按比例分配应用题及解题思路

合集下载

六年级数学上册按比例分配应用题

六年级数学上册按比例分配应用题

六年级数学上册按比例分配应用题1.甲、乙两人每天共做56个机器零件,甲、乙工作效率的比是3:5,问甲、乙两人每天各做多少个零件?解析:设甲每天做3x个零件,乙每天做5x个零件,则3x+5x=56,解得x=8,因此甲每天做24个零件,乙每天做40个零件。

2.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需要石灰多少千克?解析:石灰和水的比是1:100,因此需要的水量是4545千克/100=45.45千克,石灰的重量也是45.45千克。

3.体育室有60根跳绳,按人数分配给甲乙两班,甲班有42人,乙班有48人,两个班各分得跳绳多少根?解析:甲班分得的跳绳数量是60×(42/90)=28根,乙班分得的跳绳数量是60×(48/90)=32根。

4.一个分数,它的分子和分母的和是80,分子和分母的比是3:7,求这个分数?解析:设分子为3x,分母为7x,则3x+7x=80,解得x=8,因此分子是24,分母是56,这个分数是24/56.5.一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?解析:设长为3x,宽为2x,则周长为2(3x+2x)=10x,解得x=20,因此长为60米,宽为40米,面积是2400平方米。

6.甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?解析:设甲车间的人数为5x,乙车间的人数为7x,则5x+7x=2×36,解得x=3.6,因此甲车间有18人,乙车间有25.2人,约为25人。

7.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?解析:设水泥、沙子、石子的比为2x:3x:5x,则2x+3x+5x=96,解得x=8,因此水泥需要16吨,沙子需要24吨,石子需要40吨。

8.一种药水是用药物和水按3:400配制成的。

1)要配制这种药水1612千克,需要药粉多少千克?2)用水60千克,需要药粉多少千克?3)用48千克药粉,可配制成多少千克的药水?解析:(1)药物和水的比是3:400,因此需要的药物重量是1612千克×(3/403)=12千克。

六年级数学比例应用题解题技巧

六年级数学比例应用题解题技巧

六年级数学比例应用题解题技巧一、比例应用题的基本类型与解题技巧1. 按比例分配问题解题技巧:先求出总份数,即把比例中各项相加。

再求出各部分占总量的几分之几,用各部分所占的份数除以总份数。

最后用总量乘以各部分占总量的几分之几,求出各部分的具体数量。

题目解析:例如:学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?求出总人数:47 + 48+45 = 140(人)。

这里总份数就是总人数140人。

然后,计算各班人数占总人数的比例:一班:(47)/(140);二班:(48)/(140)=(24)/(70);三班:(45)/(140)=(9)/(28)。

求出各班植树的棵数:一班:560×(47)/(140)=188(棵);二班:560×(48)/(140)=192(棵);三班:560×(45)/(140)=180(棵)。

2. 正比例应用题解题技巧:正比例关系是两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定。

根据正比例关系设未知数,列出比例式(即(y)/(x)=k(一定),设y = kx,然后根据已知条件列出比例方程求解)。

题目解析:例如:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?因为速度一定,路程和时间成正比例关系。

设甲乙两地之间的公路长x千米。

速度=(路程)/(时间),可列出比例式:(140)/(2)=(x)/(5)。

通过交叉相乘得到:2x = 140×5,2x=700,解得x = 350千米。

3. 反比例应用题解题技巧:反比例关系是两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定。

根据反比例关系设未知数,列出反比例方程(即xy = k(一定))求解。

题目解析:例如:一间教室,如果用边长是3分米的方砖铺地,需要400块,如果改用边长是2分米的方砖铺地,需要多少块?教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。

复杂的按比例分配问题

复杂的按比例分配问题

例1一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?例2一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?例3 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?例4洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?例5 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?3.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?4.5.6. 甲乙丙三个班人数的和是175人,甲班和乙班的比是2:3,乙班和丙班的比是4:5,甲乙丙三个班各是多少人?7. 甲乙丙三个班的人数平均是20人,甲乙丙三个班人数的比是6:5:4,甲乙丙三个班各有多少人?8. 三个煤炭厂内共有煤炭2800万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂与丙厂煤炭重量的比是6:7,三个煤炭厂各存煤炭多少万千克?9. 两个城市相距760千米,货车和客车同是从两城市相对开出,经过4小时相遇。

货车和客车的速度比是12:7。

货车和客车各行多少千米?10.图书馆里科技书和连环画的比8:5,科技书比连环画多90本,科技书和连环画各有多少本?11.甲乙丙三个组按2:3:5分配劳动力去完成一向任务,已知乙组要派120人,求甲丙两组应各派多少人?12. 加工一批零件,甲单独做需要8小时,乙单独做需要7小时,丙单独做需要14小时才能完成,三人合作2小时后,甲因另外有事离开,乙丙两人继续合作还需要几小时才能完成?13. 一列快车和一列慢车同时从两地相向开出,3小时后相遇。

六年级上册数学讲义-比的应用-人教版(含答案)

六年级上册数学讲义-比的应用-人教版(含答案)

第九讲比的应用一、知识梳理比的应用:按比例分配:二、方法归纳(1)按比例按分配的应用题:总量÷总分数=每一份的数(2)对于已知“一个长方体的棱长总和是120厘米,长、宽、高的比是6:5:4,”因为长方体的棱长和是由 4 条长、4 条宽、4 条高组成的,我们可以先算出一条长、一条宽、一条高的长度和。

又因为长、宽、高的比是 6:5:4,将长、宽、高的和 30 厘米按比例分配,知道了长、宽、高,我们就不难求出长方体的体积了三、课堂精讲(一)比的应用:按比例分配的应用题1.我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。

这种方法通常叫按比例分配。

2.一瓶500ml 的稀释液,其中浓缩液和水的体积分别是100ml 和400ml,_ ?(补充问题并解答)例1 (1)某班有男生25 人,女生20 人。

①男生人数与女生人数的比是( )。

②男生人数占全班人数的,男生人数与全班人数的比是( )。

③女生人数占全班人数的,女生人数与全班人数的比是( )。

(2)4∶5的前项扩大4 倍,要使比值不变,后项应增加( )。

(3)圆周长与它的面积的比是( )∶();a与它的倒数的比是( )∶()。

例 2 一瓶 500ml 的稀释液,其中浓缩液和水的体积的比是 1:4,其中浓缩液和水的体积的分别是多少?分析:“浓缩液和水的体积1:4”,就是说在500ml的稀释液,浓缩液占份,水的体积占份,一共是份,浓缩液占稀释液的(填分数)水的体积占稀释液的(填分数)【规律方法】理解按比例分配的应用题。

【搭配课堂训练题】【难度分级】 B1. 公园里有月季花和菊花共 400 盆,月季花和菊花的盆数比是5∶3,公园里月季花和菊花各有多少盆?(二)比的应用的变形例3 学校把栽280 棵树的任务,按照六年级三个班的人数分配给各班。

小学按比例分配应用题详解

小学按比例分配应用题详解

小学按比例分配应用题详解按比例分配问题【含义】所谓按比例分配,确实是把一个数按照一定的比分成若干份。

这类题的已知条件一样有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直截了当给出份数。

【数量关系】从条件看,已知总量和几个部重量的比;从问题看,求几个部重量各是多少。

总份数=比的前后项之和【解题思路和方法】先把各部重量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的运算方法,分别求出各部重量的值。

例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?解总份数为47+48+45=140一班植树560×47/140=188(棵)二班植树560×48/140=192(棵)三班植树560×45/140=180(棵)答:一、二、三班分别植树188棵、192棵、180棵。

例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。

三条边的长各是多少厘米?解3+4+5=12 60×3/12=15(厘米)60×4/12=20(厘米)60×5/12=25(厘米)答:三角形三条边的长分别是15厘米、20厘米、25厘米。

例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个亲小孩,大亲小孩分总数的1/2,二亲小孩分总数的1/3,三亲小孩分总数的1/9,并规定不许把羊宰割分,求三个亲小孩各分多少只羊。

解假如用总数乘以分率的方法解答,明显得不到符合题意的整数解。

假如用按比例分配的方法解,则专门容易得到1/2∶1/3∶1/9=9∶6∶29+6+2=17 17×9/17=917×6/17=6 17×2/17=2答:大亲小孩分得9只羊,二亲小孩分得6只羊,三亲小孩分得2只羊。

小学比例应用题的解题方法

小学比例应用题的解题方法

小学比例应用题的解题方法形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

小学数学要培养学生初步的抽象思维能力,重点突出在:(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

1、对照法如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。

根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。

只有这两个概念全理解了,才能做出正确判断。

2、公式法运用定律、公式、规则、法则来解决问题的方法。

它体现的是由一般到特殊的演绎思维。

公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。

但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59某37+12某59+5959某37+12某59+59=59某(37+12+1)…………运用乘法分配律=59某50…………运用加法计算法则=(60-1)某50…………运用数的组成规则=60某50-1某50…………运用乘法分配律=3000-50…………运用乘法计算法则=2950…………运用减法计算法则3、比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

六年级数学按比例分配应用题

六年级数学按比例分配应用题
按比例分 配应用题
在工农业生产和日常生活中, 常常需要把一个数量按照一定 的比来进行分配,这种分配方 法通常叫做按比例分配。
复习 一个农场计划在100公顷的地 里播种60公顷大豆和40公顷玉 米。大豆和玉米的播种面积各 占这块地的几分之几?大豆和 玉米播种面积的比是多少?
列式解答:
(1)银燕电器厂有职工270名,男 5 工人数占总人数的 9 ,男工有多 少人?
7 10
)份,占总份数的( ),列式计 )。 3 ) 份,占总份数的 ( 10 ) ,列式计 )。
练一练:
4、阳山小学参加植树活动,把216棵 树按2:3:4分配给四、五、六三个年 级。每个年级各应植树多少棵?
生活中的数学 一个足球的表面是由32块黑 色五边形和白色六边形皮围 成的,黑色皮和白色皮块数 比是3:5。两种颜色皮各有 多少块?
练一练
1、小芳家养了28只鸡,公鸡和母 鸡只数的比是2:5,公鸡和母鸡 各有多少只? 2、六一班和六二班订《少年科学》 的人数比是3:4,两个班共订了49 份。两个班各订了多少份 ?
3一种黄铜是由铜和锌按照3:7熔铸而成,生 产这种黄铜12.5吨,需要锌和铜各多少吨?
填空: ⑴生产这种黄铜共( ⑵把这种黄铜共分( ⑶其中锌( 7 7 算( 12.5× 1 0 ⑷其中铜 ( 3 3 算( 12.5× 10 12.5 )吨。 10 )份。
=120(公顷)
答:大豆播种150公顷, 玉米播种120公顷
练习: 银燕电器厂有职工270名,男、 女职工人数的比是5:4。这个 厂男、女职工各有多少人?
例 东岗小学把524本图书按照六年级三个
班的人数,分配给各班。一班有42人, 二班有45人,三班有44人。三个班各应 分得图书多少本?

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析在小学数学的学习中,比的应用是一个重要的知识点。

尤其是在六年级,我们经常会遇到与比相关的应用题。

本文将对这些题型进行解析,希望能帮助同学们更好地理解和掌握比的应用。

一、定义和概念我们需要理解什么是比。

比是指两个量之间的关系,通常用冒号或斜线表示。

例如,A与B的比是3:2,或者A是B的1.5倍。

二、常见的题型解析1、比例分配问题比例分配问题是比的应用中最常见的一种题型。

例如,有10个苹果,分给A、B、C三个人,要求他们之间的分配比例是2:3:5。

我们需要找出每个人应该得到多少个苹果。

解决这种问题的方法是先找出各个部分占总量的比例,然后按照比例分配。

以这个例子为例,A、B、C三人分别得到的苹果数为:10×(2/(2+3+5))、10×(3/(2+3+5))、10×(5/(2+3+5))。

2、倍数问题倍数问题是比的应用中另一种常见的题型。

例如,A的年龄是B的1.5倍,B的年龄是C的2倍,求A、B、C的年龄关系。

解决这种问题的方法是通过设未知数来找出数量关系。

以这个例子为例,我们可以设A的年龄为x,那么B的年龄就是1.5x,C的年龄就是1.5x/2=0.75x。

这样就可以清楚地看出他们之间的年龄关系。

3、比率问题比率问题是比的应用中另一种常见的题型。

例如,在生产过程中,某产品的合格率是90%,求合格品与不合格品的数量比。

解决这种问题的方法是利用数量关系来计算。

以这个例子为例,假设总产量为100件,那么合格品数量为90件,不合格品数量为10件。

所以合格品与不合格品的数量比为9:1。

三、解题思路和步骤在解决比的应用问题时,我们通常需要遵循以下步骤:1、读懂题目:首先需要认真阅读题目,理解题目中给出的信息和要求。

2、确定关系:根据题目中给出的比例或倍数关系,确定各个量之间的关系。

3、设未知数:如果需要,可以设未知数来帮助解决问题。

4、建立方程:根据题目中的数量关系建立方程。

按比例分配应用题 参考答案

按比例分配应用题 参考答案

按比例分配应用题参考答案典题探究一.基本知识点:二.解题方法:例1.六年级(2)班有学生48人,男生与总人数的比是5:8,则女生有()人.A.30 B.18 C.25考点:按比例分配应用题.专题:比和比例应用题.分析:“男生与总人数的比是5:8”,则女生占了总人数的,总人数已知是48人,就是求48的是多少.据此解答.解答:解:48×=18(人)答:女生有18人.故选:B.点评:本题的重点是求出女生人数占总数的几分之几,再根据分数乘法的意义列式解答.例2.甲、乙、丙三个数的比是3:4:5,这三个数的平均数是48,乙数是()A.48 B.36 C.12 D.60考点:按比例分配应用题.专题:比和比例应用题.分析:“甲、乙、丙三个数的比是3:4:5”,则乙数占了三个数总和的,这三个数的和是48×3=144.据此解答.解答:解:48×3=144144×=48答:乙数是48.故选:A.点评:本题的重点是求出乙占了三个数和的几分之几,再求出三个数的和是多少,然后根据分数乘法的意义列式解答.例3.欢欢看一本80页的书,已看的页数和剩下的页数比是7:5,欢欢大约看了()页.A.7B.47 C.56考点:按比例分配应用题;比的应用.专题:比和比例应用题.分析:由“已看的页数和剩下的页数比是7:5”,可求出已看的页数占总页数的,然后根据总页数,解决问题.解答:解:7+5=12,80×=80×≈47(页).答:欢欢大约看了47页.故选:B点评:本题关健是先通过“已看的页数和剩下的页数比“求出已看的页数占总页数的几分之几,用按比例分配的方法,解决问题.例4.一批货物按2:3:5分配给甲、乙、丙三个商店.丙商店分得这批货物的,乙商店分得这批货物的30%.考点:按比例分配应用题.分析:把这批货物的总重量看做单位“1”,也就是要分配的总量,是按照甲、乙、丙三个商店的质量比为2:3:5进行分配的,先求出三个商店分得的总份数,进一步用按比例分配的方法求出三家商店各分得这批货物的几分之几,进而确定哪家商店分得这批货物的,进一步把乙商店分得这批货物的几分之几改写成百分数即可.解答:解:三个商店分得的总份数:2+3+5=10(份),甲商店分得:1×=,乙商店分得:1×==0.3=30%,丙商店分得,1×==;答:丙商店分得这批货物的,乙商店分得这批货物的30%.故答案为:丙,30.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,没有具体的数量,就看作单位“1”.演练方阵A档(巩固专练)1.在50千克盐水中,盐和水的比是1:9,盐是()千克.A.1:10 B.1:9 C.5D.5考点:按比例分配应用题.专题:比和比例应用题.分析:盐和水的比是1:9,则盐就占了盐水的,已知盐水重50千克,用乘法可求出盐的重量.据此解答.解答:解:50×=5(千克)答:盐是5千克.故选:D.点评:本题的重点是根据比与分数的关系求出盐占了盐水的几分之几,再根据求一个数的几分之几是多少用乘法计算.2.一个三角形,3个内角度数之比是2:5:2,这个三角形是()三角形.A.锐角B.钝角C.直角D.等边考点:按比例分配应用题;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得最大角的度数,由此判断三角形的类型.解答:解;2+5+2=9180×=100(度);答:这个三角形是钝角三角形;故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.3.甲、乙、丙三数之比为2:7:9,这三个数的平均数为24,则甲数是()A.8B.16 C.32 D.64考点:按比例分配应用题.专题:比和比例应用题.分析:根据这三个数的平均数为24,可得这三个数的和是24×3=72,求出这三个数的总份数及甲数占总份数的几分之几,根据求一个数的几分之几是多少用乘法计算.解答:解:2+7+9=1872×=8故选:A.点评:根据平均数求出总数,利用求一个数的几分之几是多少用乘法计算是解决此题的关键.4.一个三角形三个内角度数的比是3:2:1,这是一个()三角形.A.锐角B.直角C.钝角D.无法确定考点:按比例分配应用题;三角形的分类.专题:比和比例应用题.分析:因为三角形的内角度数和是180°,三角形的最大的角的度数占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.最大的角:180°×=90°所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.5.从直角的顶点引一条射线,把直角分成两个角,使它们的度数之比为2:3,其中较大角的度数是()A.36°B.54°C.18°D.108°考点:按比例分配应用题.专题:比和比例应用题.分析:把直角分成两个角,使它们的度数之比为2:3,就是把90度按照2:3进行分配,那么较大的角就占,根据一个数乘分数的意义,求出较大角.解答:解:2+3=5;90°×=54°;答:较大的角是54°.故选:B.点评:解答此题应明确直角是90°,求出总份数,然后求出较大角占的分率,再根据分数乘法的意义求解.6.把140本书按一定的比分给2个班,合适的比是()A.4:5 B.3:4 C.5:6考点:按比例分配应用题;比的应用.专题:压轴题.分析:把140本书按一定的比分给2个班,如果按4:5分,就是把140平均分成4+5=9(份),一个班分4份,一个班分5份,140不能被9整除;如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;如果按5:6分,就是把140平均分成5+6=11(份),一个班分5份,一个班分6份,140不能被11整除.解答:解:根据分析,如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;故选:B点评:本题是考查按比例分配的实际应用,培养学生应用所学知识解决问题的能力.7.已知甲数与乙数的比是2:7,甲乙两数的和是36,甲数比乙数少()A.16 B.18 C.20 D.22考点:按比例分配应用题.分析:根据题意可知:乙数占两数和的,乙数占两数和的,甲数比乙数少两数和的(﹣),进而根据一个数乘分数的意义,解答即可.36×(﹣),=36×,=20;故选:C.点评:解答此题的关键:判断出单位“1”,先求出甲数比乙数少两数和的几分之几,进而根据一个数乘分数的意义,解答即可.8.把600本书按3:5分给五、六年级,六年级分到()本.A.150 B.225 C.300 D.375考点:按比例分配应用题.分析:此题要分配的总量是600本书,是按照五、六年级的本数比为3:5进行分配,先求出五、六年级分得本数的总份数,进一步求出六年级分得的本数占总本数的几分之几,最后求得六年级分得的本数,列式解答后再选择即可.解答:解:总份数:3+5=8(份),六年级分得的本数:600×=375(本);答:六年级分到375本.故选:D.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,再看此总量是按照什么比例进行分配的,再进一步按照比例分配的方法求出其中的一个量.9.六一班有学生50人,六二班有学生40人,两个班共植树36棵,要合理分配任务,六一班应植树几棵?正确列式是()A.B.C.D.考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:要合理分配任务,也就是按照两个班的学生人数进行分配.先求出两个班一共有多少人,再求出六一班学生人数占两个班总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.解答:解:50+40=90(人),36×=20(棵),答:六一班应植树20棵.故选:C.点评:此题解答关键是理解只有按两个班的人数的多少进行分配才合理.根据按比例分配的方法解答.10.被减数、减数与差的和是80,差与减数的比是5:3,差是()A.50 B.25 C.15考点:按比例分配应用题.分析:由于被减数=减数+差,所以根据“被减数、减数与差的和是80,”可求出减数和差的和,再由“差与减数的比是5:3,”可找到总数和总份数,即可求出一份.解答:解:(80÷2)÷(5+3)=40÷8=55×5=25故选B点评:找准总数,找准把总数分成的总份数,求出一份是多少.即可解答.B档(提升精练)1.把63吨化肥,按4:2:3分配给甲、乙、丙三个乡,甲乡比乙乡多分()吨.A.28 B.7C.14 D.21考点:按比例分配应用题.分析:根据总数是63吨,总份数是4+2+3,可求出一份是多少,再根据甲乡比乙乡多(4﹣2)份,即可求出甲乡比乙乡多分的吨数.解答:解:63÷(4+2+3)×(4﹣2)=63÷9×2=7×2=14(吨)答:故选C.点评:找准总数,找准把总数分成的总份数,再求出一份是多少.2.长方形的周长是48厘米,长与宽的比是3:5,它的面积是()平方厘米.A.270 B.135 C.540考点:按比例分配应用题;长方形、正方形的面积.专题:比和比例应用题;平面图形的认识与计算.分析:先求出长与宽的总份数,再求出长与宽占总数的几分之几,分别求出长与宽,进一步求出面积.解答:解:长与宽的总份数:3+5=8(份),48÷2×=9(厘米),48÷2×=15(厘米).面积:9×15=135(平方厘米).答:面积是135平方厘米.故选B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.3.一个等腰三角形的周长是120厘米,相邻两条边长度的比是2:1,这个等腰三角形的底是()A.60厘米B.48厘米C.30厘米D.24厘米考点:按比例分配应用题;等腰三角形与等边三角形.专题:压轴题.分析:由题意可知“等腰三角形相邻两条边长度的比是2:1”,根据三角形边的关系“三角形的两边之和大于第三边,两边之差小于第三边”,所以腰的长度大于底的长度,即:腰的长度:底的长度=2:1;这样把三角形的周长分成了2+2+1=5(份),底占其中的1份,底是周长的;知道周长求底,根据题意列式计算即可.解答:解:120×,=120×,=24(厘米);即:三角形的底是24厘米.故选:D.点评:解答此题先根据三角形边的关系确定腰和底的比,再求出周长的总份数,最后求底的长度.4.一个三角形三个角度数的比是2:2:5,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形考点:按比例分配应用题;三角形的分类.分析:三角形的内角和是180°,根据比例求出这三个角各是多少度,再根据角的度数判断是什么样的三角形.解答:解:总份数:2+2+5=9(份);这三个角的最大角是:180°×=100°;100°>90°;这个三角形是钝角三角形.故答案选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.甲、乙、丙三人储蓄钱数的比是1:2:3,他们储蓄钱数的平均数是50元,乙储蓄了()元.A.50 B.100 C.150考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:根据“甲乙丙三人储蓄钱数之比是1:2:3”,求得甲乙丙储蓄钱数的总份数,再求得乙储蓄的钱数占总数的几分之几;根据“他们储蓄钱数的平均数是50元”,求得三人储蓄的总钱数;最后求得乙储蓄的钱数,列式解答即可.解答:解:甲乙丙储蓄钱数的总份数:1+2+3=6(份);三人储蓄的总钱数:50×3=150(元);乙储蓄的钱数:150×=50(元).答:乙储蓄了50元.故选:A.点评:此题主要考查按比例分配应用题的特点:已知三个数的比,三个数的和,求其中的一个数,用按比例分配解答.6.把126吨化肥,按4:3:2分配给甲、乙、丙三个村,甲村比丙村多分化肥()吨.A.14 B.28 C.42考点:按比例分配应用题.专题:比和比例应用题.分析:根据总数是126吨,总份数是4+3+2,可求出一份是多少,再根据甲村比丙村多(4﹣2)份,即可求出甲村比丙村多分的吨数.解答:解:126÷(4+3+2)×(4﹣2)=126÷9×2=28(吨)答:甲村比丙村多分化肥28吨.故选:B.点评:找准总数,找准把总数分成的总份数,再求出一份是多少,进而解决问题.7.甲、乙、丙三个数的和为300,甲数为120,乙数和丙数的比是5:4,丙数是()A.180 B.100 C.80考点:按比例分配应用题.专题:比和比例.分析:乙数和丙数的比是5:4,根据比与分数的关系可知:丙数就占乙丙两数和,乙丙两数的和是(300﹣120).据此解答.解答:解:(300﹣120)×,=180×,=80.答:丙数是80.故选:C.点评:本题的关键是根据比与分数的关系求出丙占乙丙两数和的几分之几,再求出乙丙两数的和是多少,然后根据分数乘法的意义列式解答.8.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,结果A做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出480元给A、B、C三人作为报酬,若按天数计算劳务费,则这480元中A应该分()元.A.180 B.192 C.200 D.320考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意可知:他们一共做了6+5+4+1=16天,那么平均算下来,16÷4=4天,一个人就要做四天,但D做了一天因事请假,他做了一天,就少做了3天,则A多做了6﹣4=2天,B多做了一天,那么那48元是给多做天数的报酬,一共多做了3天,就用报酬费480÷3=160元,一天就要给160元,A多做了2天,就用160×2=320元即可解决.解答:解:一共做的天数:6+5+4+1=16(天)平均每人做的天数:16÷4=4(天)A多做的天数:6﹣4=2(天)B多做的天数:5﹣4=1(天)一共多做的天数:2+1=3(天)A应得480÷3×2=320(元),答:这480元应分给A320元.故选:D.点评:解答此题的关键是先求出一共做的天数,从而知道平均每人要做的天数,再求出A多做了几天,就把D少做3天的酬劳平均分成3份,即可求出.9.已知A+B=80,A:B=3:5,则A、B分别是()A.30、48 B.50、30 C.30、50考点:按比例分配应用题.分析:首先求得A、B两数的总份数,再分别求得A、B所占总数的几分之几,最后求得A、B两个数,列式解答即可.解答:解:总份数:3+5=8(份),数A:80×=30,数B:80×=50,或80﹣30=50.答:则A是30,B是50.故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比与两个数的和,求这两个数,用按比例分配的方法解答.10.绿化队准备植树96棵,按7:8:9的比例分配给甲、乙、丙三个小组.甲组应植树()棵.A.36 B.32 C.28 D.26考点:按比例分配应用题.专题:比和比例应用题.分析:由题意可得:甲组植树的棵数占植树总棵数的,把植树总棵数看作单位“1”,根据一个数乘分数的意义,用乘法解答即可.解答:解:7+8+9=24,96×=28(棵);答:甲组应植树28棵;故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.C档(跨越导练)1.一个分数的分子分母和是132,约分后为,原分数是()A.B.C.考点:按比例分配应用题.专题:压轴题.分析:解答此题先求分子和分母的和的总份数,再求1份是多少,然后求分子和分母分别是多少,最后写出这个分数.解答:解:总份数:4+7=11(份),一份:132÷11=12,分子:4×12=48,分母:7×12=84.即:这个分数是.故选:B.点评:此题主要考查按比例分配,解答此题先求分子、分母和的总份数,再求其中的1份是多少,最后求分子、分母分别是多少.2.一个最简真分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是,原来的分数是()A.B.C.D.考点:按比例分配应用题.分析:这个最简分数的分子、分母分别减去5之后,所得分数的分子、分母之和为(50﹣5﹣5)40.因为所得分数的值是,根据比例分配,则:所得分数的分子为:40×=16,分母为:40×=24.故:原分数为:=.解答:解:(50﹣5﹣5)×,=40×,=16;40×,=24.,=.故选:B.点评:解答此题的关键是求所得分数的分子、分母之和;重点是根据比例分配,求出所得现在分数的分子、分母分别占和的几分之几.3.把1些树苗按2:3:5分配给一班、二班、三班的学生去种植,一班比三班的树苗少()%.A.60 B.40 C.20考点:按比例分配应用题;百分数的实际应用.专题:比和比例应用题.分析:用一班比三班少的份数除以三班的份数,就是一班比三班少百分之几.据此解答.解答:解:(5﹣2)÷5,=3÷5,=60%.答:一班比三班的树苗少60%.故选:A.点评:本题的关键是根据比与除法的关系来进行解答.4.某电器商店有180台电视机,彩电与黑白电视的台数比是5:4,彩电有()台.A.50 B.100 C.80考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意,首先求出总份数,再求出彩电占总数量的几分之几,根据一个数乘分数的意义,有乘法解答.解答:解:180×=100(台);答:彩电有100台.故选:B.点评:此题考查的目的是让学生掌握按比例分配应用题的特点及解答规律,已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.一种混合糖中甲、乙两种糖的比是2:3,现加入甲糖120千克,乙糖40千克,得到混合糖660千克,新混合糖中甲、乙两种糖的比是()A.15:16 B.16:17 C.16:15 D.15:17考点:按比例分配应用题;比的意义.分析:根据题意“现加入甲糖120千克,乙糖40千克,得到混合糖660千克”得到加入糖之前甲、乙两种糖的和:660﹣(120+40)=500克,再根据题意求得甲、乙两种糖的总份数,然后分别求得甲、乙两种糖各占总分数的几分之几,最后分别求得加入糖之前甲、乙两种糖的质量,用原来两种糖的质量分别加上加入糖的质量,求出新混合糖种甲乙两种糖分别是多少,再求比并化简,列式解答即可.解答:解:加入糖之前甲、乙两种糖的和:660﹣(120+40),=660﹣160,=500(千克),总分数:2+3=5(份),加入糖之前甲、乙两种糖的质量分别是:500×=200(千克),600×=300(千克),新混合糖中甲、乙两种糖的质量分别是:200+120=320(千克),300+40=340(千克),新混合糖甲、乙两种糖的比:320:340,=(320÷20):(340÷20),=16:17.答:新混合糖中甲、乙两种的比16:17.故选:B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比和两个数的和,在这里需根据题意求这两个数得和,用现在糖的质量减去加入糖的质量,用按比例分配的方法解答.6.甲、乙、丙三个数的平均数是19,甲、乙两数的比是3:4,丙比甲少3,甲是()A.24 B.18 C.15考点:按比例分配应用题.分析:根据“甲、乙、丙三个数的平均数是19”,可求出三个数的和为57,再根据“丙比甲少3”,可假设丙和甲一样也占3份,那么三个数的和就成为(57+3),先求出三个数的总份数,再求出甲数占三个数和的几分之几,进而求出甲数的数值即可.解答:解:三个数的和:19×3=57,丙和甲一样也占3份时,三个数的和为:57+3=60,总份数:3+4+3=10(份),甲数为:60×=18;答:甲数是18.故选:B.点评:此题属于考查按比例分配的应用题,解决此题关键是把丙和甲看的一样多,都占3份时,三个数的和是多少,作为要分配的总量,进而按照3:4:3进行分配,再用按比例分配的方法进行解答.7.下面的说法正确的是()A.一个等腰三角形的周长是108厘米,其中两条边的比是2:5,腰为24或45厘米B.一种彩票的中奖率是1%,爸爸买了100张这种彩票,爸爸一定会有1次中奖C.相关联的两个量X、Y,Y=X,那么Y和X成正比例考点:按比例分配应用题;辨识成正比例的量与成反比例的量;简单事件发生的可能性求解.专题:比和比例;比和比例应用题;可能性.分析:(1)根据三角形的特性:三角形的任意两条边之和一定大于第三条边,可知等腰三角形三条边的比为2:5:5,不会是2:2:5,按比例分配求出腰即可判断;(2)一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大;(3)由Y=X,变式可得出=4,根据正比例的意义作出判断.解答:解:A.因为:三角形的任意两条边之和一定大于第三条边,所以等腰三角形三条边的比为2:5:5,108×=45(厘米),因此腰为24厘米不对;B.一种彩票的中奖率是1%,买100张彩票一定有1张中奖的说法错误.C.Y=X,=4,比值一定,所以Y和X成正比例,是正确的;故选:C.点评:此题主要考查了概率的意义,以及等腰三角形的性质和正比例的意义等知识.8.下面说法正确的是()A.一个三角形内角度数的比是1:2:3,这是个锐角三角形B.国际儿童节和国庆节都在大月C.同一个平面内,永不相交的两条直线叫做平行线D.在生活中,知道了物体的方向,就能确定物体的位置考点:按比例分配应用题;年、月、日及其关系、单位换算与计算;垂直与平行的特征及性质;三角形的分类;三角形的内角和;方向.专题:综合判断题.分析:(1)根据三角形内角和是180度,按比例分配求出最大角的度数,即可判断;(2)知道一年中1、3、5、7、8、10、12是大月,再知道儿童节和国庆节在哪个月,即可得解;(3)根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,即可判断;(4)物体位置对于某一观察点来说,是由一定的方向和距离确定的,只知道方向或距离不能确定物体的位置.判断即可.解答:解;A.180×=90°,所以是直角三角形而不是锐角三角形;B.国际儿童节是6月1日,国庆节是10月1日,6月是小月,10月是大月,所以国际儿童节和国庆节都在大月错误;C.在同一平面内,不相交的两条直线叫做平行线,是正确的;D.对于某一观察点来说,知道了物体的方向和距离就可以确定物体的位置,只知道方向或距离不能确定物体的位置.故选c.点评:此题主要考查的知识:平行线的定义,一年中哪些是大月和小月,节日的日期,以及要确定一物体的位置,必须知道方向和距离.9.甲、乙、丙三人的平均体重是50千克,他们的体重的比是4:3:3,甲的体重是()A.50×3×B.50×C.50×D.50×3×考点:按比例分配应用题.分析:根据题意,三人的总体重为50×3=150(千克),甲的体重占三人总体重的,根据一个数乘分数的意义,列式即可.解答:解:甲的体重是:50×3×;故选:A.点评:解答此题的关键是找准对应量,找出数量关系,根据数量关系,用按比例分配解答.10.水是由氢和氧按1:8的重量化合而成的,72千克水中,含氢和氧各()A.1千克,71千克B.8千克,64千克C.9千克,63千克D.63千克,9千克考点:按比例分配应用题.专题:比和比例应用题.分析:因为氢和氧按1:8化合成水,氢占水的,氧占水的,然后用乘法解答即可.解答:解:72×=8(千克)72×=64(千克);答:含氢和氧分别有8千克、64千克;故选:B.点评:本题的关键是分别求出氢和氧各占水的几分之几,然后再根据一个数乘分数的意义,用乘法列式解答.。

按比例分配题型总结

按比例分配题型总结

按比例分配题型总结按比例分配常见的题型一共有两大类,一类是利用总数和比,求比的各项;另一类是利用比和比的某一项,求比的其他项或者总数。

另外,还要注重利用比和分数的互相转化来解题,进一步理解按比例分配应用题中数量间的对应关系,重视审题。

一、利用总数和比,求比的各项(基本题)1.已知分配的总数和比,求比的各项。

例1:一种糖水是糖与水按照1:19的比例混合而成。

现在要配制这样的糖水2千克,需要糖和水各多少千克?[解析]:这种题是按比例分配的基础题型,已知总数和比,而且这个总数就是要分配的总数,所以在解题时可以按照按比例分配的两种方法直接求解。

方法一:归一法方法二:分数乘法1+19=20份(求出2千克的总份数) 1+19=20份2÷20=0.1千克(求出每份的质量) 2×120=0.1千克(糖占糖水的120)0.1×1=0.1千克(求出糖的质量) 2×1920=1.9千克(水占糖水的1920)0.1×19=1.9千克(求出水的质量)练习1:一种足球是由32块黑色五边形和白色六边形皮块制成的,其中黑、白皮块块数的比是3∶5。

黑色和白色皮块各有多少?练习2:用84厘米长的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5。

这个三角形的面积是多少平方厘米?练习3:一套桌椅560元,桌子和椅子的价钱比是3:1,求椅子的价钱。

例2:研究发现,8岁以上的儿童按5∶3安排一天的活动与睡眠的时间是最合理的。

一天的睡眠时间应是多少小时?[解析]:这种题也是已知总数和比,而且这个总数就是要分配的总数,只是题中的总数是隐藏的,需要我们自己找准确。

常见的隐藏总数的如24小时,180°等。

在解这个题时还要注意:看清题目中求的是比的哪一项。

找准问题所对应的份数。

方法一:归一法方法二:分数乘法5+3=8份(求出24小时的总份数) 5+3=8份24÷8=3小时(求出每份的时间) 24×38=9小时(睡眠时间占一天的38)3×3=9小时(求出睡眠的时间)练习1:一个三角形的三个内角度数的比是1∶2∶3。

六年级数学按比分配应用题及答案

六年级数学按比分配应用题及答案

按比分配应用题及答案1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15300÷15=2020×4=80(本),20×5=100(本),20×6=120(本)答:四年级得80本,五年级得100本,六年级得120本。

2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=1015050÷101=50(千克)答:需要盐水50千克。

3、山羊和绵羊的头数比是2∶5,山羊40头。

山羊和绵羊一共有多少头?解:40÷2=20(头)20×(5+2)=140(头)答:山羊和绵羊一共有140头。

4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。

5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)200÷100=2(根)52×2=104(根)48×2=96(根)答:一班可得跳绳104根,二班可得跳绳96根。

6、一个分数,它的分子和分母的和是40,分子和分母的比是4∶6,这个分数是几分之几?解:4+6=1040÷10=44×4=166×4=24答:这个分数是24分之16。

7、一种药水是用药粉和水按1∶80配制成的。

⑴、40千克药粉,可配制成多少千克的药水?解:40×80=3200(千克)3200+40=3240(千克)答:40千克药粉,可配制成3240千克的药水。

⑵、60千克水,需要药粉多少千克?解:60÷80=0.75(千克)答:60千克水,需要药粉0.75千克。

小学数学竞赛:比例应用题(一).学生版解题技巧 培优 易错 难

小学数学竞赛:比例应用题(一).学生版解题技巧 培优 易错 难

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ; 性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数) 性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积) 正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比; 反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b =⇒ y b x a =; x ya b =; a b x y =; ②x a y b = ⇒ mx a my b =; x ma y mb =(其中0m ≠); ③x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ;④x a yb =,yc zd = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的ca等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad .三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bxa b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为axa b-,B 的元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值. 知识点拨教学目标比例应用题(一)四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

第四单元按比例分配问题“基础型”专项练习(解析版)人教版

第四单元按比例分配问题“基础型”专项练习(解析版)人教版

2023-2024学年六年级数学上册典型例题系列第四单元:按比例分配问题“基础型”专项练习1.学校买来300本课外书,按照人数的比分配给五、六年级,五年级有728.可以用1份蜂蜜和9份水来冲兑蜂蜜水。

一个杯子的容积是200毫升,冲兑一满杯这样的蜂蜜水,需要蜂蜜和水各多少毫升?【答案】20毫升;180毫升【分析】1份蜂蜜水包含1份蜂蜜和9份水,一共是1+9=10份,用200÷10=20毫升求出1份是多少,再分别乘蜂蜜和水所占的份数即可求出它们分别是多少毫升。

【详解】200÷(1+9)=200÷10=20(毫升)蜂蜜:20×1=20(毫升)水:20×9=180(毫升)答:蜂蜜是20毫升,水是180毫升。

【点睛】此题考查按比例分配问题,采用设份数的方法解题,明确一份的量是多少是解题的关键。

9.用48厘米的铁丝围成一个三角形,这个三角形的三条边的长度比是3∶4∶5,这个三角形的面积是多少平方厘米,最长边上的高是多少厘米?【答案】96平方厘米;9.6厘米【分析】根据题意,用铁丝围成一个直角三角形,那么铁丝的长度等于三角形的周长;根据三角形的三条边的长度比可知,三条边的总份数是(3+4+5)份;用周长除以总份数,求出一份数;根据直角三角形“斜边最长”的特征可知,三角形的两条直角边占3份和4份,用一份数分别乘3、乘4,即可求出这两条直角边的长度,再根据“三角形的面积=底×高÷2”,求出这个三角形的面积。

最长边占5份,据此求出最长边,同样利用三角形的面积公式,代入数据即可求出最长边上对应的高。

【详解】48345÷(++)=÷48124=(厘米)()()⨯⨯⨯÷43442=12162⨯÷96=(平方厘米)⨯÷⨯()96245=⨯÷96220=(厘米)9.6答:这个三角形的面积是96平方厘米,最长边上的高是9.6厘米。

比和按比例分配问题

比和按比例分配问题

3、用240厘米长的铁丝围成一个三角形。这个三角形 三条边长度的比是3:4:5。围成的三角形各边的长度分别 是多少?
一个足球的表面是由32块黑色五边形和白色六 边形皮围成的,黑色皮和白色皮块数比是3:5。 两种颜色皮各有多少块?

谈谈你有什么收获?
你还有什么疑惑、发现和建议吗? 这节课上,你觉得谁最值得你学习?
按比例分配应用题基本特征: 已知: 1总量 2各部分量的比 求:各部分的量。
步骤:第一步求总份数; 第二步求各部分量 解题关健在把比转化成每一个数量占总数量的几分之几, 根据求一个数的几分之几是多少,用乘法来解答。
比和按比例分配
问题解决
2017/12/29
1
化简比
121:77 1.5:7.5 5/8:0.05 2:0.5:1
求比值
15:21 3/8:0.5 2.4:1/5
填空
已知六年级 1 班男生人数和女生人数的比是 3 : 2 。 1. 女生人数和男生人数的比是( 2:3 ) 2. 男生人数是女生人数的( 女生人数是男生人数的(
能平均分吗
平均分不合理,应按出的钱数的比来分才合理。
陈红拿出6元,赵青拿出4元,去买同样的笔记本共15本。
他们应当怎样分这些笔记本?
陈红、赵青拿出钱数的比是: 6:4=3:2 解:设每份是x本。
3x+2x=15 5x=15
x=3
陈红应分的本数:
赵青应分的本数:


陈红拿出6元,赵青拿出4元,去买同样的笔记本共15本。 他们应当怎样分这些笔记本?
红色: 30÷5×3=____(格)
黄色: 30÷5×3=_ ___(格)
检验
答:红色应涂18格,黄色应涂12格。

按比例分配应用题及解题思路

按比例分配应用题及解题思路

按比例分配应用题及解题思路一、基本题;已知几个分量的和,与几个分量间的比,求各分量;方法一:1求总份数比的前后项的和;2求一份量总量几个数的和÷总份数;3求出各分量一份量×份数方法二:1求总份数比的前后项的和;2求出各分量占总量的几分之几;3求出各分量总量×几分之几例1、六1班共有学生50人,其中男生人数与女生人数的比是3:2,这个班男、女生各有多少人二、变式题1、只知道几个分量间的比,求各分量;1隐含总量;方法:根据题的特点找出隐含的总量,再按基本题的方法解答;例2、一个三角形的三个内角度数的比是3:2:1,这个三角形的三个内角各是多少2隐含分量所占的份数;方法:根据等腰三角形的特点找出隐含的分量所占的份数,再按基本题的方法解答;例3、一个等腰三角形的周长是28厘米,腰与底的比是3:1,这个三角形的三条边各是多少2、已知两个分量的差,与几个分量间的比,求各分量或总量;方法:两个分量的差÷两个分量所占份数的差=1份数,再求各分量或总量例4、饲养场鸡的只数比鸭少1200只,鸡与鸭只数的比是3:5,鸭有多少只3、已知几个分量的比,求各分量1已知长方形的周长和长、宽的比,求长方形的面积方法:先用周长÷2求出长与宽的和即总量,再按基本题的方法求出长和宽,再根据长方形的面积公式计算;例5、一个长方形的周长是64厘米,长与宽的比是7:9.长方形的长方形的面积是多少平方厘米2已知长方体的棱长总和和长、宽、高的比,求长方体的体积方法:先用棱长总和÷4求出长、宽、高的和即总量,再按基本题的方法求出长、宽、高,再根据长方体的体积公式计算;例6、一个长方体的棱长总和是72厘米,长、宽、高的比是3:2:1.长方体的体积是多少立方厘米4、已知几个分量的平均数和几个分量的比,求各分量方法:根据平均数×份数=总数,计算出总量,再按基本题的方法解答;例7、甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人5、已知一个分量和几个分量的比,求其他分量或总量方法:已知分量÷它所占的份数,计算出1份数,再求出其他分量或总量;例8、第二小学有140个男生,男生与女生的比7:8,第二小学有女生多少人6、重新分配问题;方法:1把原来分配的结果加起来,算出总量,再按重新分配的比例,算出重新分配的结果;2一个人或物两次分配的差就是得到或给出的数;例9、甲仓库存粮50吨,乙仓库存粮70吨,从甲仓库运给乙仓库多少吨粮食,才能使甲、乙两仓库的存粮比是1:2。

六年级数学按比例分配应用题

六年级数学按比例分配应用题
=120(公顷)
答:大豆播种150公顷, 玉米播种120公顷
练习: 银燕电器厂有职工270名,男、 女职工人数的比是5:4。这个 厂男、女职工各有多少人?
例 东岗小学把524本图书按照六年级三个
班的人数,分配给各班。一班有42人, 二班有45人,三班有44人。三个班各应 分得图书多少本?
524× 524× 524×
凸显你的“慧眼”
1、一个等腰三角形的底角和顶 角度数之比是2:1,求顶角是 多少度?
2、一个等腰三角形的周长是 24CM,腰和底边的比是2:3。底 边长是多少?
; 营销手机

就是举手之间. "呃?见过屠神卫大人,这么匆忙有急事?"刚走进神主阁,却迎面遇到焚神卫.焚神卫脸上没有往日の妩媚风情,反而脸上一阵红一阵白,脸色有些差. "对,神剑有下落了,神主在干什么?"屠神卫隐隐有些兴奋の说道,看到看到焚神卫の脸色,却又有些迟疑の说道:"神主还在 玩?" "哎!"焚神卫眼中露出一丝不忍和茫然,有些惋惜叹道:"这几日都死了近百个人了,再这样下去,神城怕要暴动了!" "走,俺们一起进去,或许神主听到神剑有下落了,不会再继续虐杀也不一定!"屠神卫也担心了起来,这段时候神主屠性格大变,要求焚神卫隔日给他送去五名少男五 名少女.而最后这些人下场却都是惨不忍睹… "桀桀桀,菊花残啊残,木耳红呀黑…" "呜呜,父亲母亲,你呀们在哪?快来救救香香!" "恶魔,禽智,俺求求你呀杀了俺吧!" 屠神卫和焚神卫两人来到了书房门口,却老远听到了神主屠变taiの笑声,以及书房内少女の痛苦声,呼救声和少男悲 愤の怒骂声.面色一变,无奈の摇了摇头,同时下跪,屠神卫咬牙沉声喝道:"属下拜见神主,有要事求见!" "滚!" 没有意外,两人听到の一声暴怒の吼声,而后书房内响起一阵阵の皮鞭声和神主屠の狂笑声,以及几声更加惨烈の悲叫声. "这个…神主,属下得到了神剑の确切消息!"屠神 卫一咬牙,硬着一口气再次朗声说道. "砰!" 这次神主屠没有怒骂,而是直接从书房飘出一只大手,将两人直接击飞到空中.这一掌力道之大,直接将两人胸口の击得凹了进去,两口鲜血在空中狂飙,最后狠狠砸落在地面,挣扎了半天才站起来,俨然是受了重伤. "桀桀桀,明日继续给本座找 十人来,找不到…你呀们四人把屁股洗白白过来让本座玩玩吧,桀桀桀,菊花残呀残,木耳红呀黑…" "咳,咳!这…" 焚神卫一张风情万种の俏脸更加红白交加了,浑身气得隐隐发抖,胸前两处高耸剧烈起伏起来,嘴角鲜血还在不断の溢出来,好半天才恢复过来,一双凤眸更加又是悲愤又是 迷茫,不知该如何是好了. "哎!走吧!神主精神受了刺激,性格已经…有些变tai了,只能过段时候等他恢复,再来禀告好了."屠神卫也是浑身起了一地の鸡皮疙瘩,身体微微颤抖,有些哆嗦の朝书房望了一眼,和焚神卫传音起来. 停顿了片刻,屠神卫沉沉一叹,艰难の移动身躯朝外走去,却 突然想起什么,老脸一红有些尴尬,再次传音道:"那个…神主の交代事,一定要办好啊,否则他要是真の那什么……哎!" 当前 第肆0壹章 女海盗 白家后山,阁楼内.请大家检索(¥网)看最全!更新最快の 夜天龙看着桌上の玉盒,转头朝夜白虎说道:"白虎,还是你呀炼化吧,你呀境界 最低,此生基本无望成神,俺和白虎拼搏一下还是有可能の!" "族长不必须多言,俺们三人都知道基本上没有特殊机缘成神无望,到了俺们这个年纪如果还不能修炼到圣人境三重,历史上有谁能成神?龙匹夫数年前就已经半步通神了为何还没踏入最后一步?此事莫要再提."夜白虎很是感激 の朝夜天龙望了一眼,语气很是坚决.白重炙走了半个月了,但是三人却你呀一直你呀让俺俺让你呀,到现在还没炼化神晶. "族长,你呀别看着俺,你呀还是个爷们就炼化了.说句实话,俺们两人就是现在双腿一蹬,就此去了,也是含笑而去.你呀既想弥补当年の遗憾就别婆婆妈妈,不就一神 晶吗?俺们三人从不咋大的玩到大,不是亲兄弟赛过亲兄弟,俺们会眼睁睁看着你呀带着遗憾而去?速速炼化,月惜水还等着你呀迎娶过门哪…"夜青牛见夜天龙把目光又转向自己,准备说些什么,终于忍不住发飙了,一拍桌子,两只牛眼鼓得老大,似乎夜天龙还不炼化就要动手揍人了. "好 吧!"夜天龙苦笑一声,知道两人怕是决心已定.他知道其实三人都想炼化这神晶,毕竟谁不想长生?不想成神?此刻被夜青牛一bi无奈之下,只能把神晶收入怀中,准备晚上就开始炼化他.想到那日在寒心阁天台和月惜水の戏言,他不禁一颗心有些火热了起来. "族长,老祖宗说要俺们发通告 把不咋大的寒子逐出白家,你呀看也过去半个月了,差不多可以发了吧!"夜白虎见事情已经定下来了,有些宽慰の笑了笑,而后想起那日夜若水交代の事情,继而开始征询夜天龙の意见. "哎…苦了这孩子!为白家付出了那么多,白家不仅不能保护他,最后还要废除他少族长身份,并且逐出 白家……俺这个族长做得真是失败啊.罢了,明ri你呀去长老堂公布这个事情,俺晚上开始闭关,争取早日炼化神晶,到时候就由俺来接过这孩子肩膀上の千斤重担吧!"夜天龙沉沉一叹,脸上尽是愧疚和无奈,同时暗自下定决心,晚上开始直接闭关到完全炼化神晶. "咻!" 片刻之后,外面 却传来一阵破空声,一条身影从白家堡朝后山快速飞来,引起了三人の注意. "夜剑求见,有要事禀报!" 外面飞来の却是夜剑,三人对视一眼有些疑惑,却没有多说什么,夜天龙一挥手,淡淡の说道:"进来吧,有何要事?" "父亲,太上长老,请求你呀们传讯给老祖宗!"夜剑走了进来,再次单 膝下跪,而后神情很是激动の说道:"孩儿发现一件事情,如果世家不处理の话,不出数年白家很有可能遭受灭顶之灾,白家数千年基业将会毁于一旦!" "嗯?究竟是何事?竟然严重要如此地步?"三人一惊,看夜剑の面色不似作伪,并且此等大事,想然他也不敢乱开玩笑,纷纷色变. "请父亲, 将老祖宗请来,此事唯有老祖宗才能决定!"夜剑面色很是严肃の点了点头,再次低头叩首沉声说道. "老祖宗在静修,如果事情不严重,你呀知道后果!"夜天龙警告了夜剑一声,将他还是坚持,只能通过传讯玉符给夜若水传音,将事情告诉夜若水. "什么事?说吧!" 片刻之后阁楼内响起夜 若水冷冷の声音,夜天龙三人连忙站起朝朝空中虚行了一礼,而后看着夜剑,安静听他述说. "夜剑拜见老祖宗!夜剑发现一件大事,如果老祖宗不处理の话,不出数年白家很有可能遭受…"夜剑一听见,知道是白家の第一人传音过来了,连忙精神一震,面色激扬准备长篇细叙. "行了,说重 点!"只是明显似乎夜若水不想听他废话,直接打断了他の话语. "这个…"夜剑面色一阵尴尬,随即沉吟一下,面色一横,愤然说道:"夜剑恳求世家废除白重炙の少族长身份,同时将他逐出白家,否则白家会被他连累,不出数年…" 夜剑の话一出口,夜天龙三人脸色再次一变,变得极为难看 起来.而夜若水更是再次打断了夜剑の长篇大论,直接冷冷说了几个字:"原因!" "原因?嗯,老祖宗,白重炙太大胆了,你呀们不知道他居然杀了屠千军,就是屠神卫の独子.并且俺猜他在落神山获得了神剑,但是却没有上交世家,其私心之重,行为之莽撞怎么能带领白家.雾霭城外一战,他 の身份肯定会曝光……到时候神主肯定会出手,白家要想自保,唯有将白重炙逐出白家,别无他途.当然…此事,夜剑没有任何私心,只是为世家利益着想,天地可鉴…"夜剑神情激昂,痛陈厉害,越说越激动. 他决定赌了,如果此事夜若水不知道,那么他估摸很有可能赢了.如果知道の话,自己 可以一句不知情,将事情撇开就是了. "天龙,你呀处理吧!" 只是…他说完之后,夜若水却是并没有发表任何看法,直接将事情丢给了夜天龙.而当他疑惑の朝夜天龙望去の时候,却发现夜天龙顷刻间战气大盛,一双虎目尽是冷意,浑身都在隐隐发抖,杀气凌人,而旁边の夜青牛和夜白虎,也 一脸の痛心疾首和失望. "砰!" 夜天龙没有废话直接一拳,砸在夜剑の刚刚直立の胸膛,猛烈の战气,将夜剑直接从阁楼の木墙中击飞出去,将整个阁楼都震の一阵摇晃起来. "几个选择,第一滚出白家!第二去问罪崖,不修炼到神级,不把事情想清楚,你呀不用出来了!" 看着夜天龙寒意 森森,说了几句话拂袖而去,夜剑没有在意嘴角不断溢出の鲜血,只是苏双眼茫然失措の望着阁楼木墙上那个大洞,愣愣发呆起来. 他知道,这

3.4.2一元一次方程应用题专题——按比例分配问题

3.4.2一元一次方程应用题专题——按比例分配问题

——喜悦杜鹃花花语快乐学习轻松做题一元一次方程应用题专题(二)——按比例分配问题在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

一、什么是“按比例分配”?•二、比例基本知识:•1、两个数的比就是求两个数的商,用分数表示。

•表示方法:A:B 或表示为: •例如:甲数:乙数= 6:5 •2、表示两个比相等的式子叫做比例,如,x :y =m :n.•其中:x 、n 叫做比例外项;y 、m 叫做比例内项。

•3、比例之间的关系:内项之积等于外项之积。

•4、多个数的比就是这些数的倍数比。

其中的每个数叫做•比例系数,各个比例系数的和叫做比例总量。

其中的一份•叫做“一份的量”。

•例如:甲:乙:丙= 3x : 5 x: 7 x • 3 x+ 5x+ 7x = 12x (x 叫做一份的量,12x 叫做总量)•三、使用技巧:•1、在多个比例中,通常用一份的量表示比例分量。

•2、各个比例分量的和等于总量。

•3、“比例尺”:表示图上距离比上实际距离。

B A•想一想?我们学过的比例知识?•1、求下列各式的比•(1) 5 : 25 •(2)15 : 45 •(3)4 : 64•(4)(5x) : (3x) (其中x≠0)•(5)2m : 3m : 7m (其中m≠0)•(6)4n : 6n : 18n (其中n≠0)1:51:31:165:32:3:72:3:9•求下列各式中的未知数。

•(1) x : 2 = 60 : 15 •(2) 26 :y = 8 : 4•(3) (m+3) :6 = 2m : 5•解:根据比例的性质:•(1) x : 2 = 60 : 15 •2×60=x ×15(内项之积等于外项之积)所以x=____ •(2) 26 :y = 8 : 4•26×4=8y (同上)所以y=____•(3) (m+2) :7 = m : 5•7×m=5(m+2)(同上)•化简得:7m=5m+10 所以m=____8135做一做比例的知识?在现实生活中怎样应用•例1:一个养殖场计划养200只鸡鸭,其中养鸡120只,养鸭80只,养鸡和养鸭各占总数的几分之几?养鸡和养鸭的比是多少?•解:分析找量:•总数=•分量:•养鸡占总数:•养鸭占总数:•养鸡和养鸭的比:200只养鸡120只,养鸭80只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按比例分配应用题及解题思路
一、基本题。

已知几个分量的和,与几个分量间的比,求各分量。

方法一:(1)求总份数(比的前后项的和);
(2)求一份量(总量(几个数的和)÷总份数);
(3)求出各分量(一份量×份数)
方法二:(1)求总份数(比的前后项的和);
(2)求出各分量占总量的几分之几;
(3)求出各分量(总量×几分之几)
例1、六(1)班共有学生50人,其中男生人数与女生人数的比是3:2,这个班男、女生各有多少人?
二、变式题
1、只知道几个分量间的比,求各分量。

(1)隐含总量。

方法:根据题的特点找出隐含的总量,再按基本题的方法解答。

例2、一个三角形的三个内角度数的比是3:2:1,这个三角形的三个内角各是多少?
(2)隐含分量所占的份数。

方法:根据等腰三角形的特点找出隐含的分量所占的份数,再按基本题的方法解答。

例3、一个等腰三角形的周长是28厘米,腰与底的比是3:1,这个三角形的三条边各是多少?
2、已知两个分量的差,与几个分量间的比,求各分量(或总量)。

方法:两个分量的差÷两个分量所占份数的差=1份数,再求各分量(或总量)
例4、饲养场鸡的只数比鸭少1200只,鸡与鸭只数的比是3:5,鸭有多少只?
3、已知几个分量的比,求各分量
(1)已知长方形的周长和长、宽的比,求长方形的面积方法:先用周长÷2求出长与宽的和(即总量),再按基本题的方法求出长和宽,再根据长方形的面积公式计算。

例5、一个长方形的周长是64厘米,长与宽的比是7:9.长方形的长方形的面积是多少平方厘米?
(2)已知长方体的棱长总和和长、宽、高的比,求长方体的体积
方法:先用棱长总和÷4求出长、宽、高的和(即总量),再按基本题的方法求出长、宽、高,再根据长方体的体积公式计算。

例6、一个长方体的棱长总和是72厘米,长、宽、高的比是3:2:1.长方体的体积是多少立方厘米?
4、已知几个分量的平均数和几个分量的比,求各分量
方法:根据平均数×份数=总数,计算出总量,再按基本题的方法解答。

例7、甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?
5、已知一个分量和几个分量的比,求其他分量(或总量)
方法:已知分量÷它所占的份数,计算出1份数,再求出其他分量(或总量)。

例8、第二小学有140个男生,男生与女生的比7:8,第二小学有女生多少人?
6、重新分配问题。

方法:(1)把原来分配的结果加起来,算出总量,再按重新分配的比例,算出重新分配的结果。

(2)一个人(或物)两次分配的差就是得到(或给出)的数。

例9、甲仓库存粮50吨,乙仓库存粮70吨,从甲仓库运给乙仓库多少吨粮食,才能使甲、乙两仓库的存粮比是1:2?。

相关文档
最新文档