光电检测常用光源及其参数

合集下载

光电检测常用光源及其参数

光电检测常用光源及其参数

光电检测常用光源及其参数白光灯是最常见的光源之一,也是光电检测中应用最广泛的光源之一、白光灯是通过电弧激发种类繁多的气体发出的多种颜色的光线叠加而成,可以提供连续的、宽带的光谱。

白光灯的参数主要包括亮度、颜色温度、光强和发光时间。

亮度是指白光灯的辐射强度,通常用流明(lm)来表示。

亮度决定了光源的明亮程度,对于光电检测来说,选择适当的亮度能够提高信号的强度,从而提高检测的精度和可靠性。

颜色温度是指白光灯的色彩,常用单位是开尔文(K)。

颜色温度越高,色彩越接近蓝色;颜色温度越低,色彩越接近橙色。

在光电检测中,不同的应用场景对颜色温度有不同的要求。

例如,工业检测一般要求颜色温度较高,而照明应用一般要求颜色温度较低。

光强是指白光灯的辐射强度,通常用瓦特/平方米(W/m²)来表示。

光强主要影响光电传感器的接收性能,太弱的光强可能导致传感器无法正常工作,而太强的光强可能导致传感器过载。

发光时间是指白光灯发出的光线的持续时间。

不同的应用场景对发光时间有不同的要求,一些高速光电检测系统可能需要毫秒级的发光时间,而一些低速光电检测系统可能需要秒级的发光时间。

激光器是一种具有高单色性、方向性和强光束的光源,其主要参数包括激光波长、功率和光束质量。

激光波长是指激光器发出的光线的波长,激光器可以发射单色、窄带宽的光线。

不同的激光波长对应不同的应用场景,例如红光激光器常用于定位和测距,绿光激光器常用于光电吸附检测。

功率是指激光器发出的光线的功率,通常用瓦特(W)来表示。

功率决定了激光器的亮度和穿透力,对于光电检测来说,选择适当的功率能够提高信号的强度,从而提高检测的灵敏度和稳定性。

光束质量是指激光器发出的光线的质量,主要通过光束发散角、准直度和光斑质量等参数来评估。

光束质量决定了激光光束的聚焦能力和传输效率,对于光电检测来说,选择具有良好光束质量的激光器能够提高检测的分辨率和可靠性。

发光二极管(LED)是一种利用半导体材料发光的光源,其主要参数包括波长、亮度和可见角度。

光电检测常用光源

光电检测常用光源

光电检测常用光源调研报告光信092 黄坚保0911030005 前言由于生产技术的发展和对产品质量的保证,对产品进行检测就成了一个必须的环节。

检测技术发展到今天,已经是种类繁多技术全面了。

这里主要是以光电检测为对象进行调研的。

重点词汇光电检测光源LED LD正文在光电检测领域,比较关键的就是光源的选取。

光的产生可以分为电致发光、光致发光、化学发光、热发光、生物发光和阴极射线发光。

常用光源有热辐射光源(如太阳光、白炽灯、卤素灯等)、气体放电光源、金属卤化物灯、电致发光光源(如EL型和TFEL型、半导体发光器件)以及激光光源。

对光源选择的基本要求包括:对光源发光光谱特性的要求,对光源发光强度的要求,对光源稳定性的要求和其他方面的要求。

光源的基本参数有发光效率(单位lm/W),寿命(单位h),光谱功率谱分布,空间光强分布特性,光源光辐射的稳定性以及光源的色温和显色性。

以下是个常用光源的产生原理、特性以及应用一、热辐射光源1、太阳光太阳光是热核聚变辐射产生的光,是复色光,其照度值在不同光谱区不同,紫外光约占6.46%,可见光占46.25%和红外光区占47.29%。

太阳光因为是很好的照明光源,所以它是被动光电测量的主要光源,又是很好的平行光源。

2、白炽灯它靠电能将灯丝加热至白炽而发光,主要的灯丝材料为钨。

钨的蒸发率随温度不同而改变,而使用时间随工作温度升高而变短。

3、卤素灯溴、碘、氯、氟各种卤素都能产生钨的再生循环,就可以使灯的光效和寿命大大增加。

国内生产的主要是碘钨灯和溴钨灯,一般用作一般照明、投影仪照明、放映照明、汽车前灯照明、舞台灯光影视照明等。

二、气体放电光源这类光源是利用气体放电原理来发光的。

将氢、氘、氪等气体或汞、钠、硫等金属蒸汽充入灯内,在电场等能源的激励下,从灯的阴极发射出电子,电子将奔向阳极,由于阴阳极之间充满的气体或金属蒸汽因为激发辐射而发光。

气体放电光源的特点有:1、发光效率高,比白瓷灯高2-10倍;2、结构尺寸较大;3、寿命长,大约为白炽灯的2-啊10倍;4、光色范围宽;5光源的功率稳定性较差由于以上特点,气体放电灯主要用于工程照明,在光电测量中主要用于对光源稳定性要求不太高的强光主动测量场合。

光电比色法的原理

光电比色法的原理

光电比色法的原理光电比色法是一种常用的化学分析方法,它利用光的吸收特性来测量溶液中某种物质的浓度。

这种方法具有操作简便、快速、准确等优点,因此在环境监测、生物医学、食品工业等领域得到了广泛的应用。

本文将对光电比色法的原理进行详细介绍。

光电比色法的基本原理是:当一束单色光通过一个吸收物质的溶液时,光的强度会被溶液中的吸收物质所减弱。

通过测量光的强度变化,可以计算出溶液中吸收物质的浓度。

光电比色法的关键部件是一个光电探测器,它将光信号转换为电信号,从而实现对光强度的测量。

光电比色法的具体步骤如下:1. 选择合适的光源:光电比色法要求光源具有稳定的光谱特性和足够的光强。

常用的光源有钨丝灯、氙灯、氘灯等。

在选择光源时,需要考虑光源的波长范围、光强稳定性等因素。

2. 选择适当的吸收池:吸收池是用来盛放待测溶液的容器,其材料应具有良好的透光性能。

常用的吸收池材料有玻璃、石英等。

吸收池的形状和尺寸应根据实验要求进行选择。

3. 将待测溶液倒入吸收池中,然后将吸收池置于光源和光电探测器之间,使光线通过吸收池内的溶液。

4. 开启光源,使光线通过吸收池。

此时,光电探测器会检测到光的强度,并将其转换为电信号。

这个电信号的大小与光线经过吸收池后的光强成正比。

5. 记录电信号的大小,并根据预先建立的标准曲线,计算出待测溶液中吸收物质的浓度。

光电比色法的关键参数是吸光度(A),它是衡量光强度变化的物理量。

吸光度的定义是:当一束平行光通过厚度为b、折射率为n的介质时,光强I与入射光强I0之比的负对数,即A = -log10(I/I0)。

吸光度与光强之间的关系可以通过比尔-朗伯定律(Beer-Lambert Law)来描述:A = ecl其中,e是摩尔吸光系数(molar absorptivity),表示单位浓度下单位厚度的介质对光的吸收能力;c是溶液中吸收物质的浓度;l是光线通过介质的距离。

从这个公式可以看出,吸光度与溶液中吸收物质的浓度成正比。

光电检测实验报告光电二极管

光电检测实验报告光电二极管

光电检测实验报告光电二极管
与实验报告有关
一、实验目的
本实验旨在探究光电二极管的基本特性,了解不同参数对光电二极管
的作用原理。

二、实验原理
光电二极管是一种特殊的半导体器件,由一个P半导体和一个N半导
体组成。

其结构类似于普通的二极管,它是由一块金属片和一块硅片组成的。

金属片在表面覆盖着一层半导体材料层,而硅片则覆盖着一层P沟槽,形成一个PN结构,这就是光电二极管的基本结构。

当光电二极管接受到
外部光照时,在P层和N层之间就会产生电子-空穴对,并促使电子向N
层移动,从而在P层和N层之间构成一个电流,也就是由光引起的电流。

三、实验设备
1、光源:LED灯泡;
2、示波器:用于测量光电二极管的输出电流与电压;
3、电源:用于给光电二极管提供电势;
4、电阻:用于限制光电二极管的输出电流;
5、光电二极管:本次实验使用的是JH-PJN22;
6、多用表:用于测量电流、电压。

四、实验步骤
1、用多用表测量光电二极管JH-PJN22的参数,测量其正向电压和正向电流与LED照射强度的关系;
2、设置由电源、电阻和光电二极管组成的电路,并使用示波器测量输出电流和电压;。

光电探测器的性能与参数

光电探测器的性能与参数
01
依照这一判据,定义探测器的通量阈Pth为
02
06
04
01
03
05
02
01
05
03
02
04
探测器的噪声功率N ∝Δf,所以
01
于是由D的定义知
02
另一方面,探测器的噪声功率N∝ A
03
所以
04
又有
05
把两种因素一并考虑,
定义
称为归一化探测度。
这时就可以说:D*大的探测器其探测能力一定好。 考虑到光谱的响应特性,一般给出D*值时注明响应波长λ、光辐射调制频率f及测量带宽Δf,即D*(λ, f ,Δf )。
以u,P,λ为参变量,i=F(f)的关系称为光电频率特性,相应的曲线称为频率特性曲线。 同样,i=F (P)及曲线称为光电特性曲线。 i=F (λ)及其曲线称为光谱特性曲线。 而i=F (u)及其曲线称为伏安特性曲线。 当这些曲线给出时,灵敏度R的值就可以从曲线中求出,而且还可以利用这些曲线,尤其是伏安特性曲线来设计探测器的使用电路。
知识延伸
了解半导体光电探测器的发展及应用。
半导体光电探测器由于体积小,重量轻,响应速度快,灵敏度高,易于与其它半导体器件集成,是光源的最理想探测器,可广泛用于光通信、信号处理、传感系统和测量系统。最近几年,由于超高速光通信、信号处理、测量和传感系统的需要,需要超高速高灵敏度的半导体光电探测器。为此,发展了谐振腔增强型(RCE)光电探测器、金属半导体-金属行波光电探测器,以及分离吸收梯度电荷和信增(SAGCM)雪崩光电探测器(APD)等。
探测器件
热电探测元件
光子探测元件
气体光电探测元件
外光电效应
内光电效应
非放大型

第1章 光源

第1章  光源

汞灯光谱能量分布图
(3) 氙灯
氙灯是由充有惰性气体---氙的石英泡壳内两
个钨电极之间的高温电弧放电而发出强光的 光源。 高压氙灯的辐射光谱是连续的,与日光的光 谱能量分布相接近(色温为6000K左右,显色 指数90以上,因此有“小太阳”之称。分为 长弧氙灯,短弧氙灯,脉冲氙灯. 由于脉冲氙灯的高亮度和瞬时功率大,常用作 摄影光源,激光器的泵浦源,等.
பைடு நூலகம்
A1和A2的物理意义如 图所示: 它们分别表示WλSλ 和Wλ两曲线与横轴所 围城的面积,即匹配 参数 是光源与探测 器配合工作时产生的 光电信号与光源总通 量的比值。 实际选择时,应兼 顾二者的特性,使匹 配系数尽可能大些。
Wλ Sλ
Sλ A2

WλSλ A1 λ
光谱匹配关系图
2)对光源发光强度,稳定性 及其它的要求
(1)对光源发光强度的要求 光源强度过低,系统获得的信号过小,以 致无法正常检测。光源强度过高,又会导致系 统工作的非线性。有时可能损坏系统,待测物 或光电探测器等,同时也导致不必要的能源消 耗。因此系统设计时,必须对探测器所需获得 的最大,最小光通量进行正常估计,按估计选 择光源。
(2)对光源稳定性的要求 包括对光源波长稳定性及功率稳定性的要 求,可采用的方法有:温控或功率控制电路。 (3)对光源其它方面的要求 如:灯丝的结构和形状,发光面积的大小 和构成,灯泡玻壳的形状和均匀性,光源发光 率及空间分布等
(2)典型的光谱功率分布情况:
3)光强空间分布
对于各向异性光源,其
发光强度在空间各方向 上是不同的。 若在空间某一截面上自 原点向各径向取矢量, 矢量的长度与该方向的 发光强度成正比。 连接各矢量的端点,即 得光源在该截面上的发 光强度曲线,即配光曲 线。

光电检测中常用光源简介

光电检测中常用光源简介
1.辐射效率和发光效率
在给定λ1~λ2波长范围内,某一辐射源发出的 辐射通量与产生这些辐射通量所需的电功率之比,称 为该辐射源在给定光谱范围内的辐射效率
光源的光通量与 产生光Байду номын сангаас量所需的 电功率之比,是光
源的发光效率
e
e P
2 1
e()d
P
光电检测中的常v用光 P源v简介Km3788 00eP ()V()d
黑体模拟器 的结构:
目前的黑体模拟器最高工作温度为3000K,而实 际应用的大多是在20光0电0检K测中以的常下用光。源简介
3.白炽灯 白炽灯是光电测量中最常用的光源之一。白炽
灯发射的是连续光谱,在可见光谱段中部和黑体辐 射曲线相差约0.5%,在整个光谱段内和黑体辐射曲 线平均相差2%。
发光特性稳定,寿命长,使用和量值复现方便,因 而也可用作各种辐射度量和光度量的标准光源。
选择光源: 应综合考虑光源的强度、稳定性和 光谱特性等性能。 光电检测中的常用光源简介
§2.2 热辐射源
MeB(T)T4
根据斯蒂芬-玻尔兹曼定律知,物体只要其温度 大于绝对零度,就会向外界辐射能量,其辐射特性 与温度的四次方有关。
物体由于温度较高而向周围温度较低环境发射 能量的形式称为热辐射,这种物体称为热辐射源
选择光源:光谱功率分布应由测量对象的要求 来决定。
对目视光学系统:一般采用可见区光谱辐射比较 丰富的光源。
对彩色摄影:采用类似于日光色的光源,如卤钨 灯、氙灯等。
在紫外分光光度计中,通常使用氘灯、汞氙灯 等紫外辐射较强的光光电源检测。中的常用光源简介
2.1.3 空间光强分布
在空间某一截面上,自原点向各径向取矢量, 矢量的长度与该方向的发光强度成正比,称其为发 光强度矢量。

光电检测郭培源课件

光电检测郭培源课件
光电检测郭培源
激光器的特性参数
功率(平均/峰值),能量 波长,频率,线宽 脉冲宽度,重复频率 光斑直径,发散角,M-平方因子 模式,波长可调谐性 稳定性(波长/频率/功率/能量/方向
等)Hale Waihona Puke 寿命,光电效率光电检测郭培源
激光器的类型
气体、固体、半导体激光器 紫外、可见和红外激光器 连续、准连续和脉冲激光器 单频、单模激光器 可调谐激光器 超短脉冲激光器
光电检测郭培源
气体激光器
光束质量好,线宽窄, 相干性好,谱线丰富。
效率低,能耗高,寿 命较短,体积大。
原子(氦-氖)激光 器,离子(氩,氪, 金属蒸汽)激光器, 分子(CO2,CO,准分子) 激光器。
He-Ne激光器的基本结构形式
光电检测郭培源
氦氖激光器
氦氖激光器是一种原子气体激光器,工作物质 由氦气和氖气组成。
光电检测郭培源
红宝石激光器工作原理
5. 单色、单相柱状光线通过半反射镜射出红宝石棒,形成激光!
光电检测郭培源
固体激光实验装置 光电检测郭培源
微 型 固 体 激 光光电检测器郭培源(学生研发)
半导体激光器
工作物质是半导体材料,PN结就是激活物质。 体积小,质量轻、效率高,能耗低,寿命长,
稳定可靠; 线宽较宽,波长可调谐,能产生超短脉冲,直
在工业检测、电信号的传送处理和计算机系统 中,常用继电器、脉冲变压器或复杂的电路来 实现输入端、输出端装置于主机之间的隔离、 开关、匹配、抗干扰等功能。 继电器动作慢、有触点工作不可靠;变压器体 积大、频率窄,所以它们都不是理想的部件。 随着光电技术的发展,70年代以后出现了一种 新的功能器件——光电耦合器。
4、相干性 由于激光器的发光过程是受激辐射,单色性好,发射较

光电探测_电路实验报告

光电探测_电路实验报告

一、实验目的1. 了解光电探测的基本原理和电路组成。

2. 掌握光电探测器电路的设计方法和实验技能。

3. 熟悉光电探测器的性能测试方法,并分析实验结果。

二、实验原理光电探测器是将光信号转换为电信号的器件,其基本原理是光电效应。

当光照射到光电探测器上时,会产生光生电子,从而在探测器两端产生电信号。

本实验主要研究光电二极管和光敏电阻两种光电探测器。

三、实验仪器与设备1. 光源:LED灯、激光器等。

2. 光电探测器:光电二极管、光敏电阻等。

3. 放大器:低频放大器、高频放大器等。

4. 测量仪器:示波器、万用表、信号发生器等。

5. 实验电路板:包含光电探测器、放大器、电源等组件。

四、实验内容及步骤1. 光电二极管特性测试(1)搭建实验电路,将光电二极管与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光电二极管上。

(3)使用示波器观察光电二极管输出信号的波形和幅度。

(4)改变光源强度,观察光电二极管输出信号的变化,分析光电二极管的响应特性。

2. 光敏电阻特性测试(1)搭建实验电路,将光敏电阻与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光敏电阻上。

(3)使用示波器观察光敏电阻输出信号的波形和幅度。

(4)改变光源强度,观察光敏电阻输出信号的变化,分析光敏电阻的响应特性。

3. 光电探测器电路设计(1)根据实验要求,设计光电探测器电路,包括光电探测器、放大器、滤波器等组件。

(2)搭建实验电路,并接入电源。

(3)调整电路参数,使光电探测器电路满足实验要求。

4. 光电探测器电路性能测试(1)使用示波器观察光电探测器电路输出信号的波形和幅度。

(2)调整光源强度,观察光电探测器电路输出信号的变化,分析电路性能。

五、实验结果与分析1. 光电二极管特性测试结果(1)光电二极管输出信号随光源强度增加而增强,符合光电效应原理。

(2)光电二极管输出信号具有较好的线性关系,适合用于光电检测。

2. 光敏电阻特性测试结果(1)光敏电阻输出信号随光源强度增加而减小,符合光敏电阻特性。

led 光电检测参数

led 光电检测参数

led 光电检测参数LED光电检测参数LED(Light Emitting Diode)是一种能够将电能转化为光能的半导体器件。

在光电检测中,LED被广泛应用于光源和光电传感器。

LED光电检测参数是指对LED光源和光电传感器进行评估和测试的一系列参数。

本文将介绍LED光电检测中常见的参数以及其作用。

一、LED光源参数1. 光通量(Luminous Flux)光通量是指LED光源释放的总光功率,单位为流明(lm)。

光通量反映了LED光源的亮度。

通常情况下,光通量越大,LED光源的亮度越高。

2. 光照度(Illuminance)光照度是指单位面积上接收到的光通量,单位为勒克斯(Lux,lx)。

光照度与光源的光通量和距离有关,通常情况下,光照度越高,表示光源的亮度越高。

3. 发光效率(Luminous Efficacy)发光效率是指LED光源单位功率下产生的光通量,单位为流明/瓦(lm/W)。

发光效率越高,表示LED光源具有更高的能量利用率。

4. 色温(Color Temperature)色温是指LED光源的光谱分布,用来描述光的颜色,单位为开尔文(Kelvin,K)。

色温越高,光源呈现的颜色越接近蓝色;色温越低,光源呈现的颜色越接近黄色。

5. 显色指数(Color Rendering Index)显色指数是指LED光源对物体颜色的还原能力。

显色指数的取值范围为0-100,数值越高表示光源的还原能力越好。

二、光电传感器参数1. 光敏电阻(Photoresistor)参数光敏电阻是一种根据光照强度变化而改变电阻值的元件。

常用参数包括光照强度范围、光敏电阻的阻值范围、光敏电阻的响应时间等。

2. 光电二极管(Photodiode)参数光电二极管是一种能够将光信号转化为电信号的器件。

常用参数包括光电二极管的光谱响应范围、光电二极管的灵敏度、光电二极管的响应时间等。

3. 光电三极管(Phototransistor)参数光电三极管是一种能够将光信号转化为电信号的放大器件。

光电检测技术常用器件及应用

光电检测技术常用器件及应用

3、数字、文字以及图像显示
七段式数码管 14划字码管 文字显示器的内部接线
4、显示器
彩色大面积显示设备,如电子商标及大屏幕显示
LCD
LCD 液晶屏是 Liquid Crystal Display 的简称, LCD 的构造是在 两片平行的玻璃 当中放置液态的 晶体,两片玻璃 中间有许多垂直 和水平的细小电 线,透过通电与 否来控制杆状水 晶分子改变方向, 将光线折射出来 产生画面。
发光二极管的发光机理
发光二极管 (即LED)是一种 注入电致发光器件, 它由P型和 N型半 导体组合而成。其 发光机理常分为PN 结注入发光与异质 结注入发光两种。
1. PN结注入发光
1、制作半导体发光二极管的材料是掺杂的,热平 衡状态下的N区很多自由电子,P区有很多多空穴。 2、当加以正向电压时,N区导带中的电子可越过PN 结的势垒进入P区。P区的空穴也向N区扩散 3、于是电子与空穴有机会相遇,复合发光。由于 空穴迁移率低于自由电子,则复合发光主要发生在 p区。 光的颜色(波长)决定于材料禁带宽度Eg,光的强 弱与电流有关
4. 寿命
发光二极管的寿命定义为亮度降低到原有亮 度一半时所经历的时间。二极管的寿命一般都很 长,在电流密度小于lA/cm2时,一般可达106h, 最长可达109h。随着工作时间的加长,亮度下降 的现象叫老化。电流密度大,老化快。
LED特点
1、 LED辐射光为非相干光,光谱较宽,发散角较大。 2、 LED的发光颜色丰富,通过选用不同的材料,可以实 现各种发光颜色。如采用GaP:ZnO或GaAaP材料的红色 LED,GaAaP材料的橙色、黄色LED,以及GaN蓝色LED 等。 3、LED的辉度高。随着各种颜色LED辉度的迅速提高,即 使在日光下,由LED发出的光也能视认。 4、LED的单元体积小。再加上低电压、低电流驱动的特 点,可作为电子仪器设备、家用电器的指示灯、信号灯的 使用。 5、寿命长,基本上不需要维修。可作为地板、马路、广场 地面的信号光源,是一个新的应用领域。

光电系统的常用光源.

光电系统的常用光源.
色温3200K以上,辐射光谱为0.25~3.5μm。 发光效率可达30lm/W(为白炽灯的2~3倍),
作仪器白光源.
1.3 气体放电光源
基 泡壳:用玻璃或石英等材料制造;
本 电极:阴极、阳极或不区分(交流灯)
结 泡壳内充入发光用的气体:金属蒸汽、

金属化合物蒸汽、惰性气体
发光机理:气体放电。
气体放电光源的特点:
它的粒子属性(能量、动量、质量等)和波 动属性(频率、波矢、偏振等)之间的关系满 足:
(1)、 Eh2h ; (2)、m Eh,
c2 c2
(3)、P h
光子具有运动质量静 ,止 但质量为零;
电磁波谱与光辐射
EdS
qi
s
0
sBdS0
E dldm
L
dt
变化的磁场产生电 场
L B dl0 0dd e t
变化的电场产生磁场
一切能产生光辐射的辐射源都称为光源
电磁波谱
➢ 天然光源 ➢ 人造光源
按照发光机理, 光源的分类:
需要了解
热辐射光源
气体放电光源
太阳、黑体辐射器 白炽灯、卤钨灯
汞灯
钠灯 金属卤化物灯
各类光源 的发光机 理、重要
光源
特性、适
用场合, 以便正确 选用光源。
激光器
科学制作的小孔 空腔结构,可以 很好地实现绝对 黑体的辐射功能。
太阳的光谱分布
常用作标准光源, 最高工作温度是 3000K。
2.白炽灯与卤钨灯 灰体 钨丝做灯丝
白炽灯
玻璃泡壳;色温约2800K,辐射光谱约0.4~3μm。 可见光占6~12%,用于照明; 加红外滤光片可作为近红外光源。
卤钨灯

光电检测实验报告

光电检测实验报告

光电检测实验报告光电检测实验报告引言:光电检测是一种常见的实验方法,通过光电效应原理,将光信号转化为电信号进行测量和分析。

本次实验旨在通过搭建光电检测系统,探索光电效应在不同条件下的特性,并研究其在实际应用中的潜力。

一、实验装置的搭建实验装置由光源、光电探测器和信号处理器组成。

光源可以选择激光器、LED 等,而光电探测器则包括光电二极管、光电倍增管等。

信号处理器用于放大和转换光电信号,常见的有放大器、滤波器等。

二、光电效应的研究光电效应是指当光照射到物质表面时,光子能量被物质吸收,从而产生电子的现象。

实验中,我们通过改变光源的强度和波长,以及调整光电探测器的位置和方向,研究光电效应的特性。

1. 光源强度对光电效应的影响在实验中,我们使用不同强度的光源照射光电探测器,记录下光电流的变化情况。

实验结果显示,光源强度越大,光电流也越大,这表明光电效应与光源的强度呈正相关关系。

2. 光源波长对光电效应的影响我们使用不同波长的光源照射光电探测器,观察光电流的变化。

实验结果显示,不同波长的光源对光电效应的影响不同。

在可见光范围内,短波长的光源产生的光电流较大,而长波长的光源产生的光电流较小。

这说明光电效应与光源的波长呈负相关关系。

三、光电检测在实际应用中的潜力光电检测技术在许多领域中有着广泛的应用,如光电传感器、光电测距仪等。

以下是一些实际应用案例:1. 光电传感器在自动化生产中的应用光电传感器可以通过光电效应检测物体的存在与否,广泛应用于自动化生产线上。

例如,在汽车制造过程中,光电传感器可以检测零件的位置和质量,实现自动化装配和质量控制。

2. 光电测距仪在测量领域中的应用光电测距仪利用光电效应测量物体与测距仪之间的距离。

它可以应用于建筑测量、地质勘探等领域。

例如,在建筑测量中,光电测距仪可以快速、准确地测量建筑物的高度和距离,提高测量效率。

结论:通过本次实验,我们搭建了光电检测系统,并研究了光电效应在不同条件下的特性。

光电检测常用光源及其参数

光电检测常用光源及其参数

光电检测常用光源及其参数光电检测是一种通过电子元件接收和转换光信号的技术,广泛应用于光电传感器、光电探测器和光电开关等设备中。

在光电检测中,光源是至关重要的一个组成部分,它的参数直接影响到光电检测的灵敏度、精度和可靠性。

下面将介绍几种常用的光源及其参数。

首先是白光源。

白光是由各种波长的光混合而成的,可以覆盖整个可见光谱范围。

白光源经常用于需检测多个波长范围内的光强分布的应用中。

白光源的参数常常包括辐射功率、波长范围、颜色温度等。

其次是激光器。

激光器是一种集中的、高度定向的光源,其特点是具有高纯度、高亮度、单色性好和方向性强等特点。

激光器在光电检测领域被广泛应用于精密测量、精确标定和高速通信等领域。

激光器的参数常常包括激光功率、波长、调制方式等。

第三是发光二极管(LED)。

LED是一种半导体器件,具有低功耗、寿命长和响应速度快等优点,被广泛应用于光电检测中。

LED的参数常常包括光强度、发光角度、波长等。

此外,还有氙灯、汞灯、钠灯等光源也常常在光电检测中使用。

这些光源具有不同的特点和应用领域。

例如,氙灯主要用于高速摄像和光谱分析等领域,汞灯主要用于荧光物质激发和光谱分析等领域,钠灯主要用于路灯和照明等领域。

总结起来,光电检测常用的光源包括白光源、激光器、LED、氙灯、汞灯和钠灯等。

这些光源具有不同的参数,例如辐射功率、波长范围、颜色温度、激光功率、发光角度、光强度等。

根据不同的应用需求,选择合适的光源是光电检测的关键。

发光二极管指标参数

发光二极管指标参数

发光二极管指标参数
1、发光强度:发光二极管的发光强度指它在特定电流下发射的光强度。

发光强度越大,则发光二极管的发光效率越高。

一般以每瓦的光输出
功率来表示,单位为流明(lm)或者贝尔(B)。

2、色温:指发光二极管发出的光的色彩,是分光光度仪测量的结果。

通常使用的色温单位是Kelvin(K),一般情况下,色温越高,发出的光
越白。

3、色坐标:色坐标是指发光二极管发出的光的色彩,它是由x、y和
z三个参数来表示的。

4、电流驱动特性:指发光二极管在不同电流下的发光强度,它是通
过电阻和导通电流分析仪来测量的结果。

5、电压驱动特性:发光二极管在不同电压下的发光强度,它是通过
测量仪器来测量的结果。

6、亮度:是指发光二极管发出的光的亮度,单位是流明(lm)。

7、反向绝缘电压:指发光二极管的绝缘特性,它是通过量测器和专
业仪器来测量的结果。

8、漏电流:指发光二极管在反向电压作用下通过发光二极管的元件
流过一定的电流,单位是毫安(mA)。

9、功率耗散:是指发光二极管电源接入电流后发出的功率,单位是
瓦特(W)。

10、电子温度:指发光二极管在工作时的电子温度,单位是摄氏度(℃)。

高中物理选修2-3光源

高中物理选修2-3光源

(e)场致发光光源的使用过程中亮度会 下降,这种现象较老化.老化曲线主要部 分可用下列经验公式表示:
L=L0/(1+t/t0) (f)与其他光源相比,有其独特的特点:固 体化,平板化,占地小,易于安装,面积 与形状基本不受限制.
(g)主要用途:特殊照明;数字符号显示; 模拟显示;矩阵显示;象转换及象增强器
黑体模拟器图
(3)白炽灯
白炽灯在可见光谱中段和黑体辐射曲线 相差0.5%,而在整个光谱段内和黑体辐射曲 线平均相差2%
白炽灯有真空钨丝白炽灯,充气钨丝白炽 灯,卤钨灯等
白炽灯的光参数 (光通量φ ,光 效η ),电参数 (灯电压V,电流 I,功率P,电阻R) 和寿命之间的关 系曲线如图:
对一定的白炽灯,当灯的工作电压升高时会导 致灯的工作电流和功率p增大,灯丝工作温度升高, 发光效率η和光通量Φ增加,而灯的寿命下降,实际 应用中可适当降低灯电压,从而有效延长寿命
气压正常辉光放电灯,其阴极由金属元素或其 他合金制成交心圆柱型,圆环形阳极是用吸气 性能很好的锆材料制成的.空心阴极放电的电 流密度比正常辉光放电时高10倍以上.而阴极 位降比正常辉光放电时低100v左右.正常辉光 放电时因放电电流小,主要是辐射工作气体的 原子谱线;而在空心阴极放电时,放电正离子在 很高的阴极位降区被加速轰击阴极,使阴极金 属被溅散,被溅散出来的阴极金属原子蒸汽,在 空心阴极灯中被激发,辐射出该金属的原子特 征谱线
(1) 太阳 (2) 黑体模拟器 (3) 白炽灯
(1)太阳
太阳可视为直径很大的光球,由地球看太 阳,太阳的张角为0.533°,大气层外的太阳 光谱能量分布相当于5900K左右的黑体辐射, 太阳对地球的辐照度值在不同的光谱区所 占地百分比不同:紫外区(﹤0.384μm)为6.46, 可见区(0.38~0.78 μm)占46.25,红外区 (﹥0.78μm)占47.29
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电检测技术调研报告
光电检测常用光源及其参数
班级:光电工程142
学号:2014032082
**:***
2017年3月24日
目录
摘要 (1)
正文 (1)
光源的分类 (1)
光源的特性参数 (1)
辐射效率 (1)
发光效率 (1)
光谱功率 (1)
空间光强分布 (2)
光源的颜色 (2)
光源的色温 (3)
光电检测常用光源 (3)
热辐射源 (3)
气体放电光源 (3)
固体发光光源 (3)
激光器 (4)
总结 (4)
摘要
由于生产技术的发展和对产品质量的保证,对产品进行检测就成了一个重要的环节,光电检测则是其中比较常见的手段之一。

在光电检测中,光源的选择当然是关键的一个环节。

选取光源,则必须了解和熟悉其参数,才能选出好的、适合的光源。

可以说,光源的选择是光电检测中至关重要的一环。

正文
光源的分类
光源是能产生光辐射的辐射源。

天然光源是自然界中存在的,恒星(太阳)等;人造光源是人为将各种形式的能量(热能、电能、化学能)转化成光辐射的器件,其中利用电能产生光辐射的器件称为电光源。

在光电检测系统中,电光源是最常用的光源。

按照光波在时间、空间上的相位特征可分为相干光源和非相干光源;按照发光机理可以分为热辐射光源、气体发光光源、固体发光光源和激光器光源。

光源的特性参数
辐射效率
在给定λ1~λ2波长范围内,某一辐射源发出的辐射通量与产生这些辐射通量所需的电功率之比。

发光效率
某一光源所发射的光通量与产生这些光通量所需的电功率之比。

光谱功率
分布四种情况
在选择光源时,它的光谱功率分布应由测量对象的要求来决定。

在目视光学系统中,一般采用可见光谱辐射比较丰富的光源。

对于彩色摄像用光源,应采用类似于日光色的光源,如卤钨灯、氙灯等。

在紫外分光光度计中,通常使用氘灯、汞氙灯等紫外辐射较强的光源。

空间光强分布
常用发光强度矢量和发光强度曲线来描述光源的这种空间光强分布特性。

在空间某一截面上,自原点向各径向取矢量,矢量的长度与该方向的发光强度成正比,称其为发光强度矢量;将各矢量的端点连起来,就得到光源在该截面上的发光强度分布曲线,也称配光曲线。

光源的颜色
包含了色表和显色性两方面的含义。

用眼睛直接观察光源时所看到的颜色称为光源的色表;当用这种光源照射物体时,物体呈现的颜色(也就是物体反射光在人眼内产生的颜色感觉)与该物体在完全辐射体照射下所呈现的颜色的一致性,称为该光源的显色性。

光源对于物体颜色呈现的程度称为显色性,通常叫做显色指数(Ra)。

显色性是指事物的真
实颜色(其自身的色泽)与某一标准光源下所显示的颜色的关系。

Ra值的确定,是将
DIN6169标准中定义的8种测试颜色在标准光源和被测试光源下做比较,色差越小的则表明被测光源颜色的显色性越好。

(红、黑、黄、粉红、绿、蓝、紫、棕色)
光源的色温
黑体的温度与它的辐射特性是一一对应的,从光源的颜色与温度的这种关系,引出了颜色温度的概念,简称色温。

一般光源的色温,经常用色温、相关色温和分布温度表示。

如果辐射源发出的光的颜色与黑体在某一温度下辐射出的光的颜色相同,则黑体的这一温度称为该幅射的色温;若一个光源的颜色与任何温度下的黑体辐射的颜色都不相同,这时的光源用相关色温表示,在均匀色度图中,如果光源的色坐标点与某一温度下的黑体辐射的色坐标点最接近,则该黑体的温度称为这个光源的相关色温;辐射源在某一波长范围内辐射的相对光谱功率分布,与黑体在某一温度下辐射的相对光谱功率分布一致,那么该黑体的温度称为这个辐射源的分布温度。

光电检测常用光源
热辐射源
物体由于温度升高而向周围温度较低环境发射能量的形式称为热辐射,这种物体称为热辐射源。

如太阳、黑体模拟器、白炽灯等。

气体放电光源
在灯中充入发光用的气体,这些气体的原子在电场作用下电离出电子和离子。

当离子向阴极、电子向阳极运动时,从电场中得到加速,在它们与气体原子或分子高速碰撞时会激励出新的电子和离子。

在碰撞过程中有些电子会跃迁到高能级,引起原子的激发。

受激原子回到低能级时就会发射出相应的辐射,这样的发光机制被称为气体放电原理。

利用气体放电原理制成的光源称为气体放电光源。

气体放电光源的特点:发光效率高、耐震、抗冲击、寿命长、光色适应性好。

常用的有脉冲灯、原子光谱灯、汞灯等。

固体发光光源
固体发光光源又称为平板发光器件,也称平板显示器。

按发光类型分为主动发光型(媒质自己发光)和被动发光型(靠媒质调制外部光源实现信息显示)。

按媒质和工作原理分为液晶显示(LCD)、等离子体显示(PDP)、电致发光显示(ECD)、电泳发光显示(EPD)。

场致发光:固体在电场的作用下将电能直接转换为光能的发光现象,也称电致发光,有
粉末场致发光源、薄膜场致发光源、结型场致发光源(二极管)三种形态
发光二极管(LED):少数载流子在PN结区的注入与复合而产生发光的一种半导体光源。

属于低电压小电流器件,在室温下即可得到足够的亮度,发光响应速度快、性能稳定、寿命长、单色性好,发光的半宽度一般为几十nm。

激光器
气体激光器:工作物质由一种或几种气体组成,可发射多种波长的光,主要集中于可见和红外部分。

固体激光器:工作物质为具有特殊能力的高质量的光学玻璃或光学晶体里面掺入具有发射激发能力的金属离子。

主要有红宝石、钕玻璃、钇铝石榴石激光器等。

染料激光器:工作物质为染料,有连续和脉冲两种工作方式。

连续方式输出稳定,线宽小,功率大于1W;脉冲方式输出功率高,输出能量可达120mJ。

半导体激光器:工作物质为半导体,输出波长为0.33-44um,体积小,功率高,寿命长。

用于光通信、光学测量等。

总结
光源是光电检测中极其重要的部分,选择合适的光源对于整个光电检测系统了来说是十分重要的。

光源种类繁多,性能各有优劣,要选出合适的光源,必须要对各类光源的光学特性和参数有充分的了解。

在此基础上才能制造出性能优越(精度、适应性、寿命、价格等)的光电检测系统。

相关文档
最新文档