高考数学椭圆与双曲线的经典性质
椭圆、双曲线、抛物线知识总结
![椭圆、双曲线、抛物线知识总结](https://img.taocdn.com/s3/m/399231d401f69e314232943e.png)
一.椭圆二.双曲线四.椭圆、双曲线及抛物线的性质对比(焦点在x轴上)名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2︱)|PF|= 点F不在直线l上,PM⊥l于M标准方程12222=+byax(a>b>0)12222=-byax(a>0,b>0)y2=2px(p>0)图象几何性质范围byax≤≤,ax≥0≥x顶点),0(),0,(ba±±)0,(a±(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0 ))0,2(p轴长轴长2a,短轴长2b实轴长2a,虚轴长2b准线cax2±=2px-=通径abAB22=pAB2=渐近线xaby±=...——知识就是力量,学海无涯苦作舟!——不要担心知识没有用,知识多了,路也好选择,也多选择。
比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说了。
再比如,有了知识,你也可以随时炒老板。
高中所有数学公式、高考数学椭圆与双曲线的经典性质50条、三角函数公式大全
![高中所有数学公式、高考数学椭圆与双曲线的经典性质50条、三角函数公式大全](https://img.taocdn.com/s3/m/0eaf2737a45177232f60a2e7.png)
高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n-个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假5 常见结论的否定形式;原结论 反设词 原结论反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个大于 不大于 至少有n 个 至多有(1n -)个 小于 不小于 至多有n 个 至少有(1n +)个 对所有x ,成立 存在某x ,不成立p 或q p ⌝且q ⌝对任何x ,不成立 存在某x ,成立p 且q p ⌝或q ⌝6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题 若p则q 若q则p 互 互互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)
![高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)](https://img.taocdn.com/s3/m/9d678a2c0c22590103029d53.png)
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
高考数学椭圆与双曲线的经典性质技巧归纳总结
![高考数学椭圆与双曲线的经典性质技巧归纳总结](https://img.taocdn.com/s3/m/48769b1552d380eb62946d21.png)
椭圆的定义、性质及标准方程高三数学备课组 刘岩老师1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤, x b y a ≤≤, 顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e a ce )10(<<=e a ce 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
高考数学中的椭圆形与双曲线
![高考数学中的椭圆形与双曲线](https://img.taocdn.com/s3/m/d159e94202d8ce2f0066f5335a8102d277a26141.png)
高考数学中的椭圆形与双曲线椭圆形和双曲线是高中数学中的一些重要知识点,而在高考数学中,也是经常被考察的难点。
这些曲线形状各异,但是在多年的教学实践中,我们可以发现它们之间存在着一些共性和联系。
本文将从这些方面对椭圆形和双曲线进行深入的探讨。
一、基本概念首先,我们需要明确椭圆形和双曲线的基本概念。
椭圆形是一个闭合曲线,通常可以看做一个长方形的两个顶点之间的点集。
这个长方形的长短轴分别为a和b,其方程一般写作(x²/a²)+(y²/b²)=1。
而双曲线则是两个分离曲线连成的一个形状,一般来说,它可以看做平面上所有离定点F1和F2距离之差等于2a的点的集合。
它的方程一般写作(x²/a²)-(y²/b²)=1。
二、椭圆形和双曲线的公共特征虽然椭圆形和双曲线的形状差别很大,但是它们在数学理论中是非常相似的。
这是因为它们都属于一类称为“锥体曲线”的曲线。
锥体曲线的一个基本特征是它们是由一个截面与一个两端都有点的圆锥相交而形成的。
具体来说,椭圆形和双曲线都可以看做锥体曲线中的一种,它们的方程都可以写成像上文中提到的那样的标准式。
此外,它们也有一些共性特征,比如都具有对称性等等。
三、椭圆形和双曲线的不同特征虽然椭圆形和双曲线有不少共性特征,但是它们之间的不同点也是很明显的。
首先,我们可以看到它们的形状就不同,椭圆形是一个闭合的几何形状,而双曲线则是一个开口向两侧的形状。
另外,它们的方程也有差别,椭圆形的方程是一个含有加号的二次函数,而双曲线的方程则是一个含有减号的二次函数。
这就导致它们的奇点也不同,椭圆形的奇点在轴的两端,而双曲线的奇点则是在焦点F1和F2处。
四、高考数学中的应用在高考数学中,椭圆形和双曲线都是比较重要的知识点,经常会被考察到。
这时候,学生需要掌握一些相关方法和技巧,比如化简方程、求极值、求导数等等。
举个例子来说,如果考到一道关于椭圆形的题目,比如给出某个椭圆形的方程,要求求出其长短轴长度或者离心率等参数,学生需要使用相关的数学方法进行求解。
高考数学:专题五 第二讲 椭圆、双曲线、抛物线课件
![高考数学:专题五 第二讲 椭圆、双曲线、抛物线课件](https://img.taocdn.com/s3/m/59808647852458fb770b5658.png)
考点与考题
第二讲
本 讲 栏 目 开 关
图形
考点与考题
范围 顶点 对称性 |x|≤a,|y|≤b (± a,0)(0,± b) |x|≥a (± a,0) x≥0 (0,0)
第二讲
关于 x 轴,y 轴和原点对称 (± c,0) 长轴长 2a, 短轴长 2b c e=a b2 = 1- 2 a (0<e<1) 实轴长 2a, 虚轴长 2b c e=a b2 = 1+ 2 a (e>1)
解析 由 x2-y2=2 知,a2=2,b2=2,c2=a2+b2=4,
∴a= 2,c=2.
又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,
∴|PF1|=4 2,|PF2|=2 2.
又∵|F1F2|=2c=4,
4 22+2 22-42 ∴由余弦定理得 cos∠F1PF2= 2×4 2×2 2 3 = . 4
∴直线 AF 的方程为 y=2 2(x-1). y=2 2x-1, 联立直线与抛物线的方程 2 y =4x,
1 x=2, x= , 2 解之得 或 y=2 2. y=- 2 1 由图知 B2,- 2,
考点与考题
1 1 ∴S△AOB= |OF|· A-yB|= ×1×|2 2+ 2| |y 2 2 3 = 2.故选 C. 2
答案 2 7-5
题型与方法
第二讲
方法提炼 何性质.
研究圆锥曲线的几何性质,实质是求参数a、b、c或者
建立a、b、c的关系式(等式或不等式),然后根据概念讨论相应的几
本 讲 栏 目 开 关
题型与方法
第二讲
本 讲 栏 目 开 关
变式训练 2 (1)若点 P 为共焦点的椭圆 C1 和双曲线 C2 的一个交点, F1、F2 分别是它们的左、右焦点,设椭圆离心率为 e1,双曲线离心率 1 1 → → 为 e2,若PF1· 2=0,则 2+ 2等于 PF (B ) e1 e2 A.1 B.2 C.3 D.4
高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲
![高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲](https://img.taocdn.com/s3/m/20487c224a73f242336c1eb91a37f111f1850d6e.png)
高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。
(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。
说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。
2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。
其渐近线方程为y=±x 。
等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。
5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。
高考数学中的椭圆与双曲线
![高考数学中的椭圆与双曲线](https://img.taocdn.com/s3/m/052fdf23cd7931b765ce0508763231126edb77d9.png)
高考数学中的椭圆与双曲线数学作为一门学科,对于很多学生而言,可能是他们最头疼的科目。
高考作为人生中重要的一环,数学自然占据了其中一个不可忽视的位置。
而高考中,椭圆与双曲线也是学生们必须掌握的知识点之一。
椭圆与双曲线本质上都是代数曲线中的一种,出现的历史可以追溯到17世纪。
椭圆是平面内到两个固定点距离之和等于一定常量的点的轨迹,而双曲线是平面内到两个固定点距离之差等于一定常量的点的轨迹。
在高中数学中,我们主要研究二次曲线中的椭圆和双曲线。
椭圆具有很多特殊的性质,它们可以用来解决一系列的实际问题。
例如,对于跑道的设计,椭圆形状的室外跑道能够使得运动员在不同距离的地方跑得相同,这是因为椭圆曲线能够保证围绕其中心点走过的距离都是相等的。
除此之外,椭圆还具有很多其他有趣的几何性质,例如焦点定理、反射定理等等。
在高考中,我们需要掌握椭圆的标准方程、参数方程、中心、长轴、短轴、焦点、离心率等一系列相关概念和性质。
对于一些笔试题目,我们需要运用这些知识点去解题。
例如找出椭圆的中心、焦点等等。
同样的,双曲线也有很多特殊的性质。
双曲线的几何形状提供了数学对世界的一种描述方式,它广泛应用于物理力学、天文学和工程学中的各种问题。
在高考中,我们需要掌握双曲线的标准方程、参数方程、中心、长轴、短轴、焦点、离心率等一系列相关概念和性质。
同时,我们还需要运用相关知识,解决一些实际问题的数学难题。
椭圆与双曲线虽然在数学上有很多特殊性质,但是它们在实际生活中应用却是非常广泛的。
在物理上,椭圆被应用于描述行星、卫星、电子轨迹等等;而双曲线则被应用于描述真实世界中的许多物理现象,如牛顿定律、惯性导航等等。
总之,在高考中,要掌握好椭圆与双曲线的有关知识点和相关问题的解题方法。
这不仅对于考试有好处,更重要的是,它们是实际工作中的一种重要工具,能够帮助我们更好地理解和解决问题。
曲线在高考数学中的分析
![曲线在高考数学中的分析](https://img.taocdn.com/s3/m/5db03ff59fc3d5bbfd0a79563c1ec5da50e2d6b8.png)
曲线在高考数学中的分析高考数学中的曲线是一个重要而复杂的话题,它是解决关于函数、方程和几何的问题的必要工具。
曲线的研究需要涉及到解析几何、微积分、微分方程等知识,因此也成为了学生们备考高考的必修内容。
接下来,本文将从曲线的定义、性质、应用等方面进行分析。
一、曲线的基本概念曲线是指连续的点所组成的轨迹,通常用公式来表示。
在高考数学中,常见的曲线有直线、圆、椭圆、抛物线、双曲线等。
这些曲线都有其独特的性质和特点,需要我们掌握和理解。
二、曲线的性质不同的曲线有不同的性质,下面以常见的曲线为例进行简要说明:1、直线直线是最基本的曲线,它在解决几何问题中起到了重要的作用。
直线有以下两个基本性质:(1)一条直线可以由两个点唯一确定;(2)两条不重合的直线有且仅有一个交点。
2、圆圆是一个弧度为2π的曲线,它有以下几个性质:(1)圆上任意两点之间的弧长相等;(2)半径相等的圆互相等价;(3)圆的内切线与半径垂直。
3、椭圆椭圆是一个中心对称的曲线,它的性质有以下几个:(1)椭圆上任意一点P到两个焦点的距离之和等于定值2a;(2)椭圆的离心率为e=c/a,其中c为焦距,a为半长轴。
4、抛物线抛物线是一个非常特殊的曲线,它的性质有以下几个:(1)抛物线是关于其对称轴对称的;(2)抛物线的焦距等于1/4抛物线弦长;(3)抛物线与其对称轴之间的距离为横坐标的平方与纵坐标之比。
5、双曲线双曲线是一个复杂但广泛应用的曲线,它的性质有以下几个:(1)双曲线的两个渐近线之间的距离为2a;(2)双曲线上的任意一点到两个焦点之间的距离之差等于定值2c。
三、曲线的应用曲线在高考中的应用非常广泛,在各个学科中都有其应用范畴。
下面以数学、物理、化学等学科为例,简要介绍曲线的应用:1、数学在数学中,曲线是解决函数、方程和几何等问题的必要工具。
我们需要用曲线来解决构造图形、求解方程组、求极值、求定积分等问题。
2、物理物理中涉及到的曲线主要有速度曲线、路程曲线、加速度曲线等。
高考数学中的椭圆与双曲线相关知识点详解
![高考数学中的椭圆与双曲线相关知识点详解](https://img.taocdn.com/s3/m/548c65df541810a6f524ccbff121dd36a32dc4e6.png)
高考数学中的椭圆与双曲线相关知识点详解椭圆和双曲线是高中数学中非常重要的概念,它们在解决几何问题和代数问题中都有广泛的应用。
在高考数学中,椭圆和双曲线都是重点考查的内容,因此对于这两个概念,学生需要掌握其相关知识点。
一、椭圆的定义与特征椭圆是平面上一点集合,其到两个不同定点的距离之和等于常数,这两个定点叫做椭圆的焦点。
椭圆上任意一点到这两个定点的距离之和等于椭圆上任意一点到其所在直线的垂足的距离之和。
根据椭圆的定义,我们可以得出以下特征:1. 椭圆上任意一点到两个焦点的距离之和等于常数2a;2. 椭圆的两个直径的长度之和为常数2a;3. 椭圆的两条焦弦的长度之和为常数2a;4. 椭圆的中心点位于两个焦点的中垂线上,中心到两个焦点的距离之和等于常数2a。
二、双曲线的定义与特征双曲线是平面上一点集合,其到两个不同定点的距离之差等于常数。
这两个定点叫做双曲线的焦点。
在双曲线上任意一点到这两个定点的距离之差等于椭圆上任意一点到其所在直线的垂足的距离之差。
双曲线的定义可以得出以下特征:1. 双曲线上任意一点到两个焦点的距离之差等于常数2a;2. 双曲线的两个直径的长度之差为常数2a;3. 双曲线的两条焦弦的长度之差为常数2a。
三、椭圆和双曲线的方程椭圆和双曲线都可以用方程表示。
以椭圆为例,如果椭圆的中心点为(h,k),椭圆的长轴长度为2a,短轴长度为2b,那么椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1而双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,a和b分别代表长轴的长度和短轴的长度。
当a²> b²时,方程表示的是椭圆;当a² < b²时,方程表示的是双曲线;当a² = b²时,方程表示的是圆。
四、椭圆和双曲线的参数方程椭圆和双曲线的参数方程也可以帮助我们更好地了解它们的特征。
数学(理)高考二轮复习:专题五第二讲《椭圆、双曲线、抛物线的定义、方程与性质》课件(共46张PPT)
![数学(理)高考二轮复习:专题五第二讲《椭圆、双曲线、抛物线的定义、方程与性质》课件(共46张PPT)](https://img.taocdn.com/s3/m/32b5a3ec951ea76e58fafab069dc5022aaea4631.png)
a2+b2=25
a2=20
依题意1=ba×2
,解得b2=5 ,∴双曲线 C 的方程为
2x02 -y52=1.
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短 限时规范训练 上页 下页
试题
通解 优解
考点一
考点二
考点三
2.设 F1,F2 分别为椭圆x42+y2=1 的左、右焦点,点 P 在椭圆上,
第二讲 椭圆、双曲线、抛物线的定义、方程与性质 课前自主诊断 课堂对点补短
考点三 直线与椭圆、双曲线、抛物线的位置关系
限时规范训练 上页 下页
试题
解析
考点一 考点二
考点三
6.(2016·高考全国Ⅰ卷)设圆 x2+y2+2x-15=0 的圆心为 A,直 线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E. (1)证明|EA|+|EB|为定值,并写出点 E 的轨迹方程; (2)设点 E 的轨迹为曲线 C1,直线 l 交 C1 于 M,N 两点,过 B 且 与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积 的取值范围.
10,点 P(2,1)在 C 的一条渐近线上,则 C 的方程为( A )
A.2x02 -y52=1
B.x52-2y02 =1
C.8x02-2y02 =1
D.2x02-8y02 =1
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短
限时规范训练 上页 下页
试题
解析
考点一 考点二 考点三
长即可表示出面积,解方程求 b 即可. 由题意知双曲线的渐近线方程为 y=±b2x,圆的方程为 x2+y2=4,
高考双曲线椭圆知识点
![高考双曲线椭圆知识点](https://img.taocdn.com/s3/m/2e4ff07e590216fc700abb68a98271fe900eaf42.png)
高考双曲线椭圆知识点高考是每个中国学生都必须面对的一场考试,而数学是高考中最为重要的一门科目之一。
在数学中,双曲线和椭圆是高考中重要的知识点。
本文将从双曲线和椭圆的定义、性质以及应用方面进行探讨。
首先,我们先来了解一下双曲线的基本概念。
双曲线是一类曲线,它在平面上可以被定义为满足一定条件的点的集合。
在笛卡尔坐标系中,双曲线的方程可以写为Ax^2 + By^2 = C,其中A、B、C为常数,A和B不能同时为0。
双曲线有两支,分别位于x轴的两侧,并且曲线与x轴的交点称为双曲线的顶点。
双曲线具有一些重要的性质。
首先,双曲线与x轴和y轴的关系是不对称的,也就是说,如果一点(x, y)在双曲线上,那么它的对称点(-x, y)也在双曲线上。
其次,双曲线的两支在无穷远处趋于与x轴平行的直线,这个直线称为双曲线的渐近线。
另外,双曲线还具备焦点和准线的概念。
焦点是双曲线上的一个特殊点,具有一定的几何性质,而准线是与双曲线有特殊关系的一条直线。
接下来,让我们转移到椭圆的知识点。
椭圆是平面上一类特殊的曲线,它的定义与双曲线有所不同。
在笛卡尔坐标系中,椭圆的方程为(x/a)^2 + (y/b)^2 = 1,其中a和b分别为椭圆的长轴和短轴。
椭圆的形状由长轴和短轴的长度所决定,当长轴的长度大于短轴的长度时,椭圆看起来更加扁平,反之则更加延长。
和双曲线一样,椭圆也具备一些重要的性质。
首先,椭圆与x轴和y轴对称,也就是说,如果一点(x, y)在椭圆上,那么它的对称点(-x, y)、(x, -y)、(-x, -y)也都在椭圆上。
其次,椭圆有两个焦点,它们与椭圆上的任意一点的距离之和是一个常数。
此外,椭圆的长轴和短轴的长度也决定了椭圆的离心率,离心率为0时,椭圆退化为一个圆。
不仅如此,双曲线和椭圆在现实生活中也有一些应用。
例如,在物理学中,双曲线和椭圆可以用来描述行星的轨道和天体的弹道。
此外,在工程中,双曲线和椭圆也常常用来设计桥梁和道路的曲线。
高中数学高考总复习---双曲线及其性质知识讲解及考点梳理
![高中数学高考总复习---双曲线及其性质知识讲解及考点梳理](https://img.taocdn.com/s3/m/6a60cacfcfc789eb162dc843.png)
;
(4)渐近线:
.
考点四、有关双曲线的渐近线的问题 (1)已知双曲线方程求渐近线方程:
若双曲线方程为
渐近线方程
(2)已知渐近线方程求双曲线方程:
若渐近线方程为
双曲线可设为
2
(3)若双曲线与 ,焦点在 y 轴上)
(4)特别地当
有公共渐近线,可设为
(
,焦点在 轴上,
离心率
两渐近线互相垂直,分别为
,此时双曲线为
【解析】依题意设双曲线方程为
由已知得 又双曲线过点
, ,∴
∴
3
故所求双曲线的方程为
.
【总结升华】先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程, 再利用待定系数法确定 、 .
举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.
(1)一渐近线方程为
,且双曲线过点
.
(2)虚轴长与实轴长的比为 【解析】
,焦距为 10.
(1)依题意知双曲线两渐近线的方程是
,故设双曲线方程为
,
∵点
在双曲线上,
∴
,解得
,
∴所求双曲线方程为
.
(2)由已知设 依题意
,
,则
,解得 .
()
∴双曲线方程为
或
.
类型二:双曲线的焦点三角形
例 2.中心在原点,焦点在 x 轴上的一个椭圆与双曲线有共同焦点 和 ,且
;
当 的系数为正时,焦点在 轴上,双曲线的焦点坐标为
,
.
考点三、双曲线的简单几何性质
双曲线
的简单几何性质
(1)范围:
(2)焦点
,顶点
高考数学二轮复习考点知识与题型专题讲解51---椭圆、双曲线的二级结论的应用
![高考数学二轮复习考点知识与题型专题讲解51---椭圆、双曲线的二级结论的应用](https://img.taocdn.com/s3/m/6521811e443610661ed9ad51f01dc281e53a5662.png)
高考数学二轮复习考点知识与题型专题讲解 第51讲 椭圆、双曲线的二级结论的应用椭圆、双曲线是高中数学的重要内容之一,知识的综合性较强,因而解题时需要运用多种基础知识,采用多种数学手段,熟记各种定义、基本公式.法则固然很重要,但要做到迅速、准确地解题,还要掌握一些常用结论,正确灵活地运用这些结论,一些复杂的问题便能迎刃而解.考点一 焦点三角形核心提炼焦点三角形的面积公式:P 为椭圆(或双曲线)上异于长轴端点的一点,F 1,F 2且∠F 1PF 2=θ, 则椭圆中12PF F S △=b 2·tan θ2,双曲线中12PF F S △=b 2tanθ2. 例1(2022·临川模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其左、右焦点分别为F 1,F 2,其离心率为e =12,点P 为该椭圆上一点,且满足∠F 1PF 2=π3,已知△F 1PF 2的内切圆的面积为3π,则该椭圆的长轴长为( )A .2B .4C .6D .12 答案 D解析 由e =12,得c a =12,即a =2c .①设△F 1PF 2的内切圆的半径为r , 因为△F 1PF 2的内切圆的面积为3π, 所以πr 2=3π,解得r =3(舍负),在△F 1PF 2中,根据椭圆的定义及焦点三角形的面积公式,知12F PF S △=b 2tan ∠F 1PF 22=12r (2a +2c ),即33b 2=3(a +c ),② 又a 2=b 2+c 2,③联立①②③得c =3,a =6,b =33, 所以该椭圆的长轴长为2a =2×6=12. 易错提醒 (1)要注意公式中θ的含义. (2)椭圆、双曲线的面积公式不一样,易混淆.跟踪演练1 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B. 3C.32D.62 答案 D解析 设双曲线C 2的方程为x 2a 22-y 2b 22=1,则有a 22+b 22=c 22=c 21=4-1=3.又四边形AF 1BF 2为矩形, 所以△AF 1F 2的面积为b 21tan 45°=b 22tan 45°, 即b 22=b 21=1.所以a 22=c 22-b 22=3-1=2.故双曲线的离心率e =c 2a 2=32=62.考点二 焦半径的数量关系核心提炼焦半径的数量关系式:直线l 过焦点F 与椭圆相交于A ,B 两点,则1|AF |+1|BF |=2ab 2,同理,双曲线中,1|AF |+1|BF |=2a b 2.例2 已知双曲线C 的左、右焦点分别为F 1(-7,0),F 2(7,0),过F 2的直线与C 的右支交于A ,B 两点.若AF 2--→=2F 2B --→,|AB |=|F 1B |,则双曲线C 的方程为________. 答案x 23-y 24=1解析 如图,令|F 2B |=t ,则|AF 2|=2t ,∴|AB |=3t ,|F 1B |=3t , 又1|AF 2|+1|BF 2|=2a b2, ∴12t +1t =2a b 2, 即32t =2a b2, 又|F 1B |-|F 2B |=2a ,∴3t -t =2a ,∴2t =2a ,∴t =a , ∴32a =2ab 2,即3b 2=4a 2, 又c =7,∴a 2+b 2=7, 解得b 2=4,a 2=3,故双曲线C 的方程为x 23-y 24=1.易错提醒 公式的前提是直线AB 过焦点F ,焦点F 不在直线AB 上时,公式不成立.跟踪演练2 已知椭圆C :x 216+y 24=1,过右焦点F 2的直线交椭圆于A ,B 两点,且|AF 2|=2,则|AB |=______,cos ∠F 1AB =________. 答案83 -13解析 由椭圆方程知a =4,b =2,|AF 2|=2,又1|AF 2|+1|BF 2|=2a b2, 即12+1|BF 2|=84, 解得|BF 2|=23,∴|AB |=|AF 2|+|BF 2|=83,由椭圆定义知|AF 1|=8-2=6, |BF 1|=8-23=223,在△AF 1B 中,由余弦定理,得 cos ∠F 1AB =62+⎝⎛⎭⎫832-⎝⎛⎭⎫22322×6×83=-13.考点三 周角定理核心提炼周角定理:已知点P 为椭圆(或双曲线)上异于顶点的任一点,A ,B 为长轴(或实轴)端点,则椭圆中k P A ·k PB =-b 2a 2,双曲线中k P A ·k PB =b 2a2.例3 已知椭圆C :x 22+y 2=1的左、右两个顶点为A ,B ,点M 1,M 2,…,M 5是AB 的六等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10,这10条直线的斜率乘积为( ) A .-116B .-132C.164D.11 024 答案 B解析 由椭圆的性质可得11·AP BP k k=22·AP BP k k =-b 2a2=-12.由椭圆的对称性可得11010111012·.BP AP BP AP AP AP k k k k k k =-=,=,同理可得293847561····=.2AP AP AP AP AP AP AP AP k k k k k k k k -===∴直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为⎝⎛⎭⎫-125=-132. 规律方法 周角定理的推广:A ,B 两点为椭圆(双曲线)上关于原点对称的两点,P 为椭圆(双曲线)上异于A ,B 的任一点,则椭圆中k P A ·k PB =-b 2a 2,双曲线中k P A ·k PB =b 2a2.跟踪演练3 设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上、下顶点分别为A ,B ,直线AF 2与该椭圆交于A ,M 两点,若∠F 1AF 2=90°,则直线BM 的斜率为( ) A.13 B.12 C .-1 D .-12 答案 B解析 ∵∠F 1AF 2=90°,∴△F 1AF 2为等腰直角三角形,∴b =c , ∴a 2=2b 2=2c 2, ∴b 2a 2=12, 且∠AF 2O =45°,∴k MA =-1, 又k MA ·k MB =-b 2a 2=-12,∴k MB =12.考点四 过圆锥曲线上点的切线方程核心提炼已知点P (x 0,y 0)为椭圆(或双曲线)上任一点,则过点P 与圆锥曲线相切的切线方程为椭圆中x 0x a 2+y 0yb 2=1,双曲线中x 0x a 2-y 0yb 2=1.例4 已知椭圆C :x 24+y 2=1.如图,设直线l 与圆O :x 2+y 2=R 2(1<R <2)相切于点A ,与椭圆C 相切于点B ,则|AB |的最大值为________.答案 1解析 连接OA ,OB ,如图所示.设B (x 0,y 0),所以过点B 与椭圆相切的直线方程为x 0x4+y 0y =1,即x 0x +4y 0y -4=0, 又R 2=|OA |2=16x 20+16y 20, R 为圆半径,R ∈(1,2),|AB |2=|OB |2-R 2=x 20+y 20-16x 20+16y 20, 又x 24+y 20=1, 所以x 20=4-4y 20,所以|AB |2=4-3y 20-43y 20+1=5-(3y 20+1)-43y 20+1≤5-24=1,当且仅当3y 20+1=43y 20+1,即y 20=13,x 20=83时,等号成立, 所以|AB |max =1, 此时R 2=16x 20+16y 20=2,即R =2∈(1,2), 故当R =2时,|AB |max =1.规律方法 (1)该切线方程的前提是点P 在圆锥曲线上.(2)类比可得过圆(x -a )2+(y -b )2上一点P (x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )·(y -b )=1. 跟踪演练4 已知F 为椭圆C :x 23+y 22=1的右焦点,点A 是直线x =3上的动点,过点A 作椭圆C的切线AM ,AN ,切点分别为M ,N ,则|MF |+|NF |-|MN |的值为( ) A .3 B .2 C .1 D .0 答案 D解析 由已知可得F (1,0), 设M (x 1,y 1),N (x 2,y 2),A (3,t )则切线AM ,AN 的方程分别为x 1x 3+y 1y2=1,x 2x 3+y 2y2=1, 因为切线AM ,AN 过点A (3,t ), 所以x 1+ty 12=1,x 2+ty 22=1,所以直线MN 的方程为x +ty2=1,因为F (1,0), 所以1+t ×02=1,所以点F (1,0)在直线MN 上, 所以M ,N ,F 三点共线, 所以|MF |+|NF |-|MN |=0.专题强化练1.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上一点P 作双曲线C 的切线l ,若直线OP 与直线l 的斜率均存在,且斜率之积为25,则双曲线C 的离心率为( )A.295 B.303 C.355 D.305答案 C解析 设P (x 0,y 0),由于双曲线C 在点P (x 0,y 0)处的切线方程为xx 0a 2-yy 0b 2=1,故切线l 的斜率k =b 2x 0a 2y 0,因为k ·k OP =25,则b 2x 0a 2y 0·y 0x 0=25,则b 2a 2=25, 即双曲线C 的离心率e =1+25=355.2.(2022·保定模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l :y =kx (k ≠0)与C 交于M ,N 两点,且四边形MF 1NF 2的面积为8a 2.若点M 关于点F 2的对称点为M ′,且|M ′N |=|MN |,则C 的离心率是( ) A. 3 B. 5 C .3 D .5 答案 B解析 如图,由对称性知MN 与F 1F 2互相平分,∴四边形MF 2NF 1为平行四边形, ∵F 2为MM ′的中点,且|MN |=|M ′N |, ∴NF 2⊥MF 2,∴四边形MF 2NF 1为矩形,∴1224NF F S a △=,又12NF F S △=b 2tanπ4=4a 2,即b 2=4a 2,∴c 2-a 2=4a 2,即c 2=5a 2,即e =ca= 5.3.椭圆C :x 29+y 24=1的左、右焦点分别为F 1,F 2,过F 2作直线交椭圆于A ,B 两点,且AF 2--→=2F 2B --→,则△AF 1B 的外接圆面积为( ) A.5π2B .4π C .9π D.25π4答案 D解析 如图,a =3,b =2,c =5,令|F 2B |=t ,则|AF 2|=2t , ∵1|AF 2|+1|BF 2|=2a b2, ∴1t +12t =32⇒t =1, ∴|BF 2|=1,|AF 2|=2,由椭圆定义知|BF 1|=5,|AF 1|=4,∴△ABF 1中,|AB |=3,|AF 1|=4,|BF 1|=5, ∴AF 1⊥AB ,∴△ABF 1外接圆半径R =|BF 1|2=52,其面积为25π4.4.(2022·石家庄模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过原点O 的直线交C 于A ,B 两点(点B在右支上),双曲线右支上一点P (异于点B )满足BA →·BP →=0,直线P A 交x 轴于点D ,若∠ADO =∠AOD ,则双曲线C 的离心率为( ) A. 2 B .2 C. 3 D .3答案 A解析 如图,∵BA →·BP →=0,∴BA ⊥BP ,令k AB =k ,∵∠ADO =∠AOD ,∴k AP =-k AB =-k ,又BA ⊥BP ,∴k PB =-1k, 依题意知k PB ·k P A =b 2a 2, ∴-1k ·(-k )=b 2a 2, ∴b 2a 2=1,即e = 2. 5.(多选)(2022·济宁模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是C 上异于A 1,A 2的一点,则下列结论正确的是( )A .若C 的离心率为12,则直线P A 1与P A 2的斜率之积为-43B .若PF 1⊥PF 2,则△PF 1F 2的面积为b 2C .若C 上存在四个点P 使得PF 1⊥PF 2,则C 的离心率的取值范围是⎝⎛⎭⎫0,22 D .若|PF 1|≤2b 恒成立,则C 的离心率的取值范围是⎝⎛⎦⎤0,35答案 BD解析 设P (x 0,y 0),所以x 20a 2+y 20b 2=1, ∵e =c a =12,∴a =2c ,∴a 2=43b 2, ∴12·PA PA k k =-b 2a 2=-34,∴选项A 错误;若PF 1⊥PF 2,△PF 1F 2的面积为b 2tan π4=b 2, ∴选项B 正确;若C 上存在四个点P 使得PF 1⊥PF 2,即C 上存在四个点P 使得△PF 1F 2的面积为b 2,∴12·2c ·b >b 2,∴c >b ,∴c 2>a 2-c 2, ∴e ∈⎝⎛⎭⎫22,1,∴选项C 错误; 若|PF 1|≤2b 恒成立,∴a +c ≤2b ,∴a 2+c 2+2ac ≤4b 2=4(a 2-c 2),∴5e 2+2e -3≤0,∴0<e ≤35,∴选项D 正确. 6.(多选)(2022·广州模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,P 为双曲线的左支上一点,且直线P A 1与P A 2的斜率之积等于3,则下列说法正确的是( )A .双曲线C 的离心率为2B .若PF 1⊥PF 2,且12PF F S △=3,则a =2C .以线段PF 1,A 1A 2为直径的两个圆外切D .若点P 在第二象限,则∠PF 1A 2=2∠P A 2F 1答案 ACD解析 对于A ,设P (x ,y ),则y 2=b 2⎝⎛⎭⎫x 2a 2-1, 因为A 1(-a ,0),A 2(a ,0),所以12·PA PA k k =b 2a 2=3, 得e =1+b 2a2=2,故A 正确; 对于B ,因为c a=2, 所以c =2a ,根据双曲线的定义可得|PF 2|-|PF 1|=2a ,又因为PF 1⊥PF 2,所以△PF 1F 2的面积为b 2tan π4=b 2=3, 又b 2a2=3,所以a =1,故B 错误; 对于C ,设PF 1的中点为O 1,O 为原点.因为OO 1为△PF 1F 2的中位线,所以|OO 1|=12|PF 2|=12(|PF 1|+2a )=12|PF 1|+a , 则可知以线段PF 1,A 1A 2为直径的两个圆外切,故C 正确;对于D ,设P (x 0,y 0),则x 0<-a ,y 0>0.因为e =2,所以c =2a ,b =3a ,则渐近线方程为y =±3x ,所以∠P A 2F 1∈⎝⎛⎭⎫0,π3, ∠PF 1A 2∈⎝⎛⎭⎫0,2π3. 又tan ∠PF 1A 2=y 0x 0+c =y 0x 0+2a ,tan ∠P A 2F 1=-y 0x 0-a, 所以tan 2∠P A 2F 1=-2y 0x 0-a 1-⎝⎛⎭⎫y 0x 0-a 2 =-2y 0(x 0-a )(x 0-a )2-y 20=-2y 0(x 0-a )(x 0-a )2-b 2⎝⎛⎭⎫x 20a 2-1 =-2y 0(x 0-a )(x 0-a )2-3a 2⎝⎛⎭⎫x 20a 2-1 =-2y 0(x 0-a )(x 0-a )2-3(x 20-a 2) =y 0x 0+2a=tan ∠PF 1A 2, 因为2∠P A 2F 1∈⎝⎛⎭⎫0,2π3, 所以∠PF 1A 2=2∠P A 2F 1,故D 正确.7.椭圆C :x 2a 2+y 2b 2=1(a >b >0)上存在两点M ,N 关于直线l :x -y +1=0对称,且线段MN 中点的纵坐标为-13,则椭圆的离心率e =________. 答案32解析 如图,设MN 的中点为Q ,∴y Q =-13, ∴x Q =y Q -1=-43,∴Q ⎝⎛⎭⎫-43,-13,∴k OQ =14, M ,N 关于直线l 对称,∴MN ⊥l ,∴k MN =-1,由点差法可得k MN =-b 2a 2·x Q y Q, 又k OQ =y Q x Q, ∴k OQ ·k MN =-b 2a 2, ∴14×(-1)=-b 2a 2,∴b 2a 2=14, 即a 2=4b 2=4(a 2-c 2),即3a 2=4c 2,∴e =32. 8.(2022·成都模拟)经过椭圆x 22+y 2=1中心的直线与椭圆相交于M ,N 两点(点M 在第一象限),过点M 作x 轴的垂线,垂足为点E ,设直线NE 与椭圆的另一个交点为P ,则cos ∠NMP 的值是________.答案 0解析 设M (x 1,y 1)(x 1>0,y 1>0),P (x 0,y 0),则N (-x 1,-y 1),E (x 1,0),所以k MN =y 1x 1,k PN =k EN =y 1+y 0x 1+x 0=y 12x 1, k PM =y 1-y 0x 1-x 0,k PN ×k PM =y 1-y 0x 1-x 0·y 1+y 0x 1+x 0=y 21-y 20x 21-x 20=-12,所以k PN =-12k PM =y12x 1, 所以k PM =-x1y 1.所以k MN ×k PM =y1x 1×⎝⎛⎭⎫-x 1y 1=-1, 所以MN ⊥MP ,所以cos ∠NMP =cos π2=0.。
高考数学(文科)总复习 9.4 双曲线及其性质
![高考数学(文科)总复习 9.4 双曲线及其性质](https://img.taocdn.com/s3/m/adc50649f18583d04864594e.png)
- a,设AB的中点为M(x0,y0),则kOM= b
y0= 2 y0 =
x0 2x0
y1 y2 =-
x1 x2
23,又知kAB=-1,∴-
3 2
×(-1)=- a ,∴ a =- 3 ,故选A. bb2
答案 A
方法技巧
方法1 求双曲线的标准方程的方法
1.定义法:由题目条件判断出动点轨迹是双曲线,由双曲线的定义确定 2a,2c,然后确定a2,b2的值,再结合焦点位置写出双曲线方程. 2.待定系数法:根据双曲线焦点的位置设出相应形式的标准方程,然后根 据条件列出关于a,b的方程组,解出a,b,从而写出双曲线的标准方程.
考点清单
考点一 双曲线的定义及其标准方程
考向基础 1.双曲线的定义 (1)双曲线的定义用符号表示为 ||MF1|-|MF2||=2a,其中2a<|F1F2|. (2)当|MF1|-|MF2|=2a时,轨迹为焦点F2所对应的双曲线的一支. 当|MF1|-|MF2|=-2a时,轨迹为焦点F1所对应的双曲线的一支. 当2a=|F1F2|时,轨迹为分别以F1、F2为端点的两条射线. 当2a>|F1F2|时,动点轨迹不存在.
x2 y2
过两个已知点,则双曲线方程可设为 m + n =1(mn<0),也可设为Ax2+By2= 1(AB<0).
例1 设双曲线与椭圆 x2 + y2 =1有共同的焦点,且与椭圆相交,其中一个 27 36
交点的坐标为( 15 ,4),则此双曲线的标准方程是
.
解析 解法一:椭圆 2x72 + 3y62 =1的焦点坐标是(0,±3),设双曲线方程为 ay22 -
的距离d= | 4 | ≤ 2 ,即2b2+8≥16,∴b2≥4,又知双曲线离心率e= c =
高中数学高考综合复习椭圆与双曲线
![高中数学高考综合复习椭圆与双曲线](https://img.taocdn.com/s3/m/3a5071c8dd36a32d727581dc.png)
高中数学高考综合复习椭圆与双曲线(总30页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学高考综合复习专题二十一椭圆与双曲线一、知识网络二、高考考点 1.椭圆与双曲线的定义、标准方程与几何性质; 2.有关圆锥曲线的轨迹(或轨迹方程)的探求; 3.直线与圆锥曲线的问题:对称问题;最值问题;范围问题等;4.圆锥曲线的探索性问题或应用问题;5.以圆锥曲线为主要内容的综合问题;6.数形结合、等价转化、分类讨论等数学思想方法以及数学学科能力、一般思维能力等基本能力。
三、知识要点(一)椭圆Ⅰ定义与推论1、定义1的的认知设M为椭圆上任意一点,分别为椭圆两焦点,分别为椭圆长轴端点,则有(1)明朗的等量关系:(解决双焦点半径问题的首选公式)(2)隐蔽的不等关系:,(寻求某些基本量取值范围时建立不等式的基本依据)2、定义2的推论根据椭圆第二定义,设为椭圆上任意一点,分别为椭圆左、右焦点,则有:(d1为点M到左准线l1的距离)(d2为点M到右准线l2的距离)由此导出椭圆的焦点半径公式:Ⅱ标准方程与几何性质1、椭圆的标准方程中心在原点,焦点在x轴上的椭圆标准方程①中心在原点,焦点在y轴上的椭圆标准方程②(1)标准方程①、②中的a、b、c具有相同的意义与相同的联系:(2)标准方程①、②统一形式:2、椭圆的几何性质(1)范围:(有界曲线)(2)对称性:关于x轴、y轴及原点对称(两轴一中心,椭圆的共性)(3)顶点与轴长:顶点,长轴2a,短轴2b(由此赋予a、b名称与几何意义)(4)离心率:刻画椭圆的扁平程度(5)准线:左焦点对应的左准线右焦点对应的右准线椭圆共性:两准线垂直于长轴;两准线之间的距离为;中心到准线的距离为;焦点到相应准线的距离为 .Ⅲ挖掘与引申1、具特殊联系的椭圆的方程(1)共焦距的椭圆的方程且(2)同离心率的椭圆的方程且2、弦长公式:设斜率为k的直线l与椭圆交于不同两点,则;或。
高考数学椭圆与双曲线的经典性质与结论
![高考数学椭圆与双曲线的经典性质与结论](https://img.taocdn.com/s3/m/9b88fd7a8e9951e79a89270d.png)
椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
高考数学复习:圆锥曲线
![高考数学复习:圆锥曲线](https://img.taocdn.com/s3/m/f67f66bcf9c75fbfc77da26925c52cc58bd690e7.png)
高考数学复习:圆锥曲线考点一:椭圆、双曲线、抛物线知识点1椭圆1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a >|F 1F 2|时,M 点的轨迹为椭圆;②当2a =|F 1F 2|时,M 点的轨迹为线段F 1F 2;③当2a <|F 1F 2|时,M 点的轨迹不存在.2、椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b2=1(a >b >0)图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:坐标轴;对称中心:原点顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)离心率e =ca,且e ∈(0,1)a ,b ,c 的关系c 2=a 2-b 23、椭圆中的几个常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共同焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).知识点2双曲线1、双曲线的定义(1)平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离之差的绝对值为非零常数2a (2a <2c )的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a <|F 1F 2|时,M 点的轨迹是双曲线;②当2a =|F 1F 2|时,M 点的轨迹是两条射线;③当2a >|F 1F 2|时,M 点不存在.2、双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性对称轴:坐标轴,对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞)实、虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)3、双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则,其中θ为∠F 1PF 2.(6)等轴双曲线①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.②性质:a =b ;e =2;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.(7)共轭双曲线①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.知识点3抛物线1、抛物线的定义:满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等;(3)定点不在定直线上.2、抛物线的标准方程与几何性质焦半径(其中P (x 0,y 0))|PF |=x 0+p 2|PF |=-x 0+p 2|PF |=y 0+p 2|PF |=-y 0+p23、抛物线中的几何常用结论(1)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦.①以弦AB 为直径的圆与准线相切.②以AF 或BF 为直径的圆与y 轴相切.③通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.(2)过x 2=2py 的准线上任意一点D 作抛物线的两条切线,切点分别为A ,B ,则直线AB 【题型1圆锥曲线的定义及应用】容易忽视圆锥曲线定义的限制条件,在椭圆的定义中,对常数加了一个条件,即常数大于12F F 。
高考数学复习专题五解析几何第二讲椭圆双曲线抛物线的定义方程与性质理市赛课公开课一等奖省优质课获奖
![高考数学复习专题五解析几何第二讲椭圆双曲线抛物线的定义方程与性质理市赛课公开课一等奖省优质课获奖](https://img.taocdn.com/s3/m/c2865fb4846a561252d380eb6294dd88d0d23dae.png)
y=abx+c, y=-abx,
解得xy==2c-,2bac,
即 M(-2bac,2c).因点 M 在
以线段 F1F2 为直径的圆 x2+y2=c2 内,故(-2bac)2+(2c)2<c2,
17/43
考点二 椭圆、双曲线、抛物线几何性质
化简得 b2<3a2,即 c2-a2<3a2,解得ac<2,又双曲线的离心 率 e=ac>1,所以双曲线离心率的取值范围是(1,2).故选 A. 答案:A
学科素养
Ⅲ卷 直线与抛物线的位置关 通过对椭圆、双曲线、抛物线的定
系·T16
义、方程及几何性质的考查,着重 考查了数学抽象、数学建模与数学
运算三大核心素养. 2/43
考情分析 明确方向
年份 卷别 考查角度及命题位置
命题分析及学科素养
抛物线中弦长最值问 命题分析
Ⅰ卷 题·T10 双曲线的离心率·T15 双曲线的离心率·T9
专题五 解析几何 第二讲 椭圆、双曲线、抛物线定义、方程与性质
C目录 ONTENTS
考点一 4
考点二 考点三
课后训练 提升能力
1/43
考情分析 明确方向
年份 卷别 考查角度及命题位置
命题分析及学科素养
直线与抛物线的位置关 命题分析
系及应用·T8
1.圆锥曲线的定义、方程与性质是
Ⅰ卷 双曲线的几何性质及直 每年高考必考的内容.以选择、填
1-ba2;
(2)在双曲线中:c2=a2+b2,离心率为 e=ac=
1+ba2.
2.双曲线xa22-by22=1(a>0,b>0)的渐近线方程为 y=±bax.注意离
心率 e 与渐近线的斜率的关系.
3.抛物线方程中 p 的几何意义为焦点到准线的距离.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆与双曲线的对偶性质--(必背的经典结论)高三数学备课组椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y ab+=.6. 若000(,)P x y 在椭圆22221x y ab+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab+=.7. 椭圆22221x y ab+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F P F S b γ∆=.8. 椭圆22221xya b+=(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y ab+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y ab a b+=+.13. 若000(,)P x y 在椭圆22221x y ab+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y abab+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y ab-=.6. 若000(,)P x y 在双曲线22221x yab -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x xy y ab-=.7. 双曲线22221x y ab-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F P F S b co γ∆=.8. 双曲线22221xyab-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-.当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22221x y ab-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则202y a x b KK ABOM =⋅,即0202y a x b K AB =。
12. 若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x xy y x y abab-=-. 13. 若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y abab-=-.椭圆与双曲线的对偶性质--(会推导的经典结论)高三数学备课组椭 圆1. 椭圆22221x y ab+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y ab-=.2. 过椭圆22221x y ab+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020B C b x k a y =(常数).3. 若P 为椭圆22221x y ab+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tant22a c co a cαβ-=+.4. 设椭圆22221x y ab+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin c e aαβγ==+.5. 若椭圆22221x y ab+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e≤1-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项. 6. P 为椭圆22221x y ab+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y ab--+=与直线0A xB yC ++=有公共点的充要条件是2222200()A a B b A x B y C +≥++.8. 已知椭圆22221x y ab+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ ab+=+;(2)|OP|2+|OQ|2的最大值为22224a ba b+;(3)O P Q S ∆的最小值是2222a ba b+.9. 过椭圆22221x yab +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF e M N =.10. 已知椭圆22221x y ab+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.11. 设P 点是椭圆22221x y ab+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos bPF PF θ=+.(2) 122tan2P F F S b γ∆=.12. 设A 、B 是椭圆22221x y ab+=( a >b >0)的长轴两端点,P 是椭圆上的一点,P A B α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2)2tan tan 1e αβ=-.(3) 22222cot PAB a bS b aγ∆=-.13. 已知椭圆22221x y ab+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.椭圆与双曲线的对偶性质--(会推导的经典结论)高三数学备课组双曲线1. 双曲线22221x y ab-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y ab+=.2. 过双曲线22221x y ab-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3. 若P 为双曲线22221x y ab-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tant22c a co c aαβ-=+(或tant22c a co c aβα-=+).4. 设双曲线22221x y ab-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )c e aαγβ==±-.5. 若双曲线22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项. 6. P 为双曲线22221x y ab-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y ab-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.8. 已知双曲线22221x y ab-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥. (1)22221111||||OP OQ ab+=-;(2)|OP|2+|OQ|2的最小值为22224a bb a-;(3)O P Q S ∆的最小值是2222a bb a-.9. 过双曲线22221x y ab-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF e M N =.10. 已知双曲线22221x y ab-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a+≤-.11. 设P 点是双曲线22221x y ab-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot2P F F S b γ∆=.12. 设A 、B 是双曲线22221x y ab-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,P A B α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a bS b aγ∆=+.13. 已知双曲线22221x y ab-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.。