复旦半导体器件仇志军小尺寸MOSFET的特性专题培训课件

合集下载

半导体器件物理MOSFETPPT课件

半导体器件物理MOSFETPPT课件
I Dsub只有纳安到微安量级。但大规模IC中包含有上千万甚至数亿个器件,总的
I Dsub可能达到数个安培. 减小I Dsub影响的措施
增大COX,减小亚阈值摆幅,使器件可以快速关断 提高关断/待机状态下器件的阈值电压VT:通过衬底和源之间加反偏,使VT
增加, 从而使VGS<<VT.
VGS下器件脱离弱反型,处于耗尽区,无I Dsub ,静态功耗大幅降低
的耗尽层电荷需要栅压产生
实际情况(窄沟器件):两侧空间电荷的量相对多,不可忽略,阈值反型
点需VGS产生的耗尽层电荷增多,VT增大
2021/9/244
VTN
|
Q'SD max Cox
|
VFB+2
fp
第二十一页,编辑于星期五:九点 十分。
4.3 MOSFET VT随W的变化:表面电荷
理想模型(适用宽沟道): 受VGS控制的表面总电荷|Q|B eNa xdTWL 单位面积的表面电荷|QBma|x eNa xdT
2021/9/24
第三页,编辑于星期五:九点 十分。
4.3 MOSFET
亚阈电流表达式:
亚阈值电流:对器件的影响
ID与VGS有关,且随VGS指数增加,
当VGS改变60mV,I D(sub) 改变一个数量级 若VDS>4(kT/e),最后括号部分将近似等于1,
IDsub近似与VDS>无关
半对数坐标中亚阈电流 与VGS之间呈现直线
2021/9/24
第十七页,编辑于星期五:九点 十分。
4.3 MOSFET 阈值电压修正: VT与L、W的相关性
长、宽沟道MOSFET的阈值电压
VTN
|
Q'SD max Cox

理解MOSFET开关过程PPT学习教案

理解MOSFET开关过程PPT学习教案

图2 MOSFET开关过程中栅极电荷特性
第7页/共10页
3.MOSFET漏极导通特性与开关过程(3)
以 AOT460为 例
图4 AOT460的开通轨迹 图2中t4阶段对应C->D过程。在C点,米 勒电容 上的电 荷基本 上被扫 除,C- >D的 过程栅 极电压 在驱动 电流的 充电下 又开始 升高, MOSFET进一 步完全 导通。 C->D为可变电阻区,相应的Vgs电 压对应 着一定 的Vds电 压。Vgs电压 达到最 大值,Vds电压 达到最 小值, 由于Id电流为ID恒定 ,因此Vds的电 压即为ID和MOSFET 的导通 电阻的 乘积。
第3页/共10页
2.MOSFET栅极特性 与开关过程(2)
米勒平台结束后, iD电流仍维持ID ,Vds 电压继续降低,但此时降低的斜率 很小, 因此降 低的幅 度也很 小,最 后稳定 在Vds=I d*Rds(on)。因 此通常 可以认 为米勒 平台结 束后MOSFET 基本上 已经导 通。 (t4阶段)
第4页/共10页
2.MOSFET栅极特性 与开关过程(3)
t1和t2阶段,因为Cgs>>Cgd,所以驱动电流主要是 为Cgs充电 (QGS)。 t3阶段,因为VDS从VDD开始下降,Cgd放电, 米勒电 流Igd分流了绝 大部分 的驱动 电流( QGD)。使得 MOSFET的栅 电压基 本维持 不变。 t4阶段,驱动电流主要是为Cgs充电(QGS)。 Qg= QGS(t1,t2)+ QGD)+ QGS(t4)
图2 MOSFET开关过程中栅极电荷特性
-----VTH:开启阈值电压 -----VGP:米勒平台电压
-----VCC:驱动电路的电源的电压

MOSFET原理功率MOS及其应用ppt课件

MOSFET原理功率MOS及其应用ppt课件

20
2 场效应 管放大电 路
一、场效应管偏置电路
场效应管偏置电路的关键是如何提供栅源控制电压UGS
自给偏置电路: 适合结型场效应管和耗尽型MOS管
外加偏置电路: 适合增强型MOS管
D G
S
1、自给偏置电路
UGS = UG-US = -ISRS ≈ -IDRS
I
D
IDSS (1
UGSQ和IDQ
衬底B
7
二、N沟道增强型MOS场效应管工作原理 增强型MOS管
一 方 面
当VGS=0V时,漏源之间相当两个背靠背的PN结,无论VDS 之间加什么电压都不会在D、S间形成电流iD,即iD≈0. 动画
当VGS较小时,虽然在P型衬
VDS

底表面形成一层耗尽层,但负离
子不能导电。 当VGS=VT时, 在P型衬底表面
JFET:反向饱和电流剧增时的栅源电压
MOS:使SiO2绝缘层击穿的电压
17
1 MOS场 效应管
7. 低频跨导gm :反映了栅源压对漏极电流的控制作用。
gm

diD dvGS
VDS C
8. 输出电阻rds 9. 极间电容
rds

dvDS diD
VGS C
Cgs—栅极与源极间电容 Cgd —栅极与漏极间电容 Csd —源极与漏极间电容
id gmvgs gds vds
iD
G +
id D +
vgs
gds vds
-
gmvgs
-
S
24
2 场效应 管放大电 路
三、三种基本放大电路
1、共源放大电路
(1) 直流分析
UGS = UG-US

复旦大学(微电子)半导体器件第八章MOSFET-37页PPT精品文档

复旦大学(微电子)半导体器件第八章MOSFET-37页PPT精品文档
区后就会出现速度饱和效应。
体电荷效
• 前面给出MOSFET特性公式:
ID S C ox n W L V G S V T V D S 1 2 V D 2 S
在该公式中认为沟道中耗尽层宽度是不变的,实际上由于漏端和 源端存在电势差,沟道的宽度当然也不一样,考虑到这个因素以 后必须计入沟道体电荷变化部分对阈值电压的贡献。
3o 体电荷效应; 4o 沟道长度调制效应; 5o 源漏串联电阻寄生效应; 6o 亚阈值效应; 7o 衬偏效应; 8o 短沟道效应。 9o CMOS闭锁效应;
亚阈值效应
• 回忆我们前面假设表面呈现强反型时MOSFET沟道开 始形成,源、漏之间开始导通。
• 实际上MOSFET源、漏之间加上电压以后,源端PN结 处于正向,就会有非平衡载流子注入,漏端PN结就会 收集到注入的非平衡载流子,同时还有反向的产生电 流(包括表面态的产生电流),所以在强反型之前源、 漏之间就会有电流,这就称为亚阈值电流。
减小 Overlap,降低寄生电容,可采用自对准多晶硅栅工艺。
MOSFET 的开关特性
+VDD
v (t)
vGS (t)
RD
VT
+
vDS (t)
+ vGS(t)
C vDS(t)
90%
10%
t


0 ton
toff
MOS 倒相器开关特性:
IDS
Ioff 0(亚阈值电流); Von 0(导通有电阻);
四种 MOSFET 的输出特性
NMOS(增强型)
NMOS(耗尽型)
PMOS(增强型)
PMOS(耗尽型)
沟道长度调制效应
• 沟道长度调制效应使输出特性的饱和区发生倾 斜。

北大半导体器件物理课件第四章5MOSFET的小尺寸效应

北大半导体器件物理课件第四章5MOSFET的小尺寸效应
分析这种影响可以通过二维器件模 拟程序计算出沟道表面电势分布
半导体器件物理
DIBL效应
特点:
• 沟道缩短,电 子势垒下降
• VDS 增加, 电子势垒下降
半导体器件物理
DIBL效应
• 有两种作用导致了势垒的下降:
– 沟道缩短,漏、源耗尽区的相互影响 – VDS增加,漏区发出的场强线的一部分穿透到源区
• DIBL效应对MOSFET特性的影响:
– VDS增加,有效阈值电压下降 – VDS增加导致势垒降低,表面更加耗尽,使沟道更
加吸引电子,沟道导电能力增强,等效于有效阈值 电压的下降。
半导体器件物理
DIBL效应ห้องสมุดไป่ตู้
• 亚阈值特性:
– 亚阈值区导电机构主要是载流子的扩散
I Dsub
=
Z L
μnCOXη
⎛ ⎜
定量计算: 窄沟道效应
• 由于侧向扩展的不规则,定量计算比较复杂。在SPICE程 序中仅认为窄沟道效应是由于沟道宽度方向上的边缘电场 使总的耗尽电荷增加所致。 为便于计算,把
边缘场的影响夸大
成1/4圆柱体。
( ) ΔVT
=
π 2
Xd Z
γ
2φF − VBS
=π εS ε OX
DOX Z
2φF − VBS
左图:低掺杂衬底短沟 nMOST饱和区情形 反偏漏-衬pn结耗尽区的 扩展主要在p型衬底一侧
•有可能出现耗尽区宽度接近于或大于沟道长度 •起始于源区的场强线,就会有一部分终止于沟道
半导体器件物理
源漏穿通效应
• 考虑:栅源电压VGS不变,增大漏源VDS电压
– 漏-衬pn结耗尽区扩展,用于屏蔽增加的电场 – 对于终止于沟道的场强线来说,由于耗尽区已经没

《常用半导体器件》课件

《常用半导体器件》课件

反向击穿电压:二极管在反向电压作用下, 能够承受的最大电压
开关速度:二极管从正向导通到反向截止 的时间
反向漏电流:二极管在反向电压作用下, 流过二极管的电流
噪声系数:二极管在信号传输过程中产生 的噪声大小
晶体管的特性参数与性能指标
输出电阻:ro,表示晶体管 输出端的电阻
频率特性:fT,表示晶体管 能够工作的最高频率
使用注意事项:在使用二极 管时,需要注意二极管的极 性,避免接反导致电路损坏
散热问题:在使用二极管时, 需要注意二极管的散热问题, 避免过热导致电路损坏
晶体管的选用与使用注意事项
晶体管类型:根据电路需求选择合适的晶体管类型,如NPN、PNP、 MOSFET等。
工作频率:选择工作频率满足电路需求的晶体管,避免频率过高导致晶 体管损坏。
06
半导体器件的选用与使 用注意事项
二极管的选用与使用注意事项
选用原则:根据电路要求选 择合适的二极管类型和参数
正向导通电压:选择二极 管时,需要考虑正向导通 电压与电路电压的匹配
反向耐压:选择二极管时, 需要考虑反向耐压与电路电 压的匹配
反向漏电流:选择二极管时, 需要考虑反向漏电流与电路 要求的匹配
稳定性: 指集成电 路在正常 工作状态 下的稳定 性能
集成电路 的封装形 式:包括 DIP、 QFP、 BGA等
集成电路 的应用领 域:包括 消费电子、 通信、汽 车电子等
场效应管的特性参数与性能指标
栅极电压:控制场效应管的导通和关断 漏极电流:场效应管的输出电流 输入阻抗:场效应管的输入阻抗高,可以减少信号损失 输出阻抗:场效应管的输出阻抗低,可以减少信号损失 开关速度:场效应管的开关速度快,可以减少信号损失 功耗:场效应管的功耗低,可以减少能源消耗

最新模电课件-第1章-半导体器件课件PPT

最新模电课件-第1章-半导体器件课件PPT

第一章 常用半导体器件
§1.1 半导体基础知识 §1.2 半导体二极管 §1.3 晶体三极管 §1.4 场效应晶体管
共价键
价电子共有化,形成共价键的晶格结构
空穴
自由电子
半导体中有两种载流子:自由电子和空穴
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
在外电场作用下,电子的定向移动形成电流
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
在外电场作用下,空穴的定向移动形成电流
1.本征半导体中载流子为自由电子和空穴(金属呢?)。
2.电子和空穴成对出现,浓度相等。
3.由于热激发可产生电子和空穴,因此半导体的导 电性和温度有关,对温度很敏感。
2 杂质半导体
2.1 N型半导体
在纯净的硅晶体 中掺入五价元素 (如磷),使之取 代晶格中硅原子的 位置,就形成了N 型半导体。
PN结
I扩 I漂
当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
1.由于扩散运动形成空间电荷区和内电场;
2.内电场阻碍多子扩散,有利于少子漂移;
3.当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
3.2 PN结的单向导电性
1) PN结外加正向电压时处于导通状态 加正向电压是指P端加正电压,N端加负电压, 也称正向接法或正向偏置。
将PN结用外壳封装起来,并加上电极引线就构成了 半导体二极管。由P区引出的电极为阳极(A) ,由N区 引出的电极为阴极( K )。

MOS管介绍概要PPT课件

MOS管介绍概要PPT课件

预夹断点开始, ID基本不随VDS
极电流。
增加而变化。
.
18
增强型MOSFET的工作原理
.
19
MOSFET的特性曲线
1.漏极输出特性曲线
V V V
DS
GS T
.
20
2.转移特性曲线— VGS对ID的控制特性
ID=f(VGS)VDS=常数 转移特性曲线的斜 率 gm 的大小反映了栅 源电压对漏极电流的控 制作用。 其量纲为 mA/V,称gm为跨导。
VGD=VGS-VDS,比源端耗尽 层所受的反偏电压VGS 大,(如:VGS=-2V, VDS =3V, VP=-9V,则漏端耗尽层受反 偏当V电DS压继续为增-5加V时,,源预端夹耗断尽点向层
受源极反方偏向电伸压长为为预-2夹V断),使区靠。由近于
漏预夹端断的区耗电尽阻层很比大,源使端主厚要,VD沟S 道降落比在源该端区窄,,由此故产VD生S对的强沟电道场
用途:做无触点的、 接通状态的电子开关。
条件:整个沟道都夹断
V V
GS
P
击穿区
当漏源电压增大到
V V 时,漏端PN结
DS
(BR)DS
发生雪崩击穿,使iD 剧增的区域。其值一般为
(20— 50)V之间。由于VGD=VGS-VDS, 故vGS越负,
对应的VP就越小。管子不能在. 击穿区工作。
9
i ②转移特性曲线 Df(VGS)VDSC
输入电压VGS对输出漏极电流ID的控制
iD / v G Q S d D /d iG Q v S g m m s
.
10
结型场效应管的特性小结
N 沟 道 耗
结尽 型型

效P 应沟 管道

《第五章MOS器件》PPT课件

《第五章MOS器件》PPT课件

• 对于MOSFET来说,最令人关注的是反型的 表面状态。当栅偏压VG 0时,P型半导 体表面的电子浓度将大于空穴浓度,形成 与原来半导体导电类型相反的N型导电层, 它不是因掺杂而形成的,而是由于外加电 压产生电场而在原P型半导体表面感应出来 的,故称为感应反型层。这一反型层与P型 衬底之间被耗尽层隔开,它是MOSFET的导 电沟道,是器件是否正常工作的关键。反 型层与衬底间的P-N结常称为感应结。
电荷。单位为C/cm2。 QGQS 0
• 由于Q0是不变的,因此
2021/4/27
实用文档
15
中国科学技术大学物理系微电子专业
6、半导体表面状态
2021/4/27
实用文档
16
积累:
电荷分布 QS
中国科学技术大学物理系微电子专业
积累情况下能带图及电荷分布
-d
x
Qm
EiEF
PP nie
kT
E(X) 电场分布 靠近氧化层的半导体表面
形成空穴积累
x
2021/4/27
实用文档
17
耗尽:
Vg>0
EF
2021/4/27
中国科学技术大学物理系微电子专业
Ec
Ei EF E
v
(x) Qm
电荷分布
wx -d
电场分布
QscqNAW
E(X)
实用文档
x
18
强反型:
中国科学技术大学物理系微电子专业
2021/4/27
np nieEFEik T
实用文档
氧化物陷阱电荷Qot:和SiO2的缺陷有关,分布在SiO2 层内,和工艺过程有关的Qot可以通过低温退火除掉 大部分。
可动离子电荷Qm:如Na+等碱金属离子,在高温和高 压下工作时,它们可以在氧化层内移动。因此,在

复旦大学半导体器件原理讲义L 小尺寸MOSFET的特性

复旦大学半导体器件原理讲义L 小尺寸MOSFET的特性

xj 2L
⎢⎢⎣⎡⎜⎜⎝⎛1
+
2 yS xj
⎟⎟⎠⎞1/ 2
⎤ − 1⎥
⎥⎦
+
xj 2L
⎢⎢⎣⎡⎜⎜⎝⎛1
+
2 yD xj
⎟⎟⎠⎞1/
2

1⎥⎤⎪⎬⎫ ⎥⎦⎪⎭
≡ 1−α 1 yS + yD
L2
ΔVT = α ( yS + yD )
qε s N (A VB + 0.5VBS )
LCox
VDS ↑ F ↓ VT ↓
QB
L2
ΔVT = α ( yS + yD )
qε s N (A VB + 0.5VBS )
LCox
VDS ↑ F ↓ ΔVT ↑
抑制 VT roll-off 的措施:
1o xj ↓ 2o NA ↑ 3o tox ↓
4o VBS ↓ 5o VDS ↓
4.1 MOSFET的短沟道效应和窄沟道效应170/74
4.1 MOSFET的短沟道效应和窄沟道效应1207/74
4.1.6 短沟道 MOSFET 的亚阈特性
1. 现象
长沟道
IDSst ∝ 1/L
IDSst 与 VDS 无关 S 与 L 无关
短沟道 IDSst > 1/L
VDS ↑ IDSst ↑ L↓ S↑
长沟道 MOSFET
短沟道 MOSFET
4.1 MOSFET的短沟道效应和窄沟道效应1218/74
3. 轻掺杂漏结构 (LDD)
LDD 结构的电场分布
普通:
( ) E y max = VDS −VDSsat 0.22to1x/ 3 x1j/ 3

第三章MOS管ppt课件

第三章MOS管ppt课件
)
第3章
场效应管
饱和区(放大区)外加电压极性及数学模型
VDS 极性取决于沟道类型 N 沟道:VDS > 0, P 沟道:VDS < 0 VGS 极性取决于工作方式及沟道类型 增强型 MOS 管: VGS 与 VDS 极性相同。 耗尽型 MOS 管: VGS 取值任意。 饱和区数学模型与管子类型无关
第3章
场效应管
由于 MOS 管 COX 很小,因此当带电物体(或人)靠近 金属栅极时,感生电荷在 SiO2 绝缘层中将产生很大的电 压 VGS(= Q /COX),使绝缘层击穿,造成 MOS 管永久性损 坏。 MOS 管保护措施: 分立的 MOS 管:各极引线短接、烙铁外壳接地。 MOS 集成电路:
VGS
ID/mA
D N+
G
VUS = 0 -2V -4V
P
O
VGS /V
若| VUS | 阻挡层宽度 耗尽层中负离子数
因 VGS 不变(G 极正电荷量不变) 表面层中电子数 ID 根据衬底电压对 ID 的控制作用,又称 U 极为背栅极。
第3章
场效应管
P 沟道 EMOS 管
第3章
场效应管
3.1.3 四种 MOS 场效应管比较
电路符号及电流流向
D
ID
U G
D
ID
U G
D
ID
U G
D
ID
U
G
S NEMOS
S NDMOS
S PEMOS
S PDMOS
转移特性
ID ID
ID ID
O VGS(th)
VGS
VGS(th) O
VGS
VGS(th) O V GS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.2 阈值电压“卷曲”(VT roll2. o原ff因)
p-Si
长沟道 MOSFET
2(xx2,y)(xs,y)
GCA:2(yx2, y) 0
p-Si
短沟道 MOSFET
2(xx2,y)2(yx2,y)(xs,y)
2 ( x,
y2
y)

0
4.1 MOSFET的短沟道效应和窄沟道效应46/75
QB
dma Lx
L
NMOS
L r2 2 d m 2 1 a /2 x xj
VDS = 0
x j d m2 a d x m 21 /a 2 x x jxj
12dxmj ax1/2
1

QB '
QB
V 1T ' xLV jF 1 B 2 V 2B dx m j ax12 /2V B 1 V BS 1 x L j 1 2 d x m j a 1 /2 x 1
4.1 MOSFET的短沟道效应和窄沟道效应58/75
4.1.2 阈值电压“卷曲”(VT roll3. o电ff荷)分享模型 (Poon-Yau)
讨论 QB’/QB(电荷分享因子 F )
dmax/xj 较小时
dmax/xj 较大时
FQ Q B B ' 1x Lj12d xm j a1 x/211dm Lax
4.1 MOSFET的短沟道效应和窄沟道效应170/75
4.1.3 反常短沟道效应(RSCE / VT roll-up)
1. 现象
4.1 MOSFET的短沟道效应和窄沟道效应181/75
4.1.3 反常短沟道效应(RSCE / VT roll-up)
2. 原因
MOS “重新氧化”(RE-OX)工艺
OED:氧化增强扩散
4.1 MOSFET的短沟道效应和窄沟道效应192/75
4.1.3 反常短沟道效应(RSCE / VT roll-up)
3. 分析
横向分布的特征长度
Q f( s y ) Q f0 s e x y G 0 p 单位:[C/cm2]
源(漏)端杂质电荷面密度
Q F 2 S W 0 L / 2 Q f( s y ) d 2 Q y f0 G s 0 W 1 e x L 2 G 0 p 单位:[C]
2. 边缘耗尽效应 W
y
z x
QB
QW
V T ,宽 V 沟 F B 2 V B 2 V B V BS
dmax SiO2
QB C ox
V T ,窄 沟 V F B2 V B 2 V B V B SQ C W ox
¼ 圆弧:
QW 12dm2 ax dmax
QB Wdmax 2 W
一般地,引入经验参数 GW
4.1.2 阈值电压“卷曲”(VT roll2. o原ff因)
2(xx2,y)(xs,y)2(yx2,y)

eff (x, s
y)
NAeffNA VT
p-Si
3. 电荷分享模型 (Poon-Yau)
NMOS
VT VFB2VBC QoBx
V F B 2 V B 2 V B V BS
当 VDS > 0 时
FQB ' 11ySyD
QB
L2
V Ty S y D q L sN oA C x V B 0 .5 V BS
VDS F VT
抑制 VT roll-off 的措施:
1o xj 2o NA 3o tox
4o VBS 5o VDS
VT'
VFB2VB
QB' Cox
VFB 2VBQ QB B ' 2VBVBS
4.1 MOSFET的短沟道效应和窄沟道效应47/75
4.1.2 阈值电压“卷曲”(VT roll3. o电ff荷)分享模型 (Poon-Yau)
计算 QB’/QB(电荷分享因子 F )
QB ' 12dma x L21L
1o L F VT 3o NA dmax F VT
2o tox VT 4o xj VT
4.1 MOSFET的短沟道效应和窄沟道效应69/75
4.1.2 阈值电压“卷曲”(VT roll3. o电ff荷)分享模型 (Poon-Yau)
讨论 QB’/QB(电荷分享因子 F )
1. 阈值电压“卷曲”(VT roll-off) 2. 漏感应势垒降低(DIBL) 3. 速度饱和效应 4. 亚阈特性退化 5. 热载流子效应
4.1 MOSFET的短沟道效应和窄沟道效应24/75
4.1.2 阈值电压“卷曲”(VT rolloff)
1. 现象
窄沟道效应 短沟道效应
4.1 MOSFET的短沟道效应和窄沟道效应35/75
FQB' 1dmax
QB
L 经验参数( >1)
V TV T ' V T 2 V B V BSx L j 12 d x m j a 1 /2 x 1
dmax
L
2VBVBS2osxtL ox2VBVBS
复旦-半导体器件-仇志军小尺寸MOSFET的
4.1 MOSFET的短沟道效应和窄沟道效应 4.2 小尺寸MOSFET的直流特性 4.3 MOSFET的按比例缩小规律
4.1 MOSFET的短沟道效应和窄沟道效应13/75
4.1.1 MOSFET 的短沟道效应(SCE)
VT
QFS CoxLW
2Q Co fs0L xG 01expL2G 0
4.1 MOSFET的短沟道效应和窄沟道效应1130/75
4.1.4 窄沟道效应(NEW)
1. 现象
W VT
窄沟道效应 短沟道效应
4.1 MOSFET的短沟道效应和窄沟道效应1114/75
4.1.4 窄沟道效应(NEW)
相关文档
最新文档