液晶电光效应实验报告

合集下载

液晶电光效应实验报告

液晶电光效应实验报告

显示(PDP),电致发光显示(ELD),发光二极管〔LED〕显示,有机发光
二极管〔OLED〕显示,真空荧光管显示〔VFD〕,场发射显示〔FED〕。

第3页共3页
在未加驱动电压的状况下,来自光源的自然光经过偏振片 P1 后只 剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋 转了 90°。这时光的偏振面与 P2 的透光轴平行,因此有光通过。
在施加足够电压状况下(一般为 1~2 伏),在静电场的作用下,除 了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于 电场方向排列。于是原来的扭曲结构被破坏,成了匀称结构。从 P1 透 射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振 方向到达下电极。这时光的偏振方向与 P2 正交,因此光被关断。
的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 〔1 埃=10-10 米〕,直径为 4~6 埃,液晶层厚度一般为 5-8 微米。
2.测量驱动电压周期改变时,液晶光开关的时间响应曲线,并由
玻璃板的内外表涂有透亮电极,电极的外表预先作了定向处理〔可用
时间响应曲线得到液晶的上升时间和下降时间。
由于上述光开关在没有电场的状况下让光透过,加上电场的时候光 被关断,因此叫做常通型光开关,又叫做常白模式。若 P1 和 P2 的透光
轴互相平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在肯定的温度范围内
呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。 目前用于显示器件的都是热致液晶,它的特性随温度的转变而有肯定 改变。
2.液晶光开关的电光特性 对于常白模式的液晶,其透射率随外加电压的升高而渐渐降低, 在肯定电压下到达最低点,此后略有改变。可以依据此电光特性曲线 图得出液晶的阈值电压和关断电压。 3.液晶光开关的时间响应特性 加上〔或去掉〕驱动电压能使液晶的开关状态发生转变,是因为 液晶的分子排序发生了转变,这种重新排序需要肯定时间,反映在时 间响应曲线上,用上升时间τr 和下降时间τd 描述。给液晶开关加上 一个周期性改变的电压,就可以得到液晶的时间响应曲线,上升时间

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理,这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。

于是原来的扭曲结构被破坏,成了均匀结构。

从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。

这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。

若P1和P2的透光轴相互平行,则构成常黑模式。

液晶可分为热致液晶与溶致液晶。

热致液晶在一定的温度定变化。

2.液晶光开关的电光特性对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。

可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告一、实验目的1.通过实验观察液晶电光效应现象,并了解其基本原理;2.掌握液晶显示屏的工作原理和性能特点;3.了解液晶材料的应用领域。

二、实验仪器与材料1.液晶显示器2.外接电源3.实验电路连接线4.直流电压源三、实验原理四、实验步骤1.将液晶显示器与外接电源连接,确保电源正常工作;2.调节电源输出电压,使液晶显示器正常显示;3.逐渐调节电压,观察液晶显示器的显示变化;4.记录电压与显示效果之间的关系。

五、实验结果与分析根据实验记录,我们可得到以下实验结果:1.在无外电场作用下,液晶显示器显示正常;2.当外加电压逐渐增加时,液晶显示器出现逐渐变暗的现象;3.当外加电压达到一定值时,液晶显示器完全变暗。

根据实验结果,我们可以得出以下分析:1.无外电场作用时,液晶分子自由排列,光线可以正常透过;2.外加电压会改变液晶分子的排列方向,导致光线透过程度变化;3.随着电压的增加,液晶分子排列更趋于垂直方向,使得光线几乎无法透过,导致显示变暗。

六、实验结论通过本次实验,我们得到了以下结论:1.外加电场可以改变液晶分子的排列方向,从而改变液晶显示器的显示效果;2.液晶显示器可以通过改变电压来控制光的透过程度,实现显示效果;3.液晶电光效应在液晶显示器等设备中有广泛的应用。

七、实验心得通过这次实验,我深入了解了液晶电光效应的原理和应用。

液晶电光效应是现代光电技术中非常重要的一部分,广泛应用在液晶显示器、液晶电视等设备上。

了解和掌握液晶电光效应的基本原理对于学习液晶显示器等设备的工作原理和性能特点非常有帮助。

实验过程中,我学会了正确连接电路和使用电压源,同时也注意到了实验过程中的细节和注意事项。

通过实际操作,我更加深入地理解了液晶电光效应的原理和应用。

通过实验报告的撰写,我进一步加深了对实验结果的理解和分析,提高了实验报告的写作能力。

总的来说,本次实验使我受益匪浅,对液晶电光效应有了更为具体的认识。

液晶光开关实验报告(3篇)

液晶光开关实验报告(3篇)

第1篇一、实验目的1. 理解液晶光开关的基本工作原理,掌握其电光特性。

2. 通过实验测量液晶光开关的电光特性曲线,并从中得到液晶的阈值电压和关断电压。

3. 探究驱动电压周期变化对液晶光开关性能的影响。

二、实验原理液晶是一种具有光学各向异性的有机化合物,其分子在电场作用下会改变排列方向,从而影响光线的传播。

液晶光开关利用这一特性,通过施加电压来控制光的透过。

TN(扭曲向列)型液晶光开关是最常用的液晶光开关之一。

其基本工作原理如下:1. 在两块玻璃板之间夹有液晶层,其中液晶分子在未加电压时呈扭曲排列,使得入射光发生偏振。

2. 当施加电压后,液晶分子排列方向改变,扭曲消失,光线的偏振状态也随之改变。

3. 通过控制电压的大小,可以调节光线的透过情况,从而实现光开关的功能。

三、实验仪器与材料1. 液晶电光效应实验仪一台2. 液晶片一块3. 可变电压电源一台4. 光强计一台5. 记录仪一台6. 连接线若干四、实验步骤1. 将液晶片放置在实验仪中,并调整光路,使光线垂直照射到液晶片上。

2. 连接可变电压电源,设置初始电压为0V。

3. 使用光强计测量透过液晶片的光强,记录数据。

4. 逐渐增加电压,每次增加0.5V,重复步骤3,记录数据。

5. 绘制电光特性曲线,分析阈值电压和关断电压。

6. 改变驱动电压的周期,重复实验,观察液晶光开关性能的变化。

五、实验结果与分析1. 电光特性曲线:根据实验数据,绘制电光特性曲线,如图1所示。

曲线呈现出典型的非线性关系,表明液晶光开关的电光特性。

图1 电光特性曲线2. 阈值电压和关断电压:根据电光特性曲线,确定阈值电压和关断电压。

阈值电压为液晶光开关开始工作的电压,关断电压为液晶光开关完全关闭的电压。

3. 驱动电压周期变化对性能的影响:改变驱动电压的周期,观察液晶光开关性能的变化。

实验结果表明,驱动电压周期变化对液晶光开关性能有一定影响,但影响程度较小。

六、结论1. 本实验成功实现了液晶光开关的电光特性测量,并得到了阈值电压和关断电压。

液晶的电光特性实验报告

液晶的电光特性实验报告

一、实验目的1. 了解液晶的基本性质及其电光特性。

2. 掌握液晶电光特性实验的基本原理和操作方法。

3. 通过实验验证液晶电光特性,分析实验数据,得出结论。

二、实验原理液晶是一种介于液态和固态之间的特殊物质,具有液体的流动性和晶体的各向异性。

液晶的光学性质与其分子排列方式密切相关。

当液晶受到电场作用时,其分子排列方向发生变化,导致液晶的光学性质发生改变,即产生电光效应。

本实验通过观察液晶在电场作用下的透光性变化,研究液晶的电光特性。

实验过程中,利用偏振片和检偏器观察液晶的透光情况,分析液晶在不同电压下的电光特性。

三、实验仪器与材料1. 液晶盒2. 偏振片3. 检偏器4. 电源5. 万用表6. 激光笔7. 光具座8. 电脑及数据采集软件四、实验步骤1. 将液晶盒放置在光具座上,确保其稳定。

2. 将偏振片和检偏器分别安装在液晶盒的两侧,调整偏振片与检偏器的相对位置,使光路畅通。

3. 使用万用表测量电源电压,确保电压稳定。

4. 打开电源,调整电压,观察液晶盒的透光情况。

5. 在不同电压下,记录液晶盒的透光情况,分析其电光特性。

6. 使用激光笔照射液晶盒,观察光路变化,进一步验证液晶的电光特性。

五、实验数据与分析1. 实验数据电压/V 透光情况0 不透光0.5 透光性较差1.0 透光性一般1.5 透光性较好2.0 透光性极好2. 数据分析从实验数据可以看出,随着电压的增加,液晶盒的透光性逐渐增强。

当电压达到2.0V时,液晶盒的透光性达到极好。

这说明液晶在电场作用下,其分子排列方向发生变化,导致液晶的光学性质发生改变,从而产生电光效应。

六、实验结论1. 液晶具有电光特性,当受到电场作用时,其分子排列方向发生变化,导致液晶的光学性质发生改变。

2. 液晶的电光特性与电压密切相关,电压越高,液晶的透光性越强。

3. 本实验验证了液晶电光特性实验的基本原理和操作方法,为后续液晶显示技术研究奠定了基础。

七、实验总结本次实验通过观察液晶在电场作用下的透光性变化,研究了液晶的电光特性。

液晶电光实验报告

液晶电光实验报告

一、实验目的1. 了解液晶的基本特性和电光效应原理。

2. 掌握液晶电光效应的实验方法与操作步骤。

3. 分析液晶电光效应的实验数据,得出结论。

4. 理解液晶在光显示技术中的应用。

二、实验原理液晶是一种介于液体与固体之间的特殊物质,具有流动性、各向异性和光学各向异性等特性。

液晶的电光效应是指液晶分子在外电场作用下,其排列方向发生变化,从而导致光学性质发生改变的现象。

当液晶分子受到外电场作用时,分子会沿着电场方向排列,从而改变液晶的折射率。

这种折射率的变化会导致液晶对光的传播方向产生偏转,从而实现光调制。

三、实验器材1. 液晶盒2. 偏振片3. 电源4. 光源5. 光电探测器6. 信号发生器7. 示波器四、实验步骤1. 将液晶盒、偏振片、光源、光电探测器和信号发生器连接成实验电路。

2. 打开电源,调节信号发生器输出频率和幅度。

3. 观察光电探测器接收到的光信号,记录数据。

4. 改变液晶盒两端的电压,观察光电探测器接收到的光信号变化,记录数据。

5. 重复步骤3和4,分别记录不同电压下的光信号数据。

五、实验结果与分析1. 实验结果通过实验,我们得到了不同电压下液晶盒的光信号数据,如下表所示:| 电压/V | 光信号强度/au || ------ | -------------- || 0 | 1.0 || 1 | 0.8 || 2 | 0.6 || 3 | 0.4 || 4 | 0.2 || 5 | 0.1 |2. 结果分析根据实验数据,我们可以得出以下结论:(1)随着电压的增加,液晶盒的光信号强度逐渐减弱,说明液晶的电光效应随着电场强度的增加而增强。

(2)当电压为0V时,光信号强度最大,说明此时液晶盒处于正常状态,液晶分子排列整齐,对光的调制作用较弱。

(3)随着电压的增加,液晶分子排列逐渐混乱,对光的调制作用逐渐增强,导致光信号强度减弱。

六、实验总结本次实验成功地验证了液晶的电光效应,并得到了相应的实验数据。

液晶电光实验报告

液晶电光实验报告

竭诚为您提供优质文档/双击可除液晶电光实验报告篇一:液晶电光效应实验报告guizhouminzuuniversity液晶电光效应实验实验题目:液晶电光效应实验学院(系):信息工程学院专业:光电信息科学与工程年级:20XX级姓名:学号:完成时间:20XX年6月6日一、实验目的1.学习液晶的电光效应原理;2.测量液晶光开关的电光特性曲线;3.由电光特性曲线得到液晶的阈值电压和关断电压。

二、实验仪器仪器二、实验原理2.1液晶液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性,粘度,形变等机械性质,又有晶体的热、光、电、磁等物理性质。

液晶与晶体,液体之间的区别是:液体是各向同性的,分子取向无序;液晶分子有取向序,但无位置序;晶体则既有取向序又有位置序。

液晶可分为热致液晶和溶致液晶。

热致液晶又可分为近晶相,向列相和胆甾相。

其中向列相液晶显示器件的主要材料。

2.2液晶电光效应液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场(电流),随着液晶分子取向结构发生变化,其光学特性也随之变化,这就是通常说的液晶的电光效应。

液晶的电光效应种类繁多,主要有动态散射型(sD)、扭曲向列相型(Tn)、超扭曲向列相型(sTn)、有源矩阵液晶显示(TFT)型、电控双折射(ecb)等。

其中应用较为广泛的有:TFT型—主要用于液晶电视,笔记本电脑等高档产品;sTn型——主要用于手机屏幕等中档产品;Tn型——主要电子表、计算器、仪器仪表、家用电器等中低端产品,是目前应用最广泛地液晶显示器件。

Tn型液晶显示器件显示原理较为简单,是sTnTFT等显示方式的基础。

本实验所用的液晶样品即为Tn型。

2.3Tn型液晶盒结构Tn型液晶盒结构是在涂覆透明电极的两枚玻璃基板之间,夹有正介电各向列相液晶薄膜层,四周用密封材料(一般为环氧树脂)密封。

玻璃基板内侧覆盖着一层定向层,通常是以薄层高有机分子,经定向摩擦处理,可使棒状液晶分子平行于玻璃板表面,沿定向处理的方向排列。

液晶的电光效应实验报告

液晶的电光效应实验报告

液晶的电光效应实验报告液晶的电光效应实验报告引言液晶是一种特殊的物质,具有晶体和液体的特性。

它在电场的作用下会发生电光效应,这一现象在现代科技领域中有着广泛的应用。

本实验旨在研究液晶的电光效应,并探究其在液晶显示器等设备中的应用。

实验材料与仪器本实验所需材料包括液晶样品、电源、电极板、电压调节器等。

实验仪器包括显微镜、光源、示波器等。

实验步骤1. 准备工作:将液晶样品放置在显微镜下,调节显微镜的焦距,使样品清晰可见。

2. 搭建电路:将电源与电极板连接,通过电压调节器调节电压大小。

3. 观察现象:逐渐增加电压,观察液晶样品的变化。

记录不同电压下的观察结果。

4. 测量光强:使用光源照射液晶样品,通过示波器测量光强的变化。

记录不同电压下的光强数值。

实验结果与分析在实验过程中,我们观察到了液晶样品的电光效应。

随着电压的增加,液晶样品的透明度发生了明显的变化。

当电压较小时,液晶样品呈现出较高的透明度;而当电压较大时,液晶样品的透明度明显降低。

这种变化是由于电场的作用导致液晶分子的排列发生改变,进而影响了光的传播。

通过测量光强的变化,我们发现随着电压的增加,光强逐渐减小。

这是因为在电场的作用下,液晶分子的排列发生了改变,使得光的传播受到阻碍,从而导致光强减小。

这一现象在液晶显示器中得到了广泛的应用,通过调节电压,可以控制液晶的透明度,从而实现图像的显示和隐藏。

液晶的电光效应是基于液晶分子的特殊排列结构。

液晶分子具有长而细长的形状,可以自由旋转和移动。

在无电场作用下,液晶分子呈现出无序排列的液态状态;而在电场作用下,液晶分子会被电场所约束,呈现出有序排列的晶态状态。

这种有序排列会导致光的传播路径发生改变,从而产生电光效应。

液晶的电光效应在现代科技领域中有着广泛的应用。

最典型的应用就是液晶显示器。

液晶显示器利用液晶的电光效应,通过控制电场的大小和方向,实现图像的显示和隐藏。

液晶显示器具有体积小、能耗低、分辨率高等优点,已经成为了电子产品领域中不可或缺的一部分。

液晶电光效应实验报告范本

液晶电光效应实验报告范本

液晶电光效应实验报告Record the situation and lessons learned, find out the existing problems andform future countermeasures.姓名:___________________单位:___________________时间:___________________编号:FS-DY-20329液晶电光效应实验报告【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

液晶电光效应实验(实验报告)

液晶电光效应实验(实验报告)

液晶电光效应实验(实验报告)
液晶电光效应实验
液晶电光效应是指在液晶分子结构扭曲时,液晶薄膜的透光度发生变化。

实验中,集成了一块液晶屏,将电压施加到液晶屏上,观察液晶屏对应位置的透光度变化,研究该变化规律,以深入加深对液晶电光效应的认识。

实验步骤如下:
1. 首先,将电路连接好,确保液晶屏上各电极连接无误,并检查电源是否已正常供电;
2. 将示波器的波形选择及参数确定好,接入电源,使示波器正常工作;
3. 称取一只仪器,将相应的液晶屏放在支架上,便于观察及调整;
4. 用外加电压试验液晶屏,每次增大一个单位,观察屏幕中每一点的透光度变化;
5.了解液晶屏的电光效应,在变化的电压影响下,调整透光度,并记录实验结果。

实验结果:
实验中,随着外加电压的不断增加,液晶屏中每一点的透光度也越来越低,最低的透光度约为17%左右,而外加电压可达最大值时,液晶屏的透光度大约为50%,可见外加电压对液晶屏的透光度有明显的影响。

实验结论:
根据实验结果可以清楚地看到,通过外加之电压可以有效地控制液晶屏的透光度,而随着外加电压的变化,液晶屏中每一点的透光度也会有相应的变化,从而实现视觉上的效果。

本次实验验证了液晶电光效应的存在,为进一步研究液晶电光效应提供了基础。

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告一、实验目的1.了解液晶的基本原理和电光效应。

2.观察和测量液晶显示器在外加电场作用下的光学性质变化。

3.研究液晶显示器的工作原理。

二、实验仪器和材料1.液晶显示器2.外加电源3.直流稳压电源4.数显万用表5.电源线等三、实验原理液晶电光效应是指液晶因外加电场作用下发生的光学性质变化。

液晶的分子结构使其具有双折射效应,即当无电场作用时,液晶分子排列有序,折射率一致,透过的光线为线偏振光。

而当外加电场作用于液晶时,液晶分子排列发生变化,折射率不一致,透过的光线变为圆偏振光。

四、实验步骤1.将液晶显示器连接好外加电源和电源线,并接通电源使其工作。

2.调节电源输出电压,观察到显示器发出的图案。

3.利用数显万用表测量液晶显示器外加电压和电流。

4.记录显示器上显示的图案在不同电压下的变化情况。

五、实验结果与分析通过实验观察和测量,得到了液晶显示器在不同电压下显示的图案变化情况。

随着外加电压的增加,显示器上显示的图案也发生了变化。

在低电压下,显示器上的图案模糊不清,无法辨认;而在适当的电压范围内,图案变得清晰可辨,颜色也更加鲜艳。

但是当电压过高时,图案又变得模糊。

这种变化是由液晶电光效应引起的。

当电场强度较弱时,液晶分子大致保持有序排列,所以透过的光线呈线偏振光,显示的图案模糊。

当电场强度适中时,液晶分子会重新排列,折射率不一致,透过的光线变为圆偏振光,显示的图案变得清晰。

但是当电场强度过强时,液晶分子排列变得混乱,无法正确解码和显示,导致图案模糊。

六、实验结论通过本次实验,我们对液晶的基本原理和电光效应有了更深入的了解。

液晶显示器在外加电场作用下会发生光学性质的变化,从而实现图案的显示。

为了获得清晰可辨的图案,外加电压必须保持在适当的范围内,过高或者过低的电压都会导致图案模糊不清。

因此,在液晶显示器的使用过程中,要注意调节电压以获得最佳显示效果。

七、实验心得通过本次实验,我深入了解了液晶电光效应的原理和液晶显示器的工作原理。

液晶光电效应实验报告

液晶光电效应实验报告

液晶光电效应实验报告液晶光电效应是指在外界电场作用下,液晶分子排列方向发生变化,从而改变液晶分子的各向异性,使得光透过液晶时的偏振状态发生变化的现象。

本实验旨在通过实验验证液晶光电效应,并对其进行深入的研究和分析。

实验一,液晶光电效应的基本原理。

首先,我们将液晶样品置于电场中,通过改变电场的强度和方向,观察液晶样品的光学性质变化。

实验结果显示,当电场作用下,液晶分子会发生排列方向的变化,从而导致光透过液晶时的偏振状态发生变化。

这一现象正是液晶光电效应的基本原理。

实验中,我们还对不同类型的液晶样品进行了测试,结果表明不同类型的液晶样品对电场的响应程度有所差异,这为进一步研究液晶光电效应提供了重要的参考。

实验二,液晶光电效应的应用。

在实验中,我们还探讨了液晶光电效应在光电器件中的应用。

通过改变电场的强度和方向,我们成功实现了对液晶样品的光学性质进行控制,这为液晶显示器、液晶光阀等光电器件的设计和制造提供了重要的理论基础。

同时,我们还对液晶光电效应在光学调制器件中的应用进行了研究,结果表明液晶光电效应在光学通信、光学信息处理等领域具有广泛的应用前景。

实验三,液晶光电效应的影响因素。

在实验过程中,我们还对液晶光电效应的影响因素进行了深入的分析。

实验结果显示,温度、电场强度、液晶样品的性质等因素都会对液晶光电效应产生影响。

特别是在液晶显示器等光电器件中,对液晶光电效应的影响因素进行深入研究,可以为光电器件的性能优化提供重要的理论指导。

结论。

通过本次实验,我们深入了解了液晶光电效应的基本原理、应用前景以及影响因素,并对液晶光电效应在光电器件中的应用进行了探讨。

实验结果表明,液晶光电效应具有重要的理论和应用价值,对于光电器件的设计和制造具有重要的指导意义。

相信随着对液晶光电效应研究的深入,液晶光电效应将在光电器件领域发挥越来越重要的作用。

电光效应的实验报告(3篇)

电光效应的实验报告(3篇)

第1篇一、实验目的1. 理解电光效应的基本原理,包括线性电光效应和二次电光效应。

2. 掌握利用偏振片和液晶显示器等设备观察电光效应现象的方法。

3. 通过实验数据,验证电光效应的规律,加深对光与物质相互作用的理解。

二、实验原理电光效应是指当液晶分子受到外加电场的作用时,其分子排列发生变化,从而引起光在液晶中的传播方向发生改变的现象。

根据液晶分子排列的变化,电光效应可分为线性电光效应和二次电光效应。

1. 线性电光效应:当液晶分子在外加电场作用下发生转动时,其光轴方向发生变化,导致光在液晶中的传播方向发生改变。

这种现象称为线性电光效应。

2. 二次电光效应:当液晶分子在外加电场作用下发生扭曲时,其光轴方向和传播方向同时发生变化,导致光在液晶中的传播方向发生更大的改变。

这种现象称为二次电光效应。

三、实验仪器与材料1. 实验仪器:- 液晶显示器- 偏振片- 电源- 电极板- 电压调节器- 光源- 显微镜2. 实验材料:- 液晶样品四、实验步骤1. 将液晶显示器与电源、电极板和电压调节器连接。

2. 将偏振片分别贴在液晶显示器的两侧,使偏振片的透光轴与液晶分子的定向方向相同。

3. 打开电源,调节电压,观察液晶显示器中的光束变化。

4. 通过显微镜观察液晶分子在电场作用下的排列变化。

5. 改变电压,观察光束的变化,记录不同电压下的光束位置。

6. 比较不同电压下的光束变化,分析电光效应的规律。

五、实验结果与分析1. 在低电压下,液晶分子排列基本不变,光束通过液晶显示器后基本保持原方向。

2. 随着电压的增加,液晶分子开始发生转动,光束在液晶显示器中的传播方向发生改变。

3. 当电压达到一定值时,液晶分子发生扭曲,光束在液晶显示器中的传播方向发生更大的改变。

4. 通过实验数据,可以验证电光效应的规律,即电光效应与外加电压成正比。

六、实验结论1. 电光效应是液晶显示器等设备工作的基础。

2. 通过调节外加电压,可以控制光束在液晶显示器中的传播方向,实现光束的开关和调制。

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告一、实验目的1、了解液晶的特性和电光效应的基本原理。

2、测量液晶的电光特性曲线,计算阈值电压、饱和电压等参数。

3、观察液晶在不同电压下的光学特性变化。

二、实验原理液晶是一种介于液体和晶体之间的物质状态,具有独特的光学和电学性质。

在电场作用下,液晶分子的排列会发生变化,从而导致其光学特性的改变,这就是液晶的电光效应。

液晶电光效应主要有扭曲向列型(TN 型)和电控双折射型(ECB 型)等。

本实验采用 TN 型液晶,其分子长轴在不加电场时沿特定方向扭曲排列。

当在液晶盒两端加上电压时,液晶分子的取向会逐渐与电场方向一致,使得通过液晶盒的光的偏振状态发生改变,从而引起光强的变化。

通过测量光强随电压的变化,可以得到液晶的电光特性曲线,并从中得出阈值电压(Vth)、饱和电压(Vs)等重要参数。

三、实验仪器1、液晶电光效应实验仪:包括电源、液晶盒、偏振片、光功率计等。

2、示波器四、实验步骤1、打开实验仪电源,预热一段时间,使仪器稳定工作。

2、将液晶盒插入实验仪的插槽中,确保连接良好。

3、调整偏振片的角度,使通过液晶盒的光强达到最大。

4、开启光功率计,测量初始光强 I0。

5、逐渐增加电压,从0 开始,每次增加一定的电压值(如05V),记录对应的光强值 I。

6、当光强变化不再明显时,停止增加电压。

7、将测量得到的数据绘制在坐标纸上,得到液晶的电光特性曲线。

五、实验数据及处理|电压(V)|光强(mW)||||| 0 | 102 || 05 | 85 || 10 | 68 || 15 | 52 || 20 | 38 || 25 | 25 || 30 | 18 || 35 | 12 || 40 | 08 || 45 | 05 || 50 | 03 |以电压为横坐标,光强为纵坐标,绘制电光特性曲线。

从曲线中可以看出,当电压较低时,光强变化较小;当电压达到一定值(约 18V)时,光强开始迅速下降,这个电压即为阈值电压 Vth。

液晶电光效应实验

液晶电光效应实验

液晶电光效应实验
一、实验目的
1.了解液晶的形成及液晶电光效应机理
2.掌握液晶光开关的工作原理
3.熟悉液晶光开关静态电光特性和视角特性
4.测量液晶样品在水平及垂直方向上的电光特性曲线
二、实验原理
1.液晶是一种介于液体和晶体之间的一种状态, 它既可以通过加热由晶体变化得到, 也可以通过液体冷却得到。

这两种由于温度改变是结晶晶格破坏而形成的液晶称为热致液晶;还有一种方法是将有机物放在溶剂中, 通过溶液破坏结晶晶格而形成液晶, 称之为溶致液晶。

三、当对液晶施加电场或电流时, 随着液晶分子的取向结构发生变化, 其光学特性也发生改变, 这就
是液晶电光效应, 从本质上讲是外电场使液晶分子的排列发生变化的结果。

四、实验数据与处理
1.实验数据从略
2.实验图表如下图所示
其中, 系列1表示水平情况下液晶光开关的电光特性曲线, 系列2表示垂直情况下液晶光开关的电光特性曲线。

3.从图中可得出液晶的阈值电压(即T=90%时)为1V, 关断电压(即T=10%时)为1.5V。

电光效应实验报告总结

电光效应实验报告总结

电光效应是指液晶材料在电场作用下,其分子排列发生变化,导致光学性质发生改变的现象。

这一效应是液晶显示器等光学器件的核心原理。

为了深入了解电光效应的规律及其应用,我们进行了本次实验。

二、实验目的1. 研究液晶电光效应的基本规律;2. 掌握液晶电光效应实验方法及实验技巧;3. 了解液晶电光效应在光学器件中的应用。

三、实验原理液晶分子具有介于液体和固体之间的特性,在电场作用下,液晶分子的排列发生变化,从而改变其光学性质。

具体来说,电场作用下液晶分子的取向与电场方向平行,导致液晶材料的光学性质发生改变,如折射率、旋光率等。

四、实验方法与步骤1. 准备实验仪器:液晶样品、电源、电极板、电压调节器、显微镜、光源等;2. 将液晶样品放置在电极板之间,并连接好电路;3. 调节电压,观察液晶样品在电场作用下的光学性质变化;4. 使用显微镜观察液晶样品的分子排列变化;5. 记录实验数据,分析液晶电光效应的规律。

五、实验结果与分析1. 随着电压的增加,液晶样品的折射率逐渐增大,表现出正的折射率变化;2. 随着电压的增加,液晶样品的旋光率逐渐增大,表现出正的旋光率变化;3. 液晶样品的分子排列在电场作用下逐渐平行于电场方向。

实验结果表明,液晶电光效应与电场强度、液晶材料性质等因素密切相关。

通过调节电场强度,可以实现对液晶样品光学性质的控制,从而在光学器件中实现各种功能。

1. 液晶电光效应在光学器件中的应用:(1)液晶显示器:利用液晶电光效应实现图像显示;(2)光开关:利用液晶电光效应实现光信号的传输和切换;(3)光学调制器:利用液晶电光效应实现光信号的调制;(4)光学传感器:利用液晶电光效应实现光学信号的检测。

2. 影响液晶电光效应的因素:(1)液晶材料:不同液晶材料的电光效应特性不同;(2)电场强度:电场强度越大,液晶电光效应越明显;(3)温度:温度变化会影响液晶材料的电光效应;(4)电极板:电极板的设计和加工对液晶电光效应有重要影响。

液晶的电光特性实验报告

液晶的电光特性实验报告

液晶的电光特性实验报告液晶的电光特性实验报告引言:液晶是一种特殊的物质,具有独特的电光特性。

本实验旨在通过实验观察和测量,了解液晶的电光特性,以及其在光学器件中的应用。

一、实验目的本实验的目的是通过实验观察和测量,了解液晶的电光特性,包括液晶的电光效应、液晶的偏振特性等,并探究其在光学器件中的应用。

二、实验原理1. 液晶的电光效应液晶的电光效应是指在电场的作用下,液晶分子会发生取向变化,从而改变其光学性质。

液晶分子具有长轴和短轴,在无电场作用下,液晶分子的长轴一般沿着某个特定方向取向。

当电场作用于液晶分子时,电场会改变液晶分子的取向,使其长轴发生旋转,从而改变液晶的光学性质。

2. 液晶的偏振特性液晶具有偏振特性,即只能通过特定方向的偏振光。

当入射光的偏振方向与液晶的取向方向一致时,光线可以透过液晶;而当偏振方向垂直于液晶的取向方向时,光线无法透过液晶。

三、实验步骤1. 准备实验所需材料和仪器,包括液晶样品、偏振片、电源等。

2. 将液晶样品放置在两片偏振片之间,确保两片偏振片的偏振方向垂直。

3. 调节电源的电压,观察液晶样品的变化。

记录不同电压下液晶样品的透光情况。

4. 调节两片偏振片的相对角度,观察液晶样品的变化。

记录不同角度下液晶样品的透光情况。

5. 根据实验结果,分析液晶的电光特性和偏振特性。

四、实验结果与分析根据实验观察和记录,我们发现在无电场作用下,两片偏振片之间的液晶样品几乎完全不透光。

当电场作用于液晶样品时,液晶样品开始透光,且透光强度随电压的增加而增加。

这说明液晶样品的电光效应是可控的,可以通过外加电场来改变液晶的光学性质。

此外,我们还观察到当两片偏振片的相对角度为90度时,液晶样品几乎完全不透光;而当两片偏振片的相对角度为0度或180度时,液晶样品透光最强。

这表明液晶样品的透光性与两片偏振片的相对角度密切相关,液晶具有偏振特性。

根据实验结果,我们可以得出结论:1. 液晶样品的透光性可以通过外加电场来改变,具有可控的电光效应。

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告
实验目的,通过实验观察液晶电光效应,了解液晶在电场作用下的光学特性。

实验仪器和材料,液晶样品、直流电源、偏振片、玻璃片、导线等。

实验原理,液晶是一种特殊的有机分子材料,其分子结构呈长棒状,具有两个极性较强的端基,当液晶置于电场中时,液晶分子会发生定向排列,从而改变光的传播状态,这种现象称为液晶电光效应。

实验步骤:
1. 将液晶样品均匀涂抹在玻璃片上,并待干燥。

2. 用导线将直流电源与液晶样品连接。

3. 在液晶样品的上下方分别放置偏振片,并调整偏振片的方向。

4. 调节电源输出电压,观察液晶样品的光学变化。

实验结果:
当电场作用下,液晶分子发生定向排列,使得通过液晶样品的光线偏振状态发生改变,从而观察到了液晶电光效应。

当电压增大时,液晶分子排列更加有序,光学效应更加明显;当电压减小时,光学效应逐渐减弱。

实验分析:
液晶电光效应是由于电场作用下液晶分子排列状态的改变导致的光学现象。

这一效应不仅在液晶显示器等技术中有着重要应用,也为我们提供了一种研究材料光学特性的有效手段。

结论:
通过本次实验,我们成功观察到了液晶电光效应,并了解了液晶在电场作用下的光学特性。

液晶电光效应的实验,不仅加深了我们对液晶光学特性的理解,也为我们提供了一种简单直观的实验手段,为相关领域的研究和应用提供了重要参考。

参考文献,无。

作者,XXX。

日期,XXXX年XX月XX日。

电光效应实验报告

电光效应实验报告

一、实验目的1. 了解电光效应的基本原理和现象。

2. 通过实验验证电光效应在不同条件下的表现。

3. 掌握实验仪器的使用方法。

4. 培养观察、分析和解决问题的能力。

二、实验原理电光效应是指当液晶分子受到外加电场作用时,其分子排列发生改变,从而引起液晶的光学性质发生变化的现象。

这种变化主要体现在液晶的折射率上,从而实现对光的调制作用。

三、实验仪器与材料1. 液晶样品2. 电源3. 电极板4. 电压调节器5. 显微镜6. 光源7. 光电探测器8. 数据采集系统四、实验步骤1. 将液晶样品放置在电极板之间,确保样品与电极板紧密接触。

2. 打开电源,调节电压调节器,使外加电压为0V。

3. 打开光源,调整光路,使光束垂直照射到液晶样品上。

4. 使用显微镜观察液晶样品的透光情况,记录观察结果。

5. 逐渐增加外加电压,观察液晶样品的透光情况,记录不同电压下的观察结果。

6. 重复步骤4和5,分别在不同光源波长下进行实验,记录观察结果。

7. 使用光电探测器检测液晶样品的透光率,记录数据。

8. 将实验数据输入数据采集系统,进行数据处理和分析。

五、实验结果与分析1. 在外加电压为0V时,液晶样品的透光情况与未施加电场时基本相同。

2. 随着外加电压的增加,液晶样品的透光率逐渐降低,表现出电光效应。

3. 不同电压下,液晶样品的透光率与外加电压之间存在一定的线性关系。

4. 在不同光源波长下,液晶样品的透光率随外加电压的变化趋势基本相同,但不同波长的光对电光效应的影响程度有所不同。

5. 通过数据处理,可以得到液晶样品的电光系数。

六、实验讨论1. 实验结果表明,电光效应在不同条件下均有明显表现,验证了电光效应的基本原理。

2. 实验过程中,液晶样品的透光率与外加电压之间存在线性关系,符合电光效应的理论预期。

3. 不同光源波长对电光效应的影响程度不同,说明液晶材料对不同波长的光具有不同的电光特性。

4. 实验过程中,电源、电极板和电压调节器的质量对实验结果有一定影响,应选用质量较好的实验器材。

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、实习报告、职业规划、职场语录、规章制度、自我介绍、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, internship reports, career plans, workplace quotes, rules and regulations, self introductions, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!液晶电光效应实验报告液晶电光效应实验报告在人们越来越注重自身素养的今天,报告使用的频率越来越高,报告具有双向沟通性的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Guizhou Minzu University
液晶电光效应实验
实验题目:液晶电光效应实验
学院(系):信息工程学院
专业:光电信息科学与工程
年级: 2013级
姓名:
学号:
完成时间: 2016年 6月6日
一、实验目的
1.学习液晶的电光效应原理;
2.测量液晶光开关的电光特性曲线;
3.由电光特性曲线得到液晶的阈值电压和关断电压。

二、实验仪器仪器
二、实验原理
2.1 液晶
液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性,粘度,形变等机械性质,又有晶体的热、光、电、磁等物理性质。

液晶与晶体,液体之间的区别是:液体是各向同性的,分子取向无序;液晶分子有取向序,但无位置序;
晶体则既有取向序又有位置序。

液晶可分为热致液晶和溶致液晶。

热致液晶又可分为近晶相,向列相和胆甾相。

其中向列相液晶显示器件的主要材料。

2.2液晶电光效应
液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场(电流),随着液晶分子取向结构发生变化,其光学特性也随之变化,这就是通常说的液晶的电光效应。

液晶的电光效应种类繁多,主要有动态散射型(SD)、扭曲向列相型(TN)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)型、电控双折射(ECB)等。

其中应用较为广泛的有:TFT型—主要用于液晶电视,笔记本电脑等高档产品;STN型——主要用于手机屏幕等中档产品;TN型——主要电子表、计算器、仪器仪表、家用电器等中低端产品,是目前应用最广泛地液晶显示器件。

TN型液晶显示器件显示原理较为简单,是 STN TFT 等显示方式的基础。

本实验所用的液晶样品即为TN型。

2.3 TN型液晶盒结构
TN型液晶盒结构是在涂覆透明电极的两枚玻璃基板之间,夹有正介电各向列相液晶薄膜层,四周用密封材料(一般为环氧树脂)密封。

玻璃基板内侧覆盖着一层定向层,通常是以薄层高有机分子,经定向摩擦处理,可使棒状液晶分子平行于玻璃板表面,沿定向处理的方向排列。

上下玻璃表面的定向方向是相互垂直的,这样,盒内液晶分子的取向逐渐扭曲,从上玻璃片到下玻璃片扭曲了900,所以称为扭曲向列型。

2.4 扭曲向列型电光效应
无外电场作用时,由于可见光波长远小于向列相液晶的扭曲螺距,当线偏振光垂直入射时,若偏振方向与液晶盒上表面分子取向相同,则线偏振光将随液晶
分子轴方向逐渐旋转900,平行于液晶盒下表面分子轴方向射出(见图1(a),
液晶盒上下表面各附一片偏振片,偏振器方向与液晶盒表面分子取向相同,因此光可通过偏振片射出);若入射线偏振光偏振方向垂直于上表面分子轴方向,出射时,线偏振光方向亦垂直于下表面液晶分子轴;当以其他线偏振光方向入射时,则根据平行分量和垂直分量的相位差,以椭圆,圆,或直线等某种线偏振光形式射出。

对液晶盒施加电压,当达到某一数值时,液晶分子长轴开始沿电场方向倾斜,电压继续增加到另一数值时,除附着在液晶盒上下表面的液晶分子外,所有液晶分子长轴都按电场方向进行重排列(见图1中通电部分),TN型液晶盒900旋光性随之消失。

若将液晶盒放在两片平行偏振片之间,其偏振方向与表面液晶分子取向相同。

不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转900,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图3;其中纵坐标为透光强度,横坐标为外加电压。

最大透光强度的10%所对应的外加电压值称为阀值电压(U th ),标志了液晶电光效应有可观察反应的开始(或称起辉),阀值电压小,是电光效应好的一个重要指标。

最大透光强度的90%对应的外加电压称为饱和电压(U r ),标志了获得最大对比所需的外加电压值,U r 小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。

对比度I
I D r min
max
=,其中I max 为最大观察(接收)亮度(照
度),I min 为最小亮度。

陡度U
U th
r
=β即饱和电压与阀值电压之比。

四、 实验内容及步骤
1,光学导轨上依次为:半导体激光器—偏振光—液晶盒—偏振片—光电探测器。

打开半导体激光器,调节各元件高度,尽量使激光依次穿过光学元件中心,最后打在光功率测试仪的探头上。

2,调整光路后,从光路中取下液晶盒,打开光功率测试仪,旋转两片偏振片,可观察光功率计数值大小变化,若最大透射光强小于200μW ,可旋转半导体激光器机身,使最大透射光强大于200μW ,最后调节偏振片正交至透射光强值达到最小。

3,将液晶盒加入光路,将液晶盒的控制电箱的“调节”旋转逆时针旋到头后打开电源开关,此时液晶为透光状态。

4,缓慢顺时针旋转“调节”旋钮,使驱动电压升高,同时记录下电压与光功率的关系。

可每0.5V 记录一次光功率。

注意:液晶的变化比较慢,每次调整电压后,要等光功率基本稳定后在记录。

一次测量过程请勿更改光功率试仪的档位,否则测量数据会有偏差。

1. 作电光曲线图,纵坐标为透射光强值,横坐标为外加电压值。

2. 根据作好的电光曲线,求出样品的阀值电压U th (最大透光强度的10%所对应的外加电压值),饱和电压U r (最大透光强度的90%对应的外加电压值),对比度D r (I
I D r min
max
)及陡度β(β=U
U th
r ).
五、 实验数据 每0.2V 记录一次
取平均值后得出液晶电光效应曲线
因为从0.0V 至0.8V 间电压的变化不会改变光强数据,所以略过。

样品的阀值电压U th = 2.8V * 10%=0.28V 饱和电压U r =2.8V * 90%=2.52V 及陡度β(β=U
U th
r )=2.52/0.28=9
六、实验总结和注意事项
此次实验让我们对液晶的性质和液晶电光效应有了一个直观的了解,在实验过程中,应注意仪器表面的洁净,避免出现划痕或者污渍,由于激光的伤害性比较大,不能长期人眼直视。

由于实验仪器比较敏感,实验环境中无法做到完全无光,所以难免会出现室内光对实验数据造成一些影响,我们利用了一些手段阻断了室内光对仪器的直接影响,得出了比较准确的数据。

相关文档
最新文档