位依据某种特征或标记(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采纳简洁随机抽样或系用抽样的方法抽取一个子样本,最终,将这些子样本合起来构成总体的样本。

两种方法:1.先以分层变量将总体划分为若干层,再依据各层在总体中的比例从各层中抽取。

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计
高中数学统计知识点包括以下内容:
1. 数据的收集和整理:包括原始数据的收集和整理,如问卷调查、实验结果等。

2. 描述统计:用于对数据进行总结和描述的方法,包括平均数、中位数、众数、极差、标准差等。

3. 概率:研究随机事件发生的可能性的数学分支,包括基本概念、概率的计算方法和
性质。

4. 概率分布:描述随机变量取值与相应概率的分布,包括离散型随机变量和连续型随
机变量的分布。

5. 统计推断:从样本数据中推断总体的特征的方法,包括点估计和区间估计。

6. 假设检验:用于推断总体参数的假设检验方法,包括单样本检验、双样本检验和相
关性检验等。

7. 相关分析:研究两个或多个变量之间关系的方法,包括相关系数和回归分析等。

8. 抽样调查:从总体中随机选择样本进行调查和统计分析的方法,包括简单随机抽样、系统抽样和分层抽样等。

以上是高中数学概率与统计的主要知识点,通过掌握这些知识,可以进行数据的整理
和分析,并进行相关的统计推断和假设检验。

高中数学中的概率与统计问题分析

高中数学中的概率与统计问题分析

高中数学中的概率与统计问题分析概率与统计是高中数学中非常重要的一部分,它涉及到了很多实际问题的分析和解决方法。

本文将从两个方面进行讨论,首先是概率问题的分析,其次是统计问题的分析。

概率问题的分析概率是研究随机现象结果可能性的数学工具。

在高中数学中,我们经常遇到各类概率问题,例如掷骰子、抽纸牌等。

对于这类问题,我们可以通过计算概率来帮助我们解决。

首先,我们可以使用频率法来求解概率。

频率法是通过实验或观察得到一个事件发生的次数,然后计算这个事件发生的概率。

例如,我们可以掷一枚骰子100次,记录每个面朝上的次数,然后通过计算出现某个面的次数除以掷骰子的总次数来求得该面出现的概率。

其次,我们也可以通过几何概型法来求解概率。

几何概型法是通过几何的方式来计算概率。

例如,当我们掷一枚均匀的骰子时,由于每个面的出现是等可能的,所以每个面的概率都是1/6。

此外,对于独立事件的概率计算,我们可以使用乘法原理。

乘法原理告诉我们,如果事件A和事件B是相互独立的,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

例如,当我们连续掷两次骰子时,掷出某个点数两次的概率等于掷出某个点数的概率乘以掷出该点数的概率。

统计问题的分析统计是研究收集、整理、分析和解释数据的学科。

在高中数学中,我们经常需要通过统计方法来分析一些实际问题的数据。

首先,我们可以通过统计描述来总结和描述数据。

例如,我们可以使用频数表和统计图来呈现数据的分布情况,例如条形图、饼图和折线图等。

这些统计描述可以帮助我们对数据有一个直观的认识。

其次,我们可以使用统计推断来得出关于总体的结论。

统计推断是基于对样本数据的分析,进而对总体进行推断的一种方法。

例如,假设我们有一批学生的身高数据,我们可以通过对部分学生的身高进行测量,然后通过统计方法来推断整个学生群体的平均身高。

此外,我们还可以使用回归分析来探究变量之间的关系。

回归分析可以帮助我们确定两个或多个变量之间的数学关系,并用公式表示出来。

高中数学概率与统计

高中数学概率与统计

高中数学概率与统计在高中数学的学习中,概率与统计是一个非常重要的内容。

概率与统计涉及到我们日常生活中各种概率事件的计算与分析,以及统计数据的收集与解读。

本文将介绍概率与统计的基本概念、常用方法和一些实际应用。

一、概率的基本概念概率是用来度量一个事件发生的可能性的数值。

在概率计算中,我们常使用事件的概率来描述事件发生与不发生的可能性大小。

概率的计算可以通过频率方法或几何方法进行。

1.1 频率方法频率方法是通过实验来估计一个事件发生的概率。

我们可以进行大量的实验,记录事件发生的次数,然后用事件发生次数除以总实验次数,得到事件发生的频率。

经过大量实验,频率会逐渐接近真实概率值。

1.2 几何方法几何方法是通过对事件发生的空间进行几何概念的分析来计算概率。

例如,对于一个均匀的正方形,事件发生的区域的面积与正方形的面积之比就是事件发生的概率。

二、统计的基本概念统计是用来对数据进行收集、整理、分析和解读的方法。

通过统计,我们可以对一组数据的特征和规律进行描述和推断。

2.1 数据的收集数据的收集是统计的第一步。

我们可以通过调查、观察、实验等方式来收集数据。

收集到的数据可以是数值型数据或类别型数据。

2.2 数据的整理与分析收集到数据后,需要对数据进行整理和分析。

可以使用表格、图表、统计量等方式来呈现和分析数据。

常用的数据整理方法包括频数表、频率表、直方图、饼图等。

2.3 数据的解读与推断在数据分析的过程中,我们可以通过对数据的解读和推断来得出结论。

可以计算数据的平均值、中位数、众数、方差、标准差等统计量,从而对数据的特征和规律进行解读和推断。

三、常用的概率与统计方法在概率与统计的学习中,我们会接触到一些常用的方法。

3.1 排列与组合排列与组合是概率计算中常用的方法。

排列是指从若干个元素中选取若干个进行排序,组合是指从若干个元素中选取若干个不进行排序。

通过排列和组合的计算,可以得到事件发生的可能性的数量。

3.2 离散型随机变量离散型随机变量是指在一定范围内,可能取值有限且可数的随机变量。

高中数学知识点总结概率与统计的计算方法

高中数学知识点总结概率与统计的计算方法

高中数学知识点总结概率与统计的计算方法概率与统计是高中数学中的重要内容,涉及到大量的计算方法。

下面我将对概率与统计中的计算方法进行总结,希望对你有所帮助。

一、概率计算方法1.基本概率计算公式当每个事件发生的可能性相等时,我们可以使用基本概率计算公式来计算某一事件发生的概率。

公式如下:P(A) = N(A) / N(S)其中,P(A)表示事件A发生的概率,N(A)表示事件A的样本空间,N(S)表示样本空间的总数。

2.求和法则当我们无法直接得出某一事件的概率时,可以借助求和法则来计算。

求和法则可以分为两种情况:(1)互斥事件的求和法则:P(A∪B) = P(A) + P(B)其中,A和B为互斥事件,表示A和B两个事件中至少有一个事件发生的概率。

(2)非互斥事件的求和法则:P(A∪B) = P(A) + P(B) - P(A∩B)其中,A和B为非互斥事件,表示A和B两个事件中至少有一个事件发生的概率。

3.条件概率条件概率是指在某一事件发生的条件下,另一事件发生的概率。

条件概率的计算公式如下:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率。

4.独立事件的概率计算当两个事件相互独立时,它们的发生不会相互影响。

在计算独立事件发生的概率时,可以使用以下公式:P(A∩B) = P(A) * P(B)其中,P(A)和P(B)分别表示事件A和事件B发生的概率。

二、统计计算方法1.抽样调查在统计学中,为了得到总体的信息,我们通常进行抽样调查。

通过抽取部分样本进行调查,并根据样本的数据结果推断总体的情况。

2.频数与频率频数是指某一事件发生的次数,频率是指某一事件发生的次数与样本总数之比。

在统计计算中,我们通常使用频率来表示事件发生的概率。

3.平均数计算方法平均数是统计中的基本概念,计算平均数通常有以下三种方法:(1)算术平均数:将所有观测值相加,再除以观测值的总数,得到的结果为算术平均数。

高中数学知识点总结概率与统计基本概念

高中数学知识点总结概率与统计基本概念

高中数学知识点总结概率与统计基本概念高中数学知识点总结——概率与统计基本概念概率与统计作为数学中重要的分支,是研究事件发生的可能性以及通过数据来获取有关事物的信息的学科。

在高中数学课程中,学生们将接触到概率与统计的基本概念和方法。

本文将对高中数学中涉及的概率与统计的基本概念进行总结和解析。

一、概率的基本概念概率是研究随机事件可能性大小的数学工具。

在概率的研究中,我们常常使用以下几个基本概念:1. 随机事件:随机事件是指在一定条件下,可能发生也可能不发生的事件。

用大写字母A、B、C等表示。

2. 样本空间:样本空间是指一个随机试验中所有可能结果的集合,通常用Ω表示。

例如,掷一枚硬币的样本空间为{正面,反面}。

3. 事件:事件是样本空间中的一个子集,表示某个具体的结果或者一些具体结果的集合。

通常用大写字母A、B、C等表示。

例如,掷一枚硬币出现正面朝上的事件可以用A表示。

4. 必然事件和不可能事件:必然事件是指一定会发生的事件,一般用Ω表示;不可能事件是指一定不会发生的事件,用∅表示。

5. 概率:概率是衡量随机事件发生可能性大小的一种数学工具。

用P(A)表示事件A发生的概率,取值范围在0到1之间。

二、统计的基本概念统计是通过收集、整理、分析数据来研究规律、做出推断和决策的科学。

在高中数学中,我们常常使用以下几个基本概念:1. 数据:数据是观察到的事物或现象的记录,可以是数值、文字或其他形式。

2. 总体和样本:总体是指研究对象的全体,通常用大写字母N表示;样本是从总体中抽取的一部分个体,通常用小写字母n表示。

3. 参数和统计量:参数是总体的数值特征,用来描述总体的性质;统计量是样本的数值特征,用来描述样本的性质。

例如,总体的平均数用μ表示,样本的平均数用x表示。

4. 频数和频率:频数是指某个变量取某个值的次数;频率是指某个变量取某个值的次数与总次数之比。

例如,某班级学生的考试成绩,80分的频数是10,频率是10/30=1/3。

高中数学合格考资料 专题08 统计

高中数学合格考资料 专题08 统计

专题08统计考点一:随机抽样1.(2023春·湖南)某中学有男生600人,女生400人.为了调查学生身高情况,按性别进行分层,用分层随机抽样的方法抽取一个容量为10的样本,样本按比例分配,得到男生、女生的平均身高分别为170cm和160cm.用样本估计总体,则该校学生的平均身高是()A.162cm B.164cm C.166cm D.168cm【答案】C【分析】由分层抽样与平均数的概念求解,【详解】由题意得在抽取的10人中,男生6人,女生4人,故样本平均数为1706160416610⨯+⨯=,估计该校学生的平均身高是166cm故选:C2.(2023·云南)高一年级有男生210人,女生190人,用分层随机抽样的方法按性别比例从全年级学生中抽取样本,若抽取的样本中男生有21人,则该样本的样本容量为()A.30B.40C.50D.60【答案】B【分析】根据给定条件,利用分层抽样的意义列式计算作答.【详解】依题意,该样本的样本容量为21(210190)40 210⨯+=.故选:B3.(2023春·新疆)某兴趣班有男生35人,女生25人,按性别进行分层,用分层随机抽样的方法从该班学生中抽出一个容量为12的样本.如果样本按比例分配,那么女生应抽取()A.3人B.4人C.5人D.6人【答案】C【分析】按照分层比例抽取,即可求解.【详解】女生应抽取251252535⨯=+人.故选:C4.(2022春·贵州)某班有男生25人,女生15人,现用分层抽样的方法从该班抽取8人参加志愿者活动,则应抽取的女生人数为()A.2B.3C.4D.6【答案】B【分析】根据分层抽样的概念及计算方法,即可求解.【详解】由题意,某班有男生25人,女生15人,用分层抽样的方法从该班抽取8人参加志愿者活动,所以应抽取的女生人数为81532515⨯=+人.故选:B.5.(2021秋·贵州)某校有高一年级学生1000名,高二年级学生1200名,高三年级学生1100名,现用分层抽样的方法从该校所有高中生中抽取330名学生,则抽取的高三年级学生人数为()A.50B.70C.90D.110【答案】D【分析】利用分层抽样的定义直接求解即可【详解】由题意得抽取的高三年级学生人数为1100330110100012001100⨯=++,故选:D6.(2021春·贵州)某班有45名学生,其中男生25人,女生20人.现用分层抽样的方法,从该班学生中抽取9人参加禁毒知识测试,则应抽取的男生人数为()A.3B.4C.5D.6【答案】C【分析】利用分层抽样的性质进行求解即可.【详解】因为用分层抽样的方法,所以应抽取的男生人数为259545⨯=,故选:C7.(2023·广东)已知某校高一高二高三的人数分别为400、450、500,选派该校学生参加志愿者活动,采用分层抽样的方法选取27人,则高二抽取的人数为.【答案】9【分析】由分层抽样的定义按比例计算.【详解】由题意高二抽取的人数为450279 400450500⨯=++.故答案为:9.8.(2022春·天津)一支田径队有男运动员56人,女运动员42人,按性别进行分层,用分层随机抽样的方法从该田径队全体运动员中抽出一个容量为14的样本.如果样本按比例分配,那么应抽取的男运动员人数为.【答案】8【分析】利用分层抽样的定义求解.【详解】由题意可知抽取男运动员的人数为561485642⨯=+,故答案为:8.9.(2022·湖南)一支游泳队有男运动员20人,女运动员12人,按性别分层,用分层随机抽样从全体运动员抽取一个容量为8的样本,那么抽取的女运动员人数为.【答案】3【分析】根据抽样比例,即可求解.【详解】抽取的女运动员人数为128=332⨯故答案为:310.(2021秋·吉林)某校高二年级有男生510名,女生490名,若用分层随机抽样的方法从高二年级学生中抽取一个容量为200的样本,则女生应抽取名.【答案】98【分析】根据分层抽样的定义,计算男女生比例,即可计算求解.【详解】由已知得,男生与女生的比例为:51:49,根据分层抽样的定义,女生应该抽取的人数为:4920098100⨯=(人)故答案为:98考点二:总体百分位估计值1.(2023春·新疆)数据12,13,14,15,17,18,19,20,24,26的第80百分位数为()A .20B .22C .24D .25【答案】B【分析】由第80百分位数的求法求解即可.【详解】因为按从小到大排列的数据12,13,14,15,17,18,19,20,24,26共有10个数据,而1080%8⨯=,所以这组数据的第80百分位数为第8个与第9个数据的平均数,即为2024222+=.故选:B2.(2022春·浙江)某校高二年级开展数学测试,现从中抽取100名学生进行成绩统计.将所得成绩分成5组:第1组[)75,80,第2组[)80,85,第3组[)85,90,第4组[)90,95,第5组[]95,100,并绘制成如图所示的频率分布直方图.则第80百分位数约为()A .0.04B .92.5C .85D .90【答案】B【分析】先利用各矩形的面积之和为1,求得m ,再利用第80百分位数的定义求解.【详解】解:因为()0.010.070.060.0251m ++++⨯=,所以0.04m =,设第80百分位数为x ,则()()0.010.070.065900.040.8++⨯+-⨯=x ,解得92.5=x ,故选:B3.(2021秋·吉林)有一组数据,将其从小到大排序如下:157,159,160,161,163,165,168,170,171,173.则这组数据的第75百分位数是()A .165B .168C .170D .171【答案】C【分析】根据百分位数的定义求解即可.【详解】因为1075%7.5⨯=,所以这组数据的第75百分位数是第8个数170,故选:C.4.(2021秋·广西)2022年7月21日至30日某地区的最高温度(单位:℃)分别为:33,33,32,36,34,35,35,37,34,38,则这组数据的65%分位数是.【答案】35【分析】根据百分位数的计算公式计算即可.【详解】将33,33,32,36,34,35,35,37,34,38,按照从小到大的顺序排列,得32,33,33,34,34,35,35,36,37,38共10个数,由65%10 6.5⨯=,得这组数据的65%分位数是第7个数,所以这组数据的65%分位数是35.故答案为:35.考点三:计算平均数、众数,中位数1.(2023·河北)某快递驿站随机记录了7天代收快递的件数,如下表:天/第1234567件数285367463290335719698已知该驿站每代收1件快递收取0.8元服务费,据此样本数据,估计该驿站每月(按30天计算)收取的服务费是(单位:元)()A .8808B .9696C .10824D .11856【答案】C【详解】样本数据7天代收快递的件数的平均数为:()12853674632903357196984517x =⨯++++++=(件),∴每月(按30天计算)代收快递约为4513013530⨯=件,∴该驿站每月(按30天计算)收取的服务费约为135300.810824⨯=元.故选:C.2.(2023·山西)中国运动员谷爱凌在2022北京冬奥会自由式滑雪女子大跳台决赛中以188.25分夺得金牌.自由式滑雪大跳台比赛一般有资格赛和决赛两个阶段,比赛规定:资格赛前12名进入决赛.在某次自由式滑雪大跳台比赛中,24位参加资格赛选手的成绩各不相同.如果选手甲知道了自己的成绩后,则他可根据其他23位同学成绩的哪个数据判断自己能否进入决赛()A .中位数B .极差C .平均数D .方差【答案】A【分析】根据题意,结合中位数的定义,即可判断和选择.【详解】其他23位参赛同学,按成绩从高到低排列,这23个数的中位数恰好是第12位选手的成绩.若选手甲的成绩大于该选手的成绩,则进入决赛,否则不能进入决赛,因此可根据中位数判断选手甲是否能进入决赛.故选:A .3.(2021·吉林)已知一组数据如图所示,则这组数据的中位数是()A .27.5B .28.5C .27D .28【答案】A【解析】将茎叶图中的数据按照从小到大的顺序排列,根据中位数的定义计算可得.【详解】将茎叶图中的数据按照从小到大的顺序排列为:16,17,19,22,25,27,28,30,30,32,36,40,所以这组数据的中位数是272827.52+=.故选:A.4.(2021秋·贵州)如图所示茎叶图表示的数据中,中位数是()A .65B .77C .81D .89【答案】B【分析】根据中位数的概念即可得出结果.【详解】根据茎叶图,该组数据从小到大:65,66,73,75,77,78,81,84,89,所以中位数为:77.故选:B5.(2021秋·广东)如图是表示某班6名学生期末数学考试成绩的茎叶图,则这6名学生的平均成绩为()A .87B .86C .85.5D .85【答案】A【分析】利用平均数公式求得平均成绩.【详解】解:这6名学生的平均成绩为()1768585869397876x =+++++=,故选:A.6.(2021春·贵州)如图所示茎叶图表示的数据中,众数是()A .78B .79C .82D .84【答案】D【分析】根据茎叶图,看出现次数最多的数据是哪个,即可得答案.【详解】根据茎叶图可知,只有84出现的次数最多为2次,其余数均出现1次,故众数为84,故选:D7.(多选)(2023春·浙江)给定数6,4,3,6,3,8,8,3,1,8,则这组数据的()A .中位数为5B .方差为85C .平均数为5D .85%分位数为8【答案】ACD【分析】将数据从小到大排列,再求出平均数、中位数、方差及第85%分位数.【详解】将数6,4,3,6,3,8,8,3,1,8按小到大的顺序排列为:1,3,3,3,4,6,6,8,8,8则这组数据的中位数为4652+=,故A 正确;平均数为:13383462510+⨯+⨯++⨯=,故C 正确;则方差为()()()()()2222211545353853652 5.810⎡⎤-+-+-⨯+-⨯+-⨯=⎣⎦,故B 错误;因为1085%8.5⨯=,所以第85%分位数是从小到大第9个数字为8,故D 正确,故选:ACD8.(2021春·福建)数据1,2,2,2,3的中位数是.【答案】2【分析】根据中位数的概念判断即可;【详解】解:数据从小到大排列为1、2、2、2、3,故中位数为2;故答案为:2考点四:平均数、众数,中位数的估计值(小题)1.(2023·河北)河北雄安新区围绕职业培训、岗位开发、岗位对接等一系列工作,制定出台了《河北雄安新区当地劳动力教育培训实施方案(2019—2025年)》等30余项政策文件,截至2022年底,累计开展各项职业培训16.8万人次.雄安新区公共服务局为了解培训效果,对2022年参加职业技能培训的学员进行了考核测试,并从中随机抽取60名学员的成绩(满分100分),进行适当分组后(每组为左开右闭的区间),作出如图所示的频率分布直方图.这批学员技能考核测试成绩的众数的估计值是()A .65B .75C .85D .95【答案】C【详解】根据频率分布直方图中频率值最大的组为(]80,90,则众数为8090852+=故选:C.2.(2023·河北)河北雄安新区围绕职业培训、岗位开发、岗位对接等一系列工作,制定出台了《河北雄安新区当地劳动力教育培训实施方案(2019—2025年)》等30余项政策文件,截至2022年底,累计开展各项职业培训16.8万人次.雄安新区公共服务局为了解培训效果,对2022年参加职业技能培训的学员进行了考核测试,并从中随机抽取60名学员的成绩(满分100分),进行适当分组后(每组为左开右闭的区间),作出如图所示的频率分布直方图.这批学员技能考核测试成绩的中位数的估计值是()A .80.75B .81.25C .82.50D .82.75【答案】B【详解】根据频率分布直方图可知前四组的频率分别为0.005100.05,0.015100.15,0.025100.25,0.040100.40⨯=⨯=⨯=⨯=,前三组频率之和为0.050.150.250.450.5++=<,所以中位数在(]80,90组,设中位数为x ,则()0.450.040800.5x +⨯-=,解得81.25x =.故这批学员技能考核测试成绩的中位数的估计值是81.25.故选:B.3.(2023·河北)河北雄安新区围绕职业培训、岗位开发、岗位对接等一系列工作,制定出台了《河北雄安新区当地劳动力教育培训实施方案(2019—2025年)》等30余项政策文件,截至2022年底,累计开展各项职业培训16.8万人次.雄安新区公共服务局为了解培训效果,对2022年参加职业技能培训的学员进行了考核测试,并从中随机抽取60名学员的成绩(满分100分),进行适当分组后(每组为左开右闭的区间),作出如图所示的频率分布直方图.若同一组数据用该区间的中点值作代表,则这批学员技能考核测试成绩的平均数的估计值是()A .79.0B .79.5C .81.0D .82.5【答案】B【详解】根据题意可得,平均数的估计值为:()550.005650.015750.025850.04950.0151079.5⨯+⨯+⨯+⨯+⨯⨯=故选:B4.(2022春·贵州)某校高一年级一次数学考试成绩(单位:分)的频率分布直方图如图所示,估计该次考试成绩的众数为()A .65B .75C .85D .95【答案】C【分析】根据众数的定义求解即可【详解】由频率分布直方图可知考试成绩在80到90的最多,所以该次考试成绩的众数为85,故选:C5.(2021春·河北)为了更好地锻炼身体,某人记录了自己4月份(共30天)每天行走的步数,将每天行走的步数(单位:千步)进行如下分组:[)0,5,[)5,10,[)10,15,[)15,20,[)20,25,[]25,30,并作出如图所示的频率分布直方图.(1)由频率分布直方图估计此人每天行走步数(单位:千步)的众数是()A.10B.12.5C.15D.17.5(2)若按此锻炼习惯,估计此人未来30天中行走不少于2万步的天数是()A.3B.5C.6D.10(3)若同一组数据以这组区间的中点值作代表,估计此人该月平均每天行走的步数(单位:千步)是()A.13.5B.14.5C.15.5D.16.5【答案】(1)B(2)C(3)B【分析】(1)众数出现在频率最大的分组内,众数就是频率最高的分组中间值;(2)未来30天中行走不少于2万步的天数等于不少于2万步的频率×30;(3)该月平均每天行走的步数等于每组数值的中间值乘频率再相加.【详解】(1)每天行走的步数在区间[0,5)内的频率为0.01×5=0.05,在区间[5,10)内的频率为0.04×5=0.2,在区间[10,15)内的频率为0.06×5=0.3,在区间[15,20)内的频率为0.05×5=0.25,在区间[20,25)内的频率为0.03×5=0.15,在区间[25,30]内的频率为0.01×5=0.05.因为每天行走的步数在区间[10,15)内的频率最大,所以每天行走步数的众数在区间[10,15)内,所以每天行走步数的众数是12.5.故选:B.(2)由(1)知,因为每天行走不少于2万步的频率为0.15+0.05=0.2,所以估计此人未来30天中行走不少于2万步的天数是30×0.2=6.故选:C.(3)由(1)知,估计此人该月平均每天行走的步数为2.5×0.05+7.5×0.2+12.5×0.3+17.5×0.25+22.5×0.15+27.5×0.05=14.5.故选:B.6.(2023春·湖南)为了解中学生的体育锻炼情况,现从某学校随机抽取了部分学生,对他们每天的体育锻炼时间进行统计分析,得到如图所示的频率分布直方图,估计该校学生每天的体育锻炼时间的众数是分钟.【答案】45【分析】由频率分布直方图数据求解,【详解】由图可知人数最多的组别在4050-组,故众数的估计值为45,故答案为:45考点五:频率分布直方图1.(2022春·天津)从某校抽取100名学生进行一周课外阅读时间调查,发现他们的一周课外阅读时间都在0~18小时之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示.则在被调查的学生中,课外阅读时间落在区间[)10,12内的人数为()A .6B .8C .12D .25【答案】C 【分析】根据频率分布直方图,利用频率、频数与样本容量的关系进行解答即可.【详解】由题知,课外阅读时间落在区间[)10,12内的频率为0.06020.12⨯=,则课外阅读时间落在区间[)10,12内的人数为1000.1212⨯=.故选:C2.(2021春·天津)某学校的环保志愿者小组为了研究本校学生家庭用电情况,在全校学生家庭中抽取了100户进行调查,发现他们的用电量都在50~400kW h ⋅之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示.则在被调查的用户中,用电量落在区间[)250,300内的户数为()A .28B .16C .14D .7【答案】C 【分析】由频率分布直方图求出频率,即可计算出频数.【详解】由频率分布直方图可知用电量落在[)250,300的频率为0.0028500.14⨯=,所以用电量落在[)250,300内的户数为1000.1414⨯=.故选:C3.(2021秋·青海)现对某类文物进行某种物性指标检测,从1000件中随机抽取了200件,测得了它的物性指标值,得到如下频率分布直方图,据此估计这1000件文物中物性指标值不小于95的件数为()A .34B .67C .340D .670【答案】D 【分析】由频率分布直方图得文物中物性指标值不小于95的频率即可.【详解】由频率分布直方图得文物中物性指标值不小于95的频率为:()0.0330.0240.0080.002100.67+++⨯=,所以这1000件文物中物性指标值不小于95的件数为10000.67670⨯=.故选:D4.(2021春·贵州)某校初二年级学生一次数学考试成绩(单位:分)的频率分布直方图如图所示,则该图中a 的值为()A .110B .150C .1100D .1200【答案】D【分析】根据所有小矩形的面积之和为1,列出方程,从而可得出答案.【详解】解:根据频率分布直方图可得:()1047621a a a a a ++++=,解得1200a =.故选:D.5.(2023·云南)从某校随机抽取100名学生进行参加社区服务的次数调查,发现他们的次数都在10~30次之间,进行适当的分组后,绘制如图所示的频率分布直方图,则直方图中a 的值为.【答案】0.1/110【分析】根据频率分布直方图中各小矩形面积和为1,列式计算作答.【详解】由频率分布直方图知,(0.050.030.02)51a +++⨯=,解得0.1a =,所以直方图中a 的值为0.1.故答案为:0.16.(2021·吉林)在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是【答案】40【解析】先利用频率分布直方图得到低于60分的学生的频率,再利用120.3即可得出答案.【详解】由频率分布直方图可得低于60分的学生的频率为:()0.0050.01200.3+⨯=,则该班学生人数是12400.3=.故答案为:40.7.(2022·山西)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用比例分配的分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)20,30,[)30,40,⋅⋅⋅,[]80,90,并整理得到如下频率分布直方图:(1)根据频率分布直方图估计分数的样本数据的70%分位数;(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中女生的人数.【答案】(1)77.5;(2)160(人).【分析】(1)根据分位数的概念,结合题给频率分布直方图计算得出结果即可;(2)根据频率分布直方图计算出样本中分数不小于70的人数,进而计算出样本中男生及女生的人数,最后求出总体中女生的人数.【详解】(1)由频率分布直方图可知,样本中分数不小于70的频率为()0.020.04100.6+⨯=,从而有:样本中分数小于70的频率为10.60.4-=,又由频率分布直方图可得:样本中分数小于80的频率为0.8,所以样本数据的70%分位数必定位于[)70,80之间.计算为:0.70.4701077.50.80.4-+⨯=-所以其分数的样本数据的70%分位数估计值为77.5.(2)由题知,样本中分数不小于70的学生人数为()0.020.041010060+⨯⨯=,从而有,样本中分数不小于70的男生人数为160302⨯=,进而得,样本中的男生人数为30260⨯=,女生人数为1006040-=,所以总体中女生人数为40400160100⨯=(人).8.(2022春·浙江)在某市的一次数学测试中,为了解学生的测试情况,从中随机抽取100名学生的测试成绩,被抽取成绩全部介于40分到100分之间(满分100分),将统计结果按如下方式分成六组:第一组[)40,50,第二组[)50,60,L ,第六组[]90,100,画出频率分布直方图如图所示.(1)求第三组[)60,70的频率;(2)估计该市学生这次测试成绩的平均值(同一组中的数据用该组区间的中点值为代表)和第25百分位数.【答案】(1)0.2(2)平均值为73.8,第25百分位数为64.5【分析】(1)利用频率分布直方图求解;(2)利用平均数和第25百分位数的定义求解.【详解】(1)由频率分布直方图知,第三组的频率为0.020100.2⨯=.(2)平均值450.00410550.01210650.02010750.03010850.02410x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯950.0101073.8+⨯⨯=,因为()0.0040.012100.16+⨯=,()0.0040.0120.020100.36++⨯=,所以第25百分位数为0.250.16601064.50.2-+⨯=.9.(2022秋·福建)某校高三年级共有学生1000名.该校为调查高三学生的某项体育技能水平,从中随机抽取了100名学生进行测试,记录他们的成绩,并将数据分成6组:[)[)[]40,50,50,60,,90,100 ,整理得到频率分布直方图,如图.(1)若0.002,0.006a b ==,估计该校高三学生这项体育技能的平均成绩;(2)如果所抽取的100名学生中成绩分布在区间[)60,70内的有8人,估计该校高三学生这项体育技能成绩低于60分的人数.【答案】(1)80.4(2)20【分析】(1)根据直方图所给出的数据求平均数即可;(2)根据直方图面积等于1,求出a ,再将频率作为概率计算即可.【详解】(1)由直方图可知:平均成绩450.02550.02650.06750.4850.3950.280.4x =⨯+⨯+⨯+⨯+⨯+⨯=,即平均成绩为80.4;(2)由于在[)60,70内有8人,0.008b ∴=,∴a =0.001,低于60分的人数约为20.00110100020⨯⨯⨯=人;综上,平均成绩约为80.4分,低于60分的人数约为20人.10.(2021秋·河南)从某部门参加职业技能测试的2000名员工中抽取100名员工,将其成绩(满分100分)按照[20,40),[40,60),60.80[),[80,100]分成4组,得到如图所示的频率分布直方图.(1)估计该部门参加测试员工的成绩的中位数;(2)估计该部门参加测试员工的平均成绩.【答案】(1)中位数为70分.(2)平均成绩为68分.【分析】(1)频率分布直方图中中位数把频率等分,即在频率分布直方图中中位数对应的点(过此点与x 轴垂直的直线)把矩形的面积等分,由此可计算中位数;(2)用各组中点值作为这组的估计值乘以频率的相加.【详解】解:(1)设中位数为x 分.因为前2组频率之和为0.10.20.30.5+=<,而前3组频率之和为0.10.20.4070.5++=>,所以6080x ≤<.由0.0260)0.50.10.2x -=-+(()解得70x =.故可估计该部门参加测试员工的成绩的中位数为70分.(2)抽取的100名员工的平均成绩300.1500.2700.4900.3x =⨯+⨯+⨯+⨯310282768=+++=.故可估计该部门参加测试员工的平均成绩为68分.11.(2021秋·广西)某中学组织学生到某电池厂开展研学实践活动,该厂主要生产型号为2号的干电池.为了解2号干电池的使用寿命,在厂技术员的指导下,学生从某批次2号干电池中随机抽取50节进行测试,得到每一节电池的使用寿命(单位:h )数据,绘制成如下的统计表.请根据表中提供的信息解答下列问题.使用寿命分组/h 频数频率[)5,10a 0.08[)10,15140.28[)15,20200.40[)20,25b c []25,3040.08(1)求表中a ,b ,c 的值,并将如下频率分布直方图补充完整;(2)试估计该批次2号干电池的平均使用寿命.【答案】(1)4a =,8b =,0.16c =,频率分布直方图见解析(2)16.9h【分析】(1)根据:样本容量⨯频率=频数,结合频率和为1计算得到a ,b ,c 的值,并根据频率分布表画出频率分布直方图;(2)由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,即可求出平均寿命.【详解】(1)500.084a =⨯=,1(0.080.280.40.08)0.16c =-+++=,500.168b =⨯=,所以区间[)20,25对应的频率/组距为0.160.0325=,频率分布直方图如图所示:.(2)根据频率分布直方图,计算平均寿命为:7.50.016512.50.056517.50.08522.50.032527.50.0165⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯16.9=,所以该批次2号干电池的平均使用寿命为16.9h .考点六:方差1.(2021秋·河南)已知样本数据1x ,2x ,3x ,4x ,5x ,6x 的平均数为5,方差为2,则样本数据13x +,23x +,33x +,43x +,53x +,63x +的平均数和方差分别为()A .8和2B .8和5C .5和3D .5和8【答案】A【分析】由新数列与原数据之间的线性关系求均值和方差.【详解】样本数据1x ,2x ,3x ,4x ,5x ,6x 的平均数为5,方差为2,则样本数据13x +,23x +,33x +,43x +,53x +,63x +的平均数是538+=,方差是2122⨯=.故选:A .【点睛】本题考查均值和方差,掌握均值和方差的性质是解题关键.样本数据1x ,2x ,3x ,4x ,5x ,6x 的平均数是x ,方差是2s ,则新样本数据:12,,n ax b ax b ax b +++ ,的均值为ax b +,方差为22a s .2.(2021·贵州)甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下:甲68998乙107779则两人射击成绩的稳定程度是()A .甲稳定B .乙稳定C .一样稳定D .不能确定【答案】A 【分析】计算平均数,方差,通过比较方差的大小来确定谁更稳定.【详解】甲命中环数的平均数()16899885x =++++=甲,方差()()()()()22222216688898988855s ⎡⎤=-+-+-+-+-=⎣⎦甲.乙命中环数的平均数()11097385x =++⨯=乙,方差()()()()()222222181087878789855s ⎡⎤=-+-+-+-+-=⎣⎦乙.因为22s s >乙甲,所以甲比乙射击成绩稳定.故选:A.3.(2022·北京)某校举行演讲比赛,五位评委对甲、乙两位选手的评分如下:甲8.17.98.07.98.1乙7.98.08.18.57.5记五位评委对甲、乙两位选手评分数据的方差分别为22,s s 甲乙,则:2s 甲2s 乙(填“>”,“=”或“<”).【答案】<【分析】计算出22,s s 甲乙,由此确定正确答案.【详解】甲的得分平均值为8.17.98.07.98.18.05++++=,()2210.040.1455s =⨯=甲.乙的得分平均值为7.98.08.18.57.58.05++++=,()22210.520.120.5255s =⨯+⨯=乙,所以22s s <甲乙.故答案为:<4.(2022·山西)如图是甲、乙两人在射击测试中6次命中环数的折线图,下列说法正确的是.①若甲、乙射击成绩的平均数分别为12,x x ,则12x x <②若甲、乙射击成绩的方差分别为2212,s s ,则2212s s <③乙射击成绩的中位数小于甲射击成绩的中位数④乙比甲的射击成绩稳定【答案】③④【分析】从图中得到甲、乙的射击成绩进而求出其平均数、中位数,可以判断①错误,③正确;甲的成绩比较分散,而乙的成绩比较集中,所以甲的方差较大,可以判断②错误、④正确.【详解】由图可知甲的射击成绩为9、10、6、7、9、8,乙的射击成绩为6、7、5、5、7、7.甲、乙射击成绩的平均数分别12,x x ,则()1149910679866x =⨯+++++=,()213767557766x =⨯+++++=,所以12x x >,所以①错误;从甲、乙射击成绩看,甲的成绩比较分散,而乙的成绩比较集中,所以甲的方差较大,即2212s s >,所以②错误;甲的射击成绩从小到大排序为6、7、8、9、9、10,则中位数为8.5,乙的射击成绩从小到大排序为5、5、6、7、7、7,则中位数为6.5,所以乙射击成绩的中位数小于甲射击成绩的中位数,所以③正确;因为乙的成绩比较集中,所以乙比甲的射击成绩稳定,所以④正确.故答案为:③④5.(2023·北京)某校初一年级共有三个班,为了解课外阅读情况,随机抽取部分学生调查他们一周的课外阅读时长(单位:小时),整理数据得到下表:1班89101111152班7789911123班57999101421①设样本中1班数据的均值为1μ,2班数据的均值为2μ,则1μ2μ(填“>”或“<”);②设样本中2班数据的方差为22s ,3班数据的方差为23s ,则22s 23s (填“>”或“<”).【答案】><【分析】根据均值和方差的计算公式,分别计算1μ,2μ和22s ,23s ,再比较大小即可【详解】由表中数据得1132(8910111115)63μ=+++++=,21(778991112)97μ=++++++=,所以12μμ>;设样本中3班数据的均值为3μ,则31(579991014)97μ=++++++=,所以222222222122[(2)(2)(1)0023]77s =-+-+-++++=,222222223146[(4)(2)00015]77s =-+-+++++=,所以2223s s <,故答案为:①>;②<.6.(2023·广东)甲和乙射箭,两人比赛的分数结果如下:甲868659乙6778104求甲和乙分数的平均数和方差,并说明甲和乙发挥的情况.【答案】答案见解析【分析】根据平均数和方差公式可求得甲和乙分数的平均数和方差,结合平均数与方差的大小关系可得出结论.【详解】解:甲分数的平均数为86865976x +++++==甲,方差为()()()()()()222222287678767579726s -+-+-+-+-+-==甲,乙分数的平均数为677810476x +++++==乙,方差为()()()()()()222222267777787107471063s -+-+-+-+-+-==甲,所以,x x =乙甲,22s s <甲乙,故甲乙分数的平均数相同,但甲比乙发挥更为稳定.。

高中数学的概率与统计归纳总结

高中数学的概率与统计归纳总结

高中数学的概率与统计归纳总结概率与统计是高中数学中重要的一个分支,它涉及到对事件发生的可能性的估计和数据的分析。

在高中学习概率与统计的过程中,我逐渐认识到了其在现实生活中的应用和重要性。

在这篇文章中,我将对我在高中学习概率与统计过程中的所思所悟进行总结和归纳。

一、概率的基本概念和计算方法概率是描述事件发生可能性的一个数值。

在学习概率的过程中,我了解到了一些基本概念,如样本空间、随机事件和概率等。

样本空间是指所有可能结果的集合,而随机事件是样本空间的子集。

概率通常用一个介于0和1之间的数值来表示,其中0表示不可能事件,1表示必然事件。

在计算概率时,常用的方法有频率法和几何概型法。

频率法通过实验来统计事件发生的次数,然后将事件发生的次数除以实验的总次数来估计概率。

而几何概型法则适用于几何图形的问题,通过确定几何图形中的有利结果数量和总结果数量的比值来计算概率。

二、概率的性质和相关公式概率具有一些性质,如非负性、规范性、可列可加性和互斥性等。

非负性表示概率的值不会小于0;规范性则指出样本空间的概率为1;可列可加性意味着对于两个互不相容的事件,它们的概率之和等于它们并集的概率;互斥性则表示两个事件不可能同时发生。

在概率计算中,常用的公式有加法公式和乘法公式。

加法公式适用于计算两个事件中至少发生一个事件的概率,而乘法公式则用于计算两个事件同时发生的概率。

三、统计的基本概念和分析方法统计是对数据进行收集、整理和分析的过程。

在学习统计的过程中,我了解到了一些基本概念,如数据、变量和统计量等。

数据是用来描述某一现象或问题的信息,而变量则是这些数据中的特征或性质。

统计量则是根据数据计算出来的用于描述和分析的数值。

在统计分析中,我们常常用到频数和频率来描述数据的分布情况。

频数是指某一特定取值在数据中出现的次数,频率则是某一特定取值的频数与总样本量的比值。

四、概率与统计的应用概率与统计在现实生活中有广泛的应用。

例如,在医学领域,概率与统计可用来研究疾病的发病率和治愈率。

三年 (2020-2022 ) 新高考数学真题汇编专题08计数原理及概率与统计

三年 (2020-2022 ) 新高考数学真题汇编专题08计数原理及概率与统计

新高考专题08计数原理及概率与统计【2022年新高考1卷】1.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16B .13C .12D .23【答案】D 【解析】 【分析】由古典概型概率公式结合组合、列举法即可得解. 【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.【2022年新高考2卷】2.有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B 【解析】 【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解 【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B【2021年新高考1卷】3.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立【答案】B 【解析】 【分析】根据独立事件概率关系逐一判断 【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, ,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁, 1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙, 故选:B 【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立【2021年新高考2卷】4.某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【解析】 【分析】由正态分布密度曲线的特征逐项判断即可得解. 【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D.【2020年新高考1卷(山东卷)】5.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种【答案】C 【解析】 【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题. 【2020年新高考1卷(山东卷)】6.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62% B .56% C .46% D .42%【答案】C 【解析】 【分析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果. 【详解】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C. 【点睛】本题考查了积事件的概率公式,属于基础题. 【2020年新高考2卷(海南卷)】7.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种 B .3种C .6种D .8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可. 【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种 故选:C 【点睛】解答本类问题时一般采取先组后排的策略. 【2021年新高考1卷】8.有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c=+(1,2,,),i n c =⋅⋅⋅为非零常数,则( ) A .两组样本数据的样本平均数相同 B .两组样本数据的样本中位数相同 C .两组样本数据的样本标准差相同 D .两组样本数据的样本极差相同 【答案】CD 【解析】 【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误. 【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;【2021年新高考2卷】9.下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【答案】AC 【解析】 【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项. 【详解】由标准差的定义可知,标准差考查的是数据的离散程度; 由中位数的定义可知,中位数考查的是数据的集中趋势; 由极差的定义可知,极差考查的是数据的离散程度; 由平均数的定义可知,平均数考查的是数据的集中趋势; 故选:AC.【2020年新高考1卷(山东卷)】10.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y ) 【答案】AC 【解析】 【分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项.【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确. 对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n==,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且 ()21j m j P Y j p p +-==+( 1,2,,j m =).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅. ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++由于()01,2,,2i p i m >=,所以2111i i m i p p p +->+,所以 222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.【2020年新高考2卷(海南卷)】11.我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】【分析】注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确; 【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题. 【2022年新高考1卷】12.81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).【答案】-28 【解析】 【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解. 【详解】因为()()()8881=y y x y x y x y x x ⎛⎫-++-+ ⎪⎝⎭,所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x -=-,()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为-28 故答案为:-28【2022年新高考2卷】13.已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________. 【答案】0.14##750. 【解析】 【分析】根据正态分布曲线的性质即可解出. 【详解】 因为()22,XN σ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.【2022年新高考1卷】14.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(|) (|)P B A P B A 与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)答案见解析(2)(i)证明见解析;(ii)6R=;【解析】【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R . (1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯, 又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异. (2) (i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅ 所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =, 所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅【2022年新高考2卷】15.在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)47.9岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式=-即可解出;P A P A()1()(3)根据条件概率公式即可求出.(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设B =“任选一人年龄位于区间[40,50)”,C =“从该地区中任选一人患这种疾病”, 则由已知得:()()16%0.16,0.1%0.001,(|)0.023100.23P B P C P B C =====⨯=,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间[40,50),此人患这种疾病的概率为()(|)()()0.0010.23(|)0.00143750.0014()0.16P BC P C P B C C B P B B P P ⨯====≈.【2021年新高考1卷】16.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由. 【答案】(1)见解析;(2)B 类. 【解析】 【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可. 【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=; ()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=; ()()800.610.80.12P Y ==-=; ()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=. 因为54.457.6<,所以小明应选择先回答B 类问题.【2021年新高考2卷】17.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义. 【答案】(1)1;(2)见解析;(3)见解析.【解析】 【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点. (3)利用期望的意义及根的范围可得相应的理解说明. 【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<,且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1. 【2020年新高考1卷(山东卷)】18.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见解析;(3)有. 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果; (2)根据表格中数据可得22⨯列联表; (3)计算出2K ,结合临界值表可得结论. 【详解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【点睛】本题考查了古典概型的概率公式,考查了完善22⨯列联表,考查了独立性检验,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 专题08概率与统计考试范围:概率与统计一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要完成下列两项调查:①从某肉联厂的火腿肠生产线上抽取1000根火腿肠进行“瘦肉精”检测;②从某中学的15名艺术特长生中选出3人调查学习负担情况.适合采用的抽样方法依次为 ( )A .①用分层抽样,②用简单随机抽样B .①用系统抽样,②用简单随机抽样C .①②都用系统抽样D .①②都用简单随机抽样2.将一个骰子抛掷1次,设事件A 表示向上的一面出现偶数,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则 ( )A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件C .B 与C 是互斥而非对立事件D .B 与C 是对立事件3.要从编号为01~50的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,则选取的5枚导弹的编号可能是 ( )A .05,10,15,20,25B .03,13,23,33,43C .01,02,03,04,05D .02,04,08,16,324.(理)2011年3月17日上午,日本自卫队选派了两架直升飞机对福岛第一核电站3号机组的染料池进行了4次注水.如果直升飞机有A 、B 、C 、D 四架供选,飞行员有甲、乙、丙、丁四人供选,且一架直升飞机只安排一名飞行员,则选出两名飞行员驾驶两架直升飞机的不同方法数为 ( )A .18B .36C .72D .108(文)两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一伦敦奥运会吉祥物“温洛克”,则“温洛克”与两端距离都大于1m 的概率为 ( )A .21B .31C .41D .325.(理)道路安全交通法规定,驾驶员血液酒精含量在20~80mg /100ml ,属酒后驾车,血液酒精含量在80mg /100ml 以上时,属醉酒驾车,2011年6月1日7:00至22:30,某地查处酒后驾车和醉酒驾车共50起,如图是对这50人的血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数大约为 ( )A .9B .10C .11D .12(文)某农科所研制成功一种产量较高的农作物种子,并对该作物种子在相同条件下发芽与否进行了试验,试验结果如下表,则其发芽的概率大约为 (种子粒 2 5 10 70 130 310 700 1500 200300数 0 0 发芽粒数 2 4 9 60 116 282 639 1339 1806 2715A .1B .0.7C .0.8D .0.96.(理)某堂训练课上,一射击运动员对同一目标独立地进行了四次射击,已知他至少命中一次的概率为8165,则四 次射击中,他命中2次的概率为 ( )A .814B .818C .278D .以上都不对(文)2011年4月28日,世界园艺博览会(以下简称世园会)在西安顺利开幕,吸引了海内外的大批游客.游客甲、游客乙暑假期间去西安看世园会的概率分别为31、41,假定他们两人的行动相互不受影响,则暑假期间游客甲、游客乙两人都不去西安看世园会的概率为 ( )A .21B .127C .1211D .327.2011年6月,台湾爆出了食品添加有毒塑化剂的案件,令世人震惊.我国某研究所为此开发了一种用来检测塑化剂的新试剂,把500组添加了该试剂的食品与另外500组未添加该试剂的食品作比较,提出假设0H :“这种试剂不能起到检测出塑化剂的作用”,并计算出()01.0635.62≈≥x P .对此,四名同学做出了以下的判断:p :有99%的把握认为“这种试剂能起到检测出塑化剂的作用”q :随意抽出一组食品,它有99%的可能性添加了塑化剂r :这种试剂能检测出塑化剂的有效率为99%s :这种试剂能检测出塑化剂的有效率为1%则下列命题中正确的是 ( )A .p ∧qB .﹁p ∧qC .(﹁p ∧﹁q )∧(r ∨s )D .(p ∨﹁r )∧(﹁q ∨s ) 8.日本福岛核电站爆炸后,工作人员随机测量了甲、乙两个城镇空气中核辐射的含量,获得的数据如茎叶图所示,则对甲、乙两个城镇的空气质量评价正确的是 ( )A .甲城镇的空气质量优于乙城镇的空气质量B .乙城镇的空气质量优于甲城镇的空气质量C .甲、乙两城镇的空气质量差不多D .无法比较9.给出以下三幅统计图及四个命题:①从折线统计图能看出世界人口的变化情况②2050年非洲人口大约将达到近15亿③2050年亚洲人口比其他各洲人口的总和还要多④从1957年到2050年各洲中北美洲人口增长速度最慢其中正确的个数是 ( )A .1B .2C .3D .410.(理)如图,设D 是图中边长为4的正方形区域,E 是D 内函数y = x 2图像上方的点构成的区域(阴影部分).在D 内随机取一点,则该点在E 中的概率为 ( )A .31B .41C .32D .21 (文)已知函数()x a x f 3cos π=,a 等于抛掷一颗骰子得到的点数,则()x f y =在[]4,0上有5个以下或6个以上零点的概率是 ( )A .31B .32C .21D .65二、填空题(本大题共5小题;每小题5分,共25分.将答案填在题中的横线上)11.2011年“两会”期间,某大学组织全体师生,以调查表的形式对温总理的政府工作报告进行讨论.为及时分析讨论结果,该大学从所回收的调查表中,采用分层抽样的方法抽取了300份进行分析.若回收的调查表中,来自于退休教职工、在职教职工、学生的份数之比为3:7:40,则所抽取的调查表中来自于退休教职工的有 份.12.(理)在某项测量中,测量结果x (单位:mm )服从正态分布)2,(2μN 且正态分布的密度曲线如图所示,则x 在[]3,1-内取值的概率为 .(其中:841.0)1(=Φ)(文)小明同学学完统计知识后,随机调查了他所在辖区若干居民的年龄,将调查数据绘制成如图所示的扇形和条形统计图,则b a -= .(60以上含60)13.(理)若()5cos x +ϕ的展开式中3x 的系数为2,则=⎪⎭⎫ ⎝⎛-ϕπ223sin . (文)某城市供电局为了了解用电量)(度y 与气温)(C x 之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表: 气温(℃) 18 13 10 -1用电量(度) 24 34 38 64a x y +-=2 4-为 .14.把容量为100的某组样本数据分为10组,其分组情况及频率如下:[)40,20:0.1;[)60,40:0.25;[)80,60:0.45;[)100,80:0.20.若同一组数据用该组区间的中点(例如:区间[)40,20的中点值为30)表示,则这100个数据的平均值为 .15.把一颗骰子投掷两次,第一次得到的点数记为a ,第二次得到的点数记为b ,以a 、b 为系数得到直线31=+by ax l :,又已知直线22:2=+y x l ,则直线1l 与2l 相交的概率为 .三、解答题(本大题共6小题;共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)在甲、乙两个箱子中分别装有标号为1、2、3、4的四张卡片,现从甲、乙两个箱子中各取出1张卡片,每张卡片被取出的可能性相等.(1)求取出的两张卡片上标号恰好相同的概率;(2)求取出的两张卡片上的标号至少有一个大于2的概率.17.(本小题满分12分)2011年2月始发生的利比亚内战引起了全球人民的关注,联合国为此多次召开紧急会议讨论应对措施.在某次分组研讨会上,某组有6名代表参加,B A 、两名代表来自亚洲,D C 、两名代表来自北美洲,E 、F 两名代表来自非洲,小组讨论后将随机选出两名代表发言.(1)代表A 不被选中的概率是多少?(2)(理)记选出的两名代表中来自于北美洲或非洲的人数为X ,求X 的分布列及期望. (文)选出的两名代表“恰有1名来自北美洲或2名都来自非洲”的概率是多少?12题(文)12题(理)18.(本小题满分12分)一机器可以按各种不同速度转动,其生产的产品有一些会有缺陷,每小时生产有缺陷产品的多少随机器运转速度而变化,用x 表示转速(单位:转/秒),用y 表示每小时生产的有缺陷产品的个数,现观测得到)(y x ,的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)画出散点图.(2)你能从散点图中发现零件数与加工时间近似成什么关系吗?如果近似成线性相关关系的话,请求出相应的回归直线方程;(3)若实际生产中所容许的每小时最多有缺陷产品数为10,则机器的速度不得超过多少转/秒?(精确到1)19.(本小题满分12分)(理)某市某社区拟选拔一批综合素质较强的群众,参加社区的义务服务工作.假定符合参加选拔条件的每个选手还需要进行四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为31,21,43,54且各轮问题能否正确回答互不影响.(1)求该选手进入第四轮才被淘率的概率.(2)该选手在选拔过程中回答过的问题的总个数记为X ,求随机变量X 的分布列与数学期望.(注:本小题结果可用分数表示)(文)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果如图表所示.(1)分别求出a ,b ,x ,y 的值; (2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.组号 分组 回答正确 的人数 回答正确的人数占本组的概率第1组 [)25,15 5 0.5 第2组 [)35,25 a 0.9 第3组 [)45,35 27 x 第4组 [)55,45 b 0.36 第5组 [)65,55 3 y20.(本小题满分13分)为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人喜欢看该节目 不喜欢看该节目 合计 女生5 男生10 合计 50(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢看该节目节目与性别有关?说明你的理由;(3)已知喜欢看该节目的10位男生中,1A 、2A 、3A 、4A 、5A 还喜欢看新闻,1B 、2B 、3B 还喜欢看动画片,1C 、2C 还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.()k K p ≥2 0.15 0.10 0.05 0.0250.010 0.005 0.001 k2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:()()()()()d b c a d c b a bc ad n K ++++-=22,其中d c b a n +++=)21.(本小题满分14分)某大学为调查来自南方和北方的同龄大学生的身高差异,从2011级的年龄在18~19岁之间的大学生中随机抽取了一自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm )南方:158,170,166,169,180,175,171,176,162,163北方:183,173,169,163,179,171,157,175,178,166(1)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论.(2)设抽测的10名南方大学生的平均身高为x ,将10名同学的身高依次输入按程序框图进行运算,问输出的S 大小为多少?并说明S 的统计学意义.(3)(理)若将样本频率视为总体的概率,现从来自南方的大学生中随机抽取3名同学,记其中身高不低于平均身高的同学的人数为X,求X 的分布列及数学期望EX (均值).(文)为进一步调查身高与生活习惯的关系,现从来自南方这10名大学生中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.2012届同心圆梦专题卷数学专题八答案与解析1.【思路点拨】简单随机抽样适用于总体容量较小的情形;总体容量较大且各个体间没有明显差异时选用系统抽样;当组成总体的各部分存在明显差异时,则应选用分层抽样.【答案】B 【解析】①中总体容量较大,且火腿肠之间没有明显差异,故适合采用系统抽样;②中总体容量偏小,故适合采用简单随机抽样.2.【思路点拨】可从集合角度进行分析:若A 与B 是互斥事件,则φ=⋂B A ,若A 与B 是对立事件,则,Ω=⋃=⋂B A B A ,φ即对立事件是特殊的互斥事件.【答案】D 【解析】由题意知,=B A {出现点数2},所以事件A 、B 不互斥也不对立;,,Ω=∅=C B C B 故事件B ,C 是对立事件,选D .3.【思路点拨】系统抽样的特点:总体平均分段、选定起始号、等间距、等可能抽样.【答案】B 【解析】采用系统抽样,可先将50个编号分成5组,在第一组随机地抽取一号码,比如抽到3号,则其它各组就依次选取13,23,33,43.四个选择答案中,只有B 属于这种抽取方法.4.(理)【思路点拔】本题为排列组合的综合题,一般采用“先选后排”的解题策略求解.【答案】C 【解析】选派的所有情形有72222424==A C C N . (文)【思路点拔】几何概型的计算公式为:的长度(面积或体积)的长度(面积或体积)G G A P 1)(=.【答案】B 【解析】如图设线段AB =3,C 、D 是线段A B 的两个三等分点,则当“温洛克”挂在线段CD 上的时候,“温洛克”与两端A 、B 的距离都大于1.所以“温洛克”与两端距离都大于1m 的概率为31==的长度的长度AB CD P .5.(理)【思路点拔】利用频率分布直方图中各组频率之和为1这一性质求解.【答案】C【解析】由图可知数据落在20~80间的累积频率为0.1+0.2+0.2+0.04+0.12+0.12=0.78,故数据落在80~100间频率为1-0.78=0.22,故醉酒驾车人数为50×0.22=11(人).(文)【思路点拔】求出种子发芽的各频率值,发现频率的稳定值,即为概率值.【答案】D 【解析】我们可以用频率的近似值表示随机事件发生的概率,根据表格计算不同情况下的菜籽发芽的频率分别是1,0.8,0.9,0.857,0.892,0.910,0.913,0.903,0.905,由上面的计算结果可知,菜籽发芽的频率接近于0.9,且在它附近摆动,故此可知菜籽在已知条件下发芽的概率大约为0.9.6.(理)【思路点拔】(1)在n 次独立重复试验中,某事件恰好发生k 次的概率为()()()n k p p C k P k n k k n n ,,2,1,01 =-=-,其中p 为该事件在一次试验中发生的概率.(2)本题解题思路为:先设他命中一次的概率为p ,并由已知构造方程求得p ,即可由概率公式得所求.【答案】C 【解析】四次射击可看作4次独立重复试验.设一次射击中,他命中的概率为p ,则他至少命中一次的概率为()8165114=--p ,解得31=p .∴他命中2次的概率为()278812431131222244==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=C P . (文)【思路点拔】由于甲、乙两人的行动相互不受影响,故他们去西安看世园会为相互独立事件,于是联想到调用概率的乘法公式求解.【答案】A 【解析】分别记甲、乙去西安旅游为事件A 、B ,则()31=A P ,()41=B P ,由题设可知A 、B 相互独立,故所求的概率()()()21411311=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-==⋅=B P A P B A P P .7.【思路分析】本题中:提出假设0H :“这种试剂不能起到检测出塑化剂的作用”,并计算出()01.0635.62≈≥x P ,因此,在一定程度上说明假设不合理,我们就以99%的把握拒绝假设,故易知p ,r 为真命题,再由真值表即可获解.【答案】D 【解析】由题设可知命题p ,r 为真命题,q ,s 为假命题,依据复合命题的真值表可知D 为真命题.8.【思路点拔】先利用茎叶图得到两组数据,并求出其平均值和方差,再利用方差进行比较:方差越小,波动越小,空气质量越高.【答案】B 【答案】17010182179179171170168168163162158=+++++++++=x .甲城镇核辐射的样本方差为: [()()()()+-+-+-+-2222170168170163170162170158101()+-2170168()+-2170170()+-2170171()2170179-()]571701822=-+,1.17110181179178176173170168165162159=+++++++++=x ,乙城镇核辐射的样本方差为101[()21.171159-()21.171162-+ ()21.171165-+()21.171168-+()21.171170-+()21.171173-+()21.171176-+()21.171178-+()21.171179-+()21.171181-+29.51=,由此判断乙城镇的空气质量较好.9.【思路点拔】利用折线图,扇形统计图,条形统计图的特征,解决问题.【答案】B 【解析】①显然正确;从条形统计图中可得到:2050年非洲人口大约将达到近18亿,②错;从扇形统计图中能够明显的得到结论:2050年亚洲人口比其他各洲人口的总和还要多,③正确;由上述三幅统计图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故④错误.因此正确的命题有①③.10.(理)【思路点拔】利用定积分求面积时要特别注意函数的选择,对于几何概型则应特别注意基本事件空间和时间A 的几何度量(面积、体积、长度)的计算.【答案】C 【解析】由定积分的几何意义可得阴影部分面积为33232162-44203202=-=⨯=⎰x dx x S 阴,又由几何概型可得点在E 中的概率为3216332===正阴μμP .(文)【答案】D 【解析】抛掷一颗骰子共有6种情况.当a =1,2,3,4,5,6时,利用函数()x f 的图像易知,()x f y =在[]4,0上的零点分别为1,2,4,5,7,8个.故所求概率为656263=+=P . 11.【思路点拔】确定各层应抽取的个体数是实施分层抽样的最关键步骤,而确定办法主要有二:①利用抽样比k 来确定,当已知各层的个体数时,用此法计算较为简便;②利用结论“样本中各层抽取的个体数之比=总体中各层的个体数之比”来确定,当总体(或样本)中各层个体数以比的形式给出时,一般考虑用此法速解.【答案】18【解析】由题设知:来自于退休教职工、在职教职工、学生的份数之比为3:7:40,故样本中相应的份数之比仍为3:7:40,设所抽取的调查表中来自退休教职工份数为m ,则1840733300=⇒++=m m . 12.(理)【思路点拔】由正态曲线得到μ=1,再利用公式⎪⎭⎫ ⎝⎛-=σμφx Fx 计算概率. 【答案】0.682【解析】由图可知,2σ=,所以()()()()682.01121121121331=-Φ=-Φ-Φ=⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-Φ=≤≤-ξP . (文)【思路点拔】读取统计图解答问题的关键是充分挖掘图中所包含的信息.在条形统计图中,每个直条的高度表示相应样本值出现的次数(即频数)或百分比;扇形统计图中,每个扇形的大小反映所表示的那部分占总体百分比的大小.【答案】8%【解析】设小明共调查了x 名居民的年龄,由230%46=⋅x ,得500=x ;于是得%20%100500100=⨯=a ;b=12%22%)46%(20%1=++-.故a-b =8%.13.(理)【思路点拔】(1)涉及二项展开式中的特定项(如常数项、有理项等)、二项式系数、系数的问题一般用通项法求解;(2)由诱导公式知ϕϕπ2cos 223sin -=⎪⎭⎫⎝⎛-.(3)二倍角的余弦公式:ϕϕϕ22sin 211cos 22cos -=-=. 【答案】53【解析】由二项式定理得,3x 的系数为2cos 235=ϕC 得51cos 2=ϕ故53cos 212cos 223sin 2=-=-=⎪⎭⎫ ⎝⎛-ϕϕϕπ. (文)【思路点拨】先利用回归直线方程过(y x ,),求出a ,然后再求解.【答案】68【解析】因为1813101104x ++-==,40464383424=+++=y ,又因为回归直线方程过(y x ,),所以402060a a =-+⇒=,把04-代入回归直线方程,可得用电量的都市约为68.14.【思路点拔】由频率求出频数,便能求得这100个数据的平均值.【答案】65【解析】由题设可知各组及其频数分别为:[)40,20:10;[)60,40:25;[)80,60:45;[)100,80:20.故这100个 数据的期望值(平均值)为[]6520904570255010301001=⨯+⨯+⨯+⨯=x . 15.【思路点拔】由两直线的交点在第一象限,构造出关于a ,b 不等式组,再利用枚举法确定基本事件数,便易得所求. 【答案】3613【解析】由题意知,{}6,5,4,3,2,1,∈b a .因为直线1l 与2l 的交点在第一象限,所以由他们的图象可知:3132b a ⎧<⎪⎪⎨⎪>⎪⎩或3132b a ⎧>⎪⎪⎨⎪<⎪⎩解得3,1b a >⎧⎨≤⎩或32b a <⎧⎨≥⎩,所以基本事件()b a ,可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),6,1),(6,2)共13个,而基本事件有3666=⨯种,所以随机事件“直线1l 与2l 的交点在第一象限”的概率为3613=P16.【思路点拨】根据树脂图列出所有结果或者直接写出所有结果,然后求解.【解析】利用树状图可以列出从甲、乙两个盒子中各取出1个球的所有可能结果(如下图),可以看出,试验的所有可能结果数为16种且每种结果是等可能的.(3分)(1)所取两张卡片上的标号为相同整数的结果有1-1,2-2,3-3,4-4,共4种.故根据古典概型公式,所求概率41164==P .答:取出的两张卡片的标号为相同整数的概率为41.(6分) (2)记事件“取出的两张卡片的标号至少有一个大于2”为A .则A 的对立事件是A =“取出的两张卡片上的标号都不于大2”(8分)所取出的两张卡片上的标号都不大于3的结果有1-1,1-2,2-1,2-2,共4种.43)(1)(41164)(=-=∴==A P A P A P .答:取出的两张卡片上的标号至少有一个大于3的概率为43.(12分)17.(理)【思路点拔】(1)利用对立事件的概率公式求解;(2)易知X 的可能取值为0,1,2,分别求出对应的概率值,即得分布列,再进一步求期望.【解析】(1)代表A 被选中的概率为151125=C (2分),所以代表A 不被选中的概率是15141511=-.(4分)(2)X 的可能取值为0,1,2.(5分)()15102602===C C X P ,()1581261412===C C C X P ,()15622624===C C X P (8分)∴X 的分布列为(见右图表)(10分)1864()0121515153E X =⨯+⨯+⨯=.(12分)(文)【思路点拔】先利用枚举法列举出6名代表中随机选出2名的结果总数,再从中找中各事件所包含的结果数,然后代入古典概型、对立事件以及互斥事件的概率公式进行求解.【解析】(1)从这6名代表中随机选出2名,共有C 种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).(3分).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F )共5种,则代表A 被选中的概率为31155=(6分)所以代表A 不被选中的概率为321551=-=P .(2)随机选出的2名代表“恰有1名来自北美洲或2名都来自非洲”的结果有9种,分别是),(C A ,),(D A ,),(C B ,),(D B ,),(E C ,),(F C ,),(E D ,),(F D ,),(F E .“恰有1名来自北美洲或2名都来自非洲”这一事件的概率为53159=(12分).18.【思路点拔】先画出散点图,由散点图可知各散点分布成一条直线附近,故零件数与加工时间近似成线性相关关系,再求出回归直线方程,并利用此方程求解.【解析】(1)如图(4分)(2)设回归直线方程为a bx y+=ˆ,则5.1241614128=+++=x ,25.8411985=+++=y ,(3)43811169148125844332211=⨯+⨯+⨯+⨯=+++y x y x y x y x ;6601614128222224232221=+++=+++x x x x ,所以,70515.12466025.85.1244382=⨯-⨯⨯-=b ,765.12705125.8-=⨯-=-=x b y a ;故:y 与x 之X 0 1 2 P 151 158 156间的回归直线方程为767051ˆ-=x y (8分)(3)由10767051≤-=x y ,得1451706≈≤x .即机器的速度不得超过14转/秒.(12分) 19.(理)【思路点拔】对于(1)(2),均可用相互独立事件的概率公式求出相应的概率,从而得出X 的分布列,再利用期望公式求X 期望值. 【解析】(1)记“该选手能正确回答第i 轮的问题”的事件为()4,3,2,1=i A i ,则()541=A P ,()432=A P ,()213=A P ,()314=A P .(2分)∴该选手进入第四轮才被淘率的概率()()()()()43214321A P A P A P A P A A A A P P ==5132214354=⨯⨯⨯=.(5分)(2)X 的可能值为4321、、、,()()5111===A P X P ,()()()()51415422121=⨯====A P A P A A P X P ,()()()()()1032143543321321=⨯⨯====A P A P A P A A A P X P 103214354=⨯⨯=,12341234123444313(4)()()()()()()154210P X P A A A A P A A A A P A P A P A P A A ==+=+=⨯⨯⨯=.(9分) X∴的分布列为(见右侧表格)(11分)()102710341033512511=⨯+⨯+⨯+⨯=∴X E .(12分)(文)【思路点拔】对于(1),可结合频率分布直方图的性质求解;对于(2),则可利用分层抽样比求解;问题(3)为古典概型问题,可用枚举法求解.【解析】(1)由频率表中第1组数据可知,第1组总人数为105.05=,再结合频率分布直方图可知1001010.010=⨯=n (1分)∴a =100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,(2分)9.03.010027=⨯=x ,2.015.01003=⨯=y (4分)(2)第2,3,4组中回答正确的共有54人.(5分)∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:265418=⨯人,第3组:365427=⨯人,第4组:16549=⨯人.(8分)(3)设第2组的2人为1A 、2A ,第3组的3人为1B 、2B 、2B ,第4组的1人为1C ,则从6人中抽2人所有可能的结果有:()21,A A ,()11,B A ,()21,B A ,()31,B A ,()11,C A ,()12,B A ,()22,B A ,()32,B A ,()12,C A ,()21,B B ,()31,B B ,()11,C B ,()32,B B ,()12,C B ,()13,C B ,共15个基本事件,(10分)其中第2组至少有1人被抽中的有()21,A A ,()11,B A ,()21,B A ,()31,B A ,()11,C A ,()12,B A ,()22,B A ,()32,B A ,()12,C A 这9个基本事件.(11分)∴第2组至少有1人获得幸运奖的概率为53159=(12分)20.【思路点拔】在独立性检验中,常利用2K 来确定“两个分类变量是否有关联”:当706.22≤K 时,可以认为变量A 、B 是没有关联的;当2K >2.706时,有90%的把握判定变量A 、B 有关联;当2K >3.841时,有95%的把握判定变量A 、B有关联;当2K >6.635时,有99%的把握判定变量A 、B 有关联.故只需计算出2K 的值,利用上述结论即可解决第(2)小题.第(3)小题可用组合知识及枚举法求解. 【解析】(1)由分层抽样知识知,喜欢看该节目的同学有3010650=⨯,故不喜欢看该节目的同学有50-30=20人,(2分)于是可将列联表补充如右图:(4分)(2)()333.82525203051015205022≈⨯⨯⨯⨯-⨯⨯=K >7.879(7分)∴有99.5%的把握认为喜爱该节目与性别有关.(8分) (3)(理)从10位男生中选出喜欢看韩剧、喜欢看新闻、喜欢看动画片的各1名,其一切可能的结果组成的基本事件共有30121315==C C C N 个,(10分)用M 表示“11C B 、不全被选中”这一事件,则其对立事件M 表示“11C B 、全被选中”这一事件,由于M 由()111,,C B A ,()112,,C B A ,()113,,C B A ,()114,,C B A ,()115,,C B A ,5个基本事件组成,所以()61305==M P ,(12分)由对立事件的概率公式得()()656111=-=-=M P M P .(13分)(文)从10位男生中选出喜欢看韩剧、喜欢看新闻、喜欢看动画片的各1名,其一切可能的结果组成的基本事件如下:()111,,C B A ,()211,,C B A ,()121,,C B A ,()221,,C B A ,()131,,C B A ,()231,,C B A ,()112,,C B A ,()212,,C B A ,()122,,C B A ,()222,,C B A ,()132,,C B A ,()232,,C B A ,()113,,C B A ,()213,,C B A ,()123,,C B A ,()233,,C B A ,()223,,C B A ,()133,,C B A ,()114,,C B A ,()214,,C B A ,()124,,C B A ,()224,,C B A ,()134,,C B A ,()234,,C B A ,()115,,C B A ,()215,,C B A ,()125,,C B A ,()225,,C B A ,()135,,C B A ,()235,,C B A ,基本事件的总数为30,(10分)用M 表示“11C B 、不全被选中”这一事件,则其对立事件M 表示“11C B 、全被选中”这一事件,由于M 由()111,,C B A ,()112,,C B A ,()113,,C B A ,()114,,C B A ,()115,,C B A ,5个基本事件组成,所以()61305==M P ,(12分)由对立事件的概率公式得()()656111=-=-=M P M P .(13分)21.【思路点拔】(1)可利用给出数据直接画出茎叶图,再根据茎叶图从样本的数字特征等角度来得出统计结论;(2)认真读懂框图,不难看出该框图的功能是计算一组数据的方差;(3)(文)利用枚举法求解;(3)(理)易知X 服从二项分布,故调用二项分布的概率及期望公式简解. 【解析】(1)茎叶图如右图(2分)统计结论:(给出下述四个供参考,考生只要答对其中两个即给满分,给出其他合理的答案也可给分)①北方大学生的平均身高大于南方大学生的平均身高.②南方大学生身高比北方大学生的身高更整齐;③南方大学生的身高的中位数为169.5cm ,北方大学生的身高的中位数是172cm .④南方大学生的高度基本上是对称的,而且大多数集中在均值附近,北方大学生的高度分布较为分散.(4分) (2)169=x ,6.42=S (6分),S 表示10位南方大学生身高的方差,是描述身高离散程度的量.S 值越小,表示身高越整齐,S 值越大,表示身高参差不齐.(8分)男生 10 15 25 合计 30 20 50 X 01 2 3(3)(理)记“抽取一位同学恰好抽中身高不低于平均身高的同学”为事件A ,由(2)知来自南方的大学生平均身高为169cm ,故()53106==A P .(9分),随机变量X 的可能取值为0,1,2,3,且3(3,)5X B .所以()()3,2,1,0525333=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kkk ,所以变量X 的分布列为(见右表格)5912527312554212536112580=⨯+⨯+⨯+⨯=∴EX (或59533=⨯==np EX )(14分)(文)记“身高为176cm 的同学被抽中”为事件A ,从这10名南方大学生中抽出两名身高不低于170cm 的同学有 (170,171),(170,175),(170,176),(170,180),(171,175),(171,176),(171,180),(175,176),(175,180),(176,180),共10个基本事件,而事件A 含有4个基本事件,故()52104==A P .(14分)。

相关文档
最新文档