弹塑性变形与极限载荷分析
合集下载
塑性分析和极限荷载
三、基本假设 1、材料为“理想弹塑性材料” 。 、材料为“理想弹塑性材料” 2、拉压时,应力、应变关系相同。 、拉压时,应力、应变关系相同。 3、满足平截面假定。即无论弹、塑性阶段,保持平截面不变。 、满足平截面假定。即无论弹、塑性阶段,保持平截面不变。
σ
σy
卸载时有残余变形
ε
§12-2 纯弯曲梁的极限弯矩和塑 性铰
(4)极限状态 )
2、确定单跨梁极限荷载的机动法 、
q
l
qu
A
θ
xθ
Mu x
l θ 2
2θ
θ
B
dx C
Mu
Mu
临界状态时, 临界状态时,由虚功方 程: 2∫ xθ ⋅ qu dx = M u ⋅ θ + M u ⋅ θ + M u ⋅ 2θ
1 2 l θ ⋅ qu = 4 M uθ 4 16 M u qu = ∴ l2
1. 弹性阶段
b b 2 2
z h 2 h 2
M
M
σ = Eε
Ms σs = 1 2 bh 6
ε =κy
1 M s = bh 2σ s 6
κ= κs =
ε
y h/2 = 2σ s Eh
σs / E
y
σs
h 2 h 2
2.弹塑性阶段
y σ = σs y0
y
κ =
εs
y0
=
σs
Ey0
=
h κs 2 y0
p
机构4 机构
p
q = 2p
p1 = 2.5
Mu a
1.2 p
θ
Mu
Mu
θ 2θ
pu = 1.33
Mu a
结构力学结构的塑性分析与极限荷载 ppt课件
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩
弹塑性力学之结构的塑性极限分析
25
塑性极限载荷
4"6
确定塑性区位置
截面的上下两塑性区相连,使 跨中左右两截面产生像结构
・特点:
-塑性较的存在是由于该截面 上的弯矩等于塑性极限弯矩; 故不能传递大于塑性极限弯 矩的弯矩。
<]
ax(x9z\ay=az= rxy=ryz= rzx=0
♦:・小挠度假设:在梁达到塑性极限状态瞬 间之前,挠度与横截面尺寸相比为一微 小量,可用变形前梁的尺寸进行计算。
二.弹性阶段
—
P1
6M
♦ Mises屈服条件:
xmax
bh2
弹性极限弯矩
二
2bh2
弹性极限载荷
三.弹塑性阶段(约束塑性变形阶段)
>Mp塑性区扩展
第十章结构的塑性极限分析
矗塑性极限分析定理和方法
❖梁的极限分析❖圆板的极限分析
❖梁模型法计算圆板和环板的塑性极限 載荷
§10-1梁的弹塑性弯曲
1.基本假定
•:•平截面假设:在变形过程中,变形 前为平面的横截面,变形后仍保持 为平面,且与变形后梁的轴线垂直。
z5=— P
・纵向纤维互不挤压:不计挤压应力, 横截面上只有正应力。
heh/2
陆=2町(yxzdz+ 2町aszdz
0he
陆
0叽he
“Me
Ms=—-
s2
h2
弹塑性区交界线:
h/2
(Jszdz
陆=
£
弹塑性区交界线:饥=±丄3
h~2\
<]
►P(lΒιβλιοθήκη 2x)2ALPl/4
四.全塑性阶段
X—6
x = 0
塑性极限弯矩
n
A
塑性极限载荷
4"6
确定塑性区位置
截面的上下两塑性区相连,使 跨中左右两截面产生像结构
・特点:
-塑性较的存在是由于该截面 上的弯矩等于塑性极限弯矩; 故不能传递大于塑性极限弯 矩的弯矩。
<]
ax(x9z\ay=az= rxy=ryz= rzx=0
♦:・小挠度假设:在梁达到塑性极限状态瞬 间之前,挠度与横截面尺寸相比为一微 小量,可用变形前梁的尺寸进行计算。
二.弹性阶段
—
P1
6M
♦ Mises屈服条件:
xmax
bh2
弹性极限弯矩
二
2bh2
弹性极限载荷
三.弹塑性阶段(约束塑性变形阶段)
>Mp塑性区扩展
第十章结构的塑性极限分析
矗塑性极限分析定理和方法
❖梁的极限分析❖圆板的极限分析
❖梁模型法计算圆板和环板的塑性极限 載荷
§10-1梁的弹塑性弯曲
1.基本假定
•:•平截面假设:在变形过程中,变形 前为平面的横截面,变形后仍保持 为平面,且与变形后梁的轴线垂直。
z5=— P
・纵向纤维互不挤压:不计挤压应力, 横截面上只有正应力。
heh/2
陆=2町(yxzdz+ 2町aszdz
0he
陆
0叽he
“Me
Ms=—-
s2
h2
弹塑性区交界线:
h/2
(Jszdz
陆=
£
弹塑性区交界线:饥=±丄3
h~2\
<]
►P(lΒιβλιοθήκη 2x)2ALPl/4
四.全塑性阶段
X—6
x = 0
塑性极限弯矩
n
A
结构力学第17章结构的塑性分析与极限荷载
Mu
(
l
) 0
l
得:
FPu
6M u l
[例] 求梁的极限荷载,已知极限弯矩为Mu。
q
qu
A
C
B
l/2
l/2
A Mu
Mu l
C B
2 Mu
解:计算刚体虚功:
2
瞬变体系机构
W
l
y qu dx
Mu
Mu
Mu
qu
(
l
l
)
M u
qu l
M u
虚功方程:
qu l
M u
qu
16M u l2
FPu
M
' u
3 2l
Mu
9 2l
A
M ' u
A
2l /3
FPu
DC
Mu
D
l/3
FPu
l
(M u
M u )
A
3 2l
D
3 2l
3 l
9 2l
弯矩图如图,弯矩
MB=
1 2
(M
' u
Mu )
M
u
,即M
' u
3M u
时,此破坏形态就可实现。
M' u
1 2
(M
' u
-
M
u
)
FPu D
C
A
B
Mu
综上,当M
Mu
FP增大
A
C
B
FP继续增大,第二个塑性铰出现在C 截面,梁变为机构。弯矩 增量图相应于简支梁的弯矩图(如图)。
Mu
FP达到极限值FPu
塑性极限分析
两种 不同 材料
内杆进 入塑性
外杆仍 为弹性
外杆“回弹力” 和内杆“抵抗 力”平衡
内杆弹性阶 段已卸完
二、塑性极限分析的概念与假设
1.单调加载:荷载由零开始,按比例同时加到最后值
(避免加载路径的影响)
2.几何线性:结构局部产生塑性变形,整体变形仍足够小
3.几何不变体系与几何可变体系
屈服区小
外力基本不变时,变形 也基本不变的结构体系, 称为几何不变体系。
5. 极限荷载
三根杆均达到 屈服状态时
Fu 2 s Acos s A
1 2cos s A
§3 等直圆杆扭转时的极限扭矩
T
T
一、极限扭矩
1. 弹性—理想塑性模型 2. 屈服扭矩
τ τs
γ
TS
S
WP
d 3
16
S
τs
3. 极限扭矩
T
T
τ τs
γ
可继续加载,已屈服部分应力不变,屈服区向里发展, 直至整个截面全部屈服。
AC AD
例:已知E、A、θ、σs,材料为弹性— B 理想塑性。求Fs、Fu
F
cos2 F
FAD 1 2cos 3 FAC 1 2cos 3
4. 屈服荷载
D
C
θθ A F
FAD A
Fs
1 2cos 3
A s
Fs 1 2cos 3 s A
Mu
s
bh 2
h 4
bh 2
h 4
s
bh2 4
At
Ms
内杆进 入塑性
外杆仍 为弹性
外杆“回弹力” 和内杆“抵抗 力”平衡
内杆弹性阶 段已卸完
二、塑性极限分析的概念与假设
1.单调加载:荷载由零开始,按比例同时加到最后值
(避免加载路径的影响)
2.几何线性:结构局部产生塑性变形,整体变形仍足够小
3.几何不变体系与几何可变体系
屈服区小
外力基本不变时,变形 也基本不变的结构体系, 称为几何不变体系。
5. 极限荷载
三根杆均达到 屈服状态时
Fu 2 s Acos s A
1 2cos s A
§3 等直圆杆扭转时的极限扭矩
T
T
一、极限扭矩
1. 弹性—理想塑性模型 2. 屈服扭矩
τ τs
γ
TS
S
WP
d 3
16
S
τs
3. 极限扭矩
T
T
τ τs
γ
可继续加载,已屈服部分应力不变,屈服区向里发展, 直至整个截面全部屈服。
AC AD
例:已知E、A、θ、σs,材料为弹性— B 理想塑性。求Fs、Fu
F
cos2 F
FAD 1 2cos 3 FAC 1 2cos 3
4. 屈服荷载
D
C
θθ A F
FAD A
Fs
1 2cos 3
A s
Fs 1 2cos 3 s A
Mu
s
bh 2
h 4
bh 2
h 4
s
bh2 4
At
Ms
材料力学第十二章-考虑材料塑性的极限分析精选全文
M Hi 0 S A a S A 2a Fu 3a 0
极限荷载 Fu S A 容许荷载 [F ] Fu / n
§2-3 等直圆杆扭转时的极限扭矩
S
Mx
S
Mx
S
Mx
O
外力增大
O
外力增大
O
S
S
S
只有弹性区 弹性极限状态
即有弹性区,又有塑性区 弹塑性状态
只有塑性区 塑性极限状态
弹性状态下横截面上 扭矩的最大值
max-S
残余应力
Mu Mr MS
由残余应力分布图知:
max
Mr Wz
最大残余应力发生在截面屈服区与弹性区的交界处;
中性轴上各点的残余应力为零。
作业:
2-2、5; 2-10
第十二章 考虑材料塑性的极限分 析
◆ 塑性变形·塑性极限分析的假设 ◆ 拉、压杆系的极限荷载 ◆ 等直圆杆扭转时的极限扭矩 ◆ 梁的极限弯矩·塑性铰
§2-1 塑性变形·塑性极限分析的假设
在弹性范围内进行强度计算
单向应力状态下采用正应力强度条件: max [ ] 纯切应力状态下采用切应力强度条件: max [ ]
弹性极限状态
弹塑性状态
屈服弯矩 MS ?
在完全塑性状态下
完全塑性状态
极限弯矩 Mu ?
塑性铰 卸载时塑性铰的效应会消失
弹性极限状态
弹塑性状态
完全塑性状态
弹性极限状态下横截面上的最大弯矩 MS :
max
M Wz
MS
bh2 6
S
完全塑性状态下横截面上的最大弯矩 Mu ?
截面完全屈服时中性轴的位置如何确定?
M xS
Wp S
πd3 16
结构力学 结构塑性分析的极限荷载
FP2/2
5FP1/2
5FP2/2
(b) M C M s FP1 FPs (c) M S M C M u FPs FP2 FPu
3FPu Mu
FPu/2
Fpu FPu/2
5FPu/2
(d) M C M u
2FPu
FPu/2
(e)
(1).结构的极限状态
极限荷载是相应于结构极限状态时的荷载。
塑性铰的以下特征:
(1)塑性铰承受并传递极限弯矩Mu。 (2)塑性铰是单向铰,只能使其两侧按与荷 载增加(弯矩增大)相一致方向发生有限的 转动。 (3)塑性铰不是一个铰点,而是具有一定的 长度。
综上所述,截面上各点应力均等于屈服应力 的应力状态、截面达到极限弯矩、截面形成 塑性铰,均表示该截面达到其塑性流动的极 限状态。
即:
(
FP 2 L 4
Mu 2
)
FP L 4
Mu
解得:
FP 2
FP
6M u L
(a)
即:
FPu
6M u L
2)超静定梁的极限荷载
由前已由叠加方法得出了式(a)所示单跨 超静定梁的极限荷载。观察梁的最后极 限 弯 矩 图 (g) , 既 是 所 叠 加 的 两 弯 矩 图 (c)、(e)的叠加结果。利用梁的极限弯 矩图的平衡条件,可得:
当MC<Mu,FP2<FPu时,梁处于弹塑性发 展阶段,弯矩图见图(c)。 当MC=Mu时,截面C也将首先达到截面的塑 性极限状态,也即形成第一个塑性铰。
结构上出现足够多的塑性铰,能使原结构 成为破坏机构时的状态为结构的极限状态。 结构在极限状态仍能保持静力平衡。
(2)结构的极限荷载
a.极限弯矩平衡法 由静力平衡条件得:
第五章 极限分析法全
V Fiuip* dV
V
p* p* ij ij
dV
SD c vtp* d S
反证法:
假设由上式确定的荷载Ti,Fi小于极限荷载,则可找 到与之平衡的静力场σijE,于是可得到虚功率方程
S Tiuip* d S
V Fiuip* dV
E p*
V ij ij
dV
SD
n tan
vtp* d S
虚功原理表明:对于一个连续的变形体,静力容许的应 力场在机动容许的位移场上所作的外(虚)功。虚功率方程可 表示为:
静力容许
S Ti*vi* d S
V Fivi* dV
V
* *
ij ij
dV
机动容许 左端表示外力(面力和体力)的虚功率,右端表示虚变形功率。
现证明如下: 将应力边界条件 Ti* i*jnj 代入虚功率方程左端的面积分 部分,并利用高斯积分公式,可得
W Dlh n tanlh p n tanlvcos
v cos 就是间断面相对速度在切线方向的分量,可记为 vt
于是可以得到Coulomb材料沿速度间断面Sl的能量消散率
W Si n tan vt d Si
当φ=0,上式就蜕化成
W
Si
vit
d Si
当速度间断面上的应力为屈服应力时:
由于真实应力场一定是静力容许的应力场,所以极限
状态时的虚功率公式
S Tivi d S
V Fivi dV
V ij ij dV
c
SD
vt
dS
S Ti*vi* d S
V Fivi* dV
* *
V ij ij
dV
Si n tan vt d Si
结构塑性分析与极限荷载
bh Mu s 4
这是截面所能承受的最大弯矩, 称为极限弯矩。
显然,对于 矩形截面极限 弯矩是屈服弯 矩的1.5倍。
12
σs h b y z σs
σs y0
σs
1)弹性阶段(b) 2)弹塑性阶段(c)
3)塑性阶段(d)
σs
σs
(d)
(a)
(b)
(c)
极限弯矩是整个截面达到塑性流动时截面所能承受的最 大弯矩。它主要与σs和截面形状尺寸有关,剪力对它的 影响可忽略不计。
注:应力的单位用(Pa),长度单位用(m),力的单位用 (N),弯矩单位(N.m)
20
M u 240 80 20 50 20 40 20 2 46080000N .m m) 46.08(kN.m) (
注:应力的单位用(MPa),长度单位用(mm),力的单 位用(N),弯矩单位(N.mm)
20
例:设有矩形截面梁受 载如图所示,试求极限 荷载F P u。 解:方法一—平衡法
A l
FP
B
l
C
(1)作M图(图b)。 由M图可知:在极限荷载 作用下,塑性铰将在C处 形成,此时,Mc=M u
Mu
FPu l 4
(2)由静力平衡条件,求F P u 对极限状态,由梁的平衡,得:
FPul / 4 Mu
塑性阶段时当σmax=[σ] ,结构并没有破坏,也就是
说,并没有耗尽所有的承载能力。 弹性设计没有考虑材料超过屈服极限后结构这一 部分的承载能力,弹性设计法不能正确地反映整个结 构的安全储备,因此弹性设计是不够经济合理的。
4
§16-1 概 述
3、塑性设计 ——把结构破坏时能承受的极限荷载除以荷载系数, 得到容许荷载,并以此为依据进行设计。即: Fpu 式中:FP——结构实际承受的载荷; Fp Fp FPu——极限载荷; k k ——荷载系数。 塑性设计特点: 是以理想弹塑性材料的结构体系为研究对象,从整 个结构所能承受的荷载来考虑,充分利用了材料的承 5 载能力,更经济合理。
结构力学 结构的塑性分析与极限荷载
A l/3
FPu
B
DC
Mu
B
Mu
D
l/3
l/3
B
3 l
D
6 l
此时M图如图,MA=3Mu
3M u
Mu
A
B
l/3 l/6
FPu
D
C
Mu
当3M u M u,此破坏可实现。
由虚功方程可得: FPu MuB MuD
FPu
Mu
(3 l
6) l
FPu
M u l
2 当截面D和A出现塑性铰时的破坏机构
FPu Mu' A MuD
极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11
.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s
c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s
c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
材料力学考虑材料塑性的极限分析
则极限弯矩为
由
bh2 Mu s s 4
bh2 ss Mu 42 1.5 M s bh ss 6
可见,考虑了材料塑性,
矩形截面梁对应的弯矩极限值可以增大 50%。
几种常用截面的 Mu/Ms 比值见下表。
表 1 几种常用截面的 Mu/Ms 比值
截面形状
M u / Ms
1.15-1.17
1.27
πd 3 Ts Wp s s 16
s
(a)
若继续增大扭矩,则随着切应变增大,此直径上 各点处的切应力将从周围向中心逐渐增大到 s 。
s
(b)
当截面上各点处的切应力均达到 s , 整个截面进 入完全塑性状态。这时不需要再增大外力偶矩,圆杆 将继续扭转变形,即扭杆达到极限状态。对应的极限 扭矩为:
q (a) A
l
解:先按弹性分
B
4l 9
8 ql 2 81
l 3
C b (b) ql 2 18
h
析的方法作出梁
的弯矩图 (图c) 得出最大弯矩为
8ql2 M max 81
(c)
当梁达到极限状态时,其最大弯矩等于极限弯矩, 梁上的荷载达到极限值。 即
8qu l 2 bh2 Mu s sWs s s 81 4
塑性变形的特征:
(1)变形的不可恢复性是塑性的基本特征。
(2)应力超过弹性范围后,应力应变呈非线性关系, 叠加原理
s
s1
不再适用。
(3)塑性变形与加载历程有关,应 力与应变之间不再是单值关系。 (4)通常所指的塑性变形,忽 略了时间因素的影响(常温、 低应变率)。
ss
O
e p ee
e
s 's
结构力学15第十五章.结构的塑性分析与极限荷载
2
内力虚功
Wi Mu Mu 2 Mu 4Mu
由We=Wi,可得
所以有
1 2 qu l 4 M u 4
16 M u qu l2
16
例15-3-3 求梁的极限荷载,已知梁截面极限弯矩 为Mu。 q 解: 塑性铰位置:A截面及跨 A l 中最大弯矩截面C。 qu 整体平衡 M A 0
有当 1 ( M u' M u ) M u ,即M u' 3M u 时,此破坏 2 FPu 形态才可能实现。
FPu M A M u D
' u
A
3 9 FPu M Mu 2l 2l
' u
M u' A 2l /3
A
3 2l
D Mu
C
D
l /3
3
二、材料的应力——应变关系
在塑性设计中,通常假设材料为理想弹塑性, 其应力与应变关系如下:
s A
C B
s A
C
B
o
εs εP εs ε
D
ε
o
εs
ε
D
a) 理想弹塑性模型
b) 弹塑性硬化模型
4
1)残余应变
当应力达到屈服应力σs后在C点卸载至D点, 即应力减小为零,此时,应变并不等于零,而 为εP,由下图可以看出, ε= εs+ εP, εP是应变 的塑性部分,称为残余应变。
一、 极限弯矩
下图示理想弹塑性材料的矩形截面纯弯梁, 随着M 增大,梁会经历由弹性阶段到弹塑性阶 段最后到塑性阶段的过程(见下页图)。无论 在哪一个阶段,平截面假定都成立。
M M h
b
内力虚功
Wi Mu Mu 2 Mu 4Mu
由We=Wi,可得
所以有
1 2 qu l 4 M u 4
16 M u qu l2
16
例15-3-3 求梁的极限荷载,已知梁截面极限弯矩 为Mu。 q 解: 塑性铰位置:A截面及跨 A l 中最大弯矩截面C。 qu 整体平衡 M A 0
有当 1 ( M u' M u ) M u ,即M u' 3M u 时,此破坏 2 FPu 形态才可能实现。
FPu M A M u D
' u
A
3 9 FPu M Mu 2l 2l
' u
M u' A 2l /3
A
3 2l
D Mu
C
D
l /3
3
二、材料的应力——应变关系
在塑性设计中,通常假设材料为理想弹塑性, 其应力与应变关系如下:
s A
C B
s A
C
B
o
εs εP εs ε
D
ε
o
εs
ε
D
a) 理想弹塑性模型
b) 弹塑性硬化模型
4
1)残余应变
当应力达到屈服应力σs后在C点卸载至D点, 即应力减小为零,此时,应变并不等于零,而 为εP,由下图可以看出, ε= εs+ εP, εP是应变 的塑性部分,称为残余应变。
一、 极限弯矩
下图示理想弹塑性材料的矩形截面纯弯梁, 随着M 增大,梁会经历由弹性阶段到弹塑性阶 段最后到塑性阶段的过程(见下页图)。无论 在哪一个阶段,平截面假定都成立。
M M h
b
清华大学研究生弹塑性力学讲义 10弹塑性_结构的塑性极限分析与安定性
(13)
应该注意到,此式似乎是相应于机动场的应力
σ
* ij
、切向速度间断线上的剪应力即剪切
屈服应力τ s 、和给定面力 ti * = η∗ti 与机动场的应变率和速度场的虚功率方程,实际上并 不是。其中的应力与面力并不构成静力许可状态。其实,只有和任意机动场均满足虚
功率方程的应力和外力才一定是静力许可的,只和某种机动场满足这样的方程的应力
一、塑性极限状态和界限定理
z 极限状态和极限分析 结构弹塑性分析一般要跟踪加载和变形历史。如果忽略材料的塑性强化特性(即
采用理想塑性模型),并忽略物体由变形引起的几何尺寸变化(即采用小变形假设), 则当外载达到某一定值时,理想塑性体可在外载不变的情况下发生塑性流动,即无限 制的塑性变形。这时称物体(或结构)处于塑性极限状态,简称极限状态;所受的载 荷称为物体或结构的极限承载能力或极限载荷;与之相应的速度场则称为塑性破损机 构,或塑性流动机构。
∫ ∫ ∫ −
V1
σ
ε(s)
ij
&i(jk)dv
+
V1 fi(s)vi(k)dv +
S10 + SD ti(s)vi(k)ds = 0
∫ ∫ ∫ −
V2
σ
ε(s)
ij
&i(jk)dv
+
V2 fi(s)vi(k)dv +
S20 +SD ti(s)vi(k)ds = 0
两式相加即可得到
∫ ∫ ∫ ∫ V
τ
0 n
⎡⎣vt ⎤⎦ ds
(9)
考虑到:外载一定做正功,即
∫ tSt i vi ds > 0
⎯3⎯
第九章 结构的塑性极限分析与安定性
10 梁的弹塑性弯曲与塑性极限分析
塑性极限分析的完全解:
满足平衡条件、极限条件、破坏机构条件的解
二.虚功原理和虚功率原理
虚功原理:在外力作用下处于平衡的变形体,若给物体 一微小的虚变形(位移)。则外力的虚功必等于应力的 虚功(物体内储存的虚应变能)。
V
* f i ui*dV Fi ui*dS s ij ij dV ST V
s ij s ji
j i s ij ij s s ji ij 2 x j x x
s ij ui f i ui dV s ij dV s ij ij dV x x j j V V V
体力为零时:
ST * * F u dS s i i ij ijdV V
结构的塑性极限分析
梁的弹塑性弯曲 塑性极限分析定理和方法 梁的极限分析
§1 梁的弹塑性弯曲
一.基本假定 平截面假设:在变形过程中,变形 前为平面的横截面,变形后仍保持 为平面,且与变形后梁的轴线垂直。 z x P
b h z x l/2 l/2
y
纵向纤维互不挤压:不计挤压应力, 横截面上只有正应力。
* 0 * F u dS s i i ij ijdV V
* ij :
i* : u
体力为零时:
ST
三.塑性极限分析定理
1. 下限定理:
静力允许的内力场:满足平衡条件(平衡微分方程和面力边界 条件),不违背屈服条件的内力场。sPi s : 静力允许载荷系数 [ 放松破坏机构条件(几何方程、位移和速度边界条件)] 真实内力场:满足静力平衡条件、屈服条件、破坏机构条件的 内力场。 真实内力场一定是静力允许的内力场。 塑性极限载荷系数:l = s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹塑性变形与极限载荷分析
14-3 超静定桁架的极限载荷
图示的超静定结构,由刚性梁 BE 与各杆的横截面面积分 A1 A3 A , A2 2 A 。各杆 别为 A1、A2、A3 的杆1、杆2、杆3 组成,且, 的材料相同,其拉、压屈服强度均为 s 。试求该结构的极限载荷。 解:一次超静定结构,有两根 杆屈服才进入塑性极限状态。 故有三种可能的极限状态。 1)设杆1与杆2已屈服,杆 3未屈服。此时,载荷 F 有使 刚性梁绕E点转动的趋势。 ME 0 , MD 0 例
E E ( s ) s
( s ) ( s ) (14 - 5)
E E
弹塑性变形与极限载荷分析
14-2 应力-应变关系曲线的简化 1)理想弹塑性材料
2)理想刚塑性材料 3)线性强化材料 4)幂函数强化材料
s s
弹塑性变形与极限载荷分析
14-1 弹塑性变形与极限载荷法概念 2)极限载荷法 图中所示的一次超静定结构,各杆的横截面相同并均为理想 弹塑性材料,a >b 。设各杆均处于弹形变形状态时,杆1、杆2、 杆 3 的内力分别为 FN 、FN 、FN ,可以分析得到,在外力一定 FN1 FN 2 FN 3 。 时, 当外力增大使杆3屈服时,杆3已失去承载能力。由于杆2和杆1 尚未屈服,它们组成一静定结构,仍可继续承受增加的载荷。
m
(14 - 6)
弹塑性变形与极限载荷分析
14-3 超静定桁架的极限载荷
由对 14-1 节中一次超静定桁架的分析可知,当其中一根杆 (多余约束的杆)屈服时,便变为静定杆件结构。此时增大载荷, 若再有一根杆屈服,结构便处于塑性极限状态。以此类推,对于 n 次超静定桁架,如果有 n+1 根杆屈服,该结构便处于塑性极限 状态。
n次超静定结构的求解,需要n个补充条件。这里再加上欲 求的极限载荷,则共需要 n+1个补充条件。而当n次超静定桁架 处 于 塑 性 极 限 状 态 时 , 已 屈 服 的 n+1 根 杆 的 内 力 成 为 已 知 ( F N Ai s (i 1,2,3 , n 1) ),这恰好提供了n+1个补充条件。 i 这样,超静定桁架的极限载荷可根据塑性极限状态时平衡条件求 得。
F 3FN1s 2 FN2s 7 A s FN 3 2 FN1s FN2s 4 A s > FN3s
弹塑性变形与极限载荷分析
14-3 超静定桁架的极限载荷
弹塑性变形与极限载荷分析
14-1 弹塑性变形与极限载荷法概念
1)弹塑性变形
以前我们所研究的问题是限制在材料始终保持在线性弹性范围 内,外力、内力、应力、应变、变形与位移各量间不仅成线性关系, 而且还单值对应。对某一构件或结构在一定外力作用下必产生确定 的内力、应力、应变、变形与位移。这就是说,如果外力增大 n 倍, 其对应的内力、应力、应变、变形与位移也增大 n倍。这样,力作 用的最终效果(例如产生的应变与变形等)只决定于力的最终值, 而与力作用的先后次序无关。在对构件或结构进行强度计算时,采 用极限应力法,即对塑性材料制成的构件或结构,当其危险点一点 处相当应力达到材料的屈服强度 s时,便认为整个构件或 或 0.2 结构已处于极限状态而不能继续承受更大的载荷。
Fu
表
F [ Fu ]
式中
[ Fu ]
(14 -1)
(14 - 2)
n 为安全系数 采用式(14-1)来计算构件或结构发生塑性变形时的强度的方 法,称为极限载荷法。
Fu n
弹塑性变形与极限载荷分析
14-2 应力-应变关系曲线的简化 1)理想弹塑性材料
E s
( s ) ( s ) (14 - 3)
弹塑性变形与极限载荷分析
14-1 弹塑性变形与极限载荷法概念
1)弹塑性变形 材料进入塑性状态后,应力与应变之间不仅成非线性关系, 而且不一一对应。力对构件的作用效果不只取决于力的最终值, 而且还与力的作用历史以及作用的先后顺序有关。 以轴向拉压杆为例
先加 F1 后加 F2 先加 F2析
14-2 应力-应变关系曲线的简化 1)理想弹塑性材料
2)理想刚塑性材料
0 s
( p 0) ( p 0) (14 - 4)
p 为塑性应变
弹塑性变形与极限载荷分析
14-2 应力-应变关系曲线的简化 1)理想弹塑性材料
2)理想刚塑性材料 3)线性强化材料
弹塑性变形与极限载荷分析
14-1 弹塑性变形与极限载荷法概念
1)弹塑性变形 事实上,对塑性材料制成的应力非均匀分 布的构件或超静定结构,例如图中所示的简支 梁,当危险截面Ⅰ-Ⅰ上危险点A或B处应力等于 材料的屈服强度 s或 0.2时,便出现塑性变形。 但是,由于Ⅰ-Ⅰ截面上应力线性分布,整个截 面除 A 、 B 两点外,其他各点应力并没有达 到 s或 0,仍处于弹形变性状态。此时,可 .2 继续增大载荷,梁Ⅰ-Ⅰ上会有更多的点进入塑 性变形状态,形成了塑性区域,梁进入了弹塑 性变形状态。
1 2 3
直到杆2也 屈服 , 该结 构才失去抵 抗变形能力 而成为几何 可变“机构”
弹塑性变形与极限载荷分析
14-1 弹塑性变形与极限载荷法概念 2)极限载荷法
由于塑性变形所形成的几何可变“机构”,称为塑性机构。 使构件或结构变成塑性机构时的载荷称为极限载荷。 与塑性机构相应的状态称为塑性极限状态。 若以塑性极限状态作为构件或结构的危险状态,并用 示极限载荷,那么相应的强度条件应为
14-1 弹塑性变形与极限载荷法概念
1)弹塑性变形 2)极限载荷法 上述分析可知,对塑性材料制成的超静定结构或应力非均匀 分布的构件,当其危险点一点处相当应力达到材料屈服强度时, 整个构件或结构仍能继续承受更大的载荷。这样,极限应力法在
此已无法分析构件或结构发生弹塑性变形后的承载能力,需要研
究新的分析方法。