数学课标测试题含答案
2024年新课标I卷高考数学真题(含答案)
2024年新课标I 卷高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m -B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >> B. (2)0.5P X ><的的C. (2)0.5P Y >> D. (2)0.8P Y ><10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数的字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;为(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.的一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,的的从而sin C===又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.小问2详解】由(1)可得π3B=,cos C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin12462A⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为211sin22ABCS ab C===,由已知ABC面积为323=+,所以c=16. 已知(0,3)A和33,2P⎛⎫⎪⎝⎭为椭圆2222:1(0)x yC a ba b+=>>上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且ABP的面积为9,求l的方程.【答案】(1)12(2)直线l的方程为3260x y--=或20x y-=.【的【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设()00,B x y22001129x y ⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫-- ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PABd = ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k xk k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2024义务教育数学新课标课程标准2022版考试真题附含答案
。
答案:数量的多少;比较不同类别;变化趋势。
6. 实践与综合应用在第一学段以 为主题。
答案:实践活动;综合应用。
为主题,在第二学段以
7. 小学数学学习阶段,核心素养的主要表现为
.
.符号
意识.运算能力.几何直观.空间观念..创新意识等 11 个方面。
主要是指对于数与数量.数量
16. 推理能力主要是指从
出发,依据规则推出
或
的能力。
答案:一些事实和命题;其他命题;结论。
17. 数据的搜集.整理与表达包含数据的
.
.
表达数据。
答案:搜集;统计图表;平均数;百分数。
,用
18. 在各学段中,安排了四个部分的课程内容:
内容设置的目
的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生
关系及运算结果的直观感悟。
答案:数感;量感;推理意识;数感。
8. 在统计与概率的教学中,应帮助学生逐渐建立起来
了解
。
答案:数据分析;随机现象。
观念,
9.
是人类文化的重要组成部分,
是现代社会每一个公
民应该具备的基本素质。作为促进学生会全面发展教育的重要组成部
分,数学教育既要使学生
和学习中所需要的
,更要发挥
24. 通过整数的运算,感想整数的性质;通过
.
.
的运算,进一步感想
在运算中的作用,感想运算的
。
答案:整数;小数;分数;计数单位;一致性。
25. 结合义务教育性质及课程定位,从
.
.
面,明确义务教育阶段时代新人培养的具体要求。
答案:有理想;有本领;有担当。
三个方
26. 小学阶段数与运算〞主题,在理解〔整数.
2024年义务教育数学课程标准检测题(含答案)3
2024年义务教育数学课程标准检测题(含答案)31.()是从具体实例中知道或举例说明对象的有关特征,根据对象的特征,从具体情境中辨认或举例说明对象。
A.掌握。
B.理解。
C.了解。
(正确答案)D.体会。
2.数学课程资源是指应用于教与学活动中的各种资源,以下各资源不属于数学课程资源的是()。
A.文本资源。
B.信息技术资源。
C.社会教育资源。
D.人力资源。
(正确答案)3.新课标指出要改变过于注重以课时为单位的教学设计,推进()教学设计,体现数学知识之间的内在逻辑关系,以及学习内容与核心素养表现的关联。
A.单元个体。
B.单元整体。
(正确答案)C.学期整体。
D.学期个体。
4.第一学段数与代数的主题是()和()。
A.数与运算。
(正确答案)B.数量关系。
(正确答案)C.数据分类。
D.数与式。
5.教学设计文本的主体是()。
A.教学方案。
(正确答案)B.教育理论。
C.经验反思。
D.如何解题。
6.教材素材的选取应尽可能的贴近学生的现实,学生的现实主要包含哪些方面()?A.生活现实。
(正确答案)B.素材现实。
C.数学现实。
(正确答案)D.其他学科现实。
(正确答案)7.设计数学课堂教学目标时,切实可行的做法是()。
A.每节课都要分清知识目标、能力目标,情感目标。
B.以知识目标为主,设计过程目标,将能力,情感包容于其中。
(正确答案)C.只要知识目标,其他目标都是虚的。
8.教学活动应注重(),激发学生学习兴趣,引发学生积极思考,鼓励学生质疑问难,引导学生在真实情境中发现问题和提出问题。
A.启发式。
(正确答案)B.填鸭式。
C.讲授式。
D.答疑式。
9.第三学段数量关系的内容要求包括哪些()?A.理解等式的基本性质。
(正确答案)B.会选择合适的方法进行估算。
(正确答案)C.探索用字母表示事物的关系、性质和规律的方法。
(正确答案)D.认识成正比的量。
(正确答案)10.“综合与实践”的教学活动应当保证每学期至少()次。
A.一。
(正确答案)B.二。
数学课标考试真题及答案
数学课标考试真题及答案一、选择题(每题 3 分,共 30 分)1、数学课程应致力于实现义务教育阶段的培养目标,面向全体学生,适应学生个性发展的需要,使得()。
A 人人学有价值的数学B 人人都能获得良好的数学教育C 不同的人在数学上得到不同的发展D 以上都对答案:D2、数学教学活动是师生积极参与、()的过程。
A 交往互动B 共同发展C 交往与共同发展D 以上都不对答案:C3、推理一般包括()。
A 逻辑推理和类比推理B 合情推理和演绎推理C 归纳推理和类比推理D 以上都不对答案:B4、义务教育阶段数学课程目标从知识技能、数学思考、问题解决、情感态度四个方面加以阐述,以下不属于情感态度目标的是()。
A 积极参与数学活动,对数学有好奇心和求知欲B 在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志C 体会数学的特点,了解数学的价值D 养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯答案:D5、在各学段中,安排了数与代数、()、统计与概率、综合与实践四个方面的课程内容。
A 空间与图形B 图形与几何C 几何与直观D 以上都不对答案:B6、有效的数学教学活动是教师教与学生学的统一,应体现()的理念,促进学生的全面发展。
A 以人为本B 以学生为中心C 以教师为主导D 以上都对答案:D7、学生学习应当是一个生动活泼的、主动的和()的过程。
A 富有个性B 富有创造性C 富有想象力D 以上都不对答案:A8、数学课程资源是指应用于教与学活动中的各种资源,下列不属于数学课程资源的是()。
A 文本资源B 信息技术资源C 社会教育资源D 人力资源答案:D9、评价的主要目的是全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学,应建立()的评价体系。
A 目标多元B 方法多样C 评价主体多元D 以上都对答案:D10、为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的()。
A 创新意识和实践能力B 应用意识和创新能力C 应用意识和实践能力D 以上都不对答案:C二、填空题(每题 3 分,共 30 分)1、数学是研究和的科学。
数学新课标测试题及答案
数学新课标测试题及答案一、选择题1、数学课程应致力于实现义务教育阶段的培养目标,面向全体学生,适应学生个性发展的需要,使得()A 人人学有价值的数学B 人人都能获得良好的数学教育C 不同的人在数学上得到不同的发展D 以上选项均正确答案:D2、教学活动是师生()、积极参与、交往互动、共同发展的过程。
A 共同进步B 主动学习C 积极交流D 主动参与答案:D3、数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的()。
A 创造性思维B 创新意识C 实践能力D 以上都是答案:D4、课程内容的组织要重视过程,处理好()的关系。
A 过程与结果B 直观与抽象C 直接经验与间接经验D 以上都是答案:D5、数学课程目标包括结果目标和()。
A 过程目标B 活动目标C 阶段性目标D 情感态度目标答案:A6、结果目标使用()表述。
A “了解”“理解”“掌握”“运用”B “经历”“体验”“探索”C “感受”“体会”D “能”“会”答案:A7、数学教学中应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、()和模型思想。
A 创新意识B 推理能力C 实践能力D 应用意识答案:B8、推理一般包括()。
A 合情推理和演绎推理B 类比推理和归纳推理C 间接推理和直接推理D 以上都是答案:A9、()是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。
A 推理B 想象C 类比D 归纳答案:A10、为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和()。
A 创新意识B 实践能力C 推理能力D 模型思想答案:B二、填空题1、数学是研究()和()的科学。
答案:数量关系空间形式2、义务教育阶段数学课程的总体目标,从以下四个方面作出了阐述:知识技能、()、问题解决、()。
答案:数学思考情感态度3、在各学段中,安排了四个部分的课程内容:“数与代数”“()”“统计与概率”“()”。
2023年新课标全国Ⅰ卷数学真题(含答案解析)-
2023年新课标全国Ⅰ卷数学真题(含答案解析)学校:___________姓名:___________班级:___________考号:___________三、填空题四、解答题17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.18.如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .19.已知函数()()e xf x a a x =+-.参考答案:7.C【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前项的关系推理判断作答.,【详解】方法1,甲:{}n a为等差数列,设其首项为【点睛】关键点睛:对于C 、D 性质分析判断.13.64【分析】分类讨论选修2门或3运算求解.【详解】(1)当从8门课中选修(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有②若体育类选修课2门,则不同的选课方案共有综上所述:不同的选课方案共有故答案为:64.14.766/766【分析】结合图像,依次求得AO 【详解】如图,过1A 作1A M AC ⊥因为1112,1,2AB A B AA ===,则111111112,2222A O A C A B AO ==⨯=故答案为:[2,3).16.355/355【分析】方法一:利用双曲线的定义与向量数积的几何意义得到,a m 的表达式,从而利用勾股定理求得a m =,进而利用余弦定理得到而得解.方法二:依题意设出各点坐标,从而由向量坐标运算求得0x A 代入双曲线C 得到关于,,a b c 的齐次方程,从而得解;【详解】方法一:依题意,设22AF m =,则2113,22BF m BF AF a m ===+,5a 方法二:依题意,得12(,0),(,0)F c F c -,令因为2223F A F B =- ,所以(0x -又11F A F B ⊥ ,所以11F A F B ⋅= 又点A 在C 上,则222225499c t a b-所以22222225169c b c a a b -=,即整理得424255090c c a -+=,则又1e >,所以355e =或5e =故答案为:355.【点睛】关键点睛:双曲线过焦点的三角形的解决关键是充分利用双曲线的定义,定理与余弦定理得到关于,,a b 17.(1)31010(2)6【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=-,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.(2)设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z =,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c =,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,令1a =,得1,2==b c ,(1,1,2)m ∴=,依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线【点睛】关键点睛:本题的第二个的关键是通过放缩得同时为了简便运算,对右边的式子平方后再设新函数求导,最后再排除边界值即可。
2024义务教育数学课程标准2022年版考试题库和答案
2024义务教育数学课程标准2022年版考试题库和答案1. 数学课程的课程理念包括哪五个方面:( )。
A.确立核心素养导向的课程目标(正确答案)B.设计体现结构化特征的课程内容(正确答案)C.实施促进学生发展的教学活动(正确答案)D.探索激励学习和改进教学的评价(正确答案) E.促进信息技术和数学课程融合(正确答案)2. 符号感主要表现在( )。
A.能从具体情境中抽象出数量关系和变化规律,并用符号来表示;(正确答案)B.理解符号所代表的数量关系和变化规律;(正确答案)C.会进行符号间的转换;(正确答案)D.能选择适当的程序和方法解决用符号所表达的问题。
(正确答案)3.义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得( )。
A.人人学有价值的数学B.人人都能获得良好的数学教育(正确答案)C.不同的人在数学上得到不同的发展(正确答案)D.以上都不对4. 小学数学对于数学核心素养的培养主要包括( )。
A.会用数学的眼光观察现实世界(正确答案)B.会用数学的思维思考现实世界(正确答案) C.会用数学的语言表达现实世界(正确答案)5.核心素养是逐渐形成的,不同阶段具有不同表现水平。
教材编写应关注核心素养发展的( ),准确把握每个学段每个主题的内容要求和();遵循()原则,使学生对数学知识的理解不断深入。
A.一致性B.学业要求(正确答案)C.螺旋上升(正确答案)D.教学提示E.阶段性(正确答案)F.直线上升6. 评价的主要目的是( )。
A.为了全面了解学生的数学学习历程(正确答案)B.激励学生的学习和改进教师的教学(正确答案)7. 义务教育课程包括( ).()和()三类。
B.地方课程(正确答案) C.校本课程(正确答案) D.地区课程8. 第二学段的主题活动涉及( ).().较强的跨学科内容,需要多学科教师(),()与实施。
A.综合性(正确答案) B.基础性C.实践性(正确答案)D.发展性E.协同教学(正确答案)F.统筹设计(正确答案)9. 五四学制第二学段3-5 年级目标主要参照六三学制第( )学段目标制定,适当()要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学课标测试题含答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#《数学课程标准》试题一、填空(每空1分)1、数学是研究(数量关系)和(空间形式)的科学。
2、数学是人类文化的重要组成部分,(数学素养)是现代社会每一个公民所必备的基本素养。
3、数学课程能使学生掌握必备的基础知识和基本技能,培养学生的(抽象思维和推理能力),培养学生的(创新意识和实践能力),促进学生在情感、态度与价值观等方面的发展。
4、数学课程应致力于实现义务教育阶段的培养目标,面向全体学生,适应学生个体发展的需要,使得:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展)。
5、《数学课程标准》明确了义务教育阶段数学课程的总目标,并从(知识技能)、(数学思考)、(问题解决)和(情感态度)四方面具体阐述。
力求通过数学学习,学生能获得适应社会生活和进一步发展所必须的数学的(基本知识)、(基本技能)、(基本思想)、(基本活动经验)。
体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用(数学的思维方式)进行思考,增强(发现和提出问题)的能力、(分析和解决问题)的能力。
6、教学活动是师生(积极参与)、(交往互动)、共同发展的过程。
有效的数学教学活动是教师教与学生学的统一,应体现(“以人为本”)的理念,促进学生的全面发展。
7、《数学课程标准》中所说的“数学的基本思想”主要指:数学(抽象)的思想、数学(推理)的思想、数学建模的思想。
学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。
8、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己(发现和提出问题)是创新的基础;(独立思考、学会思考)是创新的核心;归纳概括得到(猜想和规律),并加以验证,是创新的重要方法。
9、统计与概率主要研究现实生活中的(数据)和客观世界中的(随机现象)。
10、数学教学过程中恰当的使用(数学课程资源),将在很大程度上提高学生从事数学活动的水平和教师从事教学活动的质量。
11、学习评价的主要目的是为了全面了解学生数学学习的(过程和结果),激励学生学习和改进教师教学。
在实施评价时,可以对部分学生采取(延迟评价)的方式,提供再次评价的机会,使他们看到自己的进步,树立学好数学的信心。
第二学段可以采用(描述性)评价和(等级评价)相结合的方式。
12、“综合与实践”内容设置的目的在于培养学生综合运用有关的(知识与方法)解决实际问题,培养学生的(问题意识)、(应用意识)和(创新意识),积累学生的活动经验,提高学生解决现实问题的能力。
13、新课程的“三维”课程目标是指(知识与技能),(过程与方法)、(情感态度与价值观)。
14、学生的数学学习内容应当是(现实)的、(有意义)的、(富有挑战性)的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
15.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
学生是数学学习的主人,教师是数学学习的(组织者)、(引导者)与(合作者)。
16、义务教育阶段的数学课程是培养公民素质的基础课程,具有(基础性)、(普及性)和(发展性)。
17、义务教育阶段的数学课程,其基本出发点是促进学生(全面)、(持续)、(和谐)地发展。
18、有效的数学学习活动不能单纯地依赖模仿与记忆,(动手实践)、(自主探索)与(合作交流)是学生学习数学的重要方式。
19、《数学课程标准》安排了(数与代数)、(空间与图形)、(统计与概率)、(实践与综合应用)等四个学习领域。
20、在“图形与几何”的教学中,应帮助学生建立(空间观念),注重培养学生的(几何直观与推理能力)。
21、“综合实践”是一类以(问题)为载体、(师生共同参与)的学习活动,是帮助学生积累(数学活动经验)、培养学生(应用意识)与(创新意识)的重要途径。
22、《标准》中所提出的“四基”是指:(基础知识)、(基本技能)、(基本思想)、(基本活动经验)。
23、《标准》中所提出的“四能”是指:(发现和提出问题)的能力、(分析和解决问题)的能力。
25、教师教学应该以学生的(认知发展水平)和(已有的经验)为基础,面向全体学生,注重(启发式)和(因材施教)。
二、简答题。
1、简述应用意识的含义答案要点:有两方面的含义:一方面,有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
2、简述行为动词“探索”的基本含义答案要点:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。
3、简述培养数据分析观念应包括哪些内容答案要点:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。
可见,在统计的教学过程中,培养学生的数据分析观念非常必要。
4、课程内容的组织要重视并处理好哪几个关系答案要点:要重视过程,处理好过程与结果的关系;重视直观,处理好直观与抽象的关系;重视直接经验,处理好直接经验与间接经验的关系。
5、简述在教与学的活动中,教师的引导作用如何体现答案要点:教师的“引导”作用主要体现在:通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动,提高教学活动的针对性和有效性。
6、实施课堂即兴评价应遵循的原则是什么(1)、立足激励原则;(2)、关注人性原则;(3)、评价方式要多样化。
7、新课程小学数学教学评价的具体要求是什么(1)、注重对学生数学学习过程的评价;(2)、恰当评价学生基础知识和基本技能的理解和掌握;(3)、重视对学生发现问题和解决问题能力的评价;(4)、重视评价结果的处理和呈现。
8、小学数学教学评价的功能是什么(1)、导向功能;(2)、反馈功能;(3)、决策改进功能。
9、三个“不要”指的是什么(1)、情节不要太多;(2)、环节不要太细;(3)、问题不要太碎。
10、从20世纪80年代初期至今,小学数学课堂教学评价发展先后经历了哪三个阶段(1)、20世纪80年代初期:以教为主体的小学数学课堂教学评价;(2)、20世纪80年代后期至90年代初期,小学数学整体性课堂教学评价;(3)、20世纪90年代后期:以学评教的小学课堂教学评价。
11、新时期下教师应如何进行自我反思(1)、在教学实践中反思;(2)、在与他人交流评价中反思;(3)、在与学生交流评价中反思。
12、新课程下小学数学作业评价的策略是什么(1)、分项评价;(2)、激励评价;(3)、跟踪评价;(4)、延迟评价;(5)、协商评价。
13、小学数学教师自我反思的一般形式有哪些(1)课后备课;(2)教学后记;(3)教学诊断;(4)反思日记;(5)教学案例;(6)观摩分析。
14、简述《标准》中总体目标四个方面的关系答:总体目标的四个方面,不是互相独立和割裂的,而是一个密切联系、相互交融的有机整体。
课程设计和教学活动组织中,应同时兼顾这四个方面的目标。
这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展,有着重要的意义。
数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。
15、学生的数感主要表现在哪些方面答:理解数的意义;能用多种方法来表示数与数量;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性做出解释。
16、在学生的学习活动中,教师的“组织”作用主要体现在哪些方面答:主要体现在:(1)、教师应当准确把握教学内容的数学本质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案。
(2)、在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,形成有效的学习活动。
17、怎样理解学生主体地位和教师主导作用的关系,如何使学生成为学习的主体答:好的教学活动,应是学生主体地位和教师主导作用的和谐统一。
一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。
启发式教学是处理好学生主体地位和教师主导作用关系的有效途径。
教师富有启发性的讲授,创设情境、设计问题,引导学生自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体。
18、新课标理念下的数学学习评价应怎样转变答:应由单纯的考查学生的学习结果转变为关注学生学习过程中的变化与发展,以全面了解学生的数学学习状况,促进学生更好地发展。
既要关注学生学习的结果,更要关注他们在学习过程中的变化和发展;既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感、态度、个性倾向。
19、如何引导学生自主探索,培养学生的创新精神答:一、引导学生动手实践,自主探索和合作交流。
(一)、让学生动手操作。
动手操作是数学学习的一种手段,目的是更好地促进学生对数学的理解,能用数学的语言、符号进行表达和交流。
(二)、促进学生进行独立思考和自主探索。
教学要给学生提供自主探索的机会,让学生在讨论的基础上发现问题和解决问题。
(三)鼓励学生合作交流。
(1)、合理分组。
要考虑学生的能力、兴趣、性别、背景等几个方面的因素,保证每个小组在大致相同的水平上展开合作学习。
(2)、明确小组合作的目标。
每次合作学习,教师都应明确提出合作的目标和合作的要求。
二、鼓励解决问题策略的多样化。
不同的学生有不同的思维方式、不同的兴趣爱好以及不同的发展潜能。
教学中应关注学生的这些个性差异,允许学生思维方式的多样化和思维水平的不同层次在教学活动中,学生是学习的主体,必须改变“教师讲,学生听”、“教师问,学生答”以及大量演练习题的数学教学模式。
教师依据学生年龄特点和认知特点,设计探索性和开放性的问题,给学生提供自主探索的机会,使学生的创新精神的培养落到实处。
20、谈谈你在数学课堂教学中,对学生小组合作学习交流的体会,并举例说明。
答:在学生小组合作之前,教师要先提出小组合作的要求,否则,学生在合作过程中容易造成混乱,没有达到合作的目的。