期末高等数学(上)试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末高等数学试卷

一、解答下列各题

(本大题共16小题,总计80分)

1、(本小题5分)

求极限 lim x x x x x x →-+-+-2332121629124

2、(本小题5分) .d )1(22x x x ⎰+求

3、(本小题5分) 求极限limarctan arcsin

x x x →∞⋅1

4、(本小题5分)

-.d 1x x x 求

5、(本小题5分) .求dt t dx d x ⎰+2

021 6、(本小题5分)

⎰⋅.d csc cot 46x x x 求

7、(本小题5分) .求⎰ππ

2

1

21cos 1dx x x

8、(本小题5分) 设确定了函数求.x e t y e t

y y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),22

9、(本小题5分) .求dx x x ⎰+3

01 10、(本小题5分)

求函数 的单调区间y x x =+-422

11、(本小题5分) .求⎰

π

+2

02sin 8sin dx x x 12、(本小题5分)

.,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-

13、(本小题5分) 设函数由方程所确定求

.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)

求函数的极值y e e x x =+-2

15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222

16、(本小题5分) .d cos sin 12cos x x x x ⎰

+求

二、解答下列各题

(本大题共2小题,总计14分)

1、(本小题7分)

,,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿

2、(本小题7分) .823

2体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==

三、解答下列各题 ( 本 大 题6分 )

设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230

一学期期末高数考试(答案)

一、解答下列各题

(本大题共16小题,总计77分)

1、(本小题3分)

解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =2

2、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .

3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞

=10

故limarctan arcsin x x x →∞

⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)

原式=+214x x 6、(本小题4分)

⎰⋅x x x d csc cot 46

⎰+-=)d(cot )cot 1(cot 2

6x x x

=--+171979cot cot .x x c

7、(本小题4分) 原式=-⎰cos ()1112x d x π

π

=-sin 112x ππ

=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)

令 1+=x u 原式=-⎰24122()u u du

=-25353

12()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)

1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为

,当函数单调增区间为

, 当y x y x 11、(本小题5分)

原式=--⎰d x x cos cos 9202

π

=-+-163302ln cos cos x x π

=162ln

12、(本小题6分) dx x t dt ='()

[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 

13、(本小题6分) 2265

yy y y x '+'=

'=+y yx y 3152

14、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()

驻点:x =

1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222 =⨯⨯⨯⨯=1011216101172

16、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解

⎰++=x x d 2sin 211)12sin 21(

=++ln sin 1122x c 二、解答下列各题

(本大题共2小题,总计13分)

1、(本小题5分)

设晒谷场宽为则长为

米新砌石条围沿的总长为 x x

L x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)

解 :,,.x x x x x x 23

2311288204====

V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223

20446

0428464

=⋅-⋅π()1415164175704x x π=-π=35512)7151(44

三、解答下列各题

( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03

相关文档
最新文档