实变函数期中试卷及答案

合集下载

(完整版)实变函数试题库1及参考答案

(完整版)实变函数试题库1及参考答案

实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂¡是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈¡,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( )A ()\B A A =∅I B ()\A B A =∅IC ()\A B B A =UD ()\B A A B =U2.若nR E ⊂是开集,则( )A E E '⊂B 0E E =C E E =DE E '=3.设(){}n f x 是E 上一列非负可测函数,则( )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ B ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂¡是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系?六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩L L ,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =U U2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差.六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰.2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明(\)()c A B B A B B =U I U ()()()c c A B A B B A B B B A B ===I U I U I U U U2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]cE F F ==I ,故E 是可测集.由于E F =∅I ,所以1[0,1]()0m m E F mE mF mF ===+=+U ,故1mF =3.证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<I U U因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =L ,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。

实变函数A卷(解答)

实变函数A卷(解答)

华中师范大学2002——2003学年第二学期期(中、末)考试试卷(A 、B 卷)课程名称 实变函数 课程编号 42111300 任课教师 一、判断题(判断正确、错误,并改正。

共5题,共5×3=15分) 1、可数个有限集的并集是可数集。

.( × ) 改正:可数个有限集的并集不一定是可数集。

2、存在开集使其余集仍为开集。

( √ )3、若可测集列n E 单调递减,则 n n n n mE E m ∞→∞==lim 1。

( × )改正:若可测集列n E 单调递减,且存在0n ,使0n mE <∞ 则 n n n n mE E m ∞→∞==lim 1。

4、若E 是可测集,)(x f 是E 上的实函数,则)(x f 在E 上可测的充要条件是: ∀实数)(,b a b a < ,[]b f a x E <≤|都是可测集。

( × ) 改正:若E 是可测集,)(x f 是E 上的实函数,则)(x f 在E 上可测的充要条件是:∀实数a ,[]a f x E >|都是可测集。

5、若E 是可测集,)(x f 是E 上的非负可测函数,则)(x f 在E 上一定可积。

( × ) 改正:若E 是可测集,)(x f 是E 上的非负可测函数,则)(x f 在E 上不一定可积。

二、叙述题(共5题,共5×3=15分)专业 年级 学号1、集合的对等。

答:设A 、B 是两个集合,若A 、B 之间存在一一对应,则称A 与B 对等。

2、可测集。

答:设nR E ⊂,如果对任意nR T ⊂,总有T m *=)()(**c E T m E T m ⋂+⋂,则称E 为可测集。

3、可测集与σf 型集的关系。

答:设E 为可测集,则存在σf 型集F ,使E F ⊂且mF mE =、0)(=-F E m 。

4、叶果洛夫定理。

答:设+∞<mE ,{)(x f n }为E 上几乎处处有限的可测函数列,)(x f 也为E 上几乎处处 有限的可测函数,如果)()(x f x f n → a.e.于E ,则对任意0>ε,存在可测子集E E ⊂ε 使在εE 上,)(x f n 一致收敛于)(x f ,而εε<-)(E E m 。

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2

xn E, f ( xn ) a ………………… .3 分

实变函数试题库参考答案 (2)

实变函数试题库参考答案 (2)

《实变函数》试题题库参考答案一、选择题1、D2、C3、D4、D5、A6、B7、C8、A9、B 10、C 11、C 12、D 13、C 14、B 15、C 16、D 17、A 18、D 19、C 20、A 21、B 22、C 23、B 24、C 25、A 26、C 27、D 28、D 29、B 30、D 31、A 32、B 33、C 34、A 35、B 36、D 37、C 38、B 39、C 40、B 41、B 42、D 43、B 44、A 45、A 46、D 47、D 48、B 49、A 50、B 51、A 52、D 53、C 54、D 55、B 56、A 57、D 58、C 59、A 60、D 61、A 62、B 63、D 64、C 65、C 66、D 67、B 68、A 69、B 70、C 71、D 72、C 73、C 74、B 75、A 76、B 77、A 78、C 79、C 80、D 81、B 82、A 83、B 84、C 85、C 86、B 87、C 88、D 89、A 90、A二、填空题1、n 2 ;2、c ;3、c ;4、c ;5、c ;6、c ;7、{x:对于任意的I ∈α,有αA x ∈};8、{x:存在I ∈α,使得αA x ∈};9、ααA C s I∈⋃;10、ααA C s I ∈⋂;11、n kn k A ∞=∞=⋃⋂1;12、n kn k A ∞=∞=⋂⋃1;13、211)(∑=nk k x ;14、|})()({|sup ],[t y t x b a x -∈;15、2112})({∑∞=-k k k y x ;16、21222211})(){(y x y x -+-;17、21233222211})()(){(y x y x y x -+-+-;18、21244233222211})()()(){(y x y x y x y x ++-+-+-;19、}1:),{(22≤+=y x y x E ;20、}1:),,{(222≤++z y x z y x ;21、}1:),{(22=+y x y x ; 22、}1:),{(22≤+y x y x ;23、}1:),,{(222=++z y x z y x ; 24、}1:),,{(222=++z y x z y x ; 25、2;26、0;27、1;28、)},({inf ,y x d By A x ∈∈;29、)},({sup ,y x d Ay A x ∈∈;30、1;31、∑∞=1||infi i I ;32、n n mS ∞→lim ;33、)(a f E >可测;34、0>∀σ有 ∞=<1i i I E ;35、C B D A ⊂⊂⊂;36、||x ;37、可测函数;38、点态收敛与一致收敛;39、)(*||E I m I --;40、次可数可加性;41、可测函数;42、可测函数;43、单调性;44、 ∞=1i i G (i G 开);45、推广;46、测度;47、)(*)(**CE T m E T m T m +=;48、 ∞=1n n F ,(n F 闭集);49、常数;50、可测函数,连续函数;51、n n mS ∞→lim ;52、零测集; 53、可测函数;54、依测度; 55、0; 56、0; 57、0; 58、0; 59、0;60、0三、判断题 1、( √ )理由: 集合具有无序性 2、( × )理由: 举一反例, 比如: 取A={1}, B={2} 3、( √ )理由: 空集Φ是任意集合的子集. 4、( × )理由:符号⊂表示集合间的关系,不能表示元素和集合的关系. 5、( × )理由:Φ表示没有任何元素的集合,而{Φ}表示单元素集合,这个元素是Φ6、( × )理由: Φ表示没有任何元素的集合,而{0}表示单元素集合,这个元素是07、( √ )理由: 根据内点的定义, 内点一定是聚点8、( × )理由: 举一反例,比如: E=(0,1),元素1不是E的外点,但却属于E的余集分9、( √ )理由: 有内点的定义可得.10、( √ )理由: 有内点的定义可得.11、( × )理由: 举例说明,比如: E=(0,1),元素1是E的边界点,但属于E.12、( × )理由: 举一反例,比如: E=(0,1),元素1是E的内点,但不属于E13、(×)理由: 因有若]1,0[]1,0)([-可测⊂E,E不可测,而EE14、(√)理由: 因)eaggf=>=≠E>f()(E()()gg(agaff>E==≠E>((())()f))g)(g((a两可测集的并可测。

《实变函数》试卷一与参考答案(可打印修改)

《实变函数》试卷一与参考答案(可打印修改)

考生答题不得超此线21(A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n nf x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D))('x f ],[b a ⎰-=b a a f b f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E oE E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。

[],a b 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设,若E 是稠密集,则是无处稠密集。

1E R ⊂CE 2、若,则一定是可数集.0=mE E 得 分得 分3、若是可测函数,则必是可测函数。

|()|f x ()f x4.设在可测集上可积分,若,则()f x E ,()0x E f x ∀∈>()0Ef x >⎰四、解答题(8分×2=16分).1、(8分)设 ,则在上是否可积,是否2,()1,x x f x x ⎧=⎨⎩为无理数为有理数()f x []0,1R -可积,若可积,求出积分值。

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

2页,共19页) 3、若|()|fx是可测函数,则()fx必是可测函数 4.设()fx在可测集E上可积分,若,()0xEfx,则()0Efx 四、解答题(8分×2=16分). 1、(8分)设2,()1,xxfxx为无理数为有理数 ,则()fx在0,1上是否R可积,是否L可积,若可积,求出积分值。 2、(8分)求0ln()limcosxnxnexdxn 五、证明题(6分×4+10=34分). 1、(6分)证明0,1上的全体无理数作成的集其势为c
6页,共19页) 又()0,mEF所以()fx是EF上的可测函数,从而是E上的 可测函数……………………..10分 《实变函数》试卷二 一.单项选择题(3分×5=15分) 1.设,MN是两集合,则 ()MMN=( ) (A) M (B) N (C) MN (D) 2. 下列说法不正确的是( ) (A) 0P的任一领域内都有E中无穷多个点,则0P是E的聚点 (B) 0P的任一领域内至少有一个E中异于0P的点,则0P是E的聚点 (C) 存在E中点列nP,使0nPP,则0P是E的聚点 (D) 内点必是聚点 3. 下列断言( )是正确的。 (A)任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。 (A)零测集是可测集; (B)可数个零测集的并是零测集; (C)任意个零测集的并是零测集;(D)零测集的任意子集是可测集; 5. 若()fx是可测函数,则下列断言( )是正确的 (A) ()fx在,abL可积|()|fx在,abL可积; (B) (),|()|,fxabRfxabR在可积在可积 (C) (),|()|,fxabLfxabR在可积在可积; (D) (),()fxaRfxL在广义可积在a,+可积 二. 填空题(3分×5=15分) 1、设11[,2],1,2,nAnnn,则nnAlim_________。 2、设P为Cantor集,则 P ,mP_____,oP=________。 3、设iS是一列可测集,则11______iiiimSmS 4、鲁津定理:__________________________________________ 5、设()Fx为,ab上的有限函数,如果_________________则称()Fx为,ab上的绝对连续函数。 三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分) 1、由于0,10,10,1,故不存在使0,101和,之间11对应的映射。

(完整版)实变函数(复习资料_带答案)

(完整版)实变函数(复习资料_带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P =' (D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

实变函数测试题与答案

实变函数测试题与答案

实变函数测试题一,填空题1. 设1,2n A n ⎡⎤=⎢⎥⎣⎦,1,2n = ,则lim n n A →∞= . 2. ()(),,a b -∞+∞ ,因为存在两个集合之间的一一映射为 .3. 设E 是2R 中函数1cos ,00,0x y x x ⎧≠⎪=⎨⎪ =⎩的图形上的点所组成的集合,则E '= ,E ︒= .4. 若集合nE R ⊂满足E E '⊂, 则E 为 集.5. 若(),αβ是直线上开集G 的一个构成区间, 则(),αβ满足:, .6. 设E 使闭区间[],a b 中的全体无理数集, 则mE = .7. 若()n mE f x →()0f x ⎡⎤=⎣⎦, 则说{}()n f x 在E 上.8. 设nE R ⊂, 0nx R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上几乎处处有限的可测函数列, ()f x 是E 上 几乎处处有限的可测函数, 若0σ∀>, 有, 则称{}()n f x 在E 上依测度收敛于()f x .10. 设()()n f x f x ⇒,x E ∈, 则∃{}()n f x 的子列{}()j n f x , 使得 .二, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ⊂且A B ≠,则mA mB <. 2. 设E 为点集, P E ∉, 则P 是E 的外点.3. 点集11,2,,E n ⎧⎫=⎨⎬⎩⎭ 的闭集.4. 任意多个闭集的并集是闭集.5. 若nE R ⊂,满足*m E =+∞, 则E 为无限集合.三, 计算证明题1. 证明:()()()A B C A B A C --=-2. 设M 是3R 空间中以有理点(即坐标都是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集.3. 设nE R ⊂,i E B ⊂且i B 为可测集, 1,2i = .根据题意, 若有()()*0,i m B E i -→ →∞, 证明E 是可测集.4. 设P 是Cantor 集, ()[]32ln 1,(),0,1x x P f x x x P ⎧+ ∈⎪=⎨ ∈-⎪⎩.求1(L)()f x dx ⎰.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x , 而在0P 的余集中长为13n 的构成区间上取值为16n , ()1,2n = , 求1 0() f x dx⎰.6.求极限:1323lim(R)sin1nnxnxdxn x→∞+⎰.实变函数试题解答一 填空题 1. []0,2.2. ()()()tan ,,.2x x a x a b b aππϕ⎡⎤=--∈⎢⎥-⎣⎦3. {}1(,)cos ,0(0,)1x y y x y y x ⎧⎫=≠≤⎨⎬⎩⎭; ∅.4. 闭集.5. (),.,.G G G αβαβ⊂ ∉ ∉6. b a -.7. 几乎处处收敛于()f x 或 a.e.收敛于()f x . 8. 对000,(,)U x δδ∀> 有{}()0E x -=∅.9. lim ()()0n n mE f x f x σ→∞⎡-≥⎤=⎣⎦ 10. ()()n f x f x → a.e.于E .二 判断题1. F . 例如, (0,1)A =, []0,1B =, 则A B ⊂且A B ≠,但1mA mB ==.2. F . 例如, 0(0,1)∉, 但0不是(0,1)的外点.3. F . 由于{}0E E '=⊄.4. F . 例如, 在1R 中, 11,1n F nn ⎡⎤=-⎢⎥⎣⎦, 3,4n = 是一系列的闭集, 但是3(0,1)nn F∞== 不是闭集.5. T . 因为若E 为有界集合, 则存在有限区间I , I <+∞, 使得E I ⊂, 则**,m E m I I ≤=<+∞ 于*m E =+∞ .三, 计算证明题. 1. 证明如下:()()()()()()()()S SS S S A B C A B CA B C A B C A B A C A B A C --=- = = = =-2. M 中任何一个元素可以由球心(,,)x y z , 半径为r 唯一确定,x ,y , z 跑遍所有的正有理数, r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集.3. 令1i i B B ∞== , 则i E B B ⊂⊂且B 为可测集, 于是对于i ∀, 都有i B E B E -⊂-, 故()()**0i m B E m B E ≤-≤-,令i →∞, 得到()*0m B E -=, 故B E -可测. 从而 ()E B B E =--可测.4. 已知0mP =, 令[]0,1G P =-, 则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx =++ =0+ =+ = ==⎰⎰⎰⎰⎰⎰⎰.5. 将积分区间[]0,1分为两两不相交的集合: 0P , 1G , 2G , 其中0P 为Cantor 集, n G 是0P 的余集中一切长为13n 的构成区间(共有12n -个)之并. 由L 积分的可数可加性, 并且注意到题中的00mP =, 可得11111111()()()()()1()61126631112916nn P G P G n nP G n n n n nnn n n n f x dx f x dx f x dx f x dx f x dx f x dx dx mG ∞=∞=∞=-∞∞==∞==+ =+ =+=0+=⋅ =⋅=⎰⎰⎰∑⎰⎰∑⎰⎰∑∑∑6. 因为323sin 1nx nx n x +在[]0,1上连续, 13230(R)sin 1nx nxdx n x +⎰存在且与13230(L)sin 1nx nxdx n x +⎰的值相等. 易知323232323211sin .11122nx nx nx nx n x n x n x x x≤≤⋅≤+++ 由于12x 在()0,1上非负可测, 且广义积分1012dx x ⎰收敛,则 12x在()0,1上(L)可积, 由于323lim sin 01n nx nx n x →∞=+, ()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++⎛⎫ = ⎪+⎝⎭ ==⎰⎰⎰⎰.。

实变函数试卷2+答案

实变函数试卷2+答案

实变函数试卷2+答案一、判断题:(共26分,每小题2分)1.任何无限集合均含有可数子集。

(√ ) 2.集合E 的边界点一定属于E 。

(× )3.若E 不是开集,则E 必为闭集。

(× )4.任意多个开集之并仍为开集。

(√ )5.零测集的任意子集是可测集。

(√ ) 6.设)(x f 在E 上L 可积, 则)(x f 在E 上有界。

(× )7.若0=mE ,则E 一定是有限集或可数集。

(× ) 8...a e 收敛的函数列必依测度收敛。

(× ) 9.由于[](){}0,10,10,1-=,故不存在使()[]0,101和,之间11-对应的映射。

(× ) 10.设()f x 是可测集E 上的可测函数,则()f x 在E 上L 可积。

(× ) 11.设1G ,2G 是两个有界开集,且1G 是2G 的真子集,则12mG mG <。

(× )12.设()f x 是区间[,]a b 上的有界变差函数,则()f x '在[,]a b 上L 可积。

(√ ) 13.设E 是可测集,{()}n f x 和()f x 都是E 上..a e 有限的可测函数,且lim ()()n n f x f x →∞=..a e 于E ,则在E 上必有()()n f x f x ?。

(× )二、单项选择题:(每小题3分,共15分)1. 设()f x 在可测集E 上L 可积且|()|0Ef x dx =?,则以下结论正确的是( C )A 、0mE =;B 、()0,f x x E =?∈;C 、()0,..f x a e =于E ;D 、以上答案都不对2. 设mE <∞,()f x 和1{()}n n f x ∞=都是E 上的可测函数,则()()n f x f x ?(在E 上)是()(),..n f x f x a e →于E 的 ( C ).A 、充分必要条件;B 、充分条件;C 、必要条件;D 、无关条件.3. 设E 是[]0,1上有理点全体,则下列各式不成立的是( D )A 、'[0,1]E = B 、 oE =? C 、E =[0,1] D 、 1mE =4. 下列说法不正确的是( C )A 、若B A ?,则B m A m **≤;B 、有限个或可数个零测度集之并集仍为零测度集;C 、可测集的任何子集都可测;D 、凡开集、闭集皆可测。

师范大学实变函数期中期末考试(A)

师范大学实变函数期中期末考试(A)

师范大学期中/期末试卷(A )(简明答案)课程名称:实变函数学生姓名:___________________ 学 号:___________________ 专 业:___________________ 年级/班级:__________________ 课程性质:专业必修…………………………………………………………………………………………一.判别题(每题2分,共20分)1. 设()f x 在(,)-∞+∞上单调增,则()f x 的不连续点是可数的.2. 不可数个闭集的交集仍是闭集.3. 设{}n E 是一列可测集,且1,1,2,,n n E E n +⊂=L 则1()lim ().n n n n m E m E ∞→∞==I4. 任意多个可测集的交集是可测集.5. 若()f x 在E 上可测,则存在F σ型集,()0F E m E F ⊂-=,()f x 在F 上连续.6. 若,mE <∞{}()n f x 在E 上几乎处处有限,几乎处处收敛于几乎处处有限的(),f x 则0,δ∀>存在闭集,()F E m E F δδδ⊂-<,{}()n f x 在F δ上一致收敛于()f x .7.cos xx是[1,)+∞上勒贝格可积函数. 8. 若()f x 是[,]a b 上单调增连续函数,且()0f x '=几乎处处成立,则()f x 为常值函数. 9. 若()f x 是[0,1]上单调严格增绝对连续函数,()g x 在([0,1])f 满足李普西茨条件,则(())g f x 是[0,1]上绝对连续函数.10. 设(,)f x y 在{}(,):,()()D x y a x b g x y h x =≤≤≤≤上可积,其中(),()g x h x 是[,]a b 上连续函数,则()()()(,).bh x ag x Df P dP dx f x y dy =⎰⎰⎰二.(12分)若在可测集E 上,()()(),()()()n n f x f x n g x g x n ⇒→∞⇒→∞. 求证:在E 上,()()()()().n n f x g x f x g x n +⇒+→∞三. (12分)设()f x 在E 上可积,[],1,2,n E E f n n =≥=L . 求证:(1)lim ()0;n n m E →∞= (2)lim ()0.n n nm E →∞=四. (12分)若{}()n f x 是一列[,]a b 上有界变差函数,[,],lim ()(),n n x a b f x f x →∞∀∈=且0,M ∃>().1,2,.bn af M n ∨≤=L 求证:f 是[,]a b 上有界变差函数.五. (12分)设E 是可测集,{}n E 是E 内的一列可测子集.1,()(),1,2,0,\n nn E nx E f x x n x E E χ∈⎧===⎨∈⎩L求证:(1){}()n f x 在E 上一致收敛于1的充分且必要条件是:,,.n N n N E E ∃∀>= (2)()1n f x ⇒的充分且必要条件是:lim ()0.n n m E E →∞-=六. (12分)设()f x 在E 上可积,(),()(),1,2,0,()n f x f x nf x n f x n ⎧≤⎪==⎨>⎪⎩L求证:(1)()n f x 在E 上可积,1,2,n =L ;(2)lim ()()n EEn f x dx f x dx →∞=⎰⎰.七. (10分)设{}()n g x 是一列可测集E 上可积函数,lim ()()n n g x g x →∞=在E 上几乎处处成立,且lim ()()n EEn g x dx g x dx →∞=⎰⎰.{}()n f x 是一列E 上可测函数,lim ()()n n f x f x →∞=在E 上几乎处处成立,且,()(),1,2,n n x E f x g x n ∀∈≤=L . 求证: lim ()()n EEn f x dx f x dx →∞=⎰⎰.八.(10分)设E 是可测集,{}n E 是E 内的一列可测子集.1,()(),1,0,\n nn E n x E f x x n x E E χ∈⎧===⎨∈⎩L仿第五题(1) 给出lim ()1n n f x →∞=在E 上几乎处处成立的充分且必要条件,并证明;(2) 给出{}()n f x 在E 上“基本上”一致收敛于1的充分且必要条件,并证明.。

实变函数测试题与答案

实变函数测试题与答案

实变函数测试题与答案实变函数测试题一、填空题1.设 $A_n=\begin{pmatrix} 1/n \\ 1/(n+1) \\ \cdots \\ 1/(2n) \end{pmatrix}$,则 $\lim\limits_{n\to\infty}A_n=\begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$。

2.$(a,b)$ 与 $(-\infty,+\infty)$ 之间存在两个集合之间的一一映射,因此它们的基数相同。

3.设 $E$ 是函数 $y=f(x)$ 的图形上的点所组成的集合,则$E=\{(x,f(x)):x\in\mathbb{R}\}$。

4.若集合 $E\subset\mathbb{R}$ 满足 $E'\subset E$,则$E$ 是闭集。

5.若 $(\alpha,\beta)$ 是直线上开集 $G$ 的一个构成区间,则 $(\alpha,\beta)$ 是连通集。

6.设 $E$ 是闭区间 $[a,b]$ 中的全体无理数集,则$m(E)=b-a$。

7.若 $\{f_n(x)\}$ 在 $E$ 上几乎处处有限且可测,$f(x)$ 在 $E$ 上几乎处处有限且可测,并且$\lim\limits_{n\to\infty} f_n(x)=f(x)$,则 $\{f_n(x)\}$ 在 $E$ 上依测度收敛于 $f(x)$。

8.XXX{R}$,$x$ 是 $E$ 的聚点,$f(x)$ 是实变函数,则存在 $\{x_n\}\subset E$,使得 $\lim\limits_{n\to\infty}x_n=x$ 且 $\lim\limits_{n\to\infty} f(x_n)$ 存在。

9.若 $\{f_n(x)\}$ 在 $E$ 上几乎处处有限且可测,$f(x)$ 在 $E$ 上几乎处处有限且可测,并且对于任意$\sigma>0$,都有 $\lim\limits_{n\to\infty} m\{x\in E:|f_n(x)-f(x)|\geq\sigma\}=0$,则 $\{f_n(x)\}$ 在 $E$ 上依测度收敛于$f(x)$。

实变函数测试题与答案

实变函数测试题与答案

实变函数试题一,填空题1.设1,2n A n ,1,2n , 则lim n nA .2.,,a b,因为存在两个集合之间的一一映射为3.设E 是2R 中函数1cos ,00,0xyx x的图形上的点所组成的集合,则E ,E. 4.若集合nE R 满足EE , 则E 为集.5.若,是直线上开集G 的一个构成区间, 则,满足: ,.6.设E 使闭区间,a b中的全体无理数集, 则mE.7.若()n mE f x ()0f x , 则说()n f x 在E 上.8.设nER , 0nx R ,若,则称0x 是E 的聚点. 9.设()n f x 是E 上几乎处处有限的可测函数列, ()f x 是E上几乎处处有限的可测函数, 若0, 有, 则称()n f x 在E 上依测度收敛于()f x .10.设()()n f x f x ,xE , 则()n f x 的子列()j n f x , 使得.二, 判断题. 正确的证明, 错误的举反例. 1.若,A B 可测, A B 且AB ,则mAmB .2.设E 为点集, P E , 则P 是E 的外点.3.点集11,2,,En 的闭集.4.任意多个闭集的并集是闭集.5.若nER ,满足*m E, 则E 为无限集合.三, 计算证明题1. 证明:AB CA B A C2. 设M 是3R 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体, 证明M 为可数集.3. 设nE R ,i EB 且i B 为可测集, 1,2i.根据题意, 若有*0,im B E i, 证明E 是可测集.4.设P 是Cantor 集,32ln 1,(),0,1x x P f x x xP.求10(L)()f x dx .5.设函数()f x 在Cantor 集0P 中点x 上取值为3x , 而在0P 的余集中长为13n 的构成区间上取值为16n , 1,2n , 求10()f x dx .6.求极限: 13230lim(R)sin 1nnxnxdx n x.实变函数试题解答一填空题1. 0,2. 2.()tan,,.2x x ax a b b a3.1(,)cos ,0(0,)1x y yx y yx;.4. 闭集.5.,.,.G G G 6. b a . 7. 几乎处处收敛于()f x 或 a.e.收敛于()f x .8. 对00,(,)U x 有0Ex .9. lim ()()n nmE f x f x 10. ()()n f x f x a.e.于E .二判断题1.F . 例如, (0,1)A , 0,1B , 则AB 且A B ,但1mAmB .2.F . 例如, 0(0,1), 但0不是(0,1)的外点.3.F . 由于0EE .4.F . 例如, 在1R 中, 11,1nF n n, 3,4n是一系列的闭集, 但是3(0,1)nn F 不是闭集.5.T . 因为若E 为有界集合, 则存在有限区间I , I,使得EI , 则**,m Em II于*m E.三, 计算证明题. 1. 证明如下:SS SS SA B C A BCA B CA B CAB A CA BA C2.M 中任何一个元素可以由球心(,,)x y z , 半径为r 唯一确定, x ,y , z 跑遍所有的正有理数, r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集. 3.令1i iB B , 则i E BB 且B 为可测集, 于是对于i ,都有i BEB E , 故**im B E m B E ,令i, 得到*0mBE, 故BE 可测. 从而E B B E 可测.4.已知0mP, 令0,1GP , 则1322210130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGG P Gf x dx x dx x dxf x dxx dx x dxf x dx x.5.将积分区间0,1分为两两不相交的集合: 0P , 1G , 2G ,其中0P 为Cantor 集, n G 是0P 的余集中一切长为13n的构成区间(共有12n 个)之并. 由L 积分的可数可加性, 并且注意到题中的00mP , 可得110111111()()()()()1()61126631112916nnP GPGn nPGnn nn n n n nn n f x dxf x dxf x dxf x dxf x dxf x dxdxmG 6.因为323sin 1nxnx n x在0,1上连续, 1323(R)sin 1nx nxdxn x存在且与1323(L)sin 1nx nxdx n x的值相等. 易知323232323211sin .11122nx nx nx nxn xn xn xxx 由于12x在0,1上非负可测,且广义积分112dx x收敛,则12x在0,1上(L)可积,由于323lim sin 01nnx nxn x,0,1x,于是根据勒贝格控制收敛定理,得到113323231323010lim(R)sin lim(L)sin 11lim sin 100nn nnx nxnxdxnxdxn xn xnx nx dx n x dx.一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每小题3分)1.非可数的无限集为c势集2.开集的余集为闭集。

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。

实变函数测试题与参考答案

实变函数测试题与参考答案

实变函数试题一,填空题1. 设1,2n A n ⎡⎤=⎢⎥⎣⎦,1,2n =,则lim n n A →∞= . 2. ()(),,a b -∞+∞,因为存在两个集合之间的一一映射为3. 设E 是2R 中函数1cos ,00,0x y x x ⎧≠⎪=⎨⎪ =⎩的图形上的点所组成的集合,则E '= ,E ︒= .4. 若集合nE R ⊂满足E E '⊂,则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间,则(),αβ满足:, .6. 设E 使闭区间[],a b 中的全体无理数集,则mE = .7. 若()n mE f x →()0f x ⎡⎤=⎣⎦,则说{}()n f x 在E 上 .8. 设nE R ⊂,0nx R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,若0σ∀>,有 ,则称{}()n f x 在E 上依测度收敛于()f x . 10. 设()()n f x f x ⇒,x E ∈,则∃{}()n f x 的子列{}()jn fx ,使得.二,判断题.正确的证明,错误的举反例. 1. 若,A B 可测,A B ⊂且A B ≠,则mA mB <. 2. 设E 为点集,P E ∉,则P 是E 的外点.3. 点集11,2,,E n ⎧⎫=⎨⎬⎩⎭的闭集. 4. 任意多个闭集的并集是闭集.5. 若nE R ⊂,满足*m E =+∞,则E 为无限集合. 三,计算证明题1.证明:()()()A B C A B A C --=-2.设M 是3R 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M 为可数集.3.设nE R ⊂,i E B ⊂且i B 为可测集,1,2i =.根据题意,若有()()*0,i m B E i -→ →∞,证明E 是可测集.4. 设P 是Cantor 集,()[]32ln 1,(),0,1x x P f x x x P ⎧+ ∈⎪=⎨ ∈-⎪⎩.求10(L)()f x dx ⎰.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x ,而在0P 的余集中长为13n 的构成区间上取值为16n ,()1,2n =,求1()f x dx ⎰.6. 求极限:13230lim(R)sin 1n nx nxdx n x →∞+⎰.实变函数试题解答一填空题 1.[]0,2.2.{}1(,)cos ,0(0,)1x y y x y y x ⎧⎫=≠≤⎨⎬⎩⎭;∅.3.闭集.4.b a -.5.几乎处处收敛于()f x 或a.e.收敛于()f x .6.对000,(,)U x δδ∀> 有{}()0E x -=∅.7.()()n f x f x → a.e.于E . 二判断题1. F .例如,(0,1)A =,[]0,1B =,则A B ⊂且A B ≠,但1mA mB ==.2. F .例如,0(0,1)∉,但0不是(0,1)的外点.3. F .由于{}0E E '=⊄.4. F .例如,在1R 中,11,1n F n n ⎡⎤=-⎢⎥⎣⎦,3,4n =是一系列的闭集,但是3(0,1)n n F ∞==不是闭集.5. T .因为若E 为有界集合,则存在有限区间I ,I <+∞,使得E I ⊂,则**,m E m I I ≤=<+∞ 于*m E =+∞ .三,计算证明题. 1.证明如下:2. M 中任何一个元素可以由球心(,,)x y z ,半径为r 唯一确定,x ,y ,z 跑遍所有的正有理数,r 跑遍所有的有理数.因为有理数集于正有理数集为可数集都是可数集,故M 为可数集.3. 令1i i B B ∞==,则i E B B ⊂⊂且B 为可测集,于是对于i ∀,都有i B E B E -⊂-,故()()**0i m B E m B E ≤-≤-,令i →∞,得到()*0m B E -=,故B E -可测.从而()E B B E =--可测.4. 已知0mP =,令[]0,1G P =-,则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==⎰⎰⎰⎰⎰⎰⎰. 5. 将积分区间[]0,1分为两两不相交的集合:0P ,1G ,2G ,其中0P 为Cantor 集,n G 是0P 的余集中一切长为13n 的构成区间(共有12n -个)之并.由L 积分的可数可加性,并且注意到题中的00mP =,可得6. 因为323sin 1nx nx n x +在[]0,1上连续,13230(R)sin 1nx nxdx n x+⎰存在且与13230(L)sin 1nx nxdx n x +⎰的值相等.易知由于12x 在()0,1上非负可测,且广义积分1012dx x ⎰收敛,则 12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+,()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++⎛⎫ = ⎪+⎝⎭ ==⎰⎰⎰⎰.一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每小题3分) 1. 非可数的无限集为c 势集 2. 开集的余集为闭集。

实变函数模拟试题及答案

实变函数模拟试题及答案

实变函数模拟试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是实变函数的基本概念?A. 极限B. 连续性C. 微分D. 积分答案:C2. 函数f(x)=x^2在区间[0,1]上是:A. 单调递增B. 单调递减C. 有界但无界D. 无界答案:A3. 如果函数f(x)在点x=a处连续,则下列哪个条件一定成立?A. f(a)存在B. f(a)=0C. f(a)=aD. f(a)=f'(a)答案:A4. 函数f(x)=|x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导答案:A5. 函数f(x)=sin(1/x)在x=0处:A. 连续B. 有界C. 不连续D. 无界答案:C6. 黎曼积分存在的条件是:A. 函数在积分区间上单调B. 函数在积分区间上连续C. 函数在积分区间上的不连续点构成一个零测集D. 函数在积分区间上的不连续点是可数的答案:C7. 函数f(x)=x^3在区间[-1,1]上的积分是:A. 0B. 1/4C. 1/3D. 2/3答案:A8. 若f(x)在[a,b]上可积,则下列哪个选项是正确的?A. f(x)在[a,b]上连续B. f(x)在[a,b]上单调C. f(x)在[a,b]上几乎处处连续D. f(x)在[a,b]上几乎处处有界答案:C9. 函数f(x)=x^2在区间[0,1]上的原函数是:A. x^3/3B. x^3C. 2x^3D. 3x^2答案:A10. 函数f(x)=x^(-1)在x=0处:A. 连续B. 可导C. 不连续D. 无界答案:C二、填空题(每空2分,共20分)1. 如果函数f(x)在区间[a,b]上连续,则f(x)在该区间上________。

答案:可积2. 函数f(x)=x^2的原函数是________。

答案:x^3/3 + C3. 函数f(x)=1/x在区间(0,1)上的积分是________。

答案:无穷大4. 函数f(x)=sin(x)在区间[0,π]上的积分是________。

实变函数试题库参考答案

实变函数试题库参考答案

实变函数试题库参考答案(共37页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1] D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断45、若}{n A 是一开集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断46、若}{n A 是一开集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断49、若]1,0[ Q E =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、xx f 1)(=在(0,1)有限 B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=E x E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、.一致收敛59、设⎩⎨⎧-∈-∈=Ex x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( ) A 、0 B 、1 C 、2 D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对 69、下列说法正确的是( ) A 、x x f sec )(=在)4,0(π上无界B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x xx f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f 72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数 73、()=-)2,1()1,0( m ( ) A 、1、 B 、2 C 、3 D 、4 74、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对 75、下列说法正确的是( ) A 、21)(x x f =在(0, 1)有限、 B 、21)(xx f =在]1,21[无界C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x Ex x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f - 78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( ) A 、1 B 、2 C 、3 D 、4 80、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和. 81、下列说法正确的是( ) A 、31)(x x f =在)1,21(无界 B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x xx f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x xx f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f - 84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上.收敛于.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定 86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积 87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积 88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( )A 、 0B 、 1C 、1/2D 、不存在 90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( )A 、 0B 、 1/3C 、2/3D 、 1 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 17、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃=9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂=10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃=11、若}{n A 是任意一个集合列, 则=∞→n n A lim12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)= 17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂= 22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂= 24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '= 25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) = 26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) = 27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) = 29、一个非空集合A 的直径的定义为)(A δ= 30、设A = [0, 1] ⋂Q, 则)(A δ=31、nR E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。

实变函数A--2010

实变函数A--2010
⎧0, 解: ∀n≥1, 令 f n ( x) = ⎨ −α ⎩x , x ∈ (0,1/ n) x ∈ [1/ n,1]
. 则∀x∈(0, 1], fn(x)单增收敛于 f(x), 即 fn→f,
a.e. 由 Levi 单调收敛定理得

[0,1]
x − α dx = ∫
(0,1]
x −α dx = lim ∫
∩a∈F{a}c = (∪a∈F {a})c =Fc.
由于 F 是不可测集, 故 Fc 也是不可测集, 进而∩a∈F{a}c 不可测, 但对任意 a∈F, {a}c 可测.
3. 设 D 上的可测函数列{fn}n≥1 几乎(近乎)一致收敛于 f,即∀δ>0,∃可测子集 E⊂D s.t.
m(D−E)<δ且{fn}在 E 上一致收敛于 f。则 fn→f, a.e.
上 海 海 事 大 学 试 卷
2010 — 2011 学年第一学期期终考试 《 实变函数 》 (A 卷)
班级 题 得 目 分 参 考 答 案 学号 姓名 总分
阅卷人
一、选择题(共 12 题,每题 3 分,共 36 分)请将正确答案写在题目后面的括号内。 1. 对于论域 X 的任意子集 A, A1, A2, B1, B2, An(n≥1), 必有( B ) 。 A.
n →∞
3. 下列集合不是可数集的是( D ) 。 A. 整数集 A. E°=(0, 1) B. 自然数集 B. E′=(0, 1] C. [−1, 1]中的有理数集 C. E°=[0, 1] D. E′=(0, 1) D. [0, 1]中的无理数集 4. 设 E=(0, 1],则( A ) 。 5. 关于[0, 1]上的 Cantor 集,下列说法错误的是( C ) 。 A. Cantor 集是闭集 C. Cantor 集的测度是 1 A. 空集既是开集又是闭集 C. 任意多个闭集的并是闭集 B. Cantor 集是完备集 D. Cantor 集的内核是空集 B. 任意多个开集的交是开集 D. 不是开集必是闭集

实变函数期中试题

实变函数期中试题

一、选择填空题(每小题3分,共36分)1. 设⎭⎬⎫⎩⎨⎧<<-=n x n x A n 11, n =1,2,…则:lim n n A →∞=2. 代数数全体的基数是3. 开集()()0,12,3 的构成区间是4. 设()f x +与()f x -分别为()f x 的正、负部,用它们表示()f x 为5. 设()f p 在[][]0,10,1⨯上可积,改变积分序有[][]0,10,()x dx f p dy =⎰⎰6. 叶果洛夫定理可概述为几乎处处收敛的可测函数列是 一致收敛的7. 符号函数在0x =点处的列导数是8. 设Q 为()0,1中的全体有理数,则0Q = 9. 下列不是有界变差函数的是()()[,]A f x C a b '∈ ()()[,B f x C a b∈()()C f x 在[,]a b 上单调有限 ()D ()f x 在[,]a b 上满足李普希兹条件10. 有界变差函数的不连续点的个数是 ()A 有限 ()B 可数 ()C 至多可数 ()D 不可数11. 设A a =,B 为不可数无限集,则A B -为 ()A B ()B a ()C c ()D a ≤12. 设E E '=∅ ,则E 为()A 孤立点集 ()B 开集 ()C 闭集 ()D 完备集二、判断题(在题前括号内填⨯或√)(每小题2分,共20分) ( )1.若E ≠∅,则0m E *> ( )2.若E 有界,则m E *<∞ ( )3.若E 无界,则m E *=∞ ( )4.若0m E =,则0m E = ( )5.若,A B 都可测且A B ⊂,如果()0m B A -=,则m A m B = ( )6.若E 可测,A 可数,则()mE m E A = ( )7.几乎处处有限的可测函数是“基本上”连续的 ( )8.几乎处处收敛比依测度收敛强 ( )9.若()()A B B A dx f p dy dy f p dx =⎰⎰⎰⎰,则()f p 在A B ⨯上可积 ( )10.函数在一点的列导数是唯一确定的 ——————————————————密————封————线————内————答————题三、(本题6分)设在康托尔集P 上定义函数()0f x =,在P 的余集中长度为3n -的构成区间上定义为n (1,2,3,)n = ,证明()f x 可积分,并计算积分值四、(本题8分)设在可测集E 上()()n f x f x⇒,而()()..n n f x g x a e E =于,1,2,n = ,证明:()()n g x f x ⇒ 五、简答题(每小题5分,共30分) 1.证明:若A B C ⊃⊃,且A C ,则A B C 2.证明:单位正方形{}(,)0,1I x y x y =<<与整个平面 {}2(,),R x y x y =-∞<<+∞对等 3.设A B ⊂且A 可测,m A <∞,又m B mA *=,证明:B 可测 4.证明:E 可测时,关于E 的特征函数是n R 上的可测函数 5.讨论()f x 与()f x 之间可测性的关系 6.设[0,]E π=,23,()sin x x E f x x x E ⎧+=⎨⎩为上的有理数,为上的无理数,计算()E f x dx ⎰ 密————封————线————内————答————题————无————效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 判断题
1.有限或可数个可数集的并集必为可数集。

(√ )
2.可数集的交集必为可数集。

(× )
3.设P,Q ∈R n ,则ρ(P,Q )=0⇔P =Q 。

(× )
4.设点P 为点集E 的内点,则P 为E 的聚点,反之P 为E 的聚点,则P 为E 的内点。

(× )
5.开集中的每个点都是内点,也是聚点。

(√ )
6.任意多个开集的并集仍为开集。

(√ )
7.任意多个开集的交集仍为开集。

(× )
8.设A ⊆B ,则m ∗A <m ∗B 。

(× )
9.设E 为R n 中的可数集,则m ∗E =0。

(√ )
10.设E 为无限集,且m ∗E =0,则E 是可数集。

(× ) 二、填空题
1.设1n R R =,1E 是[0,1]上的全部有理点,则1E '=1E 的内部
1E
2.设2n R R =,1E =[0,1],则1E '1E 的内部1E
3.设2n R R =,1E =22{(,)1}x y x y +<,则1E '1E 的内部
1E
4.设P 是Cantor 集,则P P P P
m ∗P
5. 设(,)a b 为1R 上的开集G 的构成区间,则(,)a b 满足(,a b ,且a ,
b 。

三、证明题
1.证明:()A B A B '''⋃=⋃。

证明:因为A A B ⊂⋃,B A B ⊂⋃,所以,()A A B ''⊂⋃,()B A B ''⊂⋃,从而
()A B A B '''⋃⊂⋃
反之,对任意()x A B '∈⋃,即对任意(,)B x δ,有
(,)()((,))((,))B x A B B x A B x B δδδ⋂⋃=⋂⋃⋂为无限集,
从而(,)B x A δ⋂为无限集或(,)B x B δ⋂为无限集至少有一个成立,即x A '∈或
x B '∈,所以,x A B ''∈⋃,()A B A B '''⋃⊂⋃。

综上所述,()A B A B '''⋃=⋃。

2.设A 2n−1=(0,1
n ),A 2n =(0,n),n=1,2,…,求出集列{A n }的上限集和下限集。

解:),0(lim ∞=∞
→n n A ;
设),0(∞∈x ,则存在N ,使N x <时,因此N n >时,n x <<0,即n A x 2∈,所以x 属于下标比N 大的一切偶数指标集,从而x 属于无限多n A ,得
n n A x lim ∞
→∈,又显然),0(lim ∞⊂∞
→n n A ,所以),0(lim ∞=∞
→n n A 。

若有n n A x lim ∞
→∈,则存在N ,使对任意N n >,有n A x ∈,因此若N
n >-12时,12-∈n A x , 即n
x 1
0<<,令∞→n ,得00≤<x ,此不可能,所以φ=∞
→n n A lim 。

3.可数点集的外侧度为零。

证明: 设i i I U E r r r E ∞
=⊂=1321`````},,,{
对)2
,2
(`````'```)2
,2
(,01
1
1
11
11n n n n n n n n n
n x x x x x x I +++++-+-=>∀ε
ε
ε
ε
ε
则2
)2
(222``````2
2||1
1
1

ε
ε
ε
===+++n
n n n n n
n I
则)2
(2
||2
22
2n
n I +==
ε
εε
)2
(2
||2
n
n i i
i I +==
ε
εε
∑∑∞
=∞
=∞
=1
12||i i
i i I ||*1
∑∞
=∈i i
I
mf E m 0*=E m
4.证明:不可数集减可数集的差集仍为不可数集。

证明:记A 是不可数集,B 是可数集,因为()()A A B A B =-⋃⋂,且A B -为无限集(因为,否则的话,A 是至多可数集,与A 是不可数集矛盾),A B ⋂为
至多可数集(因为A B B ⋂⊂,B 是可数集,所以A B ⋂为至多可数集),所以,
A A
B =-,即A A B -,所以,A B -仍为不可数集。

相关文档
最新文档