深基坑变形监测的常见方法及应用
深基坑工程中的变形监测与处理方法
深基坑工程中的变形监测与处理方法深基坑工程是现代建筑施工中常见的一项技术挑战,它涉及到深埋地下的巨大土体开挖和支护工程。
在这一过程中,土体的变形是无法避免的,而人们则需要通过变形监测和相应的处理方法来保证工程的安全性和可靠性。
在深基坑工程中,变形监测是至关重要的。
它可以帮助工程师了解土体的变形情况,及时发现潜在的风险,并根据监测数据进行合理的调整和处理。
变形监测可以采用多种方法,如测量支护墙体的变形、测量土体的沉降和位移等。
其中,最常用的方法是采用传感器进行实时监测,如倾斜度传感器、沉降计、位移计等。
监测数据的处理与分析是变形监测的关键步骤。
工程师需要对监测数据进行准确的分析和解读,判断土体的变形情况,并根据情况采取相应的措施。
传统的处理方法是通过人工统计和计算,但随着计算机技术的发展,现代工程师可以借助计算机软件进行数据处理和分析,提高工作效率和准确度。
处理变形监测数据时,工程师需要考虑多个因素。
首先,他们需要将监测数据与设计值进行比较,以判断变形是否在可接受的范围内。
其次,他们需要考虑土体的复杂性和不均匀性,采用合适的数学模型进行数据分析。
此外,他们还需要关注时间因素,根据监测数据的变化趋势,判断土体的变形速度和趋势,并及时采取相应措施。
在处理变形监测数据时,工程师还可以借助经验和专业知识进行判断和决策。
他们可以根据历史数据和类似工程的经验,判断当前工程的安全性,并根据情况调整支护结构和施工方法。
此外,他们还可以借助专业的地质和土力学知识,对土体的特性和变形机理进行深入分析,为工程施工提供参考和建议。
除了变形监测和处理,深基坑工程中还有其他一些重要的安全措施。
例如,在施工前需要进行全面的勘察和调查,了解地下水位、土体的物理性质和结构等。
此外,在开挖和支护过程中,还需要采取相应的排水措施,以减少土体的渗透和水压。
总之,深基坑工程中的变形监测与处理方法是确保工程安全和可靠的重要环节。
通过科学的监测方法和准确的数据处理,工程师可以及时发现土体的变形情况,并采取相应的措施。
深基坑变形监测
深基坑变形监测深基坑变形监测主要是为了确保深基坑施工过程中的安全和稳定性,及时发现并解决潜在的变形问题。
本文将介绍深基坑变形监测的意义、方法和技术,以及实施监测的关键点。
深基坑施工是城市建设中常见的工程方式之一,通常用于地铁、大型商业综合体等项目的建设。
深基坑施工过程中,由于地下水位、土壤条件等因素的影响,基坑结构会发生变形和沉降,导致地面沉降、建筑物倾斜等问题。
深基坑变形监测的意义主要包括以下几个方面:1.确保施工安全:深基坑结构的变形和沉降可能导致施工过程中的事故,对施工人员和周边居民的生命财产安全造成威胁。
通过变形监测,可以实时了解基坑变形情况,及时采取措施,确保施工安全。
2.保证工程质量:深基坑变形可能会对周边建筑物和地下管线等产生不利影响,导致土壤沉降、房屋裂缝等问题。
及时发现并解决变形问题,可以保证基坑施工后的工程质量。
3.控制环境污染:深基坑施工过程中可能会对周边环境造成噪音、振动、粉尘等污染。
通过变形监测,可以及时控制施工影响,减少环境污染。
深基坑变形监测的方法和技术多种多样,常用的包括全站仪监测、测量标杆监测、变形挠度监测等。
下面将介绍其中几种常用的监测方法和技术:1.全站仪监测:全站仪是一种高精度的测量仪器,可以同时测量水平角、垂直角和斜距。
在深基坑变形监测中,可以使用全站仪监测基坑边缘的标志点,通过连续测量,了解基坑的变形情况。
2.测量标杆监测:测量标杆是固定在基坑边缘或建筑物周围的标志物,通过测量标杆的位置和高程变化,可以判断基坑的变形情况。
常用的测量标杆包括水平标杆、竖直标杆和倾斜标杆等。
3.变形挠度监测:变形挠度监测是通过安装在建筑物或基坑结构上的变形传感器来测量变形挠度。
常见的变形传感器有测斜管、水平位移计、水准仪等。
通过实时监测和分析变形挠度的变化,可以了解基坑的变形状况。
深基坑变形监测是一个复杂的过程,需要注意一些关键点,以保证监测的准确性和可靠性。
1.监测方案设计:在进行深基坑变形监测之前,需要制定监测方案,确定监测参数和监测设备的布置。
深基坑变形监测
深基坑变形监测深基坑是指建筑工程中所挖的较深的方形或圆形坑,一般用于地下车库、地下商场、地下工程等。
由于基坑承受来自周围土体的向内挤压力和自身重力的作用,会导致基坑变形,因此需要进行变形监测。
深基坑变形监测是指通过监测基坑周围土体和基坑本身在施工过程中的变形情况,及时掌握变形信息,以便采取相应的加固措施,保证基坑的安全施工和使用。
深基坑变形监测一般包括以下几个方面的内容:1. 地表沉降监测:通过在基坑周围设置沉降观测点,测量地表的沉降量,了解基坑附近土体的变形情况。
常用的监测方法包括测量地表高程、GPS定位等。
通过地表沉降监测可以判断基坑的变形是否存在异常情况。
2. 周边建筑物变形监测:在基坑周边设置监测点,通过使用位移传感器等监测设备,对周边建筑物的变形进行监测。
一旦发现附近建筑物有明显的位移现象,说明基坑造成了周边土体的变形,需要采取相应的措施进行加固。
3. 土体应力监测:通过设置土压力计、应变仪等监测设备,测量土体的水平应力和垂直应力。
监测土体的应力变化可以判断基坑周围土体是否存在破坏的趋势,及时采取措施减小土体应力。
4. 混凝土结构变形监测:通过在深基坑的混凝土结构内设置测量点,使用变形测量仪等设备,对混凝土结构的变形进行实时监测。
常见的监测参数包括混凝土的裂缝宽度、混凝土结构的变形速度等。
通过混凝土结构变形监测可以判断深基坑的变形是否达到设计要求,并根据实际情况进行相应的加固措施。
深基坑的变形监测是保证基坑施工和使用安全的重要手段。
通过实时监测基坑的变形情况,可以及时发现问题并采取措施进行处理,避免因基坑变形导致的事故发生。
深基坑变形监测是建筑工程施工的必要环节,也是保障施工质量和安全的重要措施。
基坑工程变形监测方案
基坑工程变形监测方案1. 背景介绍基坑工程是指在建筑施工中,为了在地下建造高层建筑或者地下结构,需要在地面上开挖较深的坑,并按照设计图纸对坑下进行倒土处理,同时基坑周边的建筑、道路等都会受到一定的影响。
为了确保基坑工程的安全施工,避免对周边建筑物和地下设施造成不可挽回的损害,需要进行变形监测。
基坑工程变形监测是指在基坑开挖、支护、降水和地下室施工等过程中,从土壤内部和地面上一定深度位置等环境中,连续或定期监测基坑四周变形情况,以获取变形数据,从而判断基坑周围环境的稳定性和安全性。
合理地选择监测点位,对基坑工程进行变形监测,可以有效地监测基坑开挖过程中的变形情况,提前发现潜在危险,保障基坑施工的安全。
2. 变形监测方案变形监测的主要目的是为了监测基坑工程周围环境的变形情况,从而保障基坑工程施工的安全。
变形监测的方案包括:监测内容、监测方法、监测点位、监测频率和监测报告。
2.1 监测内容基坑工程变形监测的内容主要包括:地表变形监测、地下水位监测、支护结构变形监测、周边建筑物变形监测、基坑倒土变形监测等内容。
通过监测这些内容,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。
2.2 监测方法基坑工程变形监测的方法主要包括:GPS定位法、倾斜仪法、水准仪法、测斜仪法、位移传感器法等。
通过这些监测方法可以有效地监测基坑工程周围环境的变形情况,提供准确的监测数据,从而保障基坑工程的施工安全。
2.3 监测点位基坑工程变形监测的点位主要包括:地表监测点位、地下水位监测点位、支护结构监测点位、周边建筑物监测点位、倒土监测点位等。
通过合理选择监测点位,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。
2.4 监测频率基坑工程变形监测的频率主要包括:连续监测、定期监测。
通过连续或者定期监测,可以不断地获取基坑工程周围环境的变形数据,及时发现潜在危险,保障施工的安全。
2.5 监测报告基坑工程变形监测报告是通过监测数据的分析和处理,得出基坑工程周围环境的变形情况,并提供有效的监测报告。
深基坑变形监测
深基坑变形监测
深基坑变形监测是指对深基坑的变形情况进行实时监测和分析,以保证基坑施工的安全和稳定。
深基坑指的是在地面以下较深处开挖的基坑工程,常见于高层建筑和地下结构工程中。
深基坑变形监测的目的是为了及时发现基坑的变形情况,确定任何变形对基坑结构的影响,并采取相应的措施来保证基坑的稳定性。
深基坑的变形监测主要包括以下几个方面的内容:
1. 地下水位监测:地下水位是影响基坑变形的重要因素之一,对于地下水位较高的基坑,应进行地下水位的监测,及时掌握地下水位的变化情况,以便采取相应的降水措施。
2. 基坑边界变形监测:基坑的边界变形是基坑变形的主要表现形式之一,通过设置边界测点,在基坑施工过程中实时监测边界的变形情况,以判断基坑是否存在过度破坏的风险。
3. 基坑内部变形监测:基坑内部的变形情况是了解基坑整体变形情况的重要依据,通过设置水平测点和竖向测点,在基坑内部监测自由变形和约束变形的变化情况,以便评估基坑的变形性态。
4. 地表沉降监测:基坑施工过程中,地表沉降是不可避免的,沉降的幅度和速度直接影响基坑工程的安全性,通过在基坑周边设置地表沉降测点,监测地表的沉降情况,及时发现任何异常变化。
5. 支护结构变形监测:基坑的支护结构是保证基坑稳定的重要部分,通过设置支护结构变形测点,监测支护结构的变形情况,及时发现任何异常变化,以便采取相应的措施加固和修复。
深基坑变形监测的方法包括传统的测量方法和现代的自动化监测方法。
传统的测量方法主要包括使用经纬仪、水准仪、全站仪等进行测量,然后根据测量数据进行分析。
现代的自动化监测方法包括使用激光测距仪、倾斜仪等设备进行实时监测,通过将设备与计算机和云平台相连接,可以实时获取监测数据,并进行分析和预警。
深基坑监测方案
深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。
下面给出了一个深基坑监测方案的示例,以供参考。
一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。
2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。
3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。
二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。
2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。
3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。
4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。
5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。
三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。
2. 测斜监测:每周监测一次,记录并分析数据。
3. 沉降监测:每周监测一次,记录并分析数据。
4. 建筑物监测:每月监测一次,记录并分析数据。
5. 管线监测:每季度监测一次,记录并分析数据。
四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。
2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。
五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。
2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。
六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。
2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。
七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。
2. 监测费用应计入工程造价。
以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。
深基坑变形监测
深基坑变形监测深基坑变形监测是指对深基坑在施工过程中以及使用过程中的变形进行实时监测和分析的技术手段。
深基坑通常用于建筑物、桥梁、隧道等工程中,是支撑土壤或岩石侧面以防止侧面土体溜沉和可能引起的破坏。
深基坑的施工过程中,受到多种因素的影响,如土壤侧压力、地下水位、施工方法等,这些因素会导致深基坑的变形。
深基坑变形监测对于确保工程安全、减少施工风险非常重要。
深基坑变形监测可以通过多种方法进行,其中常见的包括测量变形仪、振动监测、压力监测等。
测量变形仪是深基坑变形监测中常用的手段。
它可以通过安装在基坑墙体上的测量架、测量线等设备,实时测量基坑的变形情况,并将数据传输到监测中心进行分析与处理。
振动监测是通过设置在基坑周边的振动传感器,对基坑周边地面振动进行实时监测,以判断基坑变形对周围环境的影响程度。
压力监测常用于测量地下水位和土壤侧压力。
通过安装地下水位监测仪和土壤侧压力监测仪,可以实时监测深基坑周边的地下水位和土壤侧压力变化。
深基坑变形监测的数据可以用于评估和分析深基坑的稳定性和安全性。
通过对监测数据的实时分析,可以发现深基坑变形的趋势和变化规律,以及异常变形的情况。
当深基坑变形超出预定的范围或出现异常变形时,可以及时采取措施进行修正和加固,以保证深基坑的稳定性和安全性。
深基坑变形监测还可以用于对施工进度和施工工艺的控制和调整,以保证施工过程的顺利进行。
深基坑变形监测在工程中的应用已经越来越广泛。
通过及时监测和分析基坑变形的情况,可以减少工程风险,提高工程质量。
深基坑变形监测还可以提供工程施工的参考数据和经验,为今后的类似工程设计和施工提供参考和指导。
深基坑变形监测在工程中必不可少,对于确保工程的安全和顺利进行具有重要意义。
深基坑施工监测方案
深基坑施工监测方案一、前言深基坑施工是城市建设中常见的一项工程,由于其施工过程具有一定的风险性,因此需要进行监测以确保工程的安全进行。
本文将介绍深基坑施工监测方案。
二、监测目的深基坑施工监测的目的是通过对基坑周围土体变形、水位变化、支护结构变形等进行实时监测,以判断施工过程中是否存在风险,及时采取相应措施保障工程安全。
三、监测内容与方法1. 土体变形监测通过安装变形监测仪器,如测站、刷卡仪等,定时测量监测点位的变形数据,包括沉降、位移等。
监测点位需根据基坑的情况进行设置,一般包括基坑四周、内外支护结构、重要附属设施等位置。
2. 土体水位监测通过设置水位测点,监测基坑周围水位变化情况。
水位监测需考虑地下水位、降雨情况等因素,确保监测数据准确可靠。
3. 支护结构变形监测通过在支护结构上安装变形仪器,监测支护结构的变形情况。
常见的变形仪器包括支护边墙的倾斜仪、锚杆的应变测计等。
这些仪器能够实时监测支护结构的变形情况,及时预警并采取安全措施。
四、监测频率与报告监测频率应根据具体的施工情况而定,一般来说,在基坑开挖过程中,监测频率可逐渐提高,以便及时发现问题并采取措施。
监测报告应按照一定的时间间隔提交,内容应包括监测数据、分析结果、问题和建议等。
五、应急措施在深基坑施工监测过程中,如果发现存在安全隐患或风险,应立即采取相应的应急措施,保护施工人员和周围环境的安全。
应急措施可能包括停工、加固支护结构、调整施工方案等。
六、总结深基坑施工监测方案对于施工过程的安全控制起到重要作用。
通过对土体变形、水位变化、支护结构变形等的监测,能够及时发现问题并采取相应的措施,确保施工过程的安全。
在实施监测过程中,应按照监测频率提交监测报告,并采取应急措施来应对意外情况。
以上介绍了深基坑施工监测方案的相关内容,希望能对深基坑施工的安全控制提供一定的参考和指导。
通过严谨的监测方案的实施,可以有效降低施工风险,保障工程的顺利进行。
深基坑变形监测的常见方法及应用 安克文
深基坑变形监测的常见方法及应用安克文摘要:随着社会经济的发展,地面空间已经难以满足日常使用需求,对地下空间的开发使用成为当前扩大使用空间的重要手段,所以基坑成为施工中的重要环节。
基坑工程是一个集地质分析、支护设计、开挖组织施工、安全风险分析的综合性工程。
基坑施工前需根据勘探报告中的地质水文资料等对基坑支护进行规范化设计,确保从开挖至回填结束的基坑安全。
对基坑进行行之有效的变形监测是预知危险保障安全的重要手段。
基于此,本文对深基坑变形监测的常见方法及应用做了简单的探讨。
关键词:深基坑变形监测;方法;应用中图分类号:TU753文献标识码:A1 基坑检测工作的实际应用价值由于基坑工程施工技术的实际应用较少,地下地质水文环境比较复杂,地域性环境有所不同,所以难以准确衡定关于基坑安全设计的相关数据参数。
对于放大参数的措施存在过度浪费资源的缺陷,过度收紧参数的过程安全性又没有保障。
所以结合理论基础、设计理念、施工经验的积累、实时动态数据监测几方面的内容,对于当前基坑施工过程的安全控制工作,对基坑进行综合安全分析是至关重要的。
针对那些创纪录的工程项目,我们可以借鉴其原理及经验,但是影响理论数值置信度下降的关键因素之一是环境的不稳定,因此,需要更加重视动态监测数据。
首先,对于工程建设本身,对基坑进行如实的监测能够及时发现存在的隐患或险情,确保安全预案及措施的提前准备,避免安全性事故的发生。
评估基坑施工对周围建筑的影响。
2 监测目的与原则2.1 基坑变形监测的目的随着城市的发展,城市的建筑空间越来越宝贵,同时出现高层建筑越来越多,地下人防工程增加,地下二、三层建筑随处可见。
不管是高层建筑还是地下建筑,必须要打好地基才可以放心的进行施工。
目前,打地基的方法主要就是挖基坑。
由于土壤质量等方面的问题,因此基坑在进行施工的过程中优势会发生塌陷或者变形的情况。
这种情况一旦发生,整个建筑工程的进程就会被打断,无论是地下建筑还是高层建筑的施工都会遭受到严重的影响。
深基坑工程安全监测技术及工程应用_2
深基坑工程安全监测技术及工程应用发布时间:2023-03-28T00:54:28.761Z 来源:《建筑创作》2023年第1期作者:黄成[导读] 城市建设的快速发展推动着地下空间开发利用的高速发展,而深基坑的顺利安全建造是利用开发地下空间的前提和关键。
随着地下空间开发利用规模的增长,深基坑开挖的深度和规模亦越来越大。
黄成身份证号码:36220419900111****摘要:城市建设的快速发展推动着地下空间开发利用的高速发展,而深基坑的顺利安全建造是利用开发地下空间的前提和关键。
随着地下空间开发利用规模的增长,深基坑开挖的深度和规模亦越来越大。
深基坑工程施工动态平衡贯穿整个建造施工过程,土层应力分布、坑底土体的隆起、支护体系与周边建(构)筑物变形等都随施工工况推进而动态变化和平衡。
深基坑工程技术风险大,施工工艺复杂,施工工况具有不确定性,加之我国幅员辽阔,不同地区不同土层力学特性差异较大,所引起的基坑变形也有较大差异。
基坑工程很大程度上会受地质条件的影响,使基坑工程具有独特的地域性特点。
因此,我国深基坑工程技术一直都处于不断发展和完善的过程中。
关键词:深基坑工程;安全;监测引言深基坑施工中,由于施工周期较长,周边地质、环境的特殊性和不稳定因素,易引起深基坑的塌方、建筑物和道路的塌陷,甚至还会造成?员伤亡。
在实际工作中,应加强对深基坑工程的安全监测,加强安全防范意识,提高施工?员的安全水平,科学施工,切实做好深基坑工程的各项安全管理工作。
1监测关键技术概述工程基坑深度大、周边环境复杂、建筑物密集、管线多、紧邻交通主干道、土体位移动态变化、内支撑受力等影响复杂,必须采取信息化实时监测来保证基坑及周边环境安全。
根据现场实施监测的数据进行分析,得出支护体系和周边环境的变形规律,再结合某些控制性指标来判断基坑施工过程是否稳定和安全。
将监测数据实时动态反馈到施工的各个环节,当出现安全或环境风险时,及时采取针对性的技术措施,确保基坑信息化施工能落到实处。
基坑监测的目的及常用的检测方法【最新版】
基坑监测的目的及常用的检测方法由于深基坑工程技术复杂,涉及范围广,事故频繁,因此在施工过程中应进行监测。
通过施工监测对现场所得的信息进行分析、进行信息反馈、临界报警,以便及时调整设计、改进施工方法,制定应变(或应急)措施保证基坑开挖及结构施工安全,达到动态设计与信息化施工的目的。
常用基坑监测方法有哪些?一、水平位移监测水平监测点的布设土建施工基坑形状大多数为长方形和不规则基坑,为确保按照《建筑物变形测量规程》的二级精度进行水平位移观测视线长度≤300m,在基坑周边相对稳定的区域内布设2-4个工作基点,因基坑拐角处变形最小,工作基点墩位置一般布置在基坑拐角处;根据设计确定的支护结构桩(墙)顶水平位移点的位置和数量,在基坑支护结构的冠粱顶上布设观测点,观测点采用埋设观测墩的形式;在建立好工作基点墩后,将仪器架设在工作基点墩上,沿基坑边布设观测墩,观测点位置必须选择在通视处,要避开基坑边的安全栏杆等影响视线的物体。
一般情况下观测点距离基坑300㎜比较合适。
水平位移检测方法主要有五点1、基坑水平位移监测可采用小角度法和极坐标法进行水平位移观测。
对工作基点的稳定性宜采用前方交会、导线测量和后方交会法观测。
2、在基坑变形监测中,对于基坑的位移变化量,利用极坐标法进行基坑水平位移监测,一般选择基坑长边为X轴,垂直基坑长边为Y轴。
3、小角度法主要用于基坑水平位移变形点的观测。
小角度法必须设置观测墩,采用强制对中方式。
4、前方交会观测法,尽量选择较远的稳固目标作为定向点,测站点与定向点之间的距离要求一般不小于交会边的长度,观测点应埋设在适合不同方向观测的位置。
5、导线测量法主要用于基坑周边建筑物、构筑物密集,对工作基点稳定性检查用前方交会法和后方交会法都难以实现的情况下,通过导线测定工作基点的稳定性。
二、沉降监测沉降监测点布设在基坑外相对稳定且不受施工影响的地点埋设基点3个,利用这3个基点相互检核其稳定性;支撑立柱沉降监测点设置:在支撑立柱的顶部焊接符合要求的钢制加工件;周边建(构)筑物沉降监测点设置:在建筑物或构筑物的拐角处,离地面20㎝,且避开雨水管、窗台线、电路开关等有碍设标与观测的障碍物,并应视立尺需要离开墙(柱)面一定距离;周边土体沉降监测点: 沉降观测点应埋设原状土层中,加设保护装置,沉降观测点稳定后,方可进行初始观测和一般观测。
深基坑工程安全监测技术及工程应用
深基坑工程安全监测技术及工程应用深基坑工程是指地下某一深度范围内的土石方开挖工程,通常以钢筋混凝土结构加固。
深基坑工程常见于城市建设领域,例如地铁、大型商业综合体和高层建筑等项目中。
由于深基坑工程的施工环境复杂、施工期长且施工难度大,因此对其安全监测尤为重要。
随着科技的发展,深基坑工程安全监测技术不断更新,成为保障工程施工安全的重要手段。
本文将讨论深基坑工程安全监测技术及其工程应用。
一、深基坑工程的安全隐患深基坑工程由于开挖深度大、地下水位高、周边环境复杂,存在着许多安全隐患。
地下水的渗透和涌水是深基坑工程的主要难题之一。
在施工现场,地下水可能会渗入基坑,导致周边土壤松软甚至流失,给施工工人和设备带来巨大风险。
基坑支护结构受力不均匀、土体稳定性差等问题也是导致深基坑工程事故的原因之一。
基坑工程周边建筑物和地下管线的影响也是工程安全的重要考虑因素。
1. 地表位移监测技术地表位移监测技术是深基坑工程安全监测的重要手段之一。
通过在基坑周边布设一定数量的地表位移监测点,结合高精度的测量仪器,可以实时监测地表位移情况,及时发现和预警地表失稳的情况。
常见的监测仪器包括全站仪、GNSS定位系统和遥感雷达等。
这些监测技术可以对地表位移进行高精度多维变形监测,有效预防地表沉降和塌陷等问题。
地下水位监测技术是深基坑工程施工过程中必不可少的重要技术。
通过在基坑周边布设井管、水位计和自动数据采集系统,可以实现地下水位的实时监测和数据记录。
通过对地下水位监测数据的分析和比对,可以及时掌握地下水位的变化规律,预判地下水渗透和涌水的趋势,及时采取相应措施进行处理,有效降低地下水对基坑工程的影响。
3. 基坑支护结构监测技术基坑支护结构监测技术是深基坑工程安全监测中的重要组成部分。
通过在支护结构内部和外部布设应变传感器、位移监测仪器等设备,实现对支护结构的实时监测和数据记录。
基坑支护结构监测技术可以帮助工程人员及时发现和预警支护结构的受力变化、位移变形等问题,及时采取措施进行处理,确保基坑工程的安全。
深基坑变形监测内容
深基坑变形监测内容深基坑变形监测是指对建筑工程中的深基坑进行实时监测和分析,以确保基坑的稳定性和安全性。
深基坑是指在地下开挖的较深的基坑,常见于高层建筑、地下车库和地铁工程等。
由于深基坑的特殊性和复杂性,其变形监测显得尤为重要。
深基坑变形监测主要包括以下内容:1. 基坑周边地表沉降监测:基坑开挖过程中,地表可能会发生沉降现象,特别是在软土地区。
通过设置沉降监测点,可以实时监测地表沉降情况,及时发现和处理沉降异常,确保地表稳定。
2. 基坑支护结构变形监测:在深基坑开挖过程中,为了保证基坑的稳定,常需要设置支护结构,如土钉墙、悬挂墙、钢支撑等。
通过设置变形监测点,可以监测支护结构的变形情况,及时发现和处理变形异常,确保支护结构的稳定性。
3. 地下水位监测:基坑开挖过程中,地下水位的变化对基坑的稳定性有重要影响。
通过设置地下水位监测井,可以实时监测地下水位的变化情况,及时采取相应措施,确保基坑的排水和稳定。
4. 地下管线位移监测:在深基坑开挖过程中,地下管线的位移可能会对基坑的稳定性和管线的安全性产生影响。
通过设置管线位移监测点,可以实时监测管线的位移情况,及时发现和处理位移异常,确保基坑的稳定和管线的安全。
5. 监测数据采集与分析:深基坑变形监测需要对各种监测数据进行采集和分析。
通过选择合适的监测仪器和传感器,可以实时采集各项监测数据,并进行数据分析,判断基坑的稳定性和安全性。
6. 报警与预警:基于深基坑变形监测数据的分析,可以建立相应的报警与预警机制。
一旦监测数据超过预设阈值,系统将发出报警信号,提醒相关人员及时采取措施,防止事故发生。
深基坑变形监测是保障基坑施工安全的重要环节。
通过对基坑周边地表沉降、支护结构变形、地下水位和地下管线位移等进行实时监测和分析,可以及时发现和处理变形异常,确保基坑的稳定性和安全性。
同时,监测数据的采集和分析也为基坑施工过程提供了可靠的参考,为工程进展和决策提供依据。
深部位移监测方法及其应用
深部位移监测方法及其应用深部位移监测方法广泛用于边坡、滑坡和城市深基坑监测中。
本文主要通过这三个方面详细介绍深部位移监测方法。
对于大部分实际工程(边坡、滑坡和城市基坑工程),深部位移监测一般均采用钻孔测斜仪。
所以首先介绍钻孔测斜仪器的原理。
1.钻孔测斜仪的原理在岩土工程领域,测斜仪主要用于测量土体运动,诸如:可能产生在不稳固边坡(滑坡)或挖方过程中周围的侧向运动等。
也可用来监测堤坝、芯墙的稳定性,打桩或钻孔的布置和偏差,以及在回填、筑堤和地下储罐中土体的沉陷等。
深部位移监测仪器采用活动式钻孔测斜仪。
首先在监测位置钻探一定深度( 至滑动面以下) 的竖直孔,并且安设PVC 测斜管,测斜管的底部一般嵌入稳定的地层3 m ~ 5 m,测斜管内有沿坡体滑动方向、垂直坡体滑动方向的导向槽2 组,测斜仪滑轮在导向槽内移动。
滑动式测斜仪主要由五部分组成:滑动式探头(探测器)、便携式数据采集仪、数据传输电缆、内置导向槽测斜管、旋转式探测仪。
其中测头的精度、数据采集仪的转换精度、数据处理的正确性、测斜管的质量以及使用中的问题往往会决定测斜仪精度的主要因素。
岩土体内部位移的测量、计算方法分为正序和倒序,即从地面向深处计算或者从深处向地面计算。
一般情况下,倒序计算时需将测管深入至不变的基础处,如基岩;正序时,测协管管口处的方位,需要使用经纬仪等仪器对不同时间的确切位置进行确定,以便对测试结果进行修正。
所有这些场合,通常要安装一根测斜管,将其安装在地下的钻孔内、或将管浇筑在混凝土结构中、也可将管埋在筑堤等之中。
该测斜管有四个槽口,用于固定便携式测斜仪探头的滑轮。
探头连在和读数仪相连的电缆的一端,用于观测与测斜管相关联的竖直(或水平)倾斜量,并以这种方式测量由土体运动所引起的任何倾斜量的变化。
为了获得安装了测斜管的土体周围一个全面的观测报告,必须沿测斜管进行一系列倾斜测量。
常规的测斜仪探头有两组滑轮,距离相隔0.5 米,将探头放到测斜管底部并开始读数。
深基坑监测方案范文
深基坑监测方案范文深基坑是指在建设高层建筑或地下结构时,需要进行深度挖掘并进行边坡支护的工程。
由于挖掘深度大、周围环境复杂,深基坑监测方案的制定及实施对确保施工安全和环境保护至关重要。
以下是一个深基坑监测方案的范文,供参考:一、项目背景和目标深基坑位于xx市中心,总建筑面积为xxx平方米,深度约为xx米。
在施工过程中,需要进行边坡支护、地下水位控制等工作,以确保施工安全和地下水环境不受影响。
本监测方案的目标是全面监测施工期间的基坑变形、地下水位变化等数据,并及时发现和解决潜在问题,确保工程安全顺利进行。
二、监测内容及方法1.基坑变形监测:使用自动全站仪对基坑周边进行定期监测,记录基坑变形情况,包括水平位移、垂直位移、沉降等数据。
2.边坡支护监测:对边坡支护结构进行监测,包括支撑桩、预应力锚杆等的应力和变形情况。
使用应力应变计、变形计等设备进行监测。
3.地下水位监测:在基坑周边埋设多个地下水位监测井,监测地下水位的变化情况。
使用水位计等设备进行监测。
4.地下水质监测:在基坑周边及附近居民区域设置多个地下水质监测点,监测地下水的化学成分和污染物含量。
使用水样采集仪器进行采样分析。
5.周边建筑物振动监测:对周边建筑物进行振动监测,以确保施工过程中对周边环境的影响。
三、监测频率及数据处理1.基坑变形监测:每周进行一次监测,连续监测至基坑施工完成。
数据通过软件处理,生成变形曲线和变形速率等分析结果,并根据阈值设定预警机制。
2.边坡支护监测:每天进行一次监测,连续监测至支撑结构拆除。
数据通过软件处理,生成应力变化曲线和变形曲线,分析结构的安全性。
3.地下水位监测:每天记录一次地下水位数据,连续监测至基坑回填完成。
数据通过软件处理,生成地下水位变化曲线和水位变化趋势分析。
4.地下水质监测:每月进行一次采样分析,连续监测至基坑回填完成。
数据通过实验室分析,生成地下水质的变化情况和趋势分析。
5.周边建筑物振动监测:施工期间持续进行监测,每次施工前后对周边建筑物进行振动监测,记录振动速度、振动加速度等数据。
深基坑工程安全监测技术及工程应用
深基坑工程安全监测技术及工程应用【摘要】深基坑工程安全监测技术在现代建筑工程中起着至关重要的作用。
本文通过对深基坑工程安全监测技术的发展历史、不同类型应用、关键技术、应用案例和发展趋势进行探讨,揭示了该技术在工程实践中的重要性。
深基坑工程安全监测技术不仅能够帮助工程师有效监测基坑变形情况,还能及时发现并处理潜在的安全隐患,提高工程施工的安全性和效率。
未来,随着技术的进步和工程需求的不断增加,深基坑工程安全监测技术的应用前景将更加广阔。
深基坑工程安全监测技术应继续得到重视和研究,以确保工程建设的安全可靠性和持续发展。
【关键词】深基坑工程,安全监测技术,发展历史,关键技术,工程实践,应用案例,发展趋势,重要性,未来发展方向,应用前景。
1. 引言1.1 深基坑工程安全监测技术及工程应用概述深基坑工程是指在地下挖掘较深的开挖工程,通常用于建造高层建筑或地下车库等工程。
由于深基坑工程涉及到大量土体的移除和地下水的控制,施工过程中存在着诸多安全隐患。
深基坑工程安全监测技术成为了确保工程施工安全的重要手段。
深基坑工程安全监测技术旨在通过监测基坑周边土体变形、地下水位变化、地下水流动情况等参数,实时掌握工程的变化情况,及时采取有效的措施保障工程施工的安全。
这些监测技术包括了传统的采用测点、钢管等设备进行监测的方法,也包括了近年来逐渐兴起的无损检测、遥感监测等先进技术。
深基坑工程安全监测技术的应用不仅在国内,也在国际上得到了广泛的应用。
随着技术的不断发展,深基坑工程安全监测技术也在不断创新和完善,为工程施工提供了更加可靠的保障。
在未来,随着深基坑工程的规模不断扩大,安全监测技术还将继续发挥着重要作用,为工程的安全施工提供更加全面的保障。
2. 正文2.1 深基坑工程安全监测技术的发展历史深基坑工程安全监测技术的发展历史可以追溯到20世纪初,当时人们首次开始在城市建设中遇到深基坑工程的安全监测难题。
最初的安全监测技术主要依靠人力观察和简单的仪器进行监测,效果并不理想。
深基坑中基坑监测技术的应用
深基坑中基坑监测技术的应用摘要:基坑监测技术是深基坑施工技术的重要组成部分。
要借助各种监测技术,对深基坑支护结构变形进行监测,形成合理有效的监测系统,有效地提升深基坑施工的安全性以及稳定性,以全面提升深基坑施工的质量及效率。
关键词:深基坑;基坑监测技术;应用探讨引言基坑工程的施工风险系数较高,尤其是深基坑,一旦发生基坑坍塌事故,就可能造成无法挽回的损失。
因此,国家和建筑行业对基坑工程的施工质量和安全管理给予了极大的关注,并采取了多种措施来保证基坑施工质量与安全。
在当前的基坑监测工作中,大多数监测单位仍然采用传统的人工监测方式,这种监测方式成本高、效率低,容易受人为等因素的干扰。
有时候,人工操作会造成数据失真、监测数据难以及时共享等问题。
而将自动化监测系统与云平台等新技术结合在一起,可以实现监测技术的简单化,这也是基坑监测技术的重要发展趋势。
本文对基坑监测技术应用现状与发展方向进行了探讨。
1深基坑中基坑监测技术的应用现状1.1水平位移监测技术的应用(1)全站仪监测技术。
全站仪的全称是全站型电子速测仪,它是由机械、光学、电子元件等组成的测量仪器,可以对水平角、竖直角、斜距、平距以及高程的测量数据进行处理。
因为该测量仪器只需要安置一次就可以完成测站上所有的测量工作,所以被称为全站仪。
全站仪普遍应用于基坑水平位移监测中,其监测方法主要有极坐标法、小角法、自由设站法等。
其中,极坐标法是常用的测量方法,自由设站法能够解决不通视的问题。
近年来,随着全站仪测量精度的不断提高,加上测量理论的创新发展,人们在基坑竖向位移监测中也引入了全站仪进行监测。
相关的研究理论和测量实践也证明了全站仪监测技术的实用性。
(2)激光扫描仪监测技术。
随着科学技术的发展,借助激光扫描仪进行水平位移监测的技术在实践中逐步崭露头角。
在应用激光扫描仪监测技术的过程中,工作人员需要按照激光测距的基本理论,通过向被监测对象发射激光来获得反射信号,然后从反射信号中获取高密度点云数据,进而依照数据进行三维模型重构。
用于深基坑悬臂围护桩桩体变形的监测方法
用于深基坑悬臂围护桩桩体变形的监测方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!用于深基坑悬臂围护桩桩体变形的监测方法引言随着城市建设的不断发展,深基坑工程在城市中的应用越来越广泛。
深基坑水平位移监测方法及数据处理
深基坑水平位移监测方法及数据处理摘要:在深基坑开挖的施工过程中,采用何种方法进行水平位移监测,既能够保证精度,又可节省成本,是基坑施工监测的关键问题之一。
目前我们知道的常用的基坑水平位移监测方法有四种:并将轴线法、单站改正法、测小角法、前方交会法。
通过比较我们得知小角法相对于其他三种方法来说简单、方便、精度较高。
本文就主要探讨了小角法的运用及数据处理,并结合工程实例加以论述。
关键词:深基坑水平位移监测方法数据处理一、概述深层水平位移主要用于大地运动,如可能产生在不稳固的边坡(滑坡)或挖土工程周围的测向运动等,也可以用来监测软土地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的土体位移,以及回填筑堤和地下工程的土体沉陷,也可用于沿海、江边重力存放物场的土层变化等。
对于平面位移监测而言,由于引测工作量大,且必须顾及测区精度的均匀性,通常是在施工场地周围布设基准控制网。
在基准控制网中,一部分是远离场地的稳定基准点,另一部分控制点是施工场地周围相对稳定便于监测的工作基点。
工作基点是施工场地上临时的控制点,一般的轴线放样和平面位移监测点都以工作基点为起点。
随着深基坑的开挖,必须对工作基点定期进行检测,即对基准网进行部分或全部重复测量,并与初始测量结果进行比较,平差后对工作基点进行修正。
然而,由于施工场地狭小时不便于施测,实际中往往不做该项检测。
结果导致检测反应出的变形监测点的位移量不是绝对位移量,影响工程的质量。
二、测小角法原理1、测小角法原理分析小角法是工程测量中的一种放样方法,其目的是确定一条在两端无法安置仪器的线段上任意一点的位置。
原理如图所示:如需观测某特定方向上的水平位移PP′,在距离监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。
在一定远处(施工影响范围之外)选定一个控制点B,作为零方向。
在B点安置觇牌,用测回法观测水平角BAP∠,测定一段时间内观测点与基准点连线与零方向之间的角度变化值,根据公式计算得出水平位移量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑变形监测的常见方法及应用
本文主要介绍了深基坑的变形监测,分析了深基坑边坡的水平位移和竖向位移的监测方法,阐释了基坑变形监测过程中遇到的各种情况及需要注意的问题。
标签:深基坑;基坑变形监测;水平位移;竖向位移
随着科技的发展和技术的进步,为了解决土地资源日渐减少与城市人口不断增长的矛盾,越来越多的小高层、高层甚至超高层建筑物应运而生。
伴随着高层建筑的崛起,深基坑工程也日益发展起来,深基坑的安全问题已经成为基础施工的重中之重。
因此深基坑的变形监测也具有更实际更重要的意义。
深基坑工程是指基坑开挖的深度值超过5米(含5米)的基坑(槽)的土方开挖、边坡支护以及降水工程,或者基坑开挖的深度值虽未超过5米,但其地质条件情况、周围环境情况以及地下管线情况等较为复杂,或影响相邻建(构)筑物安全的基坑(槽)的土方开挖、边坡支护以及降水工程。
根据规范要求,开挖深度值超过5m、或者开挖深度值虽不超过5m但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程变形监测。
基坑监测是指在施工及使用期限内,对深基坑及周边环境实施的检查、监控工作。
监测项目主要包括:水平位移监测、竖向位移监测、深层水平位移监测、倾斜监测、裂缝监测、支护结构内力监测、土压力监测、孔隙水压力监测、地下水位监测、锚杆拉力监测、周边已建建筑的沉降监测等。
其中基坑边坡的水平位移和竖向位移监测是最常见的基坑变形监测项目,本文就以此二项监测为例做相应的介绍和分析。
1、基坑变形测置点的设置
变形测量点分为基准点、工作基点和变形监测点。
基准点作为该工程的基准和检核点,必须保证其稳定性,每个基坑工程至少应设置3个基准点。
当基准点离所测建筑距离较远致使变形测量作业不方便时,宜在稳定的位置设置工作基点。
基准点和工作基点应避开交通干道主路、地下管线、仓库推栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀和破坏的地方,并应选设在变形影响范围以外且稳定、易于长期保存的地方。
监测期间,应定期检查基准点和工作基点的稳定性。
基坑工程变形监测点是直接反应基坑变形情况的测量点。
根据规范要求,基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。
为了满足观测条件,应将点位沿基坑周边布置在边坡顶部,基坑周边中部、阳角处应布置监测点。
监测点间距不宜大于20米,并应保证每条边坡上监测点数不少于3个。
监测点宜采用1015cm长,直径20mm的钢筋,固定在边坡顶部,钢筋顶部刻十字花。
另外,监测点的位置,包括间距,以及距基坑边坡边缘的距离,应根据现场具体情况而定,不可距离基坑边缘较远,以免影响观测精度。
2、仪器设备、人员素质的要求
根据深基坑变形监测精度要求高的特点,监测中使用的仪器必须满足观测精度和量程的要求,并应具有良好的稳定性和可靠性。
使用的仪器必须经过校准或核定合格,并在规定的校准有效期内方可使用。
基坑变形监测的施测人员必须接受专业学习及技能培训,熟练掌握仪器的操作规程,熟悉测量理论,能针对不同工程特点、具体情况采用不同的观测方法及观测程序,对实施过程中出现的问题能够分析原因并正确的运用误差理论进行平差计算,做到按时、快速、精确地完成每次观测任务。
3、基坑变形监测方法及监测频率
1)水平位移监测是测定基坑边坡在水平方向上位移变化的监测工程,常用的方法有视准线法、小角度法、投点法、前方交会法、自由设站法、极坐标法等。
筆者参与的工程中多以三维坐标法进行监测。
三维坐标法进行基坑变形监测时,需在第一工作基点上架设观测仪器,以第二工作基点作为后视方向,通过监测第二工作基点与基坑监测点之间的水平距离、角度和高差,来确定监测点的三维坐标。
在一个基坑变形监测周期内,通过比较前后两次观测的坐标差,求得监测点的水平位移量。
2)竖向位移监测是测定基坑边坡在竖直方向上位移变化的监测工程。
常用的监测方法有几何水准法和液体静力水准法等。
以几何水准法为例,简单介绍一下其监测过程。
首先要建立水准控制网和固定的水准观测路线,在高程基准点、工作基点与监测点之间建立固定的观测路线,尽量保证各次观测均沿统一路线进行。
然后编制观测周期,并严格按照周期进行竖向位移监测,应使用DS1或DS05精度以上型水准仪、因瓦合金标尺,按光学测微法进行观测。
3)基坑变形监测工作应贯穿于基坑工程施工全过程,其监测频率应以能系统反应监测对象所测项目的重要变化过程。
监测工作一般应从基坑工程施工前开始,直至地下工程完成为止。
对有特殊要求或有突发状况的工程还需要延长监测时间,直至基坑变形趋于稳定后才能结束。
4、基坑变形监测的成果及成果分析
基坑变形监测是一个周期性的监测过程,其监测成果包括各个周期实测数据
及各个周期观测数据的对比分析结果。
因此每个周期观测完成后,应及时对观测数据进行分析,计算出该周期内各个监测点的水平位移量和竖向位移量,判断出基坑的变形情况,对于变形较严重区域,如监测数据达到报警值、支护结构或周边土体等出现隆起或陷落、周边地面可能或已经产生裂缝等情况时,应及时通知甲方采取相应的措施,并应注意增设观测点,随时观测裂缝的变化。
基坑变形进入稳定阶段后,对监测成果进行分析和汇总,绘制时间一水平位移关系曲线图、时间一竖向位移关系曲线图,并形成最终的成果文件;
5、应注意的问题:
1)进行观测操作时,观测员应当特别注意观测仪器的对中、整平,读数时应当注意十字丝的精确照准;司镜员要特别注意对中杆的对中和水平;
2)应特别注意在基坑拐角处,计算其水平位移量时应对垂直的两个方向分别计算距离;
3)进行高差观测时,应当注意多观测几个测回,取各次值的平均值作为监测点的高程;
4)每次进行观测前,都应对基准点和监测点进行检核,确保各个点位无破坏、移动等现象;
5)应提醒施工单位注意对所有点位的保护,并应保证在每次观测时各点位无遮挡:
6)应安排一个固定工作组负责一项任务,使用同一台观测仪器,并由专人负责专项工作。
结语:
基坑工程具有极强的区域性,如黄土地基、软粘土地基、杂填土地基等水文地质条件和工程地质条件不同的地基中基坑工程的差异性就很大。
因此具体的基坑变形监测工程要应根据具体工程所在地区地质条件情况,因地制宜,确定不同的监测等级,并制定合理可行的监测方案。