《理论力学》基本力系
理论力学 第四章 空间力系
r FR = 0
∑F = 0
x
∑F = 0
y
称为空间汇交力系的平衡方程. 称为空间汇交力系的平衡方程. 空间汇交力系平衡的充要条件:该力系中所有 空间汇交力系平衡的充要条件: 充要条件 各力在三个坐标轴上的投影的代数和分别为零. 各力在三个坐标轴上的投影的代数和分别为零.
例 题 1
求: 绳的拉力和墙体的约束反力 。
=
=
F = F′ = F2 1 1
= F2′ = F3 = F3′
= =
定位矢量 滑移矢量 自由矢量 力偶矩矢是自由矢量 力偶矩相等的力偶等效 (5)力偶没有合力,力偶只能由力偶来平衡. 力偶没有合力,力偶只能由力偶来平衡.
3.空间力偶系的合成与平衡条件
=
=
r r r r r r r r r M 1 = r1 × F1 , M 2 = r2 × F2 ,......, M n = rn × Fn
A
P
c a y
i
j k
O
MO ( P ) = r × P = 0 b 0 0 0 P = Pbi
(2)利用力矩关系
x
α
b
M OA ( P ) = M O ( P ) cos α = Pab a 2 + b2 + c 2
MO(P)
例 题 4
已知:OA=OB=OC =b, OA⊥OB⊥OC. 已知: 求: F 对OA边的中点 之矩在 方向的投影。 边的中点D之矩在 方向的投影。 力 边的中点 之矩在AC方向的投影
3、力对点的矩与力对过该点的轴的矩的关系 r r r r M x ( F ) = M x ( Fx ) + M x ( Fy ) + M x ( Fz ) = Fz ⋅ y − Fy ⋅ z
《理论力学》基本力系
接触点处受到法向约束力的作用。
03
铰链约束
铰链约束是指两个构件通过销钉或铰链连接在一起,并能绕销钉或铰链
相对转动。这种约束只能限制物体沿垂直于销钉轴线的运动,而不能限
制物体绕销钉的转动。
平衡条件及求解方法
平面力系的平衡条件
平面任意力系平衡的充分必要条件是,力系的主矢和主矩都为零。即所有各力在x轴和y轴 上的投影的代数和分别等于零;所有各力对任意一点之矩的代数和也等于零。
汇交力系平衡条件应用
平衡条件
汇交力系平衡的充分必要条件是合力为零,即力多边形自行封闭。
应用
在静力学中,汇交力系平衡条件可应用于求解未知力、判断物体是否平衡等问题 ;在动力学中,可用于分析物体的运动状态及受力情况。
04 平面任意力系简化与平衡
平面任意力系简化方法
向一点简化
选择适当的一点,将力系中的各 力向该点平移,得到一个等效的 平面汇交力系和一个平面力偶系。
主矢和主矩
平面任意力系向作用面内任一点 简化时,一般可得到一个力和一 个力偶,这个力称为该力系的主 矢,这个力偶的矩称为该力系对
简化中心的主矩。
合力矩定理
平面任意力系的合力对作用面内 任一点之矩,等于力系中各分力
对于同一点之矩的代数和。
简化结果分析
当主矩为零时,主矢也为零
01
说明该力系本身是平衡的,或者可以合成为一个合力。
合力矩
主矩表示原力系对物体的 总体转动效应,其大小和 方向由主矩矢量确定。
平衡条件
当且仅当主矢和主矩都为 零时,空间任意力系才处 于平衡状态。
空间任意力系平衡条件应用
静力学问题
利用空间任意力系的平衡条件,可以解决各种静力学问题, 如物体的平衡、刚体的平衡等。
第三章理论力学
因此,其平衡的解析条件为:
F
x
0
x
F
y
0
y
F
z
0
z
M
0
M
0
M
0
------ 平衡方程
共六个方程,可以求解空间任意力系中的六个未知约束力. 3、空间任意力系的两种特殊情况: 1)空间平行力系的平衡方程
Fy F cos
,
方向:+、-号;
Fz F cos
2)间接投影法(二次投影法) 如果只已知与一根轴的夹 角 ,则通常的做法是:先将 该力向z 轴及其垂面分解(与 垂面的夹角为 90 ),而位于 垂面内的分力,其平面几何关
系比空间几何关系要容易寻找得多,因此只要在该垂面内
找出其与该平面内的两根轴之一的夹角(与另一根轴的夹
第三章
空间力系
注意:本章不作为重点,主要介绍一些基本概念、基本原理 和一些基本方法的应用,但不作为重点练习;个别需 要掌握的内容设有标注,望大家掌握.
一、空间力系:当力系中各分力的作用线分布于 三维空间时,该力系称为空间力 系. 二、空间力系又可根据力系中各分力的作用线的 分布情况划分为:空间汇交力系、空间力偶 系、空间平行力系和空间 任意力系. 三、本章研究的主要问题:力系的简化、合成及 平衡问题.
M x ( F ) M x ( Fx ) M x ( Fy ) M x ( Fz ) Fz y Fy z M y ( F ) M y ( Fx ) M y ( Fy ) M y ( Fz ) Fx z Fz x M z (F ) M z (Fx ) M z (Fy ) M z (Fz ) Fy x Fx y
理论力学第二章(力系的等效与简化)
z
x c
F
b
o
o x
a
M y ( F ) M o ( F ) Fc
F
M z ( F ) M o ( F ) Fa
15
2019年4月16日星期二
《理论力学》
3、力对点之矩与力对通过 该点的轴之矩的关系 (转动效果的度量)
z
Fz F
y
x A
o
y
力对点之矩矢:
M o (F ) r F
Fx Fxy cos Fx F sin cos
Fy
F
O Fx x
Fy Fxy sin
y F y F sin sin
Fxy
2019年4月16日星期二
Fz F cos
6
力的分解:
F Fx Fy Fz
力F在直角坐标系中的
Fz z
F
O x
Fy
解析式
Fx
2019年4月16日星期二
力矩的符号
M O F
2019年4月16日星期二
力偶矩的符号
M
27
《理论力学》
力偶系和力偶系的合成
MR =M1+M2+…+Mn
M
力偶系
2019年4月16日星期二 28
《理论力学》
§2-3 力系等效定理
1.力系的主矢和主矩 Fn 。 设刚体上作用一平面任意力系F 1 、F 2 · · · · · ·
的夹角可为任意值。 的夹角为90o。
36
在平面任意力系, M与 R
2019年4月16日星期二
思考: 主矢,主矩与简化中心的位置有无关系?
主矢:作用在简化中心,大小和方向却与中心的位 置无关; 主矩:作用在该刚体上,大小和方向一般与中心的 位置有关。
理论力学 第二章
扭矩扳手
2-3 平面力对点之矩的概念及计算
一、力对点的矩(力矩) 力对点的矩(力矩)
M O ( F ) = ± F ⋅ d ,单位N•m或KN•m 单位N KN•
→
→
① ②
是代数量。 M O ( F ) 是代数量。
M O ( F ) 正负判定: 正负判定:
→
→
M O (F ) (F
+
→ →
-
③ 当F=0或d=0时, O (F ) =0。 =0或 =0时 M =0。 点O为矩心,d为力臂。 为矩心, 为力臂。 角 形面积,或是矢量积的模。 面积,或是矢量积的模。 ④ M O (F ) = ± 2⊿AOB= r × F 2⊿AOB= 力对点0矩的大小等于2 力对点0矩的大小等于2倍三
Fx = X i , F y = Y j
F = X +Y
2 2
→
→ →
→
X cos α = F
Y cos β = F
2-2 平面汇交力系合成与平衡的解析法
区分力沿轴的分力和力在两轴上的投影: 区分力沿轴的分力和力在两轴上的投影: 力沿轴的分力和力在两轴上的投影 • 分力是矢量,投影是代 分力是矢量, 数量,二者性质不同。 数量,二者性质不同。 • 在直角坐标系中,投影 在直角坐标系中, 的大小与分力的大小相 但在斜角坐标系中, 同,但在斜角坐标系中, 二者不等。 二者不等。
∑F = 0 ix
− FBA + F cos60 − F2 cos30 = 0 1
o o
∑F =0 iy
FBC − F cos30 − F cos60 = 0 1 2
o o
F = F2 = P 1
解得: FC = 27 32kN 解得: B .
理论力学
物体运动的改变除与作用力有关外,还与本身的惯性有关。对于质点,惯性的量度是其质量。对于刚体,除 其总质量外,惯性还与质量在体内的分布状况有关,即与质心位置及惯性矩、惯性积有关。刚体对于三个互相垂 直的坐标轴的各惯性矩及惯性积组成刚体对该坐标系的惯性张量。
理论力学从变分法出发,最早由拉格朗日《分析力学》作为开端,引出拉格朗日力学体系、哈密顿力学体系、 哈密顿-雅克比理论等,是理论物理学的基础学科。哈密顿方法是量子力学中的正则量子化的起点,拉格朗日方法 是量子力学中路径积分量子化的起点。
发展简史
发展简史
力学是最古老的科学之一,它是社会生产和科学实践长期发展的产物。随着古代建筑技术的发展,简单机械 的应用,静力学逐渐发展完善。公元前5—前 4世纪,在中国的《墨经》中已有关于水力学的叙述。古希腊的数 学家阿基米德(公元前 3世纪)提出了杠杆平衡公式(限于平行力)及重心公式,奠定了静力学基础。荷兰学者 S.斯蒂文(16世纪)解决了非平行力情况下的杠杆问题,发现了力的平行四边形法则。他还提出了著名的“黄金 定则”,是虚位移原理的萌芽。这一原理的现代提法是瑞士学者约翰·伯努利于1717年提出的。
理论力学建立科学抽象的力学模型(如质点、刚体等)。静力学和动力学都联系运动的物理原因——力,合 称为动理学。有些文献把kinetics和dynamics看成同义词而混用,两者都可译为动力学,或把其中之一译为运动 力学。此外,把运动学和动力学合并起来,将理论力学分成静力学和动力学两部分。
理论力学依据一些基本概念和反映理想物体运动基本规律的公理、定律作为研究的出发点。例如,静力学可 由五条静力学公理演绎而成;动力学是以牛顿运动定律、万有引力定律为研究基础的。理论力学的另一特点是广 泛采用数学工具,进行数学演绎,从而导出各种以数学形式表达的普遍定理和结论 。
理论力学第2章平面任意力系
空载时轨道A 、 B的约束反力,并问此起重机在使用过程中有无翻
倒的危险。
解:
(1)起重机受力图如图
(2)列平衡方程 :
MA 0:
Q
Q(6 2) RB 4 W 2 P(12 2) 0
MB 0:
Q(6 2) W 2 P(12 2) RA 4 0
6m
解方程得:
W
P
12m
RA 170 2.5P
FR' Fi Fxi Fy j
MO MO (Fi )
3. 平面任意力系的简化结果
(1)FR´= 0,Mo ≠ 0, (2)FR´ ≠ 0,Mo = 0, (3)FR´≠ 0,Mo ≠ 0, (4)FR´= 0,Mo = 0,
合力偶,合力偶矩,MO MO (Fi )
合力,合力作用线通过简化中心O。
3
F2
j
F3
x
(437.6)2 (161.6)2
F1
1 1
100
Oi
1 2
466.5N
200
MO 21.44N m
y
合力及其与原点O的距离如图(c) 。 MO
x
y
d
x
O
FR FR′ 466.5N FR´
FR
O
d MO 45.96mm
(b)
(c)
FR
10
例11 水平梁AB受按三角形分布的载荷作用,如图示。载荷的
M
l
l
30
B
D
° F
3l
P
q
A
21
解:T字形刚架ABD的受力如图所示。
M
l
l
Fx 0
30
B
FAx 1 • q • 3a Fcos30 0
理论力学课本及习题集答案
西北工业大学理论力学教研室
2009年7月
第一章:静力学的基本概念
第二章:平面基本力系
第三章:平面任意力系
第五章:空间基本力系
第六章:空间任意力系
第七章:重 心
第八章:点的运动
第九章:刚体的基本运动
第十章:点的复合运动
日
啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊
第十一章:刚体的平面运动
第十二章:刚体的转动合成
第十四章:质点动力学基础
第十五章:质点的振动
第七章:动能定理
第十八章:动量定理
第十九章:动量矩定理
第二十章:碰撞理论
第二十一章:达朗伯原理
第二十二章:虚位移原理
理论力学
第一章 力学基础
一、刚体、平衡与运动
1-刚体(不变形的物体)
物体在力的作用下,其内部任意两点之间的距离始终保持不 变。它是一个理想化的力学模型
实际物体在力的作用下,都会产生程度不同的变形。但是,这 些微小的变形,对研究物体的平衡问题不起主要作用,可以略 去不计,这样可使问题的研究大为简化。
首都机场候机楼顶棚拱架支座
铰 (Hinge)
固定铰支座
构件的端部与支座有相同直径的圆孔,用一圆柱形销钉连接起 来,支座固定在地基或者其他结构上。这种连接方式称为固定铰链 支座,简称为固定铰支(smooth cylindrical pin support)。桥梁上的 固定支座就是固定铰链支座。
将具有相同圆孔的两构件用圆柱形销钉连接 起来,称为中间铰约束
三.力对点的矩
z
B
1.力对点的矩
mo(F)
mo(F) = r×F
mo(F)表示力F绕O点
A
r
O
y
转动的效应.O点称为矩
d
x
心.力矩矢是定位矢量.
力矩的三要素:力矩的大小;力矩平面的
方位;力矩在力矩平面内的转向.
力矩的几何意义: mo(F) =±2OAB面积=±Fd 力矩的单位: N·m 或 kN·m
同时作用于物体的一群力-------力系
汇交力系 平行力系 一般力系
空间力系 平衡力系
平面力系
等效力系
四、静力学的基本公理
二力平衡公理 加减平衡力系公理 力的平形四边形法则 作用与反作用定律
公理1 二力平衡公理 -最简单的平衡条件
作用在刚体上的两个力,使刚体平 衡的必要和充分条件是:两个力的大小 相等,方向相反,作用线沿同一直线。
《理论力学》科目考查内容范围
苏州大学硕士研究生入学考试《理论力学》科目考查内容范围一、静力学公理和物体的受力分析1.静力学公里2.约束与约束力3.物体的受力分析和受力图二、平面汇交力系与平面力偶系1.平面汇交力系合成与平衡2.矩、平面力偶三、平面任意力系1.平面任意力系平衡2.物体系的静定与超静定四、摩擦五、点的运动1.矢量法、直角坐标法、自然法2.点的速度及加速度表示六、物体的简单运动1.刚体的平动与定轴转动2.刚体内点的速度与加速度七、点的合成运动1.点的速度合成定理2.点的加速度合成定理八、物体的平面运动1.求平面内各点速度的基点法、瞬心法2.用基点法求平面图形内各点的加速度九、质点动力学的基本方程十、动量定理1.动量与冲量2.动量定理3.质心运动定理十一、动量矩定理1.动量矩定理2.刚体绕定轴的转动微分方程3.转动惯量4.质点系相对于质心的动量矩定理5.刚体平面运动微分方程十二、动能定理1.力的功2.质点、质点系动能3.势能、机械能守恒十三、动静法1.达朗贝尔原理2.刚体惯性力系的简化3.绕定轴转动刚体的轴承动约束力苏州大学硕士研究生入学考试《自动控制原理》科目考查内容范围二、自动控制系统的基本概念1.自动控制的基本原理与基本结构2.控制系统示例与分析3.简单控制系统时域数学模型的建立二、线性系统的时域分析1.二阶及高阶系统的时域分析2.线性系统的稳定性分析3.线性系统的稳态误差分析三、线性系统的根轨迹法1.根轨迹法的基本概念2.根轨迹法的基本绘制法则3.系统性能的分析四、线性系统的频域分析法1.频率特性的基本概念2.频率特性的几何表示法(幅相频率特性曲线、对数频率特性曲线、对数幅相频率特性曲线)3.频域的稳定判据和稳定裕度五、线性系统的校正1.控制系统的设计与校正2.采用频域法或根轨迹法的串联校正3.采用频域法的并联校正六、线性离散系统的分析1.离散系统的基本概念2.离散系统的稳态分析3.离散系统的动态分析七、非线性控制系统分析1.非线性控制系统的基本问题2.描述函数法3.相平面法八、状态空间分析法1.状态空间描述的基本概念与可控可观性2.输出反馈、状态反馈与极点配置3.状态观测器的基本概念和设计。
[工学]《理论力学》第一章 静力学公理和物体的受力分析
4. 刚体: 一级定义: 不变的物体.
在力的作用下, 其内部任意两点之间的距离 始 终保持
二级定义:
刚体是这样的一种点的集合, 即其上任意
两点的距离始终保持不变.
§1-2 静力学公理
公理一: 力的平行四边形法则( 合力矢等于二力矢的几何和)
F1
A
FR
FR F1 F2
F2
公理二: 二力平衡公理
注意: 不平行三力 共面汇交仅
是平衡的必要条件.
F3
C
FR
F3
公理四: 作用与反作用定律 作用力与反作用力总是同时存在, 两力等值、反向、共线, 且 分别作用在两个相互作用的物体上.( 牛顿第三定律) 公理五: 刚化公理 变形体在某一力系作用下处于平衡, 若将此变形体硬化为刚 体, 则平衡的状态保持不变.
( 2 ) 诸物体若以光滑铰链连接, 则每一个物体在铰链处 受到的约束反力应理解为铰链对此物体的力, 而不要笼 统理解为物体之间的‘ 相互作用力’. 这一点, 在铰链 连接三个和三个以上的物体时, 以及铰链本身承受外载 荷的情况下尤其要注意.
F F ' F1
A B
加一对平 衡力
F
A
减一对平 衡力
F1
F 减一对平
衡力 加一对平 衡力
'
F
A
B
'
B
F
推论二: 三力平衡汇交定理
设处于平衡的刚体受三个力的作用, 若其中两个力的作 用线汇交于一点, 则此三力必在同一平面内且第三力也 汇交于同一点.
B
F2
F1
A
O C
F3
F2 F2 F1
A O B
2019/2/16
理论力学第二章(汇交力系)
2) 合力
力矢量合成的力多边形法则: 1) 各分力首尾相接,次序可变;
R 为封闭边。
z F3 FR F2 F1 x
5
2、空间汇交力系合成的几何法
r r r r r r FR = F1 + F2 + F3 + F4 = Σ Fi ,
合成为一个合力,合力的大小与方向等于 各分力的矢量和,合力的作用线过汇交点.
FR = F1 + F2 + L + Fn = ∑ Fi
向两个坐标轴投影,
FR = FRx + FRy = (∑ Fix ) + (∑ Fiy )
2 2 2
2
FR
合力方向 FRx ∑ Fix FRy cos θ = = , sin θ = = FR FR FR 合力投影定理:
∑F
FR
iy
10 合力在任一轴上的投影等于各分力在同一轴上投影的代数和。
FDA
P
FDB=FDC=289N。
18
例 :起重机起吊重量P = 1 kN, ABC 在 yz 平面内,求:立柱 x’ AB、绳BC,BD,BE 的拉力。 解:B点有四个未知力汇 交,故先从C点求解,
[C] 平面汇交力系 z 750
B 450 E FBE FBD 450 450 D x A y 450 F BA 450 FCB FBC 300 FCA
汇交力系的平衡条件为:力系中各力在x、y、z三个坐标 轴的每一轴上投影之代数和均为零。 14 汇交力系平衡的几何条件为:力多边形自行封闭。
汇交力系平衡条件的应用
例:园柱物置于光滑的燕尾槽内,已知:P 为 500 N,求: 接触处A、B的约束力。
理论力学 第1章 静力学基本概念和受力分析汇总
公理4
作用力和反作用力定律
两物体间的相互作用力即作用力与反作用力,总是大小相等、 方向相反、作用线重合,并分别作用在这两个物Байду номын сангаас上。
[例] 吊灯
公理5
刚化原理
变形体在某一力系作用下处于平衡,如将此变形体变成
刚体(刚化为刚体),则平衡状态保持不变。
公理5告诉我们:处
于平衡状态的变形体, 可用刚体静力学的平
压力等。
二类是:被动力,即约束反力。
(3)在去掉约束的地方 根据约束性质逐一画出作用在脱离体 上的约束力。
[例1]用力 F 拉动压路的碾子。已知碾子重 P ,并受到固定
石块A的阻挡,如图所示。试画出碾子的受力图。
F P
NA
NB
三、画受力图应注意的问题
1、不要漏画力 除重力、电磁力外,物体之间只有通过接触 才有相互机械作用力,要分清研究对象(受 力体)都与周围哪些物体(施力体)相接触, 接触处必有力,力的方向由约束类型而定。
[例2]画图示结构各构件及整体受力图。设接触处摩擦不计, 结构自重不计。
[例3]结构自重不计,试画结构整体及 各部件受力图。 (1)设轮C带销钉,此时杆AC、BC互 不接触,都与销钉(即轮C)接触, 杆AC、BC对销钉的作用力都作用在轮 C上。
[例4]重为W的均质圆柱体O由杆及墙支
撑如图,不计杆重及各处摩擦,试画 各物体的受力图。
说明:①对刚体来说,上面的条件是充要的
②对变形体来说,上面的条件只是必要条件(或多体中)
③二力构件:只在两个力作用下平衡的刚体叫二力构件。
[证 ]
∵ F1 , F2 , F3 为平衡力系,
∴ R , F3 也为平衡力系。 又∵ 二力平衡必等值、反向、共线, ∴ 三力 F1 , F2 , F3 必汇交,且共面。
第二章 理论力学平面力系
特殊时用 几 何法(解力三角形)比较简便。
2、一般对于受多个力作用的物体,且角度不特殊或 特殊,都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中 只有一个未知数。
4、对力的方向判定不准的,一般用解析法。
5、解析法解题时,力的方向可以任意设,如果求出
负值,说明力方向与假设相反。对于二力构件,
力系分为:平面力系、空间力系 ①平面汇交力系 平面力系 ②平面平行力系(平面力偶系是其中的特殊情况 ) ③平面一般力系(平面任意力系) 平面汇交力系: 各力的作用线都在同一平面内且 汇交于一点的力系。 研究方法:几何法,解析法。
例:起重机的挂钩。
2.1 平面汇交力系的合成与平衡
2.1.1 平面汇交力系合成的几何法与平衡的几何条件 1、几何法
Y X
87.46 8.852, 83.55O 9.88
由于FRx为负,FRY为正,故 在第二象限,合力 FR的作用线通过汇交点O,如图2.12
【例2.5】
如图2.1 3所示为建筑工地使用的 井架把杆装置,杆AB的一端铰接在井架上, 另一端用钢索BC与井架连接。重物通过卷扬 机由绕过滑轮BC的钢索起吊。已知重物 Fw=2kN,把杆重量、滑轮的重量及滑轮的大 小不计,滑轮的轴承是光滑的。试求钢索BC 的拉力和把杆AB所受的力。
由图2.14(b)可知 DB CB cot l cot 30 0 tan 0.866 AB 2l 2l 40.90 将 40.90 代入方程并求解得 FA 13.2 KN FB 8.66 KN
解题技巧及说明: 1、一般地,对于只受三个力作用的物体,且角度
2、主矢和主矩
主矢:力系各力的矢量和,即 主矩:力系中各力对于任选简化中心O之矩的矢量和,即
理论力学第四章任意力系
由于简化中心是任意选取的,故此式有普遍意义。
合力矩定理:平面任意力系的合力对作用面内任一点之矩等于力系 中各力对于同一点之矩的代数和。
二、空间任意力系的简化与合成
1、空间一般力系向一点简化 把研究平面一般力系的简化方法用来研究空间一般力系的
简化问题,须把平面坐标系扩充为空间坐标系。
设作用在刚体上有
F1 F2
AB
I
Fi
y
R'
Ox
y
MO
O
简化结果:主矢 R ,主矩 MO 。
1. R' 0 , MO 0 ;
R'
2 . R' 0 , MO 0 ;
x
3 . R' 0 , M O 0 ;
4. R' 0 , M O 0 .
4. R' 0 , M O 0 .
为最一般的情况。此种情况还可以继续
2 . R' 0 , MO 0 ;
简化结果为一合力偶,MO = M 此时力系等效于一个力偶的作用.
因为力偶 可以在平面内任意 移动,故 这种情况下主矩与 简化中心 O 无关。
F1 F2
AB
I
Fi
y
MO Ox
y
MOOΒιβλιοθήκη 简化结果:主矢 R ,主矩 MO 。
1. R' 0 , MO 0 ;
求:1)合力的大小与方向;2)合力与基线OA的交点到O点的
距离 x 及合力作用线方程。(力系向O点简化的最后结果)
y 3m
解:1)求 FR'x , FR'y
▼
P1
1.5
9m
F1
3m
P2
理论力学课件-第二篇 第二章 基本力系(基本知识点)
即合力的大小和方向分别为
n 2 i =1 n 2 i =1 n i =1
F合=(∑ Fix ) +(∑ Fiy) ( ∑ Fiz ) 2 +
n → →
∑F
i =1
n
n iy
ix
F , , (2)汇交力系平衡的充要条件是该力系的合力为零 (2)汇交力系平衡的充要条件是该力系的合力为零 ① 汇交力系平衡的几何条件是力多边形自行封闭 ② 汇交力系平衡的几何条件是力系中各力在三个坐标轴上 投影的代数和分别等于零, 投影的代数和分别等于零,即
M 合 =∑ M i
i =1
→
n
→
(4)力偶不可能与一个力相平衡,换句话说力偶中的两个力不可能合成为 力偶不可能与一个力相平衡, 一个力,即力偶无合力或力偶不可能与一个力等效.因此, 一个力,即力偶无合力或力偶不可能与一个力等效.因此,一个力偶是最简 单的力系之一. 单的力系之一. 力偶系平衡的充要条件是该力偶系的合力偶矩等于零, (5)力偶系平衡的充要条件是该力偶系的合力偶矩等于零,即力偶系中各 力偶矩的矢量和等于零,以式表示为: 力偶矩的矢量和等于零,以式表示为:
第二章 基本力系-基本知识点 基本力系-
一,基本知识点
1.任意力系总可分解为两个基本力系——汇 任意力系总可分解为两个基本力系——汇 交力系和力偶系 1.1, 1.1,汇交力系的合成与平衡 1.2, 1.2,力偶系的合成与平衡
1.1汇交力系的合成与平衡 1.1汇交力系的合成与平衡
(1)汇交力系是指力系中各力作用线汇交于一共同点的力系,它总可 汇交力系是指力系中各力作用线汇交于一共同点的力系, 以合成为一个作用线通过汇交点的合力, 以合成为一个作用线通过汇交点的合力,合力的力矢可由以下方法确 定: 合力的力矢由力多边形(从任一点开始, ① 几何法 合力的力矢由力多边形(从任一点开始,按一定的比 依次作出力系中各力矢的首尾相接的开口多边形,称为力多边形) 例,依次作出力系中各力矢的首尾相接的开口多边形,称为力多边形) 的封闭边决定,其指向由力多边形的起点指向终点, 的封闭边决定,其指向由力多边形的起点指向终点,即
理论力学第1章-力系的简化
几何静力学: 刚体: 力: 力系: 等效力系: 平衡力系: 平衡条件: 基本任务:
用矢量方法研究物体的平衡规律。 不变形的物体、任意两点距离保持不变 相互作用、产生外或内效应、三要素(矢量) 平面 (一般、平行 、汇交) 一组力: 空间 具有相同的外效应(力系的等效、简化) 作用在平衡物体上的力系、与零力系等效 平衡力系满足的条件 力系的简化与力系的平衡
合力对任一点之矩等于各分力对同一点之矩的矢量和。 (2)对轴 上式在任意轴投影 M x (FR ) M x (Fi ) 上述证明是对汇交力系完成的,但是合力矩定理 适用于合力存在的任意力系!
1.2.3 力偶 1.力偶的概念 1)实例:
F
F
2)定义: 两个等值、反向的平行力,记为 ( F , F )
a
z
M
n
a
o
a
y
x
3 Mx My Mz M 3
1.2.3 力偶 3.合力偶矩定理 1)对点:
z
z
M1
Mn
M
M2
Mn
M1 M2
o
M n-1
x y
o
M n-1
x
M3
M3
y
M Mi
合力偶矩等于各分力偶矩的矢量和。
1.2.3 力偶 2)对轴:
上式投影
M x M ix M y M iy M z M iz
1.1 静力学公理 推论1 (力对刚体的可传性)
B A
加
F
B
F
减
B
F
A
A
F F 力对刚体为滑移矢量。作用点
作用线
适用:
同一刚体
1.如图,力F滑移,改变哪些受力与变形?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fz 0
F1 cos 45 sin 30 F2 cos 45 sin 30 FA cos30 P 0
结果: F1 F2 3.54kN
FA 8.66kN
第二节 力偶系的合成与平衡
一、 力偶系 作用在物体上的一群力偶称为力偶系。
若力偶系中的各力偶都位于同一平面内,则为平面力 偶系,否则为空间力偶系。
F iy
0
F iz
0
平面汇交力系平衡方程
平衡方程应用的注意点:
1、求解未知量个数;
2、投影轴的选取;
3、研究对象选取次序。
F ix
0
F iy
ቤተ መጻሕፍቲ ባይዱ
0
第一节 汇交力系的合成与平衡
例题:
对于共面不平行的三个力成平衡,有如下结论:若不平行 的三个力成平衡,则三力作用线必汇交于一点。这就是所谓的 三力平衡定理。
取滑轮B(或点B),画受力图. 用解析法,建图示坐标系
F ix
0
F F cos 60 F cos 30 0
BA
1
2
F F P
1
2
解得: F 7.321kN BA
第一节 汇交力系的合成与平衡
F iy
0
F F cos30 F cos60 0
BC
1
2
解得: F 27.32kN BC
例题:已知:物重P=10kN,C,D高度一样,CB=DB且互相垂 直,θ =300。
求:杆受力及绳拉力
解:画受力图如图,列平衡方程
Fx 0
F1 sin 45 F2 sin 45 0
Fy 0
FA sin 30 F1 cos 45 cos 30 F2 cos 45 cos 30 0
0 2000sin30 207N
再求合力的大小 及方向余弦:
F F 2 F 2 473N
R
Rx
Ry
425
cos(F , x) cos a 0.9
R
473
所以 α =26°, β =116°。
cos(F
,
y)
cos
207
0.438
R
473
第一节 汇交力系的合成与平衡
F 3
F i
i 1
则
.
.
.
.
.
.
.
.
.
n
FR FRn1 Fn Fi Fi i 1
汇交力系合成的解析计算
y
F Fi F jFk
i
ix
iy
iz
F R
(
F ix
)i
(
F iy
)
j
(
F iz
)k
z
x
FRx FRy
My
, cos
Mz
M
M
M
第二节 力偶系的合成与平衡
力偶系平衡的必要与充分条件是: 合力偶矩等于零,即力偶系中所有力偶矩的矢量和等于零 .
Fix Fiy
FRz
Fiz
矢量投影定理:即合矢量在任一轴上 的投影,等于各分矢量在同一轴上投影的 代数和。
由合力的投影可求其大小和方向余弦:
F F2 F2 F2
R
Rx
Ry
Rz
F
cos(F , x) Rx
R
F
R
F
cos(F , y) Ry
力系的简化
汇交力系的简化 1. 汇交力系合成的几何法
F4
FR3
F
R 2
F
3
F R1
F
F 2
1 F FF
R1
1
2
3
F R2
F R1
F 3
F i
i 1
力多边形
力
多 边 形 规
FR1 F1 F2
3
F R2
F R1
F2 FR
o F1
F3
例 用解析法求图所示平面汇交力系的合力。已知F1=500N, F2=1000N,F3=600N,F4=2000N。
解:合力 在轴上的投影为:
FRx Fix 0 1000cos45
600 2000cos30 425N
FR
F Ry
F iy
500 1000sin 45
第二章 力系的平衡
第一节 汇交力系的合成与平衡 第二节 力偶系的合成与平衡
第一节 汇交力系的合成与平衡
一、 汇交力系 若某力系中各力作用线汇交于一点,则该力系称为汇交力 系。根据力的可传性,各力作用线的汇交点可以看作各力的公 共作用点,所以汇交力系有时也称为共点力系。 如果一个汇交力系的各力的作用线都位于同一平面内,则 该汇交力系称为平面汇交力系,否则称为空间汇交力系。
例题 梁支承和受力情况如图所示,求支座A、B的反力。
解:1、明确研究对象; 2、取脱离体,受力分析画受力图; 3、立平衡方程求解。
F ix
0:
FA cos30 FB cos60 F cos60 0
F iy
0:
FA sin 30 FB sin 60 F sin 60 0
解得: F 3F / 2, F F / 2
A
B
第一节 汇交力系的合成与平衡
平衡的几何条件是:力多边形闭合。
解得: F 3F / 2, F F / 2
A
B
第一节 汇交力系的合成与平衡
例题:系统如图,不计杆、轮自重,忽略滑轮大小,P=20kN;
求:系统平衡时,杆AB、BC受力. 解:AB、BC杆为二力杆,
平面汇交力系
第一节 汇交力系的合成与平衡
二、 汇交力系 的合成
汇交力系平衡的必要与充分条件是:力系的合力等于零 。
即:
F R
F i
F 1
F 2
F n
0
平衡几何条件:力的多边形闭合。
平衡的代数方程条件:
F ix
0
F iy
0
F iz
0
即力系中各力在x、y、z三轴中的每一轴上的投影之代 数和均等于零。这三个方程称为汇交力系的平衡方程 。
R
F
R
cos(F
,
z)
F Rz
R
F
R
平 面 汇
交
力
系
y
FR
z
x
FR ( Fix )i ( Fiy ) j
FR
F F 2
2
Rx
Ry
tan(FR ,
x)
FRy FRx
第一节 汇交力系的合成与平衡
空间汇交力系平衡方程
F ix
0
平面力偶系
空间力偶系
二、力偶系的简化
平 面 力 偶 系
空 间 力 偶 系
M
M 1
M 2
M n
Mi
M
M 1
M 2
M n
Mi
Mx Mix , M y Miy , Mz Miz
M
M
2 x
M
2 y
M
2 z
cos
Mx
, cos