抽样与抽样分布.pptx
合集下载
《抽样和抽样分布》课件
缺点
可能导致样本不均衡,造成统计结果的偏差。
系统抽样
1 定义
2 应用
系统抽样是按照固定的间隔从总体中选择 样本的方法。
适用于总体有明显的顺序结构,如时间序 列数据。
整群抽样
定义
整群抽样是按照群组进行抽样的方法,将总体划 分为不同的群组,然后从群组中选择样本。
应用
适用于总体中存在明显的群组结构,如地理区域 或机构。
《抽样和抽样分布》PPT 课件
抽样和抽样分布是统计学中重要的概念。通过抽样方法,我们可以从总体中 获取有关信息,并进行推断。本课程将介绍不同类型的抽样方法和抽样分布 的定义。
简单随机抽样
定义
简单随机抽样是从总体中随机选择样本的方法。每个个体有相等的机会被选中。
优点
结果具有代表性,能够有效减小抽样误差。
中心极限定理
定义
中心极限定理是指在一定条件下,大量样本 的平均值将呈现正许我们使用样本数据进行总体参数的估 计和假设检验。
分层抽样
1
定义
分层抽样是将总体划分为不同的层级,然后从各个层级中选择样本的方法。
2
优点
能够保证每个层级都包含在样本中,提高估计的准确性。
3
缺点
需要事先知道总体的层级结构,并且需要耗费更多的时间和成本。
抽样分布的定义
抽样分布是指在相同抽样方法下得到的样本统计量的分布。通过理解抽样分布,我们可以进行推断性统 计分析。
可能导致样本不均衡,造成统计结果的偏差。
系统抽样
1 定义
2 应用
系统抽样是按照固定的间隔从总体中选择 样本的方法。
适用于总体有明显的顺序结构,如时间序 列数据。
整群抽样
定义
整群抽样是按照群组进行抽样的方法,将总体划 分为不同的群组,然后从群组中选择样本。
应用
适用于总体中存在明显的群组结构,如地理区域 或机构。
《抽样和抽样分布》PPT 课件
抽样和抽样分布是统计学中重要的概念。通过抽样方法,我们可以从总体中 获取有关信息,并进行推断。本课程将介绍不同类型的抽样方法和抽样分布 的定义。
简单随机抽样
定义
简单随机抽样是从总体中随机选择样本的方法。每个个体有相等的机会被选中。
优点
结果具有代表性,能够有效减小抽样误差。
中心极限定理
定义
中心极限定理是指在一定条件下,大量样本 的平均值将呈现正许我们使用样本数据进行总体参数的估 计和假设检验。
分层抽样
1
定义
分层抽样是将总体划分为不同的层级,然后从各个层级中选择样本的方法。
2
优点
能够保证每个层级都包含在样本中,提高估计的准确性。
3
缺点
需要事先知道总体的层级结构,并且需要耗费更多的时间和成本。
抽样分布的定义
抽样分布是指在相同抽样方法下得到的样本统计量的分布。通过理解抽样分布,我们可以进行推断性统 计分析。
《抽样和抽样分布》课件
《抽样和抽样分布》ppt课件
$number {01}
目录
• 抽样调查的基本概念 • 抽样分布的基础知识 • 抽样分布的原理 • 抽样误差的评估 • 实际应用中的抽样技术 • 案例分析
01
抽样调查的基本概念
抽样的定义和意义
定义
抽样是从总体中选取一部分个体 进行研究的方法。
意义
通过对部分个体的研究,推断出 总体的特征,以节省时间和资源 。
适用场景
当总体中存在周期性变化 或某种明显的模式时,系 统抽样能够提高样本的代 表性。
注意事项
要确保抽样的间隔与总体 中的变化模式相匹配,以 避免偏差。
分层抽样
分层抽样
注意事项
将总体分成若干层,然后从每层中随 机抽取一定数量的样本。
要确保分层依据合理,且层内样本的 抽取方法一致,以避免层间和层内的 偏差。
抽样误差的衡量指标
抽样平均误差
抽样平均误差是衡量抽样误差大小的指标,它反映了样本统 计量与总体参数之间的平均偏差。
抽样变异系数
抽样变异系数是衡量非系统抽样误差的指标,它反映了由于 随机性引起的样本统计量与总体参数之间的偏差程度。
05
实际应用中的抽样技术系统ຫໍສະໝຸດ 样010203
系统抽样
按照某种规则,每隔一定 数量的个体进行抽样,直 到达到所需的样本量。
步骤 1. 明确研究目的和要求。 2. 确定总体和样本规模。
抽样的原则和步骤
01 02 03
3. 选择合适的抽样方法。 4. 制定详细的抽样计划。
5. 实施抽样调查。
02
抽样分布的基础知识
总体和样本
1 2
3
总体
研究对象的全体集合。
样本
$number {01}
目录
• 抽样调查的基本概念 • 抽样分布的基础知识 • 抽样分布的原理 • 抽样误差的评估 • 实际应用中的抽样技术 • 案例分析
01
抽样调查的基本概念
抽样的定义和意义
定义
抽样是从总体中选取一部分个体 进行研究的方法。
意义
通过对部分个体的研究,推断出 总体的特征,以节省时间和资源 。
适用场景
当总体中存在周期性变化 或某种明显的模式时,系 统抽样能够提高样本的代 表性。
注意事项
要确保抽样的间隔与总体 中的变化模式相匹配,以 避免偏差。
分层抽样
分层抽样
注意事项
将总体分成若干层,然后从每层中随 机抽取一定数量的样本。
要确保分层依据合理,且层内样本的 抽取方法一致,以避免层间和层内的 偏差。
抽样误差的衡量指标
抽样平均误差
抽样平均误差是衡量抽样误差大小的指标,它反映了样本统 计量与总体参数之间的平均偏差。
抽样变异系数
抽样变异系数是衡量非系统抽样误差的指标,它反映了由于 随机性引起的样本统计量与总体参数之间的偏差程度。
05
实际应用中的抽样技术系统ຫໍສະໝຸດ 样010203
系统抽样
按照某种规则,每隔一定 数量的个体进行抽样,直 到达到所需的样本量。
步骤 1. 明确研究目的和要求。 2. 确定总体和样本规模。
抽样的原则和步骤
01 02 03
3. 选择合适的抽样方法。 4. 制定详细的抽样计划。
5. 实施抽样调查。
02
抽样分布的基础知识
总体和样本
1 2
3
总体
研究对象的全体集合。
样本
《抽样与抽样分布》PPT课件
通常对某个论题有强烈感觉的人,尤其是负面感觉, 比较会不嫌麻烦地去回应。
写信回应和电话回应,一定会导致高度偏差。
随机原则的实现
抽签法,是将总体中每个单位的编号写在外形 完全一致的签上,将其搅拌均匀,从中任意抽 选,签上的号码所对应的单位就是样本单位。
随机数表法:将总体中每个单位编上号码,然 后使用随机数表,查出所要抽取的调查单位。
案例
1936年美国总统选举的预测,民主党罗斯福VS 共和党兰登。《文摘》邮寄了1000万份调查表; 收回240万份,预测兰登获得57%的选票获胜。 而盖洛普(Gallup)研究所仅仅随机抽取了2000 多选民,预测罗斯福将得到54%的选票获胜。
选举结果是罗斯福获得62%的选票获胜。 此后,盖洛普研究所每年用1000~1500人的样
4 统计抽样与抽样分布
抽样的基本概念 抽样方法与误差 抽样分布的概念 样本均值的抽样分布 样本比率的抽识到通过样本推断 总体的科学性。
当总体元素非常多,或者检查具有破坏性时, 需要进行抽样。
抽样必定伴有某种程度的不确定性,需要用 概率来表示其可靠程度,这是推断统计的重 要特点。
两种有偏的抽样方法
方便抽样,在总体中选择最容易取得的个体。例如, 从每箱桔子中拿上面的几个检查,但它们可能无法 代表整箱桔子的情况。
自发性回应样本:是经由对某一诉求的回应而自然 形成的,会导致高度偏差。
两种有偏的抽样方法
自发性回应样本:例如,专栏作家Landers问读者: “如果可以重来一次,你还会要孩子吗?”她接到 1万份答复,其中70%说不要。难道70%的父母 都后悔了吗?
随机样本
与总体分布 特征相同
与总体分布 特征不同
总体
非随机样本
并非所有的抽样估计都按随机原则抽取样本, 也有非随机抽样。
写信回应和电话回应,一定会导致高度偏差。
随机原则的实现
抽签法,是将总体中每个单位的编号写在外形 完全一致的签上,将其搅拌均匀,从中任意抽 选,签上的号码所对应的单位就是样本单位。
随机数表法:将总体中每个单位编上号码,然 后使用随机数表,查出所要抽取的调查单位。
案例
1936年美国总统选举的预测,民主党罗斯福VS 共和党兰登。《文摘》邮寄了1000万份调查表; 收回240万份,预测兰登获得57%的选票获胜。 而盖洛普(Gallup)研究所仅仅随机抽取了2000 多选民,预测罗斯福将得到54%的选票获胜。
选举结果是罗斯福获得62%的选票获胜。 此后,盖洛普研究所每年用1000~1500人的样
4 统计抽样与抽样分布
抽样的基本概念 抽样方法与误差 抽样分布的概念 样本均值的抽样分布 样本比率的抽识到通过样本推断 总体的科学性。
当总体元素非常多,或者检查具有破坏性时, 需要进行抽样。
抽样必定伴有某种程度的不确定性,需要用 概率来表示其可靠程度,这是推断统计的重 要特点。
两种有偏的抽样方法
方便抽样,在总体中选择最容易取得的个体。例如, 从每箱桔子中拿上面的几个检查,但它们可能无法 代表整箱桔子的情况。
自发性回应样本:是经由对某一诉求的回应而自然 形成的,会导致高度偏差。
两种有偏的抽样方法
自发性回应样本:例如,专栏作家Landers问读者: “如果可以重来一次,你还会要孩子吗?”她接到 1万份答复,其中70%说不要。难道70%的父母 都后悔了吗?
随机样本
与总体分布 特征相同
与总体分布 特征不同
总体
非随机样本
并非所有的抽样估计都按随机原则抽取样本, 也有非随机抽样。
抽样与抽样分布 ppt课件
可以按自然区域或行政区域进行分层,使抽样的组织 和实施都比较方便
分层抽样的样本分布在各个层内,从而使样本在总体 中的分布比较均匀
如果分层抽样做得好,便可以提高估计的精度
系统抽样
(systematic sampling)
1. 将总体中的所有单位(抽样单位)按一定顺 序排列,在规定的范围内随机地抽取一个 单位作为初始单位,然后按事先规定好的 规则确定其他样本单位
样本容量。样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
对于某一既定的总体,由于抽样的方式方法不同,样本 容量也可大可小,因而,样本是不确定的、可变的。
抽样的目的一部分,而且样本的抽取又具有随机性, 因此,样本的内部构成与总体的内部构成总是具有一定 的差异,样本不能完全代表总体,抽样估计总是存在一 定的代表性误差。
1. 将总体中若干个单位合并为组(群),抽样 时直接抽取群,然后对中选群中的所有单 位全部实施调查
2. 特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再 进行一步抽样,从选中的群中抽取出若干个单位进 行调查
1. 由简单随机抽样形成的样本 2. 从总体N个单位中随机地抽取n个单位作为
样本,使得每一个容量为n样本都有相同 的机会(概率)被抽中 3. 参数估计和假设检验所依据的主要是简单 随机样本
简单随机抽样
(用Excel对分类数据随机抽样)
【例】某 班级共有 30 名 学 生 , 他们的名 单如右表。 用 Excel 抽 出一个由5 个学生构 成的随机 样本
分层抽样的样本分布在各个层内,从而使样本在总体 中的分布比较均匀
如果分层抽样做得好,便可以提高估计的精度
系统抽样
(systematic sampling)
1. 将总体中的所有单位(抽样单位)按一定顺 序排列,在规定的范围内随机地抽取一个 单位作为初始单位,然后按事先规定好的 规则确定其他样本单位
样本容量。样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
对于某一既定的总体,由于抽样的方式方法不同,样本 容量也可大可小,因而,样本是不确定的、可变的。
抽样的目的一部分,而且样本的抽取又具有随机性, 因此,样本的内部构成与总体的内部构成总是具有一定 的差异,样本不能完全代表总体,抽样估计总是存在一 定的代表性误差。
1. 将总体中若干个单位合并为组(群),抽样 时直接抽取群,然后对中选群中的所有单 位全部实施调查
2. 特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再 进行一步抽样,从选中的群中抽取出若干个单位进 行调查
1. 由简单随机抽样形成的样本 2. 从总体N个单位中随机地抽取n个单位作为
样本,使得每一个容量为n样本都有相同 的机会(概率)被抽中 3. 参数估计和假设检验所依据的主要是简单 随机样本
简单随机抽样
(用Excel对分类数据随机抽样)
【例】某 班级共有 30 名 学 生 , 他们的名 单如右表。 用 Excel 抽 出一个由5 个学生构 成的随机 样本
第四篇抽样和分布1(药学)PPT课件
该法要求各层间差异尽可能大,才能得到有较 好代表性的样本,并便于各层间分析比较。
24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.
24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.
抽样和抽样分布
PPT文档演模板
抽样和抽样分布
等距抽样的优点:(1)能保证被抽取到
的样本单位在全及总体中均匀分布;(2) 简化抽样过程。
等距抽样应注意:要避免抽样间隔或样
本距离和现象本身的节奏性或循环周期 相重合。
PPT文档演模板
抽样和抽样分布
三、类型抽样
类型抽样:将全及总体中的所有单位按某
一主要标志分组,然后在各组中采用纯 随机抽样或等距抽样方式,抽取一定数 目的调查单位构成所需的样本。
PPT文档演模板
抽样和抽样分布
二、等距抽样:先将总体各单位按某一
有关标志(或无关标志)排队,然后相 等距离或相等间隔抽取样本单位。根据 需要抽取的样本单位数(n)和全及总体 单位数(N),可以计算出抽取各个样本 单位之间的距离和间隔,即:K=N/n, 然后按此间隔依次抽取必要的样本单位。
PPT文档演模板
适用范围:主要适用于总体情况比较复杂,
各类型或层次之间的差异较大,而总体 单位又较多的情形,分层使层内各单位 之间的差异减小,层间差异扩大。
PPT文档演模板
抽样和抽样分布
(一)类型比例抽样
按照总体单位数在各组之间的比例,分 配各组的抽样单位数。即:各类型中抽 取的样本单位数ni占该类型所有单位数Ni 的比例是相等的,等同于样本单位总数n 占总体单位数N的比例,即:
PPT文档演模板
抽样和抽样分布
n 抽样指标:由样本总体各单位标志值计 算出来反映样本特征,用来估计全及指 标的综合指标称为统计量(抽样指标)。 统计量是样本变量的函数,用来估计总 体参数,因此与总体参数相对应,统计 量有样本平均数(或抽样成数)、样本 标准差(或样本方差 )。
PPT文档演模板
抽样和抽样分布
抽样和抽样分布培训课件(PPT 49张)
0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989
7
自有限总体的抽样
• 无放回抽样:一个元素一旦选入样本,就从总体中剔除, 不能再次被选入。 • 放回抽样:一个元素一旦选入样本,仍被放回总体中。
先前被选入的元素可能再次被选,并且在样本中可出现
多次(多于一次)。
8
自无限总体的抽样
• 无限总体经常被定义为一个持续进行的过程,总体的元 素由在相同条件下过程无限运行下去产生的每一项构成。 在这种情况下,对总体内所有项排列是不可能的。
14
点估计
样本均值 51814.00美元 样本标准差
3347.72美元
样本比率 0.63
点估计的 统计过程
15
由30名管理人员组成的简单随机样本的点估计值
16
由30名管理人员组成的500个简单随机样本的点估计值
17
由30名管理人员组成的500个简单随机样本的抽样分布
• 抽样分布:样本统计量所有可能值构成的概率分布。
0.04 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988
抽样与抽样分布PPT-PPT精品文档
特点:
(1)遵循随机原则; (2)推断被调查对象的总体特征; (3)计算推断的准确性与可靠性。 江西财经大学统计学院
1
统计学
所谓抽样
第三章
抽样和抽样分布
抽签 编号 摇号 随机数字表
75 18 26 53 86
90 85 89 64 97
96 18 48 81 06
91 63 57 95 12
江西财经大学统计学院
7
统计学
第三章
抽样和抽样分布
[例]10人年龄资料如下。N=10 n=3。 人: A B C D E F G H I J 年龄: 5 8 12 40 42 46 48 70 72 76 分类: N1=3 N2=4 N3=3 N=10 1=2.87 2=3.16 3=2.49 =8.52 n1=? n2=? n3=? n=3 1、等额分配:n1= n2= n3= 1 2、等比例分配:n1/N1= n2/N2= … = n/N ∵ n/N =0.3 ∴n1/N1=0.3 n1=0.3×N1=0.3 ×3= 0.9 3、最优分配: i/ =ni/Ni ∵ 1/ =2.87/8.52=0.34 ∴ n1/N1=0.34 n1=0.34×3 =1.02 江西财经大学统计学院 8 二、抽样误差的计算
Z x
2
t 概率度 抽样平均误差 x n
s替代 不知 ˆ替代 p P不知
江西财经大学统计学院
3
x x x tx x x x tx
统计学
第三章
抽样和抽样分布
[例]某公司出口一种名茶,规定每包规格重量不低于150g,现用
x x P { x } 1 F ( t ) x x x x P { x x } 1 F ( t ) x x x x
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数估计也就是用样本统计量去估计总体的 参数。比如,用样本均值估计总体均值估计 总体均值,用样本方差估计总体方差,用样 本比例估计总体比例等。
用计来量估,计用总符体号参 数表的示统计量的名称,称为估
用来估计总体参数时计算出来的估计量的具 体数值,称为估计值
点估计与区间估计
参数估计的方法有点估计和区间估计 ◆(一)点估计
x 的分布形式与原有总体和样本容量n的大
小有关 .3 总体分布
.3 P ( x ) 抽样分布
.2
.2
.1
0 1
234
.1
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
= 2.5
σ2 =1.25
当总体服从正态分布N(μ, 2 )n时,样本均值的抽
样分布仍然是服从正态分布的,其均值仍为 μ , 方差为 ,即2 n样本均值的方差比原总体的方差 要小,而且样本容量n越大,方差越小。
点估计又称定值估计。它是用实际样本指标 数值代替总体指标数值,即总体平均数的点 估计值就是样本平均数,总体成数的点估计 值就是样本成数。这种估计不考虑是否有抽 样误差。
例如,对一批某种型号的电子元件10000只 进行耐用时间检查,随机抽取100只,测试的 平均耐用时间子元件的平均耐用时 间为1055小时,全部电子元件的合格率也是 91%。
.2
.1 0
1
234
现从总体中抽取n=2的简单随机样本,在重复抽样条件 下,共有42=16个样本。所有样本的结果为
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
2
2,1
2,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,1
4,2
4,3
4,4
计算出各样本的均值,如下表。并给 出样本均值的抽样分布
二、抽样方法
根据抽取样本的原则不同,抽样方法有概率 抽样和非概率抽样。
概率抽样的常用方法有: 1、 简单随机抽样 2、 分层抽样 3、 整群抽样
1、简单随机抽样
①从总体N个单位中随机地抽取n个单位作为 样本,使得每一个容量为n的样本都有相同的 机会(概率)被抽中
②抽取元素的具体方法有重复抽样和不重复抽样 ③特点:简单、直观,在抽样框完整时,可直接从中
1、总体分布
1)总体中各元素的观察值所形成的相对频数 (频率)分布
2)分布通常是未知的(因为几乎得不到总图 所有观察值)
3)可以(根据理论分析)假定它服从某种分 布
总体
2、样本分布
1)一个样本中各观察值的形成的相对频数 (频率)分布
2)也称经验分布 3)当样本容量n逐渐增大时,样本分布逐渐
总结:样本均值的抽样分布
样本均值的数学期望仍为μ 样本均值的方差(方差的概率意义在于刻画
了随机变量取值的分散程度。方差越小,随 随机变量的取值越集中在期望值附近。)
重复抽样
不重复抽样
(2)样本比例的抽样分布
总体中具有某种属性的单位数与总体全部单 位数之比称为总体比例,也称总体的成数, 记作 P。而样本中具有某种属性的单位数与 样本总数之比称为样本比例,或称样本成数, 记作 p 。
若从总体中随机抽取出容量为n的样本,发现 其中具有某种属性的单位数为m,则样本中 具有某种属性的单位的比例就为
p=m/n
样本比例是一个随机变量,当样本容量很大 时,近似地服从正态分布。其分布的数学期
望为总体的成数 P ,方差等于P1-P n,即:
p ~ NP,P1-P n
第二节 参数估计的基本方法
接近总体的分布
3、抽样分布
1)样本统计量的概率分布,是一种理论分布在重复 选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2)样本统计量是样本的函数,依据不同的样本计算 出来的值是不同的所以统计量是随机变量 样本均值, 样本比例,样本方差等
3)结果来自容量相同的所有可能样本
4)提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
(1)总体分布、样本均值的抽样分布
【例】设一个总体,含有4个元素(个体) ,即总 体单位数N=4。4 个个体分别为x1=1,x2=2 ,x3=3,x4=4 。总体分布、总体的均值、方 差及分布如下
总体分布
.3
2 =1.25
= 2.5 X
总体分布
上述结论是对正态总体而言的,不过实际上, 即使对于非正态总体而言,随着样本容量的 增加,的抽样分布也会近似地变成正态的。 事实上,只要样本足够大(通常要求样本容 量不小于45),即使是从非正态分布的总体 中抽样,根据统计学中的中心极限定理,样 本均值的抽样分布与从正态分布总体中的抽 样所得到的结果也近似相同。
16个样本的均值(
x
x n
)
第一个 观察值
第二个观察值
1
2
3
4
P(x) 0.3
0.2
1
1.0 1.5 2.0 2.5
0.1
2
1.5 2.0 2.5 3.0
0
3
2.0 2.5 3.0 3.5
4
2.5 3.0 3.5 4.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
样本均值的分布与总体分布的比较
抽取样本 ④局限性
当N很大时,不易构造抽样框,抽出的单位很分 散,给实施调查增加了困难,没有利用其他辅助 信息以提高估计的效率
2、分层抽样
①将抽样单位按某种特征或某种规则划分为 不同的层,然后从不同的层中独立、随机地 抽取样本
②优点
保证样本的结构与总体的结构比较相近,从而提高 估计的精度
组织实施调查方便 既可以对总体参数进行估计,也可以对各层的目标
量进行估计
3、整群抽样
①将总体中若干个单位合并为组(群),抽样时 直接抽取群,然后对中选群中的所有单位全 部实施调查
②特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便调查
的实施 缺点是估计的精度较差
三种不同性质的分布
三者之间有什么关
系?
1、总体分布 2、样本分布 3、抽样分布
第十章 抽样与抽样分布
第一节 抽样与抽样分布 第二节 参数估计的基本方法 第三节 总体参数的区间估计
第一节 抽样与抽样分布
一、抽样判断 二、抽样方法 三、抽样分布
一、抽样判断
◆什么叫抽样判断 从所研究的总体全部元素(单位)中抽取一 部分元素(单位)进行调查,并根据样本数 据所提供的信息来推断总体的数量特征叫样 本推断。
用计来量估,计用总符体号参 数表的示统计量的名称,称为估
用来估计总体参数时计算出来的估计量的具 体数值,称为估计值
点估计与区间估计
参数估计的方法有点估计和区间估计 ◆(一)点估计
x 的分布形式与原有总体和样本容量n的大
小有关 .3 总体分布
.3 P ( x ) 抽样分布
.2
.2
.1
0 1
234
.1
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
= 2.5
σ2 =1.25
当总体服从正态分布N(μ, 2 )n时,样本均值的抽
样分布仍然是服从正态分布的,其均值仍为 μ , 方差为 ,即2 n样本均值的方差比原总体的方差 要小,而且样本容量n越大,方差越小。
点估计又称定值估计。它是用实际样本指标 数值代替总体指标数值,即总体平均数的点 估计值就是样本平均数,总体成数的点估计 值就是样本成数。这种估计不考虑是否有抽 样误差。
例如,对一批某种型号的电子元件10000只 进行耐用时间检查,随机抽取100只,测试的 平均耐用时间子元件的平均耐用时 间为1055小时,全部电子元件的合格率也是 91%。
.2
.1 0
1
234
现从总体中抽取n=2的简单随机样本,在重复抽样条件 下,共有42=16个样本。所有样本的结果为
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
2
2,1
2,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,1
4,2
4,3
4,4
计算出各样本的均值,如下表。并给 出样本均值的抽样分布
二、抽样方法
根据抽取样本的原则不同,抽样方法有概率 抽样和非概率抽样。
概率抽样的常用方法有: 1、 简单随机抽样 2、 分层抽样 3、 整群抽样
1、简单随机抽样
①从总体N个单位中随机地抽取n个单位作为 样本,使得每一个容量为n的样本都有相同的 机会(概率)被抽中
②抽取元素的具体方法有重复抽样和不重复抽样 ③特点:简单、直观,在抽样框完整时,可直接从中
1、总体分布
1)总体中各元素的观察值所形成的相对频数 (频率)分布
2)分布通常是未知的(因为几乎得不到总图 所有观察值)
3)可以(根据理论分析)假定它服从某种分 布
总体
2、样本分布
1)一个样本中各观察值的形成的相对频数 (频率)分布
2)也称经验分布 3)当样本容量n逐渐增大时,样本分布逐渐
总结:样本均值的抽样分布
样本均值的数学期望仍为μ 样本均值的方差(方差的概率意义在于刻画
了随机变量取值的分散程度。方差越小,随 随机变量的取值越集中在期望值附近。)
重复抽样
不重复抽样
(2)样本比例的抽样分布
总体中具有某种属性的单位数与总体全部单 位数之比称为总体比例,也称总体的成数, 记作 P。而样本中具有某种属性的单位数与 样本总数之比称为样本比例,或称样本成数, 记作 p 。
若从总体中随机抽取出容量为n的样本,发现 其中具有某种属性的单位数为m,则样本中 具有某种属性的单位的比例就为
p=m/n
样本比例是一个随机变量,当样本容量很大 时,近似地服从正态分布。其分布的数学期
望为总体的成数 P ,方差等于P1-P n,即:
p ~ NP,P1-P n
第二节 参数估计的基本方法
接近总体的分布
3、抽样分布
1)样本统计量的概率分布,是一种理论分布在重复 选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2)样本统计量是样本的函数,依据不同的样本计算 出来的值是不同的所以统计量是随机变量 样本均值, 样本比例,样本方差等
3)结果来自容量相同的所有可能样本
4)提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
(1)总体分布、样本均值的抽样分布
【例】设一个总体,含有4个元素(个体) ,即总 体单位数N=4。4 个个体分别为x1=1,x2=2 ,x3=3,x4=4 。总体分布、总体的均值、方 差及分布如下
总体分布
.3
2 =1.25
= 2.5 X
总体分布
上述结论是对正态总体而言的,不过实际上, 即使对于非正态总体而言,随着样本容量的 增加,的抽样分布也会近似地变成正态的。 事实上,只要样本足够大(通常要求样本容 量不小于45),即使是从非正态分布的总体 中抽样,根据统计学中的中心极限定理,样 本均值的抽样分布与从正态分布总体中的抽 样所得到的结果也近似相同。
16个样本的均值(
x
x n
)
第一个 观察值
第二个观察值
1
2
3
4
P(x) 0.3
0.2
1
1.0 1.5 2.0 2.5
0.1
2
1.5 2.0 2.5 3.0
0
3
2.0 2.5 3.0 3.5
4
2.5 3.0 3.5 4.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
样本均值的分布与总体分布的比较
抽取样本 ④局限性
当N很大时,不易构造抽样框,抽出的单位很分 散,给实施调查增加了困难,没有利用其他辅助 信息以提高估计的效率
2、分层抽样
①将抽样单位按某种特征或某种规则划分为 不同的层,然后从不同的层中独立、随机地 抽取样本
②优点
保证样本的结构与总体的结构比较相近,从而提高 估计的精度
组织实施调查方便 既可以对总体参数进行估计,也可以对各层的目标
量进行估计
3、整群抽样
①将总体中若干个单位合并为组(群),抽样时 直接抽取群,然后对中选群中的所有单位全 部实施调查
②特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便调查
的实施 缺点是估计的精度较差
三种不同性质的分布
三者之间有什么关
系?
1、总体分布 2、样本分布 3、抽样分布
第十章 抽样与抽样分布
第一节 抽样与抽样分布 第二节 参数估计的基本方法 第三节 总体参数的区间估计
第一节 抽样与抽样分布
一、抽样判断 二、抽样方法 三、抽样分布
一、抽样判断
◆什么叫抽样判断 从所研究的总体全部元素(单位)中抽取一 部分元素(单位)进行调查,并根据样本数 据所提供的信息来推断总体的数量特征叫样 本推断。