高中立体几何证明垂直的专题训练资料

合集下载

专题4:立体几何中垂直关系的证明基础练习题

专题4:立体几何中垂直关系的证明基础练习题
∴ 平面 .
12.证明见解析
【分析】
在等腰三角形PAB中, 是 的中点,可得 ,利用线面垂直的判定定理可证 平面 ,利用线面垂直的性质定理,即可得证.
【详解】
证明:∵ 是 的中点, ,
∴ ,
∵ 底面 ,
∴ ,
又∵ ,即
∴ 平面 ,
∴ ,
∵ 平面 , 平面 ,
∴ 平面 ,
∵ 平面 ,
∴ .
8.证明见解析
【分析】
由平面 ⊥平面 得到 ⊥平面 ,进一步得到 ⊥ ,再结合直径所对圆周角为直角得到 ⊥ , ⊥平面 ,从而得到证明.
【详解】
由题设知,平面 ⊥平面 ,交线为 .
因为 ⊥ , 平面 ,所以 ⊥平面 ,故 ⊥ .
因为 为 上异于 , 的点,且 为直径,所以 ⊥ .
又 = ,所以 ⊥平面 .
∴点O为三角形ABC的垂心,∴BO⊥AC
又因PO⊥AC,所以AC⊥PBO
故PB⊥AC
考点:证明异面直线垂直.
7.见解析
【分析】
由已知中P为正方形ABCD所在平面外一点,PA⊥面ABCD,结合正方形的几何特征,我们易得到BC⊥平面PAB,由线面垂直的性质得到BC⊥AE,结合已知中AE⊥PB,及线面垂直的判定定理,得到AE⊥平面PBC,最后再由线面垂直的判定定理,即可得到AE⊥PC.
【点睛】
此题考查线面垂直的性质和判定的综合应用,利用线面垂直得线线垂直.
5.证明见解析
【分析】
先证直线 平面 ,再证平面 ⊥平面 .
【详解】
证明:∵ 是圆的直径, 是圆上任一点, , ,
平面 , 平面 ,
,又 ,
平面 ,又 平面 ,
平面 ⊥平面 .
【点睛】

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。

立体几何线面与面面垂直的证明

立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

第8章立体几何专题4 垂直的证明常考题型专题练习——【含答案】

第8章立体几何专题4 垂直的证明常考题型专题练习——【含答案】

1垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。

【分类练习】考向一 线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA 平面PAD;【答案】(1)证明见解析;(2)2.【解析】(1)过A作AF⊥DC于F,则CF=DF=AF,所以∠DAC=90°,即AC⊥DA,又PA⊥底面ABCD,AC⊂面ABCD,所以AC⊥PA,因为PA、AD⊂面PAD,且PA∩AD=A,所以AC⊥平面PAD.例2、如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.11(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点C 1B 1A 1GFE DCBA求证:AC ⊥平面BEF ;1【解析】(1)在三棱柱111ABC A BC -中,∵1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, ∴AC ⊥EF . ∵AB BC =. ∴AC ⊥BE , ∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥PA .在直角梯形ABCD 中,12BC CD AD ==,由题意可得2AB BDBC==,所以222AD AB BD=+,所以BD AB⊥.因为PA AB A=,所以BD⊥平面PAB.【巩固练习】1、如图,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D 是B1C1的中点.证明:A1D⊥平面A1BC;【答案】见解析【解析】证明:设E为BC的中点,连接A1E,AE.由题意得A1E⊥平面ABC,所以A1E⊥AE.11因为AB =AC ,所以AE ⊥BC.故AE ⊥平面A 1BC.连接DE ,由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B,从而DE ∥A 1A 且DE =A 1A ,所以AA 1DE 为平行四边形.于是A 1D ∥AE. 因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ; (2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所以OE 是三角形PAC 的中位线,所以//PA OE ,而PA ⊂平面EDB ,OE ⊂平面EDB ,1所以PA ∥平面EDB.(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E =,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ; (2)求证:PA ⊥平面PCD 【答案】(1)详见解析(2)详见解析 【解析】(1)连结OE .1因为四边形ABCD 是平行四边形,AC ,BD相交于点O ,所以O 为AC 的中点. 因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥. 由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC , PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二 面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且2AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.旗开得胜1(1)求证://EF 平面PAD ; (2)求证:平面PAC ⊥平面PDE . 【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点//FG CD ∴,且12FG CD = 又E 为AB 中点//AE CD ∴,且12AE CD =//AE FG ∴,AE FG =四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD //EF ∴平面PAD(2)设AC DE H =由AEHCDH ∆∆及E 为AB 中点旗开得胜1得12AH AE CH CD == 又2AB =,1BC =3AC ∴=,1333AH AC ==23AH AB AE AC ∴==又BAD ∠为公共角GAE BAC ∴∆∆90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PAAC A =DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;MD CBA【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.例3、如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=3π,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=AD,点M在线段EF上。

高中数学专题练习20 立体几何中的平行与垂直问题(新高考地区专用)解析版

高中数学专题练习20 立体几何中的平行与垂直问题(新高考地区专用)解析版

立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线例1、如图,在四棱锥PABCD中,M,N分别为棱PA,PD的中点.已知侧面PAD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面PAB.例2、如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F 分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.例3、如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.例4、如图,三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.例5、如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C 与BC1交于点E.求证:(1) DE∥平面ABB1A1;(2) BC1⊥平面A1B1C.例6、如图,在正三棱柱ABCA1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:(1) 直线A1E∥平面ADC1;(2) 直线EF⊥平面ADC1.题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

平面与平面的平行关键是在一个平面内找两条相交直线;平面与平面垂直可以从二面角入手页可以从线面垂直进行转化。

立体几何专题复习(自己精心整理)

立体几何专题复习(自己精心整理)

专题一 证明平行垂直问题 题型一 证明平行关系(1)如图所示,在正方体 ABCD -A 1B 1C 1D 1 中, M , N分别是 C 1C ,B 1C 1的中点.求证: MN ∥平面 A 1BD.(2)如图,在四面体 A -BCD 中,AD ⊥平面 BCD ,BC ⊥CD ,AD = 2,BD =2 2,M 是 AD 的中点,P 是 BM 的中点,点 Q 在线段 AC 上,且 AQ = 3QC.求证: PQ ∥平面 BCD.题型二 证明垂直关系 (微专题 )微专题 1:证明线线垂直(1)已知空间四边形 OABC 中,M 为 BC 中点,N 为 AC中 点,P 为 OA 中点,Q 为 OB 中点,若 AB =OC.求证:PM ⊥QN.(2)(2019 山·西太原检测 )如图,直三棱柱 ABC -A 1B 1C 1中,AA 1=AB = AC =1,E ,F 分别是 CC 1,BC 的中点,AE ⊥A 1B 1,D 为棱 A 1B 1上的点,求证:DF ⊥AE.(3)在正方体 ABCD -A 1B 1C 1D 1中,求证: BD 1⊥平面 ACB 1. (4)(2019 河·南六市一模 )在如图所示的几何体中, ABC -A 1B 1C 1为三棱柱, 且 AA 1⊥平面 ABC ,四边形 ABCD 为平行四边形, AD =2CD ,∠ADC = 60°. 若 AA 1= AC ,求证: AC 1⊥平面 A 1B 1CD.微专题 3:证明面面垂直(5)已知正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是 BB 1,CD 的中点, 求证:平面 DEA ⊥平面 A 1FD 1.(2)在正方体 AC 1 中,M ,点,求证:平面 AMN ∥平N ,E ,F 分别是 A 1B 1,A 1D 1,B 1C 1,C 1D 1 的中 EFDB.思考题 1 (1)如图所示, 平面PAD ⊥平面 ABCD ,ABCD 为正方形,△ PAD 是直角三角形, 且 PA =AD =2,E ,F ,G 分别是线段 PA ,PD ,CD 的中点, 求证:平面 EFG ∥平面 PBC.微专题 2:证明线面垂直若不存在,说明理由.专题二 求解异面直线所成角和线面角问题题型一 异面直线所成的角(1)在棱长为 2 的正方体 ABCD -A 1B 1C 1D 1中,O 是底面 ABCD 的中心, E ,F 分别1(6)如图,四边形 ABCD 为正方形, PD ⊥平面 ABCD ,PD ∥QA ,QA =AB = 2 PD ,求证:平面 PQC ⊥平面 DCQ.思考题 2 (1)(2019 北·京东城区模拟 )如图,在四棱锥 P-ABCD 中,底 面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD ,PD =DC ,E 是 PC 的中点,作 EF ⊥BP 交 BP 于点 F ,求证: PB ⊥平面 EFD.(2)(2019济·南质检)如图,在三棱锥 P -ABC 中,AB =AC ,D 为 BC 的 中点, PO ⊥平面 ABC ,垂足 O 落在线段 AD 上.已知 BC =8,PO =4,AO =3,OD =2.①证明: AP ⊥BC ;②若点 M 是线段 AP 上一点,且 AM =3,试证明平面 AMC ⊥平面BMC.题型三 探究性问题在四棱锥 P -ABCD 中,PD ⊥底面 ABCD ,底面 ABCD 为正 方形, PD =DC ,E ,F 分别是 AB ,PB 的中点.(1)求证: EF ⊥CD ;(2)在平面 PAD 内是否存在一点 G ,使 GF ⊥ 平面 PCB若. 存在,确定 G 点的位置;若不存在,试说明理由.思考题 3 (2019 ·山西长治二模 )如图所示,四棱锥 P -ABCD 的底面 是边长为 1的正方形, PA ⊥CD ,PA =1,PD = 2,E为 PD 上一点, PE = 2ED.(1)求证: PA ⊥平面 ABCD ; (2)在侧棱PC 上是否存在一点 F ,使得 BF ∥ 平面 AEC 若存在,指出 F 点的位置,并证明;是 CC 1,AD 的中点,则异面直线 OE 和 FD 1 所成的角的余弦值等于 .(2)(2019 安·徽知名示范高中联合质检 )若在三棱柱 ABC -A 1B 1C 1中,∠A 1AC=∠BAC =60°, 平面 A 1ACC 1⊥平面 ABC ,AA 1=AC =AB ,则异面直线 AC 1与 A 1B 所成角的余弦值为思考题 1 (2019·湖南雅礼中学期末 )如图 1,在矩形 ABCD 中,AB =2,BC =1,E 是的中点;如图 2,将△DAE 沿 AE 折起,使折后平面 DAE ⊥平面 ABCE ,则异面直线 AE 和 所成角的余弦值为(1)(2019 山·东荷泽期末 )在斜三棱柱 ABC -A 1B 1C 1中,侧棱 AA 1⊥平面 AB 1C 1, △AB 1C 1为等边三角形, B 1C 1=2AA 1=2,则直线 AB 与平面 B 1C 1CB 所成角的正切值为 ((2)如图,在正方体 ABCD -A 1B 1C 1D 1中,点O 为线段 BD 的中点.设点 P 在线段 CC 1上,直线 OP 与平面 A 1BD 所成的角为 α,则 sin α的取值范围是 B .[ 36, 1] C .[ 36,232]D .思考题 2 (1)(2019 河·北石家庄一模 )如图所示,在三棱柱中,侧棱垂直于底面,底面是边长为 2 的正三角形,侧棱长为 面 AB 1C 1 所成的角的大小为(2)把正方形 ABCD 沿对角线 AC 折起,当以 A ,B ,C ,D 四点为顶点的三棱锥体积最大时, 直线 BD 和平面 ABC 所成的角的大小为 ( )题型三 向量法求线面角DCBD ()A .[ 33, 1]22 [232,1]A .90°B .60°C . 45°D . 30°)ABC -3,则 BB 1与(1)(2019河·南郑州月考)如图,已知四棱锥P-ABCD 的底面ABCD是边长为2的正方形,PA=PD=5,平面ABCD⊥平面PAD,M 是PC 的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是.(2)如图,菱形ABCD中,∠ ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.若直线FO 与平面BED所成的角为45°,则AE = ______ .思考题 3 (1)正四棱锥 S -ABCD 中,O 为顶点 S 在底面上的射影, P 为侧棱SD 的中点, 且 SO = OD ,则直线 BC 与平面 PAC 所成的角是 .(2) (2019 河·南百校联盟联考 )已知斜四棱柱 ABCD -A 1B 1C 1D 1 的各棱长均为 2,∠A 1AD = 60°,∠ BAD = 90°,平面 A 1ADD 1⊥平面 ABCD ,则直线 BD 1 与平面 ABCD 所成的角的正切值为 ()是边长为 2的正方形, PA ⊥ BD.①求证: PB =PD ;②若 E ,F 分别为 PC ,AB 的中点, EF ⊥平面 PCD ,求直线 PB 与平面PCD 所成角的大小.(2)(2019 湖·南长郡中学选拔考试 )如图,在直三棱柱 ABC-A 1B 1C 1中,BA =BC =5,AC =8,D 为线段 AC 的中点.①求证: BD ⊥A 1D ;4②若直线 A 1D 与平面 BC 1D 所成角的正弦值为 5,求 AA 1的长.思考题 4 (2019 ·石家庄质检二 )如图,三棱柱 ABC -A 1B 1C 1 中,侧面BB 1C 1C 为∠CBB 1=60°的菱形, AB =AC 1.(1)证明:平面 AB 1C ⊥平面 BB 1C 1C ;(2)若 AB ⊥B 1C ,直线 AB 与平面 BB 1C 1C 所成的角为 30°,求直线 AB 1 与平面 A 1B 1C 所成角的正弦值.专题三 求解二面角问题 题型一 定义法求二面角(1)(2019 台·州一模 )在边长为ABC 中,AD ⊥BC 于点 D ,沿 AD 折成二面角1(1)(2019太·原模拟一 )如图,在四棱锥 P -ABCD 中,底面 ABCDa 的等边三角B -AD -C ,若时BC=2a,则二面角B-AD-C 的大小为.(2)如图,二面角α-l-β的大小是60°,线段ABα,B∈l,AB与l 所成的角为30°,则AB 与平面β所成的角的正弦值是(3)已知三棱锥P-ABC的所有顶点都在表面积为16π的球O的球面上,AC 为球O的直径.当三棱锥P-ABC的体积最大时,设二面角P-AB-C的大小为θ,则sin θ=( )思考题 1 (1)如图,在矩形ABCD中,AB=2,AD=3,点E为AD 的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D 重合于F,此时二面角E-BC-F的余弦值为( )(2)如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,题型二向量法求二面角若PA=AB=2,AC=BC,则二面角P-AC-B的正切值是.(1)已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的锐二面角的正切值为.(2)(2019河·南安阳)二面角的棱上有A,B两点,直线AC,BD分别在这个A.150°B.45°C.60°D.120°二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2 17,则该二面角的大小为( )思考题 2 (1)设平面α的一个法向量为n1=(1,2,-2),平面β的一个法向量为n2=(-22,-4,k),若α和β所成的锐二面角的余弦值为3,则k=(2)(2019 辽·宁丹东模拟)如图,正方形A1BCD折成直二面角 A-BD-C,则二面角A-CD-B 的余弦值是.(3)(2019 广·东中山模拟)在矩形ABCD中,已知AB=2,AD= 2 2,M,N分别为AD和BC的中点,沿MN把平面ABNM折起,若折起后|AC| =6,则二面角A-MN-C的大小为( )A.30°B.45°C.60° D.90°(2019 ·惠州二次调研)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ ABC=60°,PA⊥PB,PC=2.(1)求证:平面PAB⊥平面ABCD;(2)若PA=PB,求二面角A-PC-D 的余弦值.思考题 3 (2019 ·河北五一名校联考)在斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,底面△ABC是边长为 2 的正三角形,A1A=A1C,A1A⊥ A1C.(1)求证:A1C1⊥B1C;(2)求二面角B1-A1C-C1 的正弦值.题型三空间角的综合问题(2019 ·唐山五校联考)如图,在四棱锥P-ABCD中,ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD,中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E 的余弦值为36,求直线PA与平面EAC所成角的正弦值.思考题 4 (2019·江南十校素质检测)如图,在以为顶点的五面体中,平面CDEF⊥平面四边形,且∠BCD=45°.ABCD,FC=FB,(1)求证:CD⊥BF;(2)若AB=2EF=2,BC=2,直线BF与平面ABCD所成角为45°,求平面ADE与平面BCF 所成锐二面角的余弦值.专题四综合问题题型一空间的距离(1)(2019 江·西九江期末)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为正方形,E为CD的中点,F为PA的中点,且PA=AB=2.则点P到平面BEF的距离为( )(2)已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F 分别是AB,AD的中点,求点 B 到平面GEF的距离.思考题 1 (1)(2019黑·龙江哈尔滨期末)三棱柱ABC -A1B1C1 底面为正三角形,侧棱与底面垂直,若AB=2,AA1=1,则点A到平面A1BC的距离为( )2.(2017 课·标全国Ⅰ,理)如图,在四棱锥P-ABCD中,∠BAP=∠CDP=90 °.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠ APD=90°,求二面角A-PB-C的余弦值.(2)(2019 湖·南长沙一模)正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,求点 F 到平面A1D1E 的距离.题型二探究性问题(2019 ·湖南重点校联考)如图,在四棱锥P-ABCD中,PA⊥ 平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=4 2,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.思考题 2 (2019 ·西安八校联考)已知几何体ABCC 1B1N的直观图如图所示,CB⊥底面ABB1N,且ABB1N 为直角梯形,侧面BB1C1C为矩形,AN=AB=BC=4,BB1=8,∠NAB=∠ABB1=90°.(1)连接B1C,若M 为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1 若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C-NB1-C1 的余弦值.题型三翻折问题(2019 安·徽合肥调研性检测)平面四边形ABCD中,π∠DAB=2,AD=AB,△BCD为等边三角形.现将△ABD沿BD 翻折得到四面体P-BCD,点E,F,G,H 分别为PB,PD,CD,CB的中点.(1)求证:四边形EFGH为矩形;(2)当平面PBD⊥平面CBD时,求直线BG 与平面PBC所成角的正弦值.思考题 3 如图,在直角梯形 ABCP 中,∠ A =∠B = 90°,AB =BC =3,AP =6,CD ⊥AP 于 D ,现将 △PCD 沿线 段 CD 折成 60°的二面角 P -CD -A ,设 E ,F ,G 分别是 PD ,PC ,BC 的中点.(1)求证: PA ∥平面 EFG ;(2)若M 为线段 CD 上的动点,求直线 MF 与平面 EFG 所成角的最大角,并确定成最大角 时点 M 在什么位置高考题呈现1.(2014 全·国Ⅱ)如图,四棱锥 ⊥平面 ABCD ,E 为 PD的中点.(1)证明: PB ∥平面 AEC ; (2)设 AP =1,AD = 3,三棱锥PBC 的距离.2.(2016北·京)如图,在四棱锥 P -ABCD 中,平面 PAD ⊥平面 ABCD , PA ⊥PD ,PA = PD , AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证: PD ⊥平面 PAB ;(2)求直线 PB 与平面 PCD 所成角的正弦值;(3) 在棱 PA 上是否存在点 M ,使得 BM ∥平面 PCD 若存在,求A A M P 的值;若不存在,说明 P -ABCD 中,底面 ABCD 为矩形,PA 3P -ABD 的体积 V = 4 ,求 A 到理由.3.(2018 浙·江)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明: AB 1⊥平面 A 1B 1C 1;(2)求直线 AC 1 与平面 ABB 1所成的角的正弦值.4. (2016 课·标全国 Ⅲ)如图,四棱锥 P -ABCD 中,PA ⊥底面 ABCD , AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段 AD 上一点,AM=2MD , N 为 PC 的中点.(1)证明: MN ∥平面 PAB ;(2)求直线 AN 与平面 PMN 所成角的正弦值.5.(2018课·标全国Ⅰ)如图,四边形 ABCD 为正方形, E ,F 分别为 AD ,BC 的中点,以 DF 为折痕把△ DFC 折起,使点 C 到达点 P 的位置,且(1)证明:平面 PEF ⊥平面 ABFD ;(2)求 DP 与平面 ABFD 所成角的正弦值.6.(2016·课标全国 Ⅰ,理)如图,在以 A ,B , 为顶点的五面体中,面 ABEF 为正方形, AF =2FD , 面角 D -AF -E 与二面角C -BE - F 都是 60°.(1)证明:平面 ABEF ⊥ 平面 EFDC ;(2)求二面角 E -BC -A 的余弦值.7.(2017 课·标全国Ⅰ,理 )如图,在四棱锥 P -ABCD 中,AB ∥CD , 且∠BAP =∠CDP =90°.(1)证明:平面 PAB ⊥平面 PAD ;(2)若 PA =PD =AB =DC ,∠ APD =90°,求二面角 A -PB-C 的余 弦值.PF ⊥BF.C ,D ,E ,F∠AFD =90°,且8.(2018 课·标全国Ⅱ,理)如图,在三棱锥P-ABC中,AB =BC=2 2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M 在棱BC上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值.9.(2018·北京,理)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G 分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1 的余弦值;(3)证明:直线FG与平面BCD相交.10.(2017北·京,理)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M 在线段PB上,PD∥平面MAC,PA=PD=6,AB=4.(1)求证:M 为PB的中点;(2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP所成角的正弦值.。

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。

人教A版必修二立体几何平行垂直细化练习6份

人教A版必修二立体几何平行垂直细化练习6份

垂直证明习题——面面垂直⇒线面垂直1. 如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , 90BAF ∠=︒.求证:AF ⊥平面ABCD .2. 在斜三棱柱111ABC A B C -中,侧面11AA CC ⊥平面ABC ,1AC CA =,AB AC ⊥,D 是1AA 的中点.求证:CD ⊥平面1AB .3. 如图,正方形 边长为 ,平面 平面 , , .证明: .4. 如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将A D E 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.求证:DG ⊥平面ABCE5. 如图在四棱锥P ABCD -中,底面ABCD 是矩形,点E 、F 分别是棱PC 和PD的中点.若AP AD =,且平面PAD ⊥平面ABCD ,证明:AF ⊥平面PCD .6. 如图,四棱锥,,,,为等边三角形,平面平面,为中点.求证:平面.7. 如图,在四棱锥中,底面是矩形,侧面底面,且,若、分别为、的中点.求证:平面.8. 如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD,P ABCD -//AB CD 90BCD ∠=︒224AB BC CD ===PAB∆PAB ⊥ABCD Q PB AQ ⊥PBC P ABCD -ABCD PAD ⊥ABCD 2PA PD AD ==E F PC BD EF ⊥PDCPB =PD ,PA ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .求证:OM ⊥平面PCD .9. 如图,在四棱锥中P ABCD -中,底面ABCD 是菱形,且60DAB ∠=︒,PA PD =,M 为CD 的中点,平面PAD ⊥平面ABCD .求证:BD PM ⊥.10. 已知四棱锥中,底面是菱形,侧面平面,且,.证明:平面.11. 如图,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,底面ABCD 是直角梯形,,90,1,2AB CD ADC AB AD PD CD ∠=︒====.求证:BC ⊥平面PBD .A P ABCD -ABCD PAD ⊥ABCD PA =1AD =2PD =DB ⊥PAC12. 如图,在梯形ABCD 中,//,1,60AB CD AD DC CB ABC ︒===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.求证:BC ⊥平面ACFE .垂直证明习题——面面垂直⇒线面垂直(教师版)1. 如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , 90BAF ∠=︒.求证:AF ⊥平面ABCD .【解析】证明:∵90BAF ∠=︒,∴AB AF ⊥,又平面ABEF ⊥平面ABCD ,平面ABEF平面ABCD AB =,AF ⊂平面ABEF , ∴AF ⊥平面ABCD .2. 在斜三棱柱111ABC A B C -中,侧面11AA CC ⊥平面ABC ,1AC CA =,AB AC ⊥,D 是1AA 的中点.求证:CD ⊥平面1AB .【解析】证明:∵面11ACC A ⊥面ABC ,AB AC ⊥,∴AB ⊥面11ACC A ,即有AB CD ⊥.又1AC A C =,D 为1AA 中点,则1CD AA ⊥.∴CD ⊥面11ABB A .3. 如图,正方形 边长为 ,平面 平面 , ,.证明: .【解析】证明:∵平面 平面 ,平面 平面 , ,∴ 平面 ,又 平面 ,∴又∵ , , , 平面 ,∴ 平面 , 又 平面 ,∴ .4. 如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将A D E 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.求证:DG ⊥平面ABCE【解析】证明:因为G 为AE 中点,2AD DE ==,所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .5. 如图在四棱锥P ABCD -中,底面ABCD 是矩形,点E 、F 分别是棱PC 和PD的中点.若AP AD =,且平面PAD ⊥平面ABCD ,证明:AF ⊥平面PCD .【解析】证明:在矩形ABCD 中,AD CD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,CD ⊂面ABCD , 所以CD ⊥平面PAD ,又AF ⊂面PAD ,所以CD AF ⊥①因为PA AD =且F 是PD 的中点,所以AF PD ⊥,②由①②及PD ⊂面PCD ,CD ⊂面PCD ,PD CD D =,所以AF ⊥平面 PCD .6. 如图,四棱锥,,,,为等边三角形,平面平面,为中点.求证:平面.【解析】证明:因为,,所以,又平面平面,且平面平面,所以平面.又平面,所以,因为为中点,且为等边三角形,所以.P ABCD -//AB CD 90BCD ∠=︒224AB BC CD ===PAB∆PAB ⊥ABCD Q PB AQ ⊥PBC //AB CD 90BCD ∠=︒AB BC ⊥PAB ⊥ABCD PAB ⋂ABCD AB =BC ⊥PAB AQ ⊂PAB BC AQ ⊥Q PB PAB ∆PB AQ ⊥又,所以平面.7. 如图,在四棱锥中,底面是矩形,侧面底面,且,若、分别为、的中点.求证:平面.【解析】因为平面平面,平面平面, 平面,又由矩形得,所以CD ⊥平面. 又平面,∴,因为,∴又,所以是等腰直角三角形,且,即又,∴而,平面,平面,所以平面 8. 如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,PB =PD ,PA ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .求证:OM ⊥平面PCD .【解析】连结PO ,因为且O 是BD 中点,所以又因为平面平面,平面平面,平面PB BC B ⋂=AQ ⊥PBC P ABCD -ABCD PAD ⊥ABCD 2PA PD AD ==E F PC BD EF ⊥PDC PAD ⊥ABCD PAD ⋂ABCD AD =CD ⊂ABCD ABCD CD AD ⊥PAD PA ⊂PAD CD PA ⊥//EF PA CD EF⊥PA PD AD ==PAD ∆π2APD ∠=PA PD ⊥//EF PA PD EF ⊥CD PD D ⋂=CD ⊂PDC PD ⊂PDC EF ⊥PDC PB PD =PO BD ⊥PBD ⋂ABCD BD =PBD ⊥ABCD PO ⊂,所以平面.又因为平面,所以.又, , 平面,平面,所以平面.又平面,所以.在平面中,由(1)得,又,所以又,平面,平面,所以平面.9. 如图,在四棱锥中P ABCD -中,底面ABCD 是菱形,且60DAB ∠=︒,PA PD =,M 为CD 的中点,平面PAD ⊥平面ABCD .求证:BD PM ⊥.【解析】证明:取AD 中点E ,连接PE ,EM ,AC .∵底面ABCD 是菱形,∴BD AC ⊥.又∵E ,M 分别是AD ,DC 的中点,∴EM AC ,∴EM BD ⊥.∵PA AD =,∴PE AD ⊥. ∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,∴PE ⊥平面ABCD ,∴PE BD ⊥,EM PE E ⋂=,∴BD ⊥平面PEM ,PM ⊂平面PEM ,∴BD PM ⊥.10. 已知四棱锥中,底面是菱形,侧面平面,且,.证明:平面.PBD PO ⊥ABCD CD ⊂ABCD CD PO ⊥CD PC ⊥PO PC P ⋂=PO ⊂PAC PO ⊂PAC CD ⊥PAC OM ⊂PAC OM CD ⊥PAC OM PA PA PC⊥OM PC ⊥CD PC C ⋂=PC ⊂PCD CD ⊂PCD OM ⊥PCD A P ABCD -ABCD PAD ⊥ABCD PA =1AD =2PD =DB ⊥PAC A【解析】在中,,,又侧面平面,侧面平面,平面 平面 平面在菱形中,,又,平面 11. 如图,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,底面ABCD 是直角梯形,,90,1,2AB CD ADC AB AD PD CD∠=︒====.求证:BC ⊥平面PBD .【解析】因为侧面PCD ⊥底面ABCD ,PD CD ⊥,所以PD ⊥底面ABCD ,所以PD BC ⊥.又底面ABCD 是直角梯形,,90,1,2AB CD ADC AB AD CD ∠=︒===, 所以BD BC ==222BD BC CD +=,所以BD BC ⊥.又PD BD D ⋂=,且PD ⊂平面PBD ,BD ⊂平面PBD ,所以BC ⊥平面PBD . 12. 如图,在梯形ABCD 中,//,1,60AB CD AD DC CB ABC ︒===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.求证:BC ⊥平面ACFE .PAD ∆PA =1AD =2PD =222AD PA PD ∴+=PA AD ∴⊥PAD ⊥ABCD PAD ABCD AD =PA ⊂PAD PA ∴⊥ABCD BD ⊂ABCD PA BD ∴⊥ABCD AC BD ⊥PA AC A =BD ∴⊥PAC【解析】在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠ABC =60°,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,∴BC ⊥AC .又平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC 平面ABCD , ∴BC ⊥平面ACFE .面面平行习题1. 如图所示,在三棱柱111ABC A B C -中,D 是BC 上一点,且1A B 平面1AC D ,1D 是11B C 的中点.求证:平面11A BD ∥平面1AC D .2. 如图,在正方体1111ABCD A B C D -中,M 、N 、P 分别是1C C 、11B C 、11C D 的中点.求证:平面MNP ∥平面1A BD .3. 如图所示, 为正三角形,EC ⊥平面ABC ,DB ⊥平面ABC ,CE=CA=2BD ,M 是EA 的中点,N 是EC 的中点,求证:平面DMN ∥平面ABC .4. 如图,矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,2,1EP BP AD AE ====,,//,,AE EP AE BP G F ⊥分别是,BP BC 的中点.求证:平面//AFG 平面PCE .5. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,,,,AB AD AB DC E F ⊥分别为,PC DC 的中点,222PA DC AB AD ====.证明:平面PAD 平面EBF .6. 在如图所示的几何体中,四边形ABCD 是正方形, MA ⊥平面ABCD , //,PD MA E G F 、、分别为MB PB PC 、、的中点,且2AD PD MA ==.求证:平面//EFG 平面PMA .7. 如图,在四棱锥S ABCD -中,BCD ∆为等边三角形,,120AD AB SD SB BAD ︒===∠=.若点,M N 分别是线段,SC CD 的中点,求证:平面//BMN 平面SAD .8. 如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,点M 为棱AE 的中点.求证:平面BMD ∥平面EFC .9. 如图所示,在正三棱柱ABC-A 1B 1C 1中,E ,F ,G 是侧面对角线上的点,且BE=CF=AG ,求证:平面EFG ∥平面ABC .10. 如图所示,P 是△ABC 所在平面外的一点,点A′,B′, ′分别是△PBC ,△PCA ,△PAB 的重心.求证:平面ABC ∥平面A′B′ ′.垂直证明习题——线面垂直⇒面面垂直1. 如图所示,三棱柱中,,平面.证明:平面平面.2. 如图,在四棱锥中,底面是菱形,且,,,分别为,的中点,且.求证:平面平面.111ABC A B C -90BCA ∠=°1AC ⊥1A BC ABC ⊥11ACCA P ABCD -ABCD 2PA AD ==120PAD BAD ∠=∠=︒E F PDBD 2EF =PAD ⊥ABCD3. 如图所示, ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.求证:平面BDM ⊥平面ECA .垂直证明习题——线面垂直⇒面面垂直(教师版)1. 如图所示,三棱柱中,,平面.证明:平面平面.【解析】证明:平面,.111ABC A B C -90BCA ∠=°1AC ⊥1A BC ABC ⊥11ACCA 1AC ⊥1A BC 1AC BC ∴⊥,,平面.又平面,平面平面.2. 如图,在四棱锥中,底面是菱形,且,,,分别为,的中点,且.求证:平面平面.【解析】过P 作PO ⊥AD ,垂足为O ,连结AO ,BO , 由∠PAD=120°,得∠PAO=60°,∴在Rt △PAO 中,PO=PAsin ∠PAO=2sin60°∵∠BAO=120°,∴∠BAO=60°,AO=AO ,∴△PAO≌△BAO ,∴BO=PO=∵E ,F分别是PA ,BD 的中点,EF=,∴EF 是△PBD 的中位线, ∴, ∴PB 2=PO 2+BO 2,∴PO ⊥BO ,∵A ∩BO=O ,∴PO ⊥平面ABCD , 又PO 平面PAD ,∴平面PAD ⊥平面ABCD .3. 如图所示, ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.求证:平面BDM ⊥平面ECA .90BCA ∠︒=BC AC ∴⊥BC ∴⊥11ACC A BC ⊂ABC ∴ABC ⊥11ACC A P ABCD -ABCD 2PA AD ==120PAD BAD ∠=∠=︒E F PD BD 2EF =PAD ⊥ABCD 2【解析】取AC 的中点N ,连接MN 、BN ,则MN //CF . ∵BD //CF ,∴MN //BD , ∴N ∈平面BDM .∵EC ⊥平面ABC ,∴EC ⊥BN .又∵AC ⊥BN ,EC ∩AC =C ,∴BN ⊥平面ECA . 又∵BN 平面BDM ,∴平面BDM ⊥平面ECA .垂直证明习题——线面垂直⇒线线垂直13. 如图,三棱柱111A B C-A B C 中,12AB BC AC AA ====,123ABB π∠=.证明:1AB A C ⊥.14. 如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C的中点为O ,且AO ⊥平面11BB C C .证明:1B C AB ⊥.15. 如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.证明:.16. 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.P ABCD -ABCD 2AB =120BAD ∠=AP ⊥ABCD ,M N ,BC PC AM ⊥PDA11(1)求证:CD ⊥PD .(2)求证:BD ⊥平面P AB .17. 如图,四边形ABCD 是正方形,PAB ∆与PAD ∆均是以A 为直角顶点的等腰直角三角形,点F 是PB 的中点,点E 是边BC 上的任意一点.求证:AF EF ⊥.垂直证明习题——线面垂直⇒线线垂直(教师版)1. 如图,三棱柱111A B C-A B C 中,12AB BC AC AA ====,123ABB π∠=.证明:1AB A C ⊥.【解析】取AB 中点D ,连11,A D A B , 因为12AB BC AC AA ====,160BAA ∠= 所以1,CD AB AB A D ⊥⊥,所以AB ⊥平面1CDA .因为1AC ⊂平面1CDA ,所以1AB A C ⊥. 2. 如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .证明:1B C AB ⊥.A11A11【解析】连接1BC , 因为侧面11BB C C 为菱形, 所以1B C 1BC ⊥,且1B C 与1BC 相交于O 点.因为AO ⊥平面11BB C C ,1B C ⊂平面11BB C C ,所以1B C AO ⊥. 又1BC AO O =,所以1B C ⊥平面ABO ,因为AB Ì平面ABO ,所以1B C ⊥AB .3. 如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.证明:.【解析】因为底面为菱形,,所以为等边三角形, 又为中点,所以,又,所以 因为平面,平面,所以, 又,所以平面,所以.4. 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==. (1)求证:CD ⊥PD .(2)求证:BD ⊥平面P AB .P ABCD -ABCD 2AB =120BAD ∠=AP ⊥ABCD ,M N ,BC PC AM ⊥PD ABCD 120BAD ∠=ABC ∆M BC AM BC ⊥//BC AD AM AD ⊥AP ⊥ABCD AM ⊂ABCD AP AM ⊥ADAP A =AM ⊥PAD AM ⊥PD11【解析】(1)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD ⊥P A . 因为CD ⊥AD ,PA AD A ⋂=,所以CD ⊥平面P AD . 因为PD ⊂平面P AD ,所以CD ⊥PD .(2)因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A . 在直角梯形ABCD 中,12BC CD AD ==,由题意可得AB BD ==,所以222AD AB BD =+,所以BD AB ⊥. 因为PA AB A =,所以BD ⊥平面P AB .5. 如图,四边形ABCD 是正方形,PAB ∆与PAD ∆均是以A 为直角顶点的等腰直角三角形,点F 是PB 的中点,点E 是边BC 上的任意一点.求证:AF EF ⊥.【解析】证明:∵F 是PB 的中点,且PA AB =,∴AF PB ⊥. ∵PAB ∆与PAD ∆均是以A 为直角顶点的等腰直角三角形, ∴PA AD ⊥,PA AB ⊥. ∵ADAB A =,AD ⊂平面ABCD ,AB Ì平面ABCD ,∴PA ⊥平面ABCD∵BC ⊂平面ABCD ,∴PA BC ⊥. ∵四边形ABCD 是正方形,∴BC AB ⊥.∵PA AB A =,PA ⊂平面PAB ,AB Ì平面PAB ,∴BC ⊥平面PAB . ∵AF ⊂平面PAB ,∴BC AF ⊥.∵PB BC B ⋂=,PB ⊂平面PBC ,BC ⊂平面PBC ,∴AF ⊥平面PBC . ∵EF ⊂平面PBC ,.∴AF EF ⊥.线面平行习题1. 如图,在四棱锥P ABCD -中, / / A B C D .求证:CD ∥平面ABE .2. 如图,在四棱锥P ABCD -中,底面是棱长为1的菱形,M 是PB 的中点.求证:PD //平面ACM .3. 如图, 在正三棱柱111ABC A B C -中,点D 是AB 的中点.求证:1//BC 平面1A CD .4. 如图,在三棱柱ABC –A1B 1C 1中,D 为AC 的中点,O 为四边形B 1C 1CB 的对角线的交点.求证:OD ∥平面A 1ABB 1.5. 如图,在长方体ABCD -1111D C B A 中,面1BMD N 与棱1CC ,1AA 分别交于点M ,N ,且M ,N 均为中点.求证:AC ∥平面1BMD N .6.如图,在四棱锥P ABCD -中,//AD BC ,且2P A P D==,2AD BC ==,PA CD ⊥,点E 在PC 上,且2PE EC =.求证:直线PA ∥平面BDE .7. 如图,四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,22AB BC CD ==.若点M 是棱AB 的中点,求证://BC 平面SDM .8. ★如图,在三棱柱111ABC A B C -中,D 为11A B 的中点.证明:1//CA 平1BDC .9. ★如图,在三棱柱111ABC A B C -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点.求证:直线1AB ∥平面1BC D .10. ★在长方体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,E 是AB 的中点,F 是1BB 的中点.求证://EF 平面11A DC .11. ★如图所示,在四棱锥C ABED -中,四边形ABED 是正方形,点,G F 分别是线段,EC BD 的中点. 求证://GF ABC 平面12. ★如图,在直三棱柱ABC -111A B C 中,E 是棱1CC 的中点,F是AB 的中点.求证:CF ∥平面1AB E .13. ★如图,在三棱柱111ABC A B C -中,ABC △是边长为4的正三角形,侧面11BB C C 是矩形,,D E 分别是线段11,BB AC 的中点. 求证:DE 平面ABC .14. ★如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,,E F 分别为,PC BD 的中点.证明://EF 平面PAD .15. ★如图,在直三棱柱111ABC A B C -中,AB AC =,P 为1AA 的中点,Q 为BC 的中点. 求证://PQ 平面11A BC .16. ★如图,在多面体ABCDEF 中,四边形ABCD 是菱形,3ABC π∠=,四边形ABEF 是直角梯形,2FAB π∠=,AF BE ,22AF AB BE ===.证明:CE平面ADF .17. 在三棱锥P ABC -中,H 为PA 的中点,,M N 分别为棱,PA PB 上的点,且3PN NB =,MN 平面HBC ,求:PM PA 的值.18. 如图,正方形ABCD 的边长是13,平面ABCD 外一点P 到正方形各顶点的距离都是13,,M N 分别是,PA BD 上的点,且::PM MA BN ND =.求证:直线MN 平面PBC .19. 如图,正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =.求证:MN 面11AA BB垂直证明习题——线线垂直⇒线面垂直18. 如图所示,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,1AB BC ==, PA ⊥平面ABCD ,CD ⊥PC .证明:CD ⊥平面PAC .19. 如图,在三棱锥 中, 平面 , ,点 为 的中点.求证: 平面 .20. 如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,PA=AC ,AC ⊥BC ,H 为PC的中点.求证:AH ⊥平面PBC .21. 如图,正方形所在平面与三角形所在平面相交于,平面.求证:平面.22. 如图所示,已知P ABC -为正三棱锥,设D 为PB 的中点,且AD PC ⊥.求证:PC ⊥平面PAB .23. 如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=E 是BC 的中点.证明:AE ⊥平面PAD .ACABCDCDE CD AE ⊥CDE AB ⊥ADE24. 如图,四面体P ABC -中,PA ⊥平面ABC ,1PA AB ==,BC =2AC =.证明:BC ⊥平面PAB .25. 如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,AB AD ==2CA CB CD BD ====.求证:AO ⊥平面BCD .26. 如图,在三棱锥中,是棱的中点,,且,求证:直线平面.27. 如图,在三棱锥中,面平面PAE .P ABC -G PA PC AC ⊥2PB AB ACBC ==== 1.PC =BG ⊥PAC P ABC -PA ⊥,,22,ABC AC AB PA AD DC AE AB ⊥====,,22,ABC AC AB PA AD DC AE AB ⊥=====DE ⊥28. 如图,在三棱锥中底面,为上一点,,.证明:平面.29. 如图,在直四棱柱中,底面是矩形,与交于点.证明:平面.30. 己知三棱在底面上的射影恰为的中点,,又知求证:.31. 如图,在四棱锥中,底面为矩形,平面,为棱的中点,,,.证明:平面.32. 如图,已知ABC △是正三角形,EA ,CD 都垂直于平面ABC ,且2EA AB ==,1DC =,F 是BE 的中点,AF ⊥平面EDB .P ABC -PA ⊥ABC D BC 24AC AB ==BD CD ==AD ⊥PAB 1111ABCD A B C D -ABCD 1A D 1AD E AE ⊥ECD 111,ABC A B C -柱1A 点ABC AC D 90BCA ︒∠=2,AC BC ==11.BA AC ⊥11AC A BC ⊥平面P ABCD -ABCD PD ⊥ABCD E PB 2PB =1PD =45BPC ∠=︒PC ⊥ADE33. 如图,在直三棱柱111ABC A B C -中,AC BC ⊥,AB =2BC =,12AA =.证明:1A C ⊥平面11AB C .34. 如图,在五面体中,四边形为矩形,.证明: 平面.35. 如图,四棱锥S ABCD -中,SD ⊥底面ABCD ,//AB CD ,AD DC ⊥,1AB AD ==,2DC =,SD =E 为棱SB 的中点.求证:SC ⊥平面ADE .垂直证明习题——线线垂直⇒线面垂直(教师版)1. 如图所示,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,1AB BC ==, PA ⊥平面ABCD ,CD ⊥PC .证明:CD ⊥平面PAC .【解析】证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD , ∴PA ⊥CD .ABCDEF CDEF AD CD ⊥AB ⊥ADF又PC ⊥CD , PA PC P =,PA ⊂平面PAC ,PC ⊂平面PAC ,∴CD ⊥平面PAC .2. 如图,在三棱锥 中, 平面 , ,点 为 的中点.求证: 平面 .【解析】因为 ,点 为 中点,所以 . 因为 平面 , 平面 ,所以 .又因为 ,所以 平面 .(等腰三角形提供垂直) 3. 如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,PA=AC ,AC ⊥BC ,H 为PC的中点.求证:AH ⊥平面PBC .【解析】等腰三角形提供垂直.4. 如图,正方形所在平面与三角形所在平面相交于,平面.求证:平面.ACABCD CDE CD AE ⊥CDE AB ⊥ADE【解析】(正方形提供垂直)5. 如图所示,已知P ABC -为正三棱锥,设D 为PB 的中点,且AD PC ⊥.求证:PC ⊥平面PAB .【解析】正三棱锥中PC AB ⊥.6. 如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=E 是BC 的中点.证明:AE ⊥平面PAD .【解析】有一个内角是600的菱形提供垂直.7. 如图,四面体P ABC -中,PA ⊥平面ABC ,1PA AB ==,BC =2AC =.证明:BC ⊥平面PAB .【解析】(勾股定理)8. 如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,AB AD ==2CA CB CD BD ====.求证:AO ⊥平面BCD .B【解析】证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD , ∴CO ⊥BD .在△AOC中,由题设知1AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O , ∴AO ⊥平面BCD .(勾股定理)9. 如图,在三棱锥中,是棱的中点,,且,求证:直线平面.【解析】连接,因为,所以. 由已知得,, 所以,所以, 又,所以平面(勾股定理)10. 如图,在三棱锥中,面P ABC -G PA PC AC ⊥2PB AB AC BC ==== 1.PC =BG ⊥PAC CG BP BA =BG PA⊥12CG PA ==2BG =222BG CG BC +=BG CG ⊥PA CG G ⋂=BG ⊥.PAC P ABC -PA ⊥,,22,ABC AC AB PA AD DC AE AB ⊥=====平面PAE .【解析】,,又为正三角形, 又,由余弦定理可知,,根据勾股定理可知.又,,.(勾股定理)11. 如图,在三棱锥中底面,为上一点,,.证明:平面.【解析】证明:在中,,,, 所以在中,,故. 因为,所以.(勾股定理),22,B PA AD DC AE AB =====DE ⊥ABAC ⊥AB =3AC AD DC =+=tan AC B AB∴==60B ︒∴=AEAB ==ABE ∴30DAE DAB BAE ︒∴∠=∠-∠=2AD =AE=1DE ==222AE DEAD ∴+=AE DE ⊥PA ABC 面⊥PA DE ∴⊥DE PAE ∴⊥面P ABC -PA ⊥ABC D BC 24AC AB ==BD CD ==AD ⊥PAB ABC ∆24AC AB ==BD CD ==2cos 7ABC ∠==ABD ∆247223AD =+-⨯=AD =222437AB AD BD +=+==AB AD ⊥因为底面,所以,又,所以平面.12. 如图,在直四棱柱中,底面是矩形,与交于点.证明:平面.【解析】证明:因为四棱柱是直四棱柱,所以平面,则 .又,,所以平面,所以.因为,,所以是正方形,所以.又,所以平面.(直棱柱提供垂直)13. 己知三棱在底面上的射影恰为的中点,,又知求证:.【解析】在三棱柱中,由得, 因为底,所以,且,所以面, 又由平面,所以,PA ⊥ABC PA AD ⊥PA AB A =AD ⊥PAB 1111ABCD A B C D -ABCD 1A D 1AD E AE ⊥ECD 1111ABCD A B C D -1AA ⊥ABCD 1AA CD ⊥CD AD ⊥1AA AD A =CD ⊥11AA D D CD AE ⊥1AA AD ⊥1AA AD =11AA D D AE ED ⊥CD ED D =AE ⊥ECD 111,ABC A B C -柱1A 点ABC AC D 90BCA ︒∠=2,AC BC ==11.BA AC ⊥11AC A BC ⊥平面111ABC A B C -BCA 90∠=︒BC AC ⊥1A D ⊥ABC 1A D BC ⊥1A D AC D ⋂=BC ⊥1A AC 1AC ⊂1A AC 1BC AC ⊥因为,,由线面垂直的判定定理,可得平面.(射影提供垂直) 14. 如图,在四棱锥中,底面为矩形,平面,为棱的中点,,,.证明:平面.【解析】取的中点,连接,,则.由题知平面,面PDC ,所以面PDC 平面, 又底面为矩形,故平面,所以,在中,,,则.因为,所以,,即△CDP 为等腰三角形, 又F 为的中点,所以.因为,所以平面,即平面.15. 如图,已知ABC △是正三角形,EA ,CD 都垂直于平面ABC ,且2E A A B ==,1DC =,F 是BE 的中点,AF ⊥平面EDB .【解析】因M 是AB 的中点,△ABC 是正三角形,所以CM ⊥AB 又 EA 垂直于平面ABC ∴CM ⊥AE ,11BA AC ⊥1BA BC B ⋂=1AC ⊥1A BC P ABCD -ABCD PD ⊥ABCD E PB 2PB =1PD =45BPC ∠=︒PC ⊥ADE PC F EF FD EF AD ∥PD ⊥ABCD PD ⊂⊥ABCD ABCD AD ⊥PDC AD PC ⊥Rt CB P ∆2PB =45BPC ∠=︒CB =1PD=BD =1CD =PC DF PC ⊥DF AD D ⋂=PC ⊥ADF PC ⊥ADE又 AE ∩AB =A ,所以CM ⊥面EAB ,∵AF 面EAB∴CM ⊥AF ,又CM ∥FD ,从而FD ⊥AF ,因F 是BE 的中点,EA =AB ,所以AF ⊥EB .EB ,FD 是平面EDB 内两条相交直线,所以AF ⊥平面EDB .16. 如图,在直三棱柱111ABC A B C -中,AC BC ⊥,AB =2BC =,12AA =.证明:1A C ⊥平面11AB C .【解析】由题意,三棱柱111ABC A B C -为直三棱柱,所以1CC BC ⊥,又因为AC BC ⊥,1AC CC C =,AC ⊂平面11ACC A ,1CC ⊂平面11ACC A ,所以BC ⊥平面11ACC A ,又因为1AC ⊂平面11ACC A ,所以1BC A C ⊥, 又因为11BC B C ,所以111B C AC ⊥, 在Rt ABC ∆中,AB =2BC =,AC BC ⊥,所以2AC =, 又因为12AA =,所以四边形11ACC A 为正方形,所以11A C AC ⊥. 因为1111B C AC C =,11B C ⊂平面11AB C ,1AC ⊂平面11AB C ,所以1A C ⊥平面11AB C .17. 如图,在五面体中,四边形为矩形, .证明:平面.ABCDEF CDEF AD CD ⊥AB ⊥ADF【解析】证明:因为,,, 所以平面,因为四边形为矩形,所以.又平面,平面,所以平面. 因为平面,平面,平面平面,所以, 又所以又平面,所以平面18. 如图,四棱锥S ABCD -中,SD ⊥底面ABCD ,//AB CD ,AD DC ⊥,1AB AD ==,2DC =,SD =E 为棱SB 的中点.求证:SC ⊥平面ADE .【解析】取BC 的中点F ,连结EF ,AF .如图:因为SD ⊥底面ABCD 所以SD AD ⊥,又因为AD DC ⊥且SD DC D =,所以AD ⊥平面SDC ,得AD SC ⊥.又因为CD ⊥面ASD 且//AB CD 所以AB ⊥面ASD ,在Rt ∆SAD中1,SD AD SA ===在Rt ∆SAB 中1,2AB SB ==,F 为BC 的中点,故112AE SB ==, 在t R SCD ∆中2,SD CD SC ===12EF SC ==CD AD ⊥CD DF ⊥AD DF D ⋂=CD ⊥ADF CDFE //EF CD EF ⊄ABCD CD ⊂ABCD //EF ABCD //EF ABCD EF ⊂ABEFABEF ABCD AB =//EF AB //,EF CD //,CD AB CD ⊥ADF AB ⊥ADF在ABD ∆中,1,AB AD BD ===45ABD ∠=,在CBD ∆中,BD BC ==90DBC ∠=,在ABF ∆中,1,1352AB BF ABF ==∠= ,由余弦定理知AF在AEF ∆中,1AE =,EF =,AF =AE EF ⊥, 从而AE SC ⊥.所以SC ⊥平面ADE .。

[最新]高中数学立体几何常考垂直证明题汇总 - 实用

[最新]高中数学立体几何常考垂直证明题汇总 - 实用

新课标立体几何常考垂直证明题汇总2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。

证明:(1)BC AC CE AB AE BE =⎫⇒⊥⎬=⎭同理,AD BD DE AB AE BE =⎫⇒⊥⎬=⎭又∵CE DE E ⋂= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE又∵AB ⊆平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定4、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° B C A C ∴⊥又SA ⊥面ABC S A B C ∴⊥ BC ∴⊥面SAC B C A D ∴⊥又,SC AD SC BC C ⊥⋂=AD ∴⊥面SBC 考点:线面垂直的判定5、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D . 证明:(1)连结11AC ,设11111AC B D O ⋂=,连结1AO ∵ 1111ABCD A BC D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11AC AC = 又1,O O 分别是11,AC AC 的中点,∴O 1C 1∥AO 且11OC AO = 11AOC O ∴是平行四边形111,C O AO AO ∴⊂∥面11AB D ,1C O ⊄面11ABD ∴C 1O ∥面11AB D(2)1CC ⊥面1111A B C D 11!C C B D∴⊥ 又1111AC B D ⊥∵, 1111B D A C C ∴⊥面 111A C B D⊥即 同理可证11AC AD ⊥, 又1111D B AD D ⋂= ∴1AC ⊥面11AB D A E DBCSDCBAD 1OD B A C 1B 1A 1CN M PC BA 考点:线面平行的判定(利用平行四边形),线面垂直的判定6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面.考点:线面垂直的判定8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD证明:取CD 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点,∴EG 12//AC = 12//FG BD =,又,AC BD =∴12FG AC =,∴在EFG ∆中,222212EG FG AC EF +== ∴EG FG ⊥,∴BD AC ⊥,又90BDC ∠=,即BD CD ⊥,AC CD C ⋂= ∴BD ⊥平面ACD考点:线面垂直的判定,三角形中位线,构造直角三角形9、如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。

专题08 立体几何垂直平行的证明(原卷版)

专题08 立体几何垂直平行的证明(原卷版)

专题8 立体几何平行垂直的证明一、解答题1.(2022·全国·高考真题(理))如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.2.(2022·全国·高考真题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.3.(2022·全国·高考真题(理))在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.4.(2022·青海·海东市第一中学模拟预测(理))如图,在三棱柱111ABC A B C -中,11222AC AA AB AC BC ====,160BAA ∠=︒.原创精品资源学科网独家享有版权,侵权必究! 2(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.5.(2022·青海·海东市第一中学模拟预测(文))如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,22CD AB ==,AD 90BAD ADC ∠=∠=︒,M 是棱PC 上一点.(1)若2MC MP =,求证://AP 平面MBD .(2)若MC MP =,求点P 到平面BDM 的距离.6.(2021·上海市建平中学模拟预测)如图,三棱锥P ABC -,侧棱2PA =,底面三角形ABC 为正三角形,边长为2,顶点P 在平面ABC 上的射影为D ,有AD DB ⊥,且1DB =.(1)求证://AC 平面PDB ;(2)求二面角P AB C 的余弦值.7.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥底面ABCD ,M 为线段PC 的中点,PD AD =,N 为线段BC 上的动点.(1)证明:平面MND ⊥平面PBC(2)当点N 在线段BC 的何位置时,平面MND 与平面P AB 所成锐二面角的大小为30°?指出点N 的位置,并说明理由.8.(2022·四川·成都七中模拟预测(理))如图1,在边上为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN △翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P MNDB -体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q MN P --存在,试确定点Q 的位置;若不存在,请说明理由.9.(2022·全国·模拟预测)在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,1,,2AB AP AD E F ==分别是AP BC ,的中点.原创精品资源学科网独家享有版权,侵权必究! 4(1)求证://EF 平面PCD ;(2)求二面角C EF D --的余弦值.10.(2022·内蒙古·乌兰浩特一中模拟预测(文))如图在梯形中,//BC AD ,22AB AD BC ===,23ABC π∠=,E 为AD 中点,以BE 为折痕将ABE △折起,使点A 到达点P 的位置,连接,PD PC ,(1)证明:平面PED ⊥平面BCDE ;(2)当2PC =时,求点D 到平面PEB 的距离.11.(2022·全国·南京外国语学校模拟预测)如图,在三棱台111ABC A B C -中,AB AC ⊥,4AB AC ==,1112A A A B ==,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:平面1BB C ⊥平面1AB C ;(2)求二面角C BD A --的正弦值.12.(2022·青海·模拟预测(理))如图,在四棱锥A -BCDE 中,底面BCDE 为矩形,M 为CD 中点,连接BM ,CE 交于点F ,G 为△ABE 的重心.(1)证明://GF 平面ABC(2)已知平面ABC △BCDE ,平面ACD △平面BCDE ,BC =3,CD =6,当平面GCE 与平面ADE 所成锐二面角为60°时,求G 到平面ADE 的距离.13.(2022·北京市第九中学模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,△P AB 为正三角形,且侧面P AB △底面ABCD ,M 为PD 的中点.(1)求证:PB //平面ACM ;(2)求直线BM 与平面P AD 所成角的正弦值;(3)求二面角C PA D --的余弦值.14.(2022·浙江·三模)如图,四面体ABCD 的棱AB 平面,CD α=,23,cos cos 3AB AC AD BAC BAD ===∠=∠=.(1)证明:平面ABC ⊥平面ABD ;(2)若平面ABC 与平面α所成锐二面角的正切值为12,线段CD 与平面α相交,求平面ACD 与平面α所成锐二面角的正切值.15.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知四棱锥S ABCD -中,四边形ABCD 为菱形,SAB SBA ∠=∠,.SD AB ⊥(1)求证:ABD △是等边三角形;(2)2SD AD ===,求SC 与平面SAD 所成角的正弦值.原创精品资源学科网独家享有版权,侵权必究!6 16.(2022·宁夏中卫·三模(理))如图1,菱形ABCD 中,60A ∠=︒,4AB =,DE AB ⊥于E ,将AED 沿DE 翻折到A ED ',使A E BE '⊥,如图2.(1)求三棱锥C A BD -'的体积;(2)在线段A D '上是否存在一点F ,使EF △平面A BC '?若存在,求DF FA '的值;若不存在,说明理由. 17.(2022·广东茂名·二模)如图,四棱锥P ﹣ABCD 的底面是等腰梯形,AD △BC ,BC =2AD ,60ABC ∠=︒ ,E 是棱PB 的中点,F 是棱PC 上的点,且A 、D 、E 、F 四点共面.(1)求证:F 为PC 的中点;(2)若△P AD 为等边三角形,二面角P AD B -- 的大小为120︒ ,求直线BD 与平面ADFE 所成角的正弦值. 18.(2022·安徽省舒城中学三模(理))在四棱锥P ABCD -中,PAB △为正三角形,四边形ABCD 为等腰梯形,M 为棱AP 的中点,且2224AB AD BC CD ====,DM =14AO AB =.(1)求证:平面ODM ⊥平面ABCD ;(2)求直线AP 与平面PBC 所成角的正弦值.19.(2022·广东·大埔县虎山中学模拟预测)如图,在四棱台1111ABCD A B C D -中,2AB =,111A B =,四边形ABCD 为平行四边形,点E 为棱BC 的中点.(1)求证:1//D E 平面11ABB A ;(2)若四边形ABCD 为正方形,1AA ⊥平面ABCD ,12A A AB ==,求二面角1A DE C --的余弦值. 20.(2022·全国·模拟预测)如图所示,四棱台1111ABCD A B C D -的上下底面均为正方形,侧面11ADD A 与底面垂直,11113BB CC B C BC ===.(1)求证:平面11ADD A ⊥平面11ABB A ;(2)已知四棱台1111ABCD A B C D -的体积为 △求异面直线BC 和1AA 的距离△求1A 到平面11CDD C 的距离.请从以上两个问题中选取一道进行求解.注:若两个问题均求解,则按第一个问题计分.。

(完整版)立体几何证明垂直专项含练习题及答案.doc

(完整版)立体几何证明垂直专项含练习题及答案.doc

精品字里行间精品文档立体几何证明 ------ 垂直一. 复习引入1.空间两条直线的位置关系有: _________,_________,_________三种。

2.(公理 4)平行于同一条直线的两条直线互相 _________.3.直线与平面的位置关系有 _____________,_____________,_____________三种。

4.直线与平面平行判定定理 : 如果 _________的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 _________________________.6.两个平面的位置关系 :_________,_________.7.判定定理 1:如果一个平面内有 _____________直线都平行于另一个平面,那么这两个平面平行 .8.线面垂直性质定理:垂直于同一条直线的两个平面 ________.9.如果两个平行平面同时和第三个平面相交,那么它们的________平行 .10.如果两个平面平行,那么其中一个平面内的所有直线都 _____于另一个平面 . 二.知识点梳理知识点一、直线和平面垂直的定义与判定定义语言描述如果直线l 和平面α内的任意一条直线都垂直,我们就说直线 l 与平面互相垂直,记作 l ⊥α图形判定一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直 .条件 b 为平面α内的任一直线,而 l 对这l ⊥m, l ⊥n,m∩n=B,m ,一直线总有 l ⊥αn结论l ⊥l ⊥要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直)知识点二、直线和平面垂直的性质性质语言描述一条直线垂直于一个平面,那么这条垂直于同一个平面的两条直线平行.直线垂直于这个平面内的所有直线图形条件结论知识点三、二面角Ⅰ .二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角-AB-. (简记P-AB-Q)二面角的平面角的三个特征:ⅰ.点在棱上ⅱ.线在面内ⅲ .与棱垂直Ⅱ .二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,内分别作垂直于棱 l 的射线 OA 和 OB ,则射线 OA 和 OB 构成的AOB叫做二面角的平面角.作用:衡量二面角的大小;范围:001800.知识点四、平面和平面垂直的定义和判定定义判定文字描述两个平面相交,如果它们所成的二面一个平面过另一个平面的垂线,则这角是直二面角,就说这两个平面垂两个平面垂直直.图形结果α∩β =lα-l-β=90oα⊥β(垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼)三.常用证明垂直的方法立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:( 1)通过“平移”。

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题【根底学问点】一、平行问题1.直线及平面平行的断定及性质定义断定定理性质性质定理图形条件a∥α结论a∥αb∥αa∩α=a∥b2. 面面平行的断定及性质断定性质定义定理图形条件α∥β,a⊂β结论α∥βα∥βa∥b a∥α平行问题的转化关系:二、垂直问题一、直线及平面垂直1.直线与平面垂直的定义:直线l及平面α内的都垂直,就说直线l及平面α相互垂直.2.直线及平面垂直的断定定理及推论文字语言图形语言符号语言断定定理一条直线及一个平面内的两条相交直线都垂直,那么该直线及此平面垂直推论假如在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3.直线及平面垂直的性质定理文字语言图形语言符号语言性质定理垂直于同一个平面的两条直线平行4.直线与平面垂直的常用性质①直线垂直于平面,那么垂直于平面内随意直线.②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面及平面垂直1.平面及平面垂直的断定定理【典例探究】 类型一、平行及垂直例1、如图,三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D为PB 中点,且△PMB 为正三角形。

〔Ⅰ〕求证:DM ∥平面APC ;〔Ⅱ〕求证:平面ABC ⊥平面APC ;〔Ⅲ〕假设BC 4=,20AB =,求三棱锥D BCM -的体积。

F D C1B1A1C例2. 如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =,22AB =M ,N 分别是棱1CC ,AB 中点.〔Ⅰ〕求证:CN ⊥平面11ABB A ; 〔Ⅱ〕求证://CN 平面1AMB ;〔Ⅲ〕求三棱锥1B AMN -的体积.【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

线面垂直的证明中的找线技巧◆通过计算,运用勾股定理寻求线线垂直1 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC交BD 于点O ,求证:1A O ⊥平面MBD .证明:连结MO ,1A M,∵D B⊥1A A ,D B⊥AC ,1A AAC A =,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2234MO a =.在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩D B=O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.◆利用面面垂直寻求线面垂直2 如图2,P 是△A BC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:B C⊥平面PAC .证明:在平面PAC 内作A D⊥PC 交PC 于D.因为平面PAC ⊥平面PB C,且两平面交于P C,AD ⊂平面PAC ,且A D⊥PC , 由面面垂直的性质,得AD ⊥平面PB C. 又∵BC ⊂平面P BC ,∴AD ⊥BC .∵PA ⊥平面AB C,BC ⊂平面ABC ,∴PA ⊥BC .∵AD ∩PA =A ,∴BC ⊥平面PAC .(另外还可证BC 分别与相交直线AD ,A C垂直,从而得到BC ⊥平面PAC ).评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3 如图1所示,ABCD 为正方形,SA ⊥平面AB CD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ⊂平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥.评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.4 如图2,在三棱锥A -BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E 为垂足,作AH ⊥B E于H .求证:AH ⊥平面B CD.证明:取A B的中点F,连结CF ,DF . ∵ACBC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CD F,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面A BE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴ AH ⊥平面BCD .评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5 如图3,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E 为垂足,F 是P B上任意一点, 求证:平面AEF ⊥平面PBC .证明:∵AB 是圆O 的直径,∴AC BC ⊥.∵PA ⊥平面AB C,BC⊂平面A BC ,∴PA BC ⊥.∴BC ⊥平面APC . ∵BC ⊂平面P BC ,∴平面AP C⊥平面PBC .∵AE ⊥PC ,平面APC ∩平面P BC =P C, ∴AE ⊥平面PBC .∵AE ⊂平面AE F,∴平面AE F⊥平面PB C. 评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.6. 空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD,求证:AC ⊥BDAD B O C证明:过A 作AO ⊥平面BCD 于O 。

高中数学立体几何垂直

高中数学立体几何垂直

线线垂直1.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅰ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.2.在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=.(Ⅰ)求证:BD⊥PC;(Ⅰ)求证:MN∥平面PDC.3.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,点F 是棱PD的中点,点E在棱CD上移动.(Ⅰ)当点E为CD的中点时,试判断直线EF与平面PAC的关系,并说明理由;(Ⅰ)求证:PE⊥AF.4.如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.(1)求四棱锥P﹣ABCD的体积;(2)如果E是PA的中点,求证:PC∥平面BDE;(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.5.如图,在四棱柱ABCD﹣A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E为线段AD上的任意一点(不包括A、D两点),平面CEC1与平面BB1D交于FG.(1)证明:AC⊥BD;(2)证明:FG∥平面AA1B1B.6..已知直四棱柱ABCD﹣A1B1C1D1,AD=DD1=2,BC=DC=1,DC⊥BC,AD∥BC,E,F 分别为CC1,DD1的中点.(I)求证:BF⊥A1B1;(Ⅰ)求证:面BEF∥面AD1C1.7.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅰ)证明:EF⊥A1C.8.如图,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥平面PCD.9.已知长方形ABCD中,AD=,AB=2,E为AB中点.将△ADE沿DE折起到△PDE,得到四棱锥P﹣BCDE,如图所示.(1)若点M为PC中点,求证:BM∥平面PDE;(2)当平面PDE⊥平面BCDE时,求四棱锥P﹣BCDE的体积;(3)求证:DE⊥PC.线面垂直1.如图,在三棱锥P﹣ABC中,△PAC和△PBC是边长为的等边三角形,AB=2,O是AB的中点.(Ⅰ)求证:AB⊥平面POC;(Ⅰ)求三棱锥P﹣ABC的体积.2.在直三棱柱ABC﹣A1B1C1中,CA=CB,AA1=AB,D是AB的中点(1)求证:BC1∥平面A1CD;(2)若点P在线段BB1上,且BP=BB1,求证:AP⊥平面A1CD.3.如图,在四棱锥P﹣ABCD中,△ACD是正三角形,BD垂直平分AC,垂足为M,∠ABC=120°,PA=AB=1,PD=2,N为PD的中点.(1)求证:AD⊥平面PAB;(2)求证:CN∥平面PAB.4.如图,三棱柱ABC﹣A1B1C1中,M,N分别为AB,B1C1的中点.(1)求证:MN∥平面AA1C1C;(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB⊥平面CMN.5.正方体ABCD﹣A1B1C1D1的棱长为l,点F、H分别为A1D、A1C的中点.(Ⅰ)证明:A1B∥平面AFC;(Ⅰ)证明:B1H⊥平面AFC.6.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B﹣DEF的体积.7.如图,在四棱锥S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD.(1)证明:BM⊥平面SMC;(2)设三棱锥C﹣SBM与四棱锥S﹣ABCD的体积分别为V1与V,求的值.8.如图,在四棱锥P﹣ABCD中,锐角三角形PAB所在的平面与底面ABCD垂直,∠PBC=∠BAD=90°.(1)求证:BC⊥平面PAB;(2)求证:AD∥平面PBC.9.已知四边形ABCD为平行四边形,BD⊥AD,BD=AD,AB=2,四边形ABEF为正方形,且平面ABEF⊥平面ABCD.(1)求证:BD⊥平面ADF;(2)若M为CD中点,证明:在线段EF上存在点N,使得MN∥平面ADF,并求出此时三棱锥N﹣ADF的体积.10.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)求证:AF⊥平面CBF;(2)设FC的中点为M,求证:OM∥平面DAF;(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为V F﹣ABCD,V F﹣CBE,求V F﹣ABCD:V F﹣CBE.面面垂直1.如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅰ)求证:平面CAA1C1⊥平面CB1D1.2.如图,四棱锥P﹣ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC 的中点.(1)证明:PA∥平面BDE;(2)证明:平面BDE⊥平面PBC.、3.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,侧面PBC是直角三角形,∠PCB=90°,点E是PC的中点,且平面PBC⊥平面ABCD.(Ⅰ)证明:AP∥平面BED;(Ⅰ)证明:平面APC⊥平面BED;(Ⅰ)若BC=PC=2,∠ABC=60°,求异面直线AP与BC所成角的余弦值.4.如图,四棱锥P﹣ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC 的中点.(1)证明:PA∥平面BDE;(2)证明:平面BDE⊥平面PBC.5.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,侧面PBC是直角三角形,∠PCB=90°,点E是PC的中点,且平面PBC⊥平面ABCD.(Ⅰ)证明:AP∥平面BED;(Ⅰ)证明:平面APC⊥平面BED;(Ⅰ)若BC=PC=2,∠ABC=60°,求异面直线AP与BC所成角的余弦值.6.如图,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,FD ⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)若点N为线段CE的中点,EC=2,FD=3,求证:MN∥平面BEF.7.如图,平面ABCD⊥平面ABEF,四边形ABCD是矩形,四边形ABEF是等腰梯形,其中AB∥EF,AB=2AF,∠BAF=60°,O,P分别为AB,CB的中点,M为△OBF的重心.(I)求证:平面ADF⊥平面CBF;(II)求证:PM∥平面AFC.8.如图,正方体ABCD﹣A1B1C1D1中,点E是A1D1的中点,点F是CE的中点.(Ⅰ)求证:平面ACE⊥平面BDD1B1(Ⅰ)求证:AE∥平面BDF.9.图,在正三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AC=AA1,点M,N分别为A1B和B1C1的中点.(1)求证:平面A1BC⊥平面MAC;(2)求证:MN∥平面A1ACC1.10.如图,多面体ABCDPE的底面ABCD是平行四边形,AB=AD,PD⊥平面ABCD,EC ∥PD,且PD=2EC.(1)求证:平面PAC⊥平面PBD;(2)若棱AP的中点为H,证明:HE∥平面ABCD.11.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;(2)证明:平面D1AC⊥平面BB1C1C.12.如图,在四棱锥P﹣ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,点E在棱PD上,且PE=2ED.(1)求证:平面PCD⊥平面PBC;(2)求证:PB∥平面AEC.。

2023届高三数学一轮复习专题 立体几何垂直系统 讲义 (解析版)

2023届高三数学一轮复习专题  立体几何垂直系统  讲义 (解析版)

高三数学第一轮复习专题 垂直系统专题第一部分 直线与平面垂直的判定及性质一。

线面垂直的定义:l l αα若直线与平面内的任意一条直线都垂直,则称直线与平面垂直.记作:l α⊥。

l 直线叫做α平面的垂线,α平面叫做l 直线的垂面。

(★★★)线面垂直的定义可以作为线面垂直的性质定理使用: 若l 直线与α平面垂直,则l 直线与α平面内任意一条直线都垂直。

,l a l a αα⊥⊂⇒⊥ ⇒线面垂直线线垂直二。

线面垂直的判定定理:1。

判定定理1:若一条直线和一个平面内的两条相交直线都垂直,则该直线与这个平面垂直。

(★★★)⇒线线垂直线面垂直,,,,a b a b P l a l b l ααα⊂⊂⋂=⊥⊥⇒⊥两个核心条件:,l a l b ⊥⊥2。

判定定理2:若两平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。

(★★)a ∥b ,a α⊥b α⇒⊥三。

线面垂直的性质定理:1。

性质定理1:垂直于同一平面的两直线平行。

a α⊥,b α⊥a ⇒∥bα2。

性质定理2:垂直于同一直线的两平面平行。

l α⊥,l β⊥⇒α∥β题型一:线线垂直与线面垂直的互相证明 ★★★★★判定定义线线垂直线面垂直这两个定理(定义)构成了一个很重要的小循环:⇒⇒⇒⇒⋅⋅⋅⋅⋅⋅线线垂直线面垂直线线垂直线面垂直例1。

P 为ABC 所在平面外一点,PA ABC ⊥平面,090ABC ∠=,AE PB E ⊥于,AF PC F ⊥于。

求证:PC AEF ⊥平面。

(★★)规律:常用线面垂直来证明两直线“异面垂直”。

已知的是相交垂直,要证的是异面垂直。

分析:从后往前分析。

要证()PC AF PC AEF PC AE AE PBC ⎧⊥⎪⊥⇐⎨⊥⇐⊥⎪⎩已知平面平面 α()090AE PB BC AB ABC AE BC BC PAB BC PA PA ABC ⎧⊥⎪⎪⇐⎨⎧⊥⇐∠=⎪⊥⇐⊥⇐⎨⎪⊥⇐⊥⎩⎩已知平面平面 但写证明过程时要从前往后写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中立体几何证明垂直的专题训练
收集于网络,如有侵权请联系管理员删除
高中立体几何证明垂直的专题训练
深圳龙岗区东升学校—— 罗虎胜
立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法:
(1) 通过“平移”。

(2) 利用等腰三角形底边上的中线的性质。

(3) 利用勾股定理。

(4) 利用三角形全等或三角行相似。

(5) 利用直径所对的圆周角是直角,等等。

(1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,//
1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=
2
1
DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC
2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ;
(第2题
收集于网络,如有侵权请联系管理员删除
分析:取PC 的中点G ,易证EG//AF ,又易证A F ⊥平面PDC 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD
3、如图所示,在四棱锥P ABCD -中,
AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且
1
2
DF AB =
,PH 为PAD ∆中AD 边上的高。

(1)证明:PH ABCD ⊥平面;
(2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面.
分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB
4.如图所示, 四棱锥P -ABCD 底面是直角梯形
,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD ,
E 为PC 的中点, PA =AD 。

证明: BE PDC ⊥平面;
收集于网络,如有侵权请联系管理员删除
分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC
(2)利用等腰三角形底边上的中线的性质
5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==,
PC AC ⊥.
(Ⅰ)求证:PC AB ⊥;
(Ⅱ)求二面角B AP C --的大小;
6、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º 证明:AB ⊥PC
因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =。

如图,取AB 中点D ,连结PD ,CD , 则PD AB ⊥,CD AB ⊥, 所以AB ⊥平面PDC , 所以AB PC ⊥。

(3)利用勾股定理
A
C
B
P
收集于网络,如有侵权请联系管理员删除
7、如图,四棱锥P ABCD -的底面是边长为1的正方形,
,1,PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ;
8、如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且
121
===CD AD AB .
现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,
使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2. (1)求证:AM ∥平面BEC ; (2)求证:⊥BC 平面BDE ;
9、如
图,四面体ABCD 中,O
、E 分别是BD 、BC 的中点, 2,CA CB CD BD AB AD ====== (1)求证:AO ⊥平面BCD ;
(2)求异面直线AB 与CD 所成角的大小;
(1)证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥Q ,,.BO DO BC CD CO BD ==∴
⊥Q
在AOC ∆中,由已知可得1,AO CO ==
而2,AC =
_ D
_ C
_ B
_ A
_ P
M A
F
B
C
D
E
M
C
收集于网络,如有侵权请联系管理员删除
222,AO CO AC ∴+=90,o AOC ∴∠=即.AO OC ⊥ ,BD OC O =Q I AO ∴⊥平面BCD
10、如图,四棱锥S ABCD -中,BC AB ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥平面;
(Ⅱ)求AB 与平面SBC 所成角的大小. 解法一:
(I )取AB 中点E ,连结DE ,则四边形BCDE 为
矩形,DE=CB=2,连结SE ,则, 3.SE AB SE ⊥=
又SD=1,故222
ED SE SD =+,
所以DSE ∠为直角。

由,,AB DE AB SE DE SE E ⊥⊥=I , 得AB ⊥平面SDE ,所以AB SD ⊥。

SD 与两条相交直线AB 、SE 都垂直。

所以SD ⊥平面SAB 。

(4)利用三角形全等或三角行相似
11.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中
点,
求证:D1O⊥平面MAC.
分析:法一:取AB的中点E,连A1E,OE,易证△AB M≌A1AE, 于是A M⊥A1E,又∵O E⊥平面ABB1A1∴OE⊥AM,
∴AM⊥平面OEA1D1∴AM⊥D1O
法二:连OM,易证△D1D O∽OBM,于是D1O⊥OM
12.如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1中点. 求证:AB1⊥平面A1BD;
分析:取BC的中点E,连AE,B1E,易证△DC B≌
△EBB1,从而B D⊥EB1
13、.如图,已知正四棱柱ABCD—A1B1C1D1中,
过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
求证:A1C⊥平面BDE;
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
(5)利用直径所对的圆周角是直角
14、如图,AB 是圆O 的直径,C 是圆周上一点,P A ⊥平面ABC . (1)求证:平面P AC ⊥平面PBC ;
(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互
相垂直的各对平面.
O A
C B
P
.
15、如图,在圆锥PO 中,已知PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点.证明:平面POD ⊥平面PAC ;
16、如图,在四棱锥P ABCD -中,底面ABCD 是矩形,
PA ⊥平面ABCD .以BD 的中点O 为球心、BD 为直径的球面交PD 于点M .
求证:平面ABM ⊥平面PCD ;
O
A
P
B
M

证:依题设,M在以BD为直径的球面上,则BM⊥PD.
因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,
所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.
收集于网络,如有侵权请联系管理员删除。

相关文档
最新文档