专题10 平面直角坐标系及函数初步(解析版)

合集下载

2020年中考数学第一轮复习暨2019年全国中考试题分类汇编 专题10 平面直角坐标系与点的坐标(含解析)(002)

2020年中考数学第一轮复习暨2019年全国中考试题分类汇编 专题10 平面直角坐标系与点的坐标(含解析)(002)

平面直角坐标系与点的坐标一.选择题1. (2019·贵州安顺·3分)在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵m2+1>0,∴点P(﹣3,m2+1)在第二象限,∴点P(﹣3,m2+1)关于原点对称点在第四象限,故选:D.2.(2019•海南省•3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.【点评】本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.3.(2019•浙江丽水•3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处【考点】用方向角+距离表示地理位置.【分析】根据方向角的定义即可得到结论.【解答】解:由图可得,目标A在南偏东75°方向5km处故选D.【点评】此题主要考查了方向角,正确理解方向角的意义是解题关键.4..(2019湖南常德3分)点(﹣1,2)关于原点的对称点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)【分析】坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点(﹣1,2)关于原点的对称点的坐标为(1,﹣2).故选:B.【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.5.(2019•山东青岛•3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.二.填空题1.(2019•四川省广安市•3分)点M(x﹣1,﹣3)在第四象限,则x的取值范围是x>1.【分析】根据第四象限的点的横坐标是正数列出不等式求解即可.【解答】解:∵点M(x﹣1,﹣3)在第四象限,∴x﹣1>0解得x>1,即x的取值范围是x>1.故答案为x>1.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2. (2019•甘肃庆阳•4分)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点(﹣1,1).【分析】直接利用“帅”位于点(0,﹣2),可得原点的位置,进而得出“兵”的坐标.【解答】解:如图所示:可得原点位置,则“兵”位于(﹣1,1).故答案为:(﹣1,1).【点评】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.3. (2019•黑龙江省绥化市•33x的取值范围是.答案:x≠4考点:分式的意义。

2019年中考数学专题复习10——平面直角坐标系(含答案解析)

2019年中考数学专题复习10——平面直角坐标系(含答案解析)

2019年中考数学专题复习10——平面直角坐标系(含答案解析)一、选择题(共10小题;共50分)1. 在平面直角坐标系中,点的坐标为,将点向右平移个单位长度后得到A. B. C. D.2. 在平面直角坐标系中,点关于A. C.3. 已知平面直角坐标系中,点A. C. D.4. 第六届北京农业嘉年华在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学根据数学知识将草莓博览园的游览线路进行了精简.如图,分别以正东、正北方向为轴、轴建立平面直角坐,表示科技生活馆的点的坐标为,则表A. B.5. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中,,,四位同学的单词记忆效率与复习的单词个数A. B. C. D.6. 中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,所在位置的坐标为,所在位置的坐标为,那么,所在位置的A. B. D.7. 如图,点在观测点的北偏东方向,且与观测点的距离为千米,将点的位置记作,用同样的方法将点,点的位置分别记作,,则观测点的位A. B. C. D.8. 如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为,雍和宫站的坐标为A. B. C. D.9. 如图,直线,在某平面直角坐标系中,,,点的坐标为,点的,则点A. C.10. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为,其中:表示目标与探测器的距离;表示以正东为始边,逆时针旋转的角度.如图,雷达探测器显示在点,,处有目标出现,其中目标的位置表示为,目标的位置表示为.用这种方法表示目标B. C. D.二、填空题(共10小题;共50分)11. 如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为,表示慕田峪长,则表示雁栖湖的点的坐标为.12. 某雷达探测目标得到的结果如图所示,若记图中目标的位置为,目标的位置为,目标的位置为,则图中目标的位置可记为.13. 如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学的知识找到破译的“钥匙”,目前,已破译出“今天考试”的真实意思是“努力发挥”,若“今”所处的位置为,你找到的密码钥匙是,破译“正做数学”的真实意思是.14. 如图,每个小正方格都是边长为个单位长度的正方形,如果用表示点的位置,用表示点的位置,那么点的位置可表示为.15. 已知,,若白棋飞挂后,黑棋尖顶.黑棋的坐标为.16. 如图所示的象棋盘上,若帅位于点上,相位于点上,则炮所在点的坐标是.17. 在平面直角坐标系中,点绕坐标原点顺时针旋转后,恰好落在如图中阴影区域(包括边界)内,则的取值范围是.18. 如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移,轴对称,旋转)得到的,写出一种由得到的过程:.19. 如图,在平面直角坐标系中,每个最小方格的边长均为个单位长,,,,,均在格点上,其顺序按图中“”方向排列,如:,,,,,根据这个规律,点的坐标为.20. 如图在坐标系中放置一菱形,已知,.先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转次,点的落点依次为,,,,则的坐标为.三、解答题(共10小题;共130分)21. 如图,写出的各顶点坐标,并画出关于轴对称的,写出关于轴对称的的各点坐标.22. 如图,在平面直角坐标系中,,,.(1)求出的面积.(2)在图中作出关于轴的对称图形.(3)写出点,,的坐标.23. 在平面直角坐标系中,的顶点坐标是,,.线段的端点坐标是,.(1)试说明如何平移线段,使其与线段重合;(2)将绕坐标原点逆时针旋转,使的对应边为,请直接写出点的对应点的坐标;(3)画出()中的,并和同时绕坐标原点逆时针旋转.画出旋转后的图形.24. 如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于轴对称的图形,并直接写出点坐标;(2)以原点为位似中心,位似比为,在轴的左侧,画出放大后的图形,并直接写出点坐标;(3)如果点在线段上,请直接写出经过(2)的变化后点的对应点的坐标.25. 如图所示,写出各顶点的坐标以及关于轴对称的的各顶点坐标,并画出关于对称的.并求的面积.26. 如图,正方形网格中,为格点三角形(顶点都是格点),个单位长度的小正方形.(1)先画出关于轴对称的图形;(2)再画出绕原点顺时针旋转后得到的图形;(3)直接写出的长.27. 如图,在边长为的正方形网格中,的顶点均在格点上,点,的坐标分别是,,把绕点逆时针旋转后得到.(1)画出,直接写出点,的坐标;(2)求在旋转过程中,所扫过的面积.28. 如图,在平面直角坐标系中,每个小正方形的边长都为,和的顶点都在格点上,回答下列问题:(1)可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由得到的过程:;(2)画出绕点逆时针旋转的图形;(3)在()中,点所形成的路径的长度为.29. 如图,在坐标系中,已知,,过点分别作,垂直于轴、轴,垂足分别为,两点.动点从点出发,沿轴以每秒个单位长度的速度向右运动,运动时间为秒.(1)当为何值时,;(2)当为何值时,;(3)以点为圆心,的长为半径的随点的运动而变化,当与的边(或边所在的直线)相切时,求的值.30. 如图,在每个小正方形的边长为的网格中,,为小正方形边的中点,,为格点,为,的延长线的交点.(1)的长等于;(2)若点在线段上,点在线段上,且满足,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点,的位置是如何找到的(不要求证明).答案第一部分1. D2. A 【解析】点关于轴的对称点的坐标是.3. C4. C5. C6. D7. A8. D9. C10. C第二部分11.12.13. 对应文字横坐标加,纵坐标加,祝你成功【解析】已破译出“今天考试”的真实意思是“努力发挥”,“今”所处的位置为,所对应的文字的位置是,找到的密码钥匙是:对应文字横坐标加,纵坐标加.“正”的位置为对应文字位置是即为“祝”,“做”的位置为对应文字位置是即为“你”,“数”的位置为对应文字位置是即为“成”,“学”的位置为对应文字位置是即为“功”,“正做数学”的真实意思是:祝你成功.14.17.18. 答案不唯一,如:将沿轴向下翻折,在沿轴向左平移个单位长度得到19.20.【解析】连接,可得是等边三角形,画出第次、第次、第次翻转后的图形,由图可知:每翻转次,图形向右平移.因,故点向右平移(即)到点.由图可得,所以.第三部分21. 的各顶点的坐标分别为:,,;所画图形如下所示,的各点坐标分别为:,,.22. (1)(平方单位).(2)如图.(3),,.23. (1)将线段先向右平移个单位,再向下平移个单位(答案不唯一).(2).(3)它们旋转后的图形分别是和.24. (1)如图所示:,即为所求,点坐标为:;(2)如图所示:,即为所求,点坐标为:;(3)如果点在线段上,经过(2)的变化后的对应点的坐标为:.25. 各顶点的坐标以及关于轴对称的的各顶点坐标:,,,,,,如图所示:,即为所求.26. (1)(2)(3).27. (1)所求作如图所示:由,可建立如图所示坐标系,则点的坐标为,点的坐标为;(2),在旋转过程中,所扫过的面积为:28. (1)答案不唯一.例如:先沿轴翻折,再向右平移个单位,向下平移个单位【解析】先向左平移个单位,向下平移个单位,再沿轴翻折.(2)如图所示.(3)29. (1),,四边形是平行四边形.,.当时,.(2),,,解得.(3)①与相切时,如图所示:显然时,与相切;②与相切时,如图所示:过点作垂直于的延长线于点,则,所以,即,解得;③与相切时,如图所示:过点作垂直于的延长线于点,则,所以,即,解得.30. (1)【解析】.(2)如图,与网格线相交,得点,取格点,连接并延长与交于点,连接,则线段即为所求.。

第1讲 平面直角坐标系与函数(题型精练)(解析版)

第1讲  平面直角坐标系与函数(题型精练)(解析版)

第1讲 平面直角坐标系与函数(精练)A 基础训练B 能力提升 A 基础训练一、单选题1.(2022秋·北京西城·七年级期中)若0m <,则点(3,2)P m -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【详解】∵0m <,∴20m ,∴点(3,2)P m -所在的象限是第三象限.故选:C 2.(2022春·八年级单元测试)在平面直角坐标系中,点()23,关于y 轴对称的点的坐标是( ) A .()23--,B .()23-,C .()23-,D .()23,【答案】C 【详解】解:点()23,关于y 轴对称的点的坐标是()23-, . 故选:C .3.(2022春·八年级单元测试)如图,若在象棋盘上建立直角坐标系,使“将”位于点()01-,,“象”位于()21-,,则“炮”位于点( )A .()32-,B .()43-,C .()30-,D .()11-, 【答案】A 【详解】解:由“将”位于点(0,﹣1),“象”位于(2,﹣1),得,“炮”位于点(﹣3,2).故选:A . 4.(2022春·福建莆田·八年级统考期中)如图,笑脸盖住的点的坐标可能为( )A .()4,3--B .()4,3C .()4,3-D .()4,3-【答案】C 【详解】解:A .()4,3--在第三象限,故A 错误;B .()4,3在第一象限,故B 错误;C .()4,3-在第二象限故,C 正确;D .()4,3-在第四象限,故D 错误.故选:C .5.(2022秋·四川泸州·七年级统考期末)“十里绿荫岸,千亩桂圆林”,有关部门对张坝桂圆林古树实行分级保护和标准认定,百年以上古树均有窝位图,经纬坐标等详细信息.如图是其中的三棵古树A ,B ,C 的平面分布图.如果A 的位置用坐标表示为(1,0),C 的位置用坐标表示为(2,1)-,则B 的位置用坐标表示为( )A .(0,1)-B .(2,0)-C .(1,1)--D .(1,2)-【答案】C 【详解】解:由(1,0)A ,(2,1)C -判断坐标原点,如图所示,∴(1,1)B --,故选:C .6.(2022·全国·七年级专题练习)中国象棋是中华民族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1,2)--,“马”位于点(2,2)-,则“兵”位于点( )A .(1,1)-B .(2,1)-C .(3,1)-D .(2,1)--【答案】C 【详解】如图所示,根据题意可建立如图所示平面直角坐标系,则“兵”位于点(-3,1).故选:C .7.(2022秋·黑龙江哈尔滨·八年级哈尔滨市第四十七中学校考期中)下列各表达式不是表示y 是x 的函数的是( )A .23y x =B .1y x =C .2y x =()0x >D .23y x = 【答案】C【详解】解:∵对于x 的每一个取值,y 都有唯一确定的值,∴23y x =,1y x =,23y x =,对于x 的每一个取值,y 有唯一的值对应,所以y 是x 的函数,A 、B 、D 不符合题意; 2y x =()0x >,对于x 的每一个取值,y 不是唯一的值对应,如当1x =时,2y =±,所以y 不是x 的函数,C 符合题意.故答案为:C .8.(2022春·全国·八年级专题练习)已知函数52y x =-,则自变量x 的取值范围是( ) A .2x >B .2x <C .2x ≠-D .2x ≠ 【答案】D【详解】解:20x -≠,∴2x ≠. 故选:D .9.(2022春·黑龙江哈尔滨·九年级统考期中)周日,东东从家步行到图书馆查阅资料,查完资料后,东东立刻按原路回家.已知回家时的速度是去时速度的1.5倍,在整个过程中,东东离家的距离s (单位:m )与他所用的时间t (单位:min )之间的关系如图所示,则东东在图书馆查阅资料的时间为( )A .55minB .40minC .30minD .25min【答案】C【详解】解:根据图象可知,东东从家步行到图书馆的速度为:120080m/min 15=,∵回家时的速度是去时速度的1.5倍,∴回家时的速度为:1.580120m/min ⨯=,则回家所用的时间为:120010m/min 120=,∴东东在图书馆查阅资料的时间为:()55151030min -+=,故选:C .10.(2022春·安徽合肥·八年级统考期中)函数129y x x =+--中,自变量x 的取值范围是()A .2x ≥B .2x ≥且9x ≠C .9x ≠D .29x ≤<【答案】B【详解】解:9020x x -≠⎧⎨-≥⎩,解得2x ≥且9x ≠.故选:B .11.(2022春·八年级单元测试)以下是甲、乙、丙三人看地图时对四个地标的描述:甲∶从学校向北直走500米,再向东直走100米可到新华书店.乙:从学校向西直走300米,再向南直走200米可到市政府.丙:市政府在火车站西方200米处.根据三人的描述,若从新华书店出发,则下列走法中,终点是火车站的是( )A .向南直走700米,再向西直走200米B .向南直走700米,再向西直走600米C .向南直走300米,再向西直走200米D .向南直走300米,再向西直走600米【答案】A 【详解】解:如图,以学校为坐标原点画出直角坐标系,1个单位长表示100米,A .从新华书店出发,向南直走700米,再向西直走200米可到火车站,符合题意;B ,C ,D 的走法不能到达火车站.故选:A .12.(2022春·八年级单元测试)已知点()32M -,与点()M x y ',在同一条平行于x 轴的直线上,且M '到y 轴的距离等于4,那么点M '的坐标是( )A .()42,或()42-, B .()42-,或()42-,- C .()42-,或()52--, D .()42-,或()12--, 【答案】B 【详解】解:∵点()32M ,-与点()M x y ',在同一条平行于x 轴的直线上, ∴M '的纵坐标=2y -,∵M '到y 轴的距离等于4,∴M '的横坐标为4或4-.所以点M '的坐标为()42-,或()42--, 故选:B .13.(2022春·广东梅州·八年级校考阶段练习)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如 ()1,0,()2,0,()2,1,()1,1,()1,2,()2,2,,根据这个规律,第 334 个点的坐标为( )A .()817, B .()8,16 C .()7,17 D .()7,18【答案】A 【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,右下角的点的横坐标为1,共有1个点,211=右下角的点的横坐标为2时,共有2个点,242=,右下角的点的横坐标为3时,共有9个点,293=,右下角的点的横坐标为4时,共有16个点,2164=,右下角的点的横坐标为n 时,共有2n 个点,218324=,∴第324个点的坐标为()18,17,∵18是偶数,再往左数10个点得到第334个点的坐标,为()817, ∴第334个点是()817,,故选:A .14.(2022春·陕西西安·八年级校考期中)在平面直角坐标系中,将直线31y x =-向上平移()0m m >个单位长度,使其与直线24y x =-+的交点位于第二象限,则m 的取值范围为( )A .3m >B .4m >C .5m >D .6m >【答案】C【详解】解:将直线31y x =-向上平移()0m m >个单位长度,可得:31y x m =-+, 联立两直线解析式得3124y x m y x =-+⎧⎨=-+⎩, 解得15225m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩, 即交点坐标为21255m m ⎛⎫-+ ⎪⎝⎭,, 交点在第二象限,1052205m m ⎧-<⎪⎪∴⎨⎪+>⎪⎩, 解得:5m >.故选:C .15.(2022秋·北京顺义·八年级阶段练习)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程()km y 与它们的行驶时间()h x 之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了1.6h ;②快车速度比慢车速度多10km/h ;③图中350a =;④慢车先到达目的地.其中正确的是( )A .①④B .②③C .②④D .①③【答案】A【详解】当2h t =时,表示两车相遇,2~2.5h 表示两车都在休息,没有前进,2.5~3.6时,其中一车行驶,其速度为88080km/h 3.6 2.5-=-,设另一车的速度为km/h x ,依题意得()280360,x +=解得100km/h x =,故快车途中停留了3.62 1.6h -=,①正确;快车速度比慢车速度多20km/h ,②错误;5h t =时,慢车行驶的路程为()50.580360km -⨯=,即得到目的地,比快车先到,故④正确;5h t =时,快车行驶的路程为()5 1.6100340km -⨯=,即340a =,故③错误;故选:A .16.(2022秋·湖南衡阳·八年级衡阳市第十五中学校考期末)如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图像大致为( )A .B .C .D .【答案】A【详解】当点P 在AB 边上时,如图1所示:设菱形的高为h ,12y AP h =⋅, ∵AP 随x 的增大而增大,h 不变,∴y 随x 的增大而增大,故选项C 和D 不正确;当点P 在BC 边上时,如图2所示:12y AD h =⋅, ∵AD 和h 不变,∴在这个过程中y 不变,故选项B 不正确;当点P 在CD 边上时,如图3所示:12y PD h =⋅, ∵PD 随x 的增大而减小,h 不变,∴y 随x 的增大而减小,∵P 点从点A 出发沿A B C D →→→路径匀速运动到点D ,∴P 在三条线段上运动的时间相同,故选项A 正确;故选:A .二、填空题17.(2022·全国·七年级专题练习)已知点()5,6A -,()3,2B -,AC x ∥轴,∥BC y 轴,则点C 的坐标是_____.【答案】()3,6【详解】因为点()5,6A -,AC x ∥轴,所以点C 的纵坐标为6;因为()3,2B -, ∥BC y 轴,所以点C 的横坐标为3;所以点C 的坐标是()3,6.故答案为:()3,6.18.(2022秋·北京·七年级校考期中)在平面直角坐标系中,已知点()2,1A ,直线AB 与x 轴平行,若4AB =,则点B 的坐标为___________.【答案】()2,1-或()6,1【详解】解:在平面直角坐标系中,已知点()2,1A ,直线AB 与x 轴平行,∴B 点的纵坐标与A 点纵坐标相同,4AB =,分两种情况讨论:①若B 在A 点左侧,相当于将()2,1A 向左数4个单位长度,得到()2,1B -;②若B 在A 点右侧,相当于将()2,1A 向右数4个单位长度,得到()6,1B ;故答案为:()2,1-或()6,1.19.(2022·全国·八年级专题练习)如图是一台雷达探测相关目标得到的结果,若记图中目标A 的位置为(2,90︒),目标B 的位置为(4,30︒),现有一个目标C 的位置为(3,m ︒),且与目标B 的距离为5,则目标C 的位置为______.【答案】(3,300°)或(3,120°)【详解】解:如图:设中心点为点O,在BOC中,===,4,3,5OB OC BC222∴+=,OB OC BC∴是直角三角形,且90BOC∠=BOC∴C的位置为:(3,300︒)或(3,120︒).20.(2022秋·辽宁沈阳·七年级沈阳市南昌初级中学(沈阳市第二十三中学)阶段练习)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间()s x之间的关系如图所示则当甲到达终点时,乙跑了______米.【答案】1380【详解】解:由题意得÷=(米/秒),乙的速度:18001200 1.5甲的速度:1.5300300 2.5+÷=(米/秒),∴两人相距300米时,甲跑的路程是2.5300750⨯=(米),此时离终点距离为180********-=(米),∴从会合点到终点甲的用时是1050 2.5420÷=(秒)乙从会合点跑420秒路程是420 1.5630⨯=(米),∴当甲到终点时,乙跑的总路程是7506301380+=(米).故答案为:1380.21.(2022春·广东梅州·九年级校考阶段练习)某条河受暴雨袭击,水位的变化情况如下表:时间/h 0 4 8 12 16 20 24水位/m 2 2.5 3 45 6 8 (1)上表反映了___________和___________之间的关系,自变量是___________,因变量是___________. (2)12h 时,水位是___________m .(3)___________h 至___________h 水位上升最快.【答案】 水位 时间 时间 水位 4 20 24【详解】解:(1)由表可知:反映了时间和水位之间的关系,自变量是时间,因变量是水位; (2)由表可以看出:12时,水位是4米;(3)由表可以看出:在相等的时间间隔内,20时至24时水位上升最快.故答案为:水位;时间;时间;水位;4;20;24.三、解答题22.(2022春·陕西宝鸡·八年级统考期中)已知点()2,31A a a +是平面直角坐标系中的点.(1)若点A 在第二象限的角平分线上,求a 的值;(2)若点A 在第三象限,且到两坐标轴的距离和为9,请确定点A 的坐标.【答案】(1)15a =- (2)()4,5A --【详解】(1)解:∵点A 在第二象限的角平分线上,∴2310a a ++=,∴15a =-. (2)∵点A 在第三象限,且到两坐标轴的距离和为9,∴()2319a a -+-+=⎡⎤⎣⎦,∴()2319a a --+=,∴2319a a ---=,∴2a =-,∴()4,5A --.23.(2022春·吉林长春·八年级吉林省第二实验学校校考阶段练习)如图,在甲、乙两同学进行400米跑步比赛中,路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OAB 和线段OC ,请根据图上信息回答下列问题:(1)______先到达终点;(2)第______秒时,______追上______;(3)比赛全程中,______的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s (米)与时间t (秒)之间的函数关系式及自变量取值范围______.【答案】(1)乙(2)40,乙,甲(3)乙(4)()8050s t t =<≤【详解】(1)根据图像可知,线段OC 表示先到达终点,即乙先到达终点.故答案为:乙.(2)两人相遇,即两者距离为0,由图像可知在40s 时两人相遇,甲在前,即乙追上甲.故答案为:40,乙,甲.(3)乙的图像为一条直线,表示速度不变.故答案为:乙.(4)乙为优胜者,50s 时乙到达终点,路程为400,设速度为v ,则50400v =,解得:8v =,∴相应函数解析式为8s t =.故答案为:()8050s t t =<≤.B 能力提升24.(2022秋·北京·七年级校考期中)在平面直角坐标系xOy 中,长方形ABCD 的四个顶点分别为()2,1A ,()2,3B ,()1,3C -,()11D -,.对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘以同一个实数a ,纵坐标都乘以3-,再将得到的点向左平移m (0m >)个单位,向上平移2个单位,得到长方形A B C D ''''及其内部的点,其中点A ,B ,C ,D 的对应点分别为A ',B ',C ',D .(1)点A '的横坐标为___________(用含a ,m 的式子表示).(2)点A '的坐标为()3,1-,点C '的坐标为()3,7--,①求a ,m 的值;②在长方形ABCD 内部和边界中是否存在点()0,E y 进行上述操作后,得到的对应点E '仍然在长方形ABCD 内部和边界,如果存在,求y 的取值范围;如果不存在,请说明理由.【答案】(1)2a m -(2)①2a =,1m =;②不存在,理由见解析【详解】(1)解:()21A ,→()23a -,→()21A a m '--,, 即点A '的横坐标为2a m -;故答案为:2a m -(2)解:①由()13C -,,()37C '--,可得3a m --=-①, 由()21A ,,()31A '-,可得23a m -=②, 由①,②得323a m a m +=⎧⎨-=⎩, 解得21a m =⎧⎨=⎩, 2a ∴=,1m =;②不存在.理由:根据题意,得()1,32E y '--+.可知无论y 取何值,点E '一定落在CD 上.所以不存在满足题意的y 值.25.(2022春·山西太原·八年级阶段练习)甲、乙两人分别乘不同的冲锋舟同时从A 地匀速行驶前往B 地,甲到达B 地立即沿原路匀速返回A 地,图中的折线OMC 表示甲乘冲锋舟离开A 地的距离(y 千米)与所用时间(x 分钟)之间的函数关系;图中的线段ON 表示乙乘冲锋舟离开A 地的距离(y 千米)与所用时间(t 分钟)之间的函数关系.根据图象解答问题:信息读取:(1)A 、B 两地之间的距离为___________千米,线段OM 对应的函数关系式为___________,线段MC 对应的函数关系式为___________,线段ON 对应的函数关系式为___________;图象理解:(2)求图中线段ON 和MC 的交点D 的坐标,并说明其横、纵坐标的实际意义;问题解决:(3)直接写出整个行驶过程中,甲、乙两人所乘坐的冲锋舟之间的距离为5千米时,对应的行驶时间x 的值.【答案】(1)20, 56y x =, 5406y x =-+,12y x = (2)()3015,,见解析 (3)15x =或1054或1354【详解】(1)解:由图象可知,AB 两地之间的距离为20千米.设OM 解析式为y kx =,把()2420M ,代入得到56k =,∴线段OM 解析式为56y x =, 设线段ON 解析式为y mx =把()4020N ,代入得到12m =, ∴线段ON 解析式为12y x =, 设线段CM 解析式为y k x b '=+,把()2420M ,,()480C ,代入得: 2420480k b k b +=⎧⎨+=''⎩,解得5640k b ⎧=-⎪⎨⎪=⎩', ∴线段CM 解析式为5406y x =-+. 故答案为:20,5406y x =-+,12y x =. (2)由125406y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得3015x y =⎧⎨=⎩, ∴点D 坐标()3015,.表示甲出发30分钟后,两人相遇,此时离A 地15km .(3)由题意可知51562x x -=①时,15x =, 5140562x x -+-=②时,1054x =, 1540526x x ⎛⎫--+= ⎪⎝⎭③时,1354x =, 综上所述15x =或1054或1354分钟时,甲、乙两人所乘坐的冲锋舟之间的距离为5千米. 26.(2022春·广东佛山·九年级校考阶段练习)阅读与应用:同学们,你们已经知道()20a b -≥,即2220a ab b -+≥.所以222a b ab +≥(当且仅当a b =时取等号).阅读1:若a ,b 为实数,且0a >,0b >,()20a b -≥,20a ab b ∴-+≥,2a b ab ∴+≥(当且仅当=a b 时取等号).阅读2:若函数m y x x =+(0m >,0x >,m 为常数).由阅读1结论可知:2m m x x x x +≥⋅即2m x m x +≥∴当m x x =即2x m =,x m ∴=(0m >)时,函数m y x x=+的最小值为2m . 阅读理解上述内容,解答下列问题:(1)问题1:若数91y a a =+-(1a >),则=a 时,函数91y a a =+-(1a >)的最小值为 . (2)问题2:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x = 时,矩形周长的最小值为 .(3)问题3:求代数式2251m m m +++(1m >-)的最小值. (4)问题4:建造一个容积为8立方米,深2米的长方体无盖水池,池底和池壁的造价分别为每平方米120元和80元,设池长为x 米,水池总造价为y (元),求当x 为多少时,水池总造价y 最低?最低是多少?【答案】(1)4,6(2)2,8(3)4(4)当2x =时,水池总造价y 最低,最低为1760元.【详解】(1)∵91(1)1y a a a =+->-, ∴91(1)1y a a a =-+>-, ∴由阅读2结论可知,()9912111a a a a -+≥-⋅--即9161a a -+≥-, ∴当911a a -=-即()219a -=, ∴13a -=,13a -=-(不合题意舍去),∴当4a =时,函数91(1)1y a a a =+->-的最小值为6; 故答案为:4,6(2)设矩形周长为y ,根据题意得42y x x ⎛⎫=+ ⎪⎝⎭, ∵442x x x x +≥⋅, ∴44x x+≥, ∴当4x x =即2x =-(不合题意舍去),2x =时,函数42y x x ⎛⎫=+ ⎪⎝⎭有最小值8; 故答案为:2,8(3)∵设225(1)1m m y m m ++=>-+, ∴()222521441111m m m m y m m m m +++++===+++++, ∵()4141m m ++≥+, ∴当411m m +=+即3m =-(不合题意舍去),1m =时,函数225(1)1m m y m m ++=>-+有最小值4, ∴代数式225(1)1m m m m ++>-+的最小值为4; (4)∵根据题意得长方体的宽为4x米, ∴44412022802280480320y x x x x x x ⎛⎫=⨯⨯+⨯⨯⨯+⋅⨯⨯=++ ⎪⎝⎭, ∵44x x+≥, ∴当4x x =即2x =-(不合题意舍去),2x =时,函数4480320y x x ⎛⎫=++ ⎪⎝⎭的最小值为1760, ∴当2x =时,水池总造价y 最低,最低为1760元.。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

专题平面直角坐标系函数及其图像

专题平面直角坐标系函数及其图像
月份
1月
5月
在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的阻碍,今年一、2月份该品牌电视机销往农村的售价都比去年12月份下降了 ,且每一个月的销售量都比去年12月份下降了%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补助.受此政策的阻碍,今年3至5月份,该厂家销往农村的这种电视机在维持今年2月份的售价不变的情形下,平均每一个月的销售量比今年2月份增加了万台.假设今年3至5月份国家对这种电视机的销售共给予了财政补助936万元,求 的值(保留一名小数).
(3)今年1至5月,每件配件的原材料价钱均比去年12月上涨60元,人力本钱比去年增加20%,其它本钱没有转变,该企业将每件配件的售价在去年的基础上提高 %,与此同时每一个月销售量均在去年12月的基础上减少 %.如此,在保证每一个月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出 的整数值.
(2)若是装运每种脐橙的车辆数都很多于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)假设要使这次销售获利最大,应采纳哪一种安排方案?并求出最大利润的值.
3.(重庆市2020年10分)已知:如图,反比例函数的图象通过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
6.(重庆市2010年10分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,假设S△AOB=4.
(1)求该反比例函数的解析式和直线AB的解析式;
(2)假设直线AB与y轴的交点为C,求△OCB的面积.
7.(重庆市2011年10分)某企业为重庆运算机产业基地提供电脑配件,受美元走低的阻碍,从去年1至9月,该配件的原材料价钱一路爬升,每件配件的原材料价钱y1(元)与月份 (1≤ ≤9,且 取整数)之间的函数关系如下表:

初中数学:平面直角坐标系及函数初步习题精选(附参考答案)

初中数学:平面直角坐标系及函数初步习题精选(附参考答案)

初中数学:平面直角坐标系及函数初步习题精选(附参考答案)1.如图,已知在平面直角坐标系中的一点P恰好被墨水遮住了,则点P的坐标不可能是()A.(-2,3)B.(-3,2)C.(-3,3)D.(-2,-3)2.在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为()A.-4B.4C.12D.-123.点A(-3,4)到y轴的距离是()A.3B.4C.5D.74.点A(3,-2)关于x轴对称的点的坐标是____________.5.已知点P(5a+7,6a+2)在一、三象限的角平分线上,则a=_____.6.函数y=√x+3+1x−1的自变量x的取值范围是()A.x≠-3且x≠1B.x>-3且x≠1C.x>-3D.x≥-3且x≠17.下列各曲线中,不表示y是x的函数的是()A B C D8.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是()A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x9.如图,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V 与h的函数关系的图象大致是()A B C D10.)已知A,B两地相距720 m,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人离B地的距离y(单位:m),下列说法正确的是()A.乙先走5 minB.甲的速度比乙的速度快C.12 min时,甲、乙相距160 mD.甲比乙先到2 min参考答案1.如图,已知在平面直角坐标系中的一点P恰好被墨水遮住了,则点P的坐标不可能是(D)A.(-2,3)B.(-3,2)C.(-3,3)D.(-2,-3)2在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为(D)A.-4B.4C.12D.-123.点A(-3,4)到y轴的距离是(A)A.3B.4C.5D.74.点A(3,-2)关于x轴对称的点的坐标是(3,2)5.已知点P(5a+7,6a+2)在一、三象限的角平分线上,则a=5解析:∵点P(5a+7,6a+2)在第一、三象限的角平分线上,∴5a+7=6a+2解得a=5故答案为56.函数y=√x+3+1x−1的自变量x的取值范围是(B)A.x≠-3且x≠1 B.x>-3且x≠1 C.x>-3D.x≥-3且x≠1解析:函数y=√x+3+1x−1的自变量x的取值范围是x+3>0,且x-1≠0解得x>-3且x≠1故选B7.下列各曲线中,不表示y是x的函数的是(C)A B C D8.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是(D)A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x9.如图,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V 与h的函数关系的图象大致是(B)A B C D10.已知A,B两地相距720 m,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人离B地的距离y(单位:m),下列说法正确的是(D)A.乙先走5 minB.甲的速度比乙的速度快C.12 min时,甲、乙相距160 mD.甲比乙先到2 min。

(完整版):平面直角坐标系经典例题解析

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1在平面直角坐标系中,点P(m, m-2)在第一象限内,则m的取值范围是_________________ 思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得: 解得:m > 2.故答案为:m> 2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1如果m是任意实数,则点P (m-4, m+1) 一定不在( )A. 第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:T( m+1 - ( m-4) =m+1-m+4=5•••点P的纵坐标一定大于横坐标,•••第四象限的点的横坐标是正数,纵坐标是负数,•第四象限的点的横坐标一定大于纵坐标,•••点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-). 例2如图,矩形BCDE 的各边分别平行于x轴或y轴,物体甲和物体乙分别由点 A (2, 0) 同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )A . (2, 0)B . ( - 1 , 1) C. ( - 2, 1) D. (- 1,- 1)分析:禾U用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12X1,物体甲行的路程为12冷=4,物体乙行的路程为12烂=8,在BC边相遇;31②第二次相遇物体甲与物体乙行的路程和为 12X2,物体甲行的路程为12X2』=8,物体乙行 [3的路程为12X 2X =16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的 路程和为12X 3,物体甲行的路程为 12X 3X1=12,物体乙3行的路程为12X 3X =24,在A 点相遇;3此时甲乙回到原出发点,则每相遇三次,两点回到出发点, •/ 2012- 3=670…2 ,故两个物体运动后的第 2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为故选:D .点评: 此题主要考查了行程问题中的相遇问题及按比例分配的运用, 通过计算发现规律就可以解决问题.例2如图,动点P 从(0, 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点 P 第2013次碰到矩形的边时,点 P 的坐标为( )A. ( 1,4)B. (5, 0)C. (6, 4)D. (8, 3)思路分析:根据反射角与入射角的定义作出图形,可知每 6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.~解 如图,经过6次反弹后动点回到出发点( 0, 3),V 划 4/KJ 11321:;; !12S45678•/ 2013- 6=335…3,•••当点P 第2013次碰到矩形的边时为第 336个循环组的第3次反弹, 点P 的坐标为(8, 3). 故选D.点评:本题是对点的坐标的规律变化的考查了, 作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练 2.如图,在平面直角坐标系中, A (1, 1) , B (- 1, 1), C (- 1,- 2), D (1 , - 2).把 一条长为2012个单12 X 2 =16,在DE 边相遇; 此时相遇点的坐标为:(-1,-1),物体乙行的路程为位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A - B - C - D - A -…的规律紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点 的坐标是()••• AB=1 -( - 1) =2 , BC=1 -( - 2) =3, CD=1 -( - 1) =2 , DA=1 -( - 2) =3 , •••绕四边形 ABCD 一周的细线长度为 2+3+2+3=10, 2012 - 10=201 …2 •细线另一端在绕四边形第 202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(-1, 1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形 ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题 的关键.例2如图,在平面直角坐标系 xOy 中,点P (-3, 5)关于y 轴的对称点的坐标为()A . (-3, -5)B . (3, 5)C . ( 3. -5)D . ( 5, -3)答:B考点二:函数的概念及函数自变量的取值范围例3在函数y中,自变量x 的取值范围是 ____________ .x思路分析:本题主要考查自变量的取值范围, 函数关系中主要有二次根式和分式两部分. 根据二次根式的意义,被开方数 X+1A0,根据分式有意义的条件, x 工0就可以求出自变量 x 的取值范围.解:根据题意得:x+1>0且x 工0 解得:X 二1且X M0 例3函数y= _3中自变量x 的取值范围是()x 1A. x > -3B. x >3C. x 》0 且 x MlD. x > -3 且 x ^l思路分析:根据被开方数大于等于 0,分母不等于0列式计算即可得解. 解:根据题意得,x+3>0且X-1M 0, 解得x > -3且x M 1. 故选D.点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1 )当函数表达式是整式时,自变量可取全体实数;分析: 根据点的坐标求出四边形 ABCD 的周长,然后求出另一端是绕第几圈后的第几个 A . (1,- 1) B • ( - 1, 1) 单位长度,从而确定答案.解答:解:••• A (1 , 1), B (- 1, 1), C (- 1 , - 2), D (1,- 2),(2 )当函数表达式是分式时,考虑分式的分母不能为 (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数y ,2 中自变量x的取值范围是( )7x2A . x > -2B . x > 2C . x 乂2D . x >23. A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离 S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了 C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 后开始返回与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断. 解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,至厅一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准 确,错误;C 、 从家出发,一直散步(没有停留) ,然后回家了,图形为上升和下降的两条折线,错误;D 、 从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴 表示的量,再根据函数图象用排除法判断.例5如图,Y ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在 Y ABCD 的顶点上,它们的各边与 Y ABCD 的各边分别平行,且与 Y ABCD 相似.若小平 行四边形的一边长为 X ,且0V x <8阴影部分的面积的和为 y ,则y 与x 之间的函数关系的 大致图象是( )思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形0;18分钟味着有停留,而路程没有增加,意的面积,再根据相似多边形面积的比等于相似比的平方列式求出y与x之间的函数关系式, 然后根据二次函数图象解答.解:•••四个全等的小平行四边形对称中心分别在Y ABCD的顶点上,•••阴影部分的面积等于一个小平行四边形的面积,•••小平行四边形与Y ABCD相似,..._y_32x 2(8),整理得 1 2 y -x ,2又O v x<8纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象.故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平"面直角坐标洗中,点 A (11, 0),点B (0, 6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B'和折痕OP.设BP=t.(I)如图①,当/ BOP=30时,求点P的坐标;(H)如图②,经过点P再次折叠纸片,使点C落在直线PB'上,得点C'和折痕PQ,若AQ=m , 试用含有t的式子表示m;(川)在(H)的条件下,当点C'恰好落在边OA上时,求点P的坐标(直接写出结果即可). 考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(I)根据题意得,/ OBP=9O , OB=6,在Rt A OBP 中,由/ BOP=3O , BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(□)由厶OB P、△ QC P分别是由厶OBP、△ QCP折叠得到的,可知△ OB OBP ,△ QC QCP,易证得△ OBP s^ PCQ,然后由相似三角形的对应边成比例,即可求得答案;(川)首先过点P作PE丄OA于E,易证得△ PC C QA由勾股定理可求得C'Q的长,1 11然后利用相似三角形的对应边成比例与m= t2- t+6,即可求得t的值.6 6点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识. 此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4. 甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A .甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D •比赛中两队从出发到 2.2秒时间段,乙队的速度比甲队的速度快4•解:A 、由函数图象可知,甲走完全程需要 4分钟,乙走完全程需要 3.8分钟,乙队率先到达终点,本选项错误;B 、 由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;C 、 因为4-3.8=02分钟,所以,乙队比甲队少用 0.2分钟,本选项正确;D 、 根据0〜2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误; 故选C • 5. 如图,点A 、B 、C 、D 为O O 的四等分点,动点 P 从圆心O 出发,沿OC-CD-DO 的路线做匀速运动,设运动的时间为 t 秒,/ APB 的度数为y 度,则下列图象中表示 yCD上运动时,/ APB 不变,当P 在DO 上运动时,/ APB 逐渐增大,即可得出答案.解答: 解:当动点P 在OC 上运动时,/ APB 逐渐减小; 当P 在C D 上运动时,/ APB 不变; 当P 在DO 上运动时,/ APB 逐渐增大.故选C •点评:本题主要考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及 函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所 需要的条件,结合实际意义画出正确的图象.(度)与t (秒)之间函数关系最恰当的是(考点:动点问题的函数图象•分析:根据动点 P 在OC 上运动时,/ APB 逐渐减小,当 P考点四:动点问题的函数图象例5如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-ED-DC 运动到点C 时停止, 点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是 1cm/s .若P , Q 同时开始运动,设运动时间为t (s ), △ BPQ 的面积为y (cm ).已知y 与t 的函数图象如图2,则下列结论 错误的是()4 B.sin /EBC —52 2 C. 当 0 v t < 10 时,y= — t5D. 当t=12s 时,△ PBQ 是等腰三角形思路分析:由图2可知,在点(10, 40)至点(14, 40)区间,△ BPQ 的面积不变,因此可 推论(1 )在BE 段,BP=BQ 持续时间10s ,贝U BE=BC=10 y 是t 的二次函数; (2 )在ED 段, y=40是定值,持续时间 4s ,则ED=4; (3)在DC 段, y 持续减小直至为0, y 是t 的一次函数. 解:(1)结论A 正确.理由如下:分析函数图象可知, BC=10cm ED=4cm 故 AE=AD-ED=BC-ED=10-4=6cm如答图1所示,连接EC,过点E 作EF 丄BC 于点F ,11由函数图象可知, BC=BE=10cm BEC =40=— BC?EF= X 10X EF,2 2E F 8/• sin / EBC= =-BE 10(3)结论C 正确.理由如下: 如答图2所示,过点P 作PGLBQ 于点G,•/ BQ=BP=,AEA. 图1AE=6cmEF=8,(2)结论B 正确.理由如下:答圏2答郎1 1 1 4 2••• y=S^BPC= BQ?PG= BQ?BP?sinZ EBC= t?t? = t2.2 2 2 5 5(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB, NC此时AN=8 ND=2由勾股定理求得:NB=S J2,NC=2j17 ,•/ BC=10,•••△ BCN不是等腰三角形,即此时厶PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm。

中考数学专题复习平面直角坐标系及函数(含解析)

中考数学专题复习平面直角坐标系及函数(含解析)

平面直角坐标系及函数一、选择题1.函数y=错误!中,自变量x的取值范围是()A.x≠-2 B.x≠2C.x<2 D.x〉2解析根据题意得:x-2≠0,解得:x≠2.答案B2.函数y=错误!的自变量x的取值范围是( )A.x>1 B.x<1C.x≤1 D.x≥1解析根据题意得:1-x≥0,解得:x≤1。

答案C3.函数y=错误!+错误!中自变量x的取值范围是( ) A.x≤3 B.x=4C.x<3且x≠4 D.x≤3且x≠4解析二次根式的被开方数是非负数,∴3-x≥0,即x≤3;分式的分母不等于0,∴x-4≠0,即x≠4.∴x≤3.故选A.答案A4.若a>0,则点P(-a,2)应在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析∵a>0,∴-a<0。

∵点P的横坐标是负数,纵坐标是正数,∴点P在平面直角坐标系的第二象限.答案B5.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C。

设BE=x,BC=y,则y关于x的函数解析式是()A.y=-错误!B.y=-错误!C.y=-错误!D.y=-错误!解析作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°,∴∠BDE=∠FEG。

在△DBE与△EGF中,错误!∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y-3x。

∵FG⊥BC,AB⊥BC,∴FG∥AB,CG∶BC=FG∶AB,即错误!=错误!,∴y=-错误!.答案A二、填空题6.已知函数y=错误!,则自变量x的取值范围是________.解析由题意得,x-1〉0,解得x>1。

答案x>17.函数y=错误!+错误!中,自变量x的取值范围是________.解析由题意得,x+1≥0且x≠0,解得x≥-1且x≠0。

平面直角坐标系典型例题含答案及解析

平面直角坐标系典型例题含答案及解析

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。

注意a 与b 的先后顺序对位置的影响。

2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。

这个平面叫做坐标平面。

(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。

3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。

x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a 3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。

3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) A .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D .向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A .2B .4C .0或4D .4或-4 2.如图,已知:)4,5(-A 、)2,2(--B 、)2,0(C 。

专题10一次函数及其应用(共41题)(解析版)-学易金卷:2023年中考数学真题分项汇编(全国通用)

专题10一次函数及其应用(共41题)(解析版)-学易金卷:2023年中考数学真题分项汇编(全国通用)

专题10一次函数及其应用一、单选题1.(2023·四川乐山·统考中考真题)下列各点在函数21y x =-图象上的是()A .()13-,B .()01,C .()11-,D .()23,【答案】D 【分析】根据一次函数图象上点的坐标特征,将选项中的各点分别代入函数解析式21y x =-,进行计算即可得到答案.【详解】解: 一次函数图象上的点都在函数图象上,∴函数图象上的点都满足函数解析式21y x =-,A.当=1x -时,=3y -,故本选项错误,不符合题意;B.当0x =时,1y =-,故本选项错误,不符合题意;C.当1x =时,1y =,故本选项错误,不符合题意;D.当2x =时,3y =,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了一次函数图象上点的坐标特征,熟练掌握一次函数图象上的点都在函数图象上,是解题的关键.2.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为()A .23y x =-+B .26y x =-+C .23y x =--D .26y x =--【答案】B【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数2y x =-的图象向右平移3个单位长度得:2(3)26y x x =--=-+,故选:B .【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.3.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数23y x =-的图象是()....【答案】D【分析】依据一次函数)3-,和302⎛⎫ ⎪⎝⎭,,即可得到一次函数三、四象限.【详解】解:一次函数=3y -;令0y =,则一次函数23y x =-的图象经过点一次函数23y x =-的图象经过一、三、四象限,故选:D .【点睛】本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.(2023·新疆·统考中考真题)一次函数A .0k >B .0kb <C .0k b +>DA.8:28B.8:30【答案】A【分析】利用待定系数法求出两条直线的函数解析式,将两个解析式联立,通过解方程求出交点的横坐标即可.【详解】解:令小亮出发时对应的t值为70,小莹到达甲地时对应的t值为40,A.()2,5B.()3,5【答案】C【分析】先根据一次函数解析式求得点∠=︒,=9090OAC∠︒,进而得出ACD故选:C.【点睛】本题考查了一次函数与坐标轴交点问题,旋转的性质,坐标与图形,掌握旋转的性质是解题的关键.10.(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,已知点A.1M B.M【答案】B∴PA y ⊥轴,4PA =,由旋转得:60APB AP ∠=︒=,如图,过点B 作BC y ⊥轴于C ∴30BPC ∠=︒,∴223BC PC ==,,∴()2123B +,),设直线PB 的解析式为:y kx =+则21231k b b ⎧+=+⎪⎨=⎪⎩,∴31k b ⎧=⎪⎨=⎪⎩,∴直线PB 的解析式为:3y x =当=1x -时,31y =-+,∴点()11,3M --不在直线PB 当33x =-时,333y ⎛=⨯- ⎝二、填空题11.(2023·山东·统考中考真题)一个函数过点()1,3,且y 随x 增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】3y x =(答案不唯一)【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点()1,3,且y 随x 增大而增大,可知该函数可以为3y x =(答案不唯一);故答案为3y x =(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.12.(2023·江苏苏州·统考中考真题)已知一次函数y kx b =+的图象经过点()1,3和()1,2-,则22k b -=________________.【答案】6-【分析】把点()1,3和()1,2-代入y kx b =+,可得32k b k b +=⎧⎨-=-⎩,再整体代入求值即可.【详解】解:∵一次函数y kx b =+的图象经过点()1,3和()1,2-,∴32k b k b +=⎧⎨-+=⎩,即32k b k b +=⎧⎨-=-⎩,∴()()()22326k b k b k b -=+-=⨯-=-;故答案为:6-【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.13.(2023·天津·统考中考真题)若直线y x =向上平移3个单位长度后经过点()2,m ,则m 的值为________.【答案】5【分析】根据平移的规律求出平移后的解析式,再将点()2,m 代入即可求得m 的值.【详解】解: 直线y x =向上平移3个单位长度,∴平移后的直线解析式为:3y x =+.平移后经过()2,m ,235m ∴=+=.故答案为:5.【点睛】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.14.(2023·湖南郴州·统考中考真题)在一次函数()23y k x =-+中,y 随x 的增大而增大,则k 的值可以是___________(任写一个符合条件的数........即可).【答案】3(答案不唯一)【分析】根据一次函数的性质可知“当20k ->时,变量y 的值随x 的值增大而增大”,由此可得出结论.【详解】解:∵一次函数23y k x =-+()中,y 随x 的值增大而增大,∴20k ->.解得:2k >,故答案为:3(答案不唯一).【点睛】本题考查了一次函数的性质,解题的关键是根据函数的单调性确定k 的取值范围.本题属于基础题,难度不大,解决该题型题目时,结合一次函数的增减性,得出k 的取值范围是关键.15.(2023·广西·统考中考真题)函数3y kx =+的图象经过点()2,5,则k =______.【答案】1【分析】把点()2,5代入函数解析式进行求解即可.【详解】解:由题意可把点()2,5代入函数解析式得:235k +=,解得:1k =;故答案为:1.【答案】5【分析】分别求出三个函数解析式,然后求出【详解】解:设111y k x b =+过111232b k b =⎧⎨=+⎩,解得:11122k b ⎧=⎪⎨⎪=⎩同理:22275k b +=-+=,k 则分别计算11k b +,223,k b k +故答案为:5.【点睛】本题主要考查了求一次函数解析式,掌握待定系数法是解答本题的关键.三、解答题17.(2023·浙江温州·统考中考真题)如图,在直角坐标系中,点线交y 轴于点()0,3B .(1)求m的值和直线(2)若点()1,P t y在线段【答案】(1)32 m=,钟)之间的函数图象如图所示.(1)当1540x ≤≤时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1)12180y x =-;(2)180【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ≤≤,联立12180y x =-()1540x ≤≤,即可求解.【详解】(1)解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=⎧⎨+=⎩,解得:12180k b =⎧⎨=-⎩,∴12180y x =-()1540x ≤≤;(2)设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤将点()()25,16060,300,代入得,11112516060300k b k b +=⎧⎨+=⎩解得:11460k b =⎧⎨=⎩,∴460y x =+()2560x ≤≤;(1)A ,B 两地之间的距离是______千米,(2)求线段FG 所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)【答案】(1)60,1;(2)60120y x =-+;【分析】(1)根据货车从A 地到B 地花了(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组己停工的天数.【答案】(1)30;(2)(3120y x =+30<【分析】(1)由图可知,前30天甲乙两组合作,(2)设乙组停工后y 关于x 的函数解析式为(2)解:设该商场节前购进m 千克A 粽子,则节后购进()400m -千克A 粽子,获得的利润为w 元,根据题意得:()()()2012161040022400w m m m =-+--=+,∵()121040046000m m m ⎧+-≤⎨>⎩,∴0300m <≤,∵20>,∴w 随m 的增大而增大,∴当300m =时,w 取最大值,且最大值为:230024003000w =⨯+=最大,答:节前购进300千克A 粽子获得利润最大,最大利润为3000元.【点睛】本题主要考查了分式方程和一次函数的应用,解题的关键是根据等量关系列出方程和关系式.22.(2023·四川成都·统考中考真题)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元.(1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【答案】(1)A 种食材单价是每千克38元,B 种食材单价是每千克30元;(2)A 种食材购买24千克,B 种食材购买12千克时,总费用最少,为1272元【分析】(1)设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意列出不等式,得出24x ≤,进而设总费用为y 元,根据题意,()38303681080y x x x =+-=+,根据一次函数的性质即可求解.【详解】(1)解:设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意得,6853280a b a b +=⎧⎨+=⎩,解得:3830a b =⎧⎨=⎩,答:A 种食材的单价为38元,B 种食材的单价为30元;(2)解:设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意,()236x x ≥-解得:24x ≥,设总费用为y 元,根据题意,()38303681080y x x x =+-=+∵80>,y 随x 的增大而增大,∴当24x =时,y 最小,∴最少总费用为82410801272⨯+=(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.23.(2023·浙江·统考中考真题)我市“共富工坊”问海借力,某公司产品销售量得到大幅提升.为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同.看图解答下列问题:(1)直接写出员工生产多少件产品时,两种方案付给的报酬一样多;(2)求方案二y 关于x 的函数表达式;(3)如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生产能力选择方案.【答案】(1)30件;(2)20600y x =+;(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一【分析】(1)由图象的交点坐标即可得到解答;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,利用待定系数法即可得到方案二y 关于x 的函数表达式;(3)利用图象的位置关系,结合交点的横坐标即可得到结论.【详解】(1)解:由图象可知交点坐标为()30,1200,即员工生产30件产品时,两种方案付给的报酬一样多;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,把()()0,600,30,1200代入上式,得600,301200.b k b =⎧⎨+=⎩解得20,600.k b =⎧⎨=⎩∴方案二的函数表达式为20600y x =+.(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一.【点睛】此题考查了从函数图像获取信息、一次函数的应用等知识,从函数图象获取正确信息和掌握待定系数法是解题的关键.24.(2023·浙江金华·统考中考真题)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变;妺妺骑车,到书吧前的速度为200米/分.图2中的图象分别表示两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数关系.(1)求哥哥步行的速度.(2)已知妺妺比哥哥迟2分钟到书吧.①求图中a 的值;②妺妺在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄【点睛】本题考查了一次函数的实际应用(行程问题)25.(2023·四川遂宁·统考中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多乙种粽子的个数相同.(1)甲、乙两种粽子每个的进价分别是多少元?(1)求大巴离营地的路程s 与所用时间t 的函数表达式及(2)求部队官兵在仓库领取物资所用的时间.【答案】(1)4020s t =+,2a =;(2)1h 3【分析】(1)设出函数解析式,利用待定系数法求出函数解析式,将(2)先求出军车的速度,然后分别求出军车到达仓库,和从仓库出发到达基地的时间,用总时间减去两段(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到【答案】(1)200y x =;(2)出发后甲机器人行走【分析】(1)利用待定系数法即可求解;则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.30.(2023·上海·统考中考真题)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y 元/升,原价为x 元/升,求y 关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900;(2)0.90.27y x =-;(3)1.00【分析】(1)根据10000.9⨯,计算求解即可;(2)由题意知,()0.90.30y x =-,整理求解即可;(3)当7.30x =,则 6.30y =,根据优惠后油的单价比原价便宜()x y -元,计算求解即可.【详解】(1)解:由题意知,10000.9900⨯=(元),答:实际花了900元购买会员卡;(2)解:由题意知,()0.90.30y x =-,整理得0.90.27y x =-,∴y 关于x 的函数解析式为0.90.27y x =-;(3)解:当7.30x =,则 6.30y =,∵7.30 6.30 1.00-=,∴优惠后油的单价比原价便宜1.00元.【点睛】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用.解题的关键在于理解题意,正确的列出算式和一次函数解析式.31.(2023·江苏扬州·统考中考真题)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?请根据相关信息,回答下列问题:(1)①填表:张强离开宿舍的时间/min1102060张强离宿舍的距离/km 1.2(1)小聪在直角坐标系中描出了表中数据对应的点.︒)与加热的时间位:C选填“正比例”“一次”“二次(2)根据以上判断,求(3)当加热110s时,油沸腾了,请推算沸点的温度.【答案】(1)一次;(2)【详解】(1)由表格中两个变量对应值的变化规律可知,时间每增加10s ,油的温度就升高20℃,故可知可能是一次函数关系,故答案为:一次;(2)设这个一次函数的解析式为()0y kt b k =+≠,当0=t 时,10y =;当10t =时,30y =,103010b k b =⎧∴⎨=+⎩,解得210k b =⎧⎨=⎩,∴y 关于t 的函数解析式为210y t =+;(3)当110t =时,211010230y =⨯+=答:当加热110s 时,油沸腾了,推算沸点的温度为230C ︒.【点睛】本题考查函数的表示方法以及求函数值;能够通过表格确定自变量与因变量的变化关系是解题的关键.36.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【详解】(1)设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;(2)①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:(3)∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为916y x b a ⎛⎫=-++ ⎪-⎝⎭∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a ⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.37.(2023·广西·统考中考真题)【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:中秤盘质量0m 克,重物质量m 克,秤砣质量【方案设计】m=,目标:设计简易杆秤.设定01050厘米.任务一:确定l和a的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于(1)男女跑步的总路程为_______________(2)当男、女相遇时,求此时男、女同学距离终点的距离.【答案】(1)1000m ;(2)315m【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:出解析式为 3.580y x =+,【详解】(1)解:∵开始时男生跑了100s .∴男生跑步的路程为50 4.5+(1)=a___________,b=___________(2)请分别求出1y,2y与x的函数关系式;(3)当上升多长时间时,两个气球的海拔竖直高度差为【答案】(1)12,30;(2)110y x=+【分析】(1)根据1号探测气球的出发海拔和速度即可计算和运动时间可计算2号探测气球的速度可计算(1)图中a的值是__________;(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离(3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距。

函数——平面直角坐标系知识点解析

函数——平面直角坐标系知识点解析

平面直角坐标系知识点解析李锦扬整理一、象限特征:特别注意第二象限是(-,+)01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P的坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限04.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>205.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.06.若点P(x,y)满足xy>0,则点P在第______________象限.07.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.08.无论x为何实数值,点P(x+1,x-1)都不在第_________象限•09.若点P(x,y)在第二象限,且|x-1|=2,|y+3|=5,则P点的坐标是__________.二、坐标轴特征:x轴上点y坐标为0,y轴上的点x坐标为001.已知点A(1,2),AC⊥x轴于C,则点C坐标为( ).A.(1,0)B.(2,0)C.(0,2) D.(0,1)02.若点M(a+2,3-2a)在y轴上,则点M的坐标是( )A.(-2,7) B.(0,3) C.(0,7) D.(7,0)03.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A.原点B.x轴上C.y轴上D.x轴上或y轴上04.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上; (2)点P在x轴上; (3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.三、到坐标轴距离:P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.点(5,—3)到x轴的距离是_____,到y轴的距离是_____,到原点的距离是_____.04.若点p在第二象限,且p点到x轴的距离为3,到y轴的距离为1,则p点的坐标是__.05.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.四、平行:两点连线,平行x轴y相等,平行y轴x相等01.已知平面直角坐标系内两点M(5,a),N(b,-2),①若直线MN∥x轴,则a______,b__________;②若直线MN∥y轴,则a___________,b_________.02.已知线段AB平行于y轴,若点A的坐标为(-2,3),且AB=4,则点B的坐标是__________.03.线段AB的长度为3且平行于y轴,已知A(2,—5),则点B的坐标为__.04.已知点P(m,-2),点Q(3,m-1),且直线PQ∥X轴,则m的值为.05.已知两点A(-3,m),B(n,4),AB∥x轴,06.已知A(-3,2)与点B(x,y)在同一条平行于y轴求m的值,并确定n的取值范围.的直线上,且点B到x轴的距离等于3,求B点的坐标.五、角平分线:一、三象限角平分线上的点x=y,二、四象限角平分线上的点x=-y,01.若点A(2x-3,b-x)在坐标轴夹角的平分线上,且在第二象限,则点A的坐标是__________.02.已知点P1(a-1,5)在第一、三象限角平分线上,点P2(2,b-8)在第二、四象限角平分线上,则(-a+b)2017=___________.03.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.04.已知:A(a-35,2b+23),以A点为原点建立平面直角坐标系.(1)试确定a、b的值;(2)若点B(2a-75,2b+2m),且AB所在直线为第二、四象限夹角的平分线,求m的值.六、对称点:x轴x不变,y轴y不变,原点对称x、y都变(变指变正负号)01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.06.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2016=_________.07.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_________.08.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为_________,点B关于x轴的对称点B′的坐标为_________,点C关于y轴的对称点C’的坐标为_________.(2)求△A′B′C′的面积.七、平移:左减右加,上加下减01.把点(-2,3)向上平移2个单位长度所到达位置的坐标为_____ _,向左平移2个单位长度所到达位置的坐标为___ ___.02.把点P (-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______. 03.如图在直角坐标系中,下边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.八、两点间距离:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y 的距离为点(,)A A A x y若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;01.点C (0,-5)到x 轴的距离是__ ___;到y 轴的距离是________;到原点的距离是_________; 02.点D (a,b )到x 轴的距离是__ ___;到y 轴的距离是________;到原点的距离是__________; 03.已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MN=_______; 04.()()2,1,2,8E F --,则EF 两点之间的距离是__________;05.已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 06.两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;九、面积:通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积. 01.平面直角坐标系,已知点A (-3,-2),B (0,3),C (-3,2),求△ABC 的面积.02.在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (―3,―1),B (1,3),C (2,-3),△ABC 的面积.03.如图,已知A (-4,0),B (-2,2),C ,0,-1),D (1,0),求四边形ABDC 的面积.十、中点:任意两点(,),(,)A A B B A x y B x y 的中点C ⎪⎭⎫⎝⎛++2,2B A B A y y x x 01.已知点P (3,0),Q(-2,0),则PQ 中点坐标为_________,02.已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MN 中点坐标为_______; 03.已知点G (2,-3)、H (3,4),则G 、H 两点的中点坐标为_________;04.我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P (x 1,y 1)、Q (x 2,y 2)的对称中心的坐标为⎪⎭⎫⎝⎛++2,22121y y x x 观察应用: (1)如图,在平面直角坐标系中,若点P 1(0,-1)、P 2(2,3)的对称中心是点A ,则点A 的坐标为 ;(2)另取两点B (-1.6,2.1)、C (-1,0).有一电子青蛙从点P 1处开始依次关于点A 、B 、C 作循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…则点P 3、P 8的坐标分别为 、 . 拓展延伸:(3)求出点P 2012的坐标,并直接写出在x 轴上与点P 2012、点C 构成等腰三角形的点的坐标.十一、找规律:与年号有关(如2017)通常会出现周期性循环01.按下列规律排列的一列数对,(2,1),(5,4),(8,7) …, 则第七个数对中的两个数之和是______________•02.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2010次,点P 依次落在点P 1,P 2,P 3,…,P 2010的位置,则P 2010的横坐标x 2010=___________•03.将正整数按如图所示的规律排列下去,若有序数对(n ,m)表示 第n 排,从左到右第m 个数,则表示实数25的有序数对是______________04.如图所示,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变成△OA 3B 3.已知:A (1,2), A 1(2,2),A 2(4,2),A 3(8,2),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形△OA 3B 3变换成△OA 4B 4, 则A 4的坐标是____________,B 4的坐标是_____________;,。

《平面直角坐标系、函数及其图像》(含解析).doc

《平面直角坐标系、函数及其图像》(含解析).doc

第五章 平面直角坐标系、函数及其图像测试时同:20分钟学校: __________ 姓名: ___________ 班级: ___________1.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,屮途休息了一段时间. 设他从山脚出发后所用的时间为t (分钟),所走的路程为S (米),S 与t 之间的函数关 系如图所示,下列说法错误的是( )• •A. 小明中途休息用了 20分蚀B. 小明休息前爬山的平均速度为每分钟70米C. 小明在上述过程中所走的路程为6600米D. 小明休息前爬11」的平•均速度大于休息后爬山的平均速度3MX ) 52800 ——i0販图4060[t •. 1005X(第1题)2•在平面直角坐标系内,点P (-2, 3)关于原点的对称点Q 的坐标为( (第4题) )A 、(2, -3.)3.如图,在边长为2的正方形屮剪去一个边长为1的.小正方形CEFG,动点尸从点A 出发,沿AfU —G —B 的路线绕多边形的边匀速运动到点〃时停止(不含点力和点 B ),则△〃胪的面积5•随着时间F 变化的函数图像大致为( )B 、 (2, 3)C 、 (3, -2)D 、 (一2, -3) …的斜边都在坐标 4•如图,在平面直角坐标系xOy 中,RtAOAC, RtA.OAiCi, RtA0A 2C 2, 轴上,ZAOC= ZA I OC F ZA 2OC 2= ZA30C 3=--=30° .若点 A 的坐标为(3, 0), OA=OCi, OA F OC 2, 0A 2=0C ;i , ・・••则依此规律,点A 2015的纵坐标为( )•2015A. 0:B. —3xC. —3x20155•平面直角坐标系屮,点A (2, 3)关于x轴的对称点坐标为_____________ •6.如图①,在正方形ABCD中,点P沿边DA从点D开始向点人以lcm/s的速度移动;同时, 点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发x s时,APAQ的面积为ycm2, y与x的函数图彖如图②,则线段EF所在的直线对应的函数关系式为7•如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点a 古塔位于点A(400, 300),从古塔出发沿射线创方向前行300刃是盆景园忆从盆景园〃向左转90°后直行400/〃到达梅花阁C,则点C的坐标是_________________________ •8.在平面直角坐标系中,点/的坐标是(2,・3),作点〃关于%轴的对称点,得到点才, 再作点川关于y轴的对称点,得到点才‘,则点卅的坐标是(_________________ , ________ ). 9•如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)____________________________________ 加油过程中的常量是 ,变量是•(2)请用合适的方式表示加油过程中变量之间的关系•10•甲乙两地相距400km, 一辆轿车从甲地出发,以一定的速度匀速驶往乙地.0.5h后,一辆货车从乙地出发匀速驶往甲地(轿车的速度大于货车的速度),与轿车在途屮相遇•此后,两车继续行驶,并各口到达冃的地.两车之间的距离y(km)与轿车行驶的时间x(h)的函数图象如图.(1)解释D点的实际意义并求两午的速度;(2)求m、n的值.(第7题)参考答案:1. 【答案】C.【考点定位】函数的图象、行程问题.【解析】从團象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了 20分钟,A 正确;小明休息前爬山的平均速度为:壬=7。

平面直角坐标系(详解版)

平面直角坐标系(详解版)

1(2(3(4(5(②③④ C.①④ D.①②③④坐标系基础>题型:坐标系内坐标的特征6(街与大道的十字路口,点表示街与大道的十字路口,如果用表示由到的一条路径,那么你能用同样的方式写出由到7(8(9(10(∵,轴,∴点在直线上,由垂线段最短,可得,线段的最小值为,此时点综合类问题>最短路径问题>题型:垂线段最短11(12(13(14(人玩的一盘棋,若白的位置是,黑的位置是∵白的位置是,黑的位置是15(>平面直角坐标系>坐标系综合>.如图所示:,即为所求.级16(17(点坐标的对称规律:关于哪个轴对称,哪个值不变,另一个变成相反数.18(19(20(21(22(四点的位置,并顺次连接、、、;;(直接写出结果)>平面直角坐标系>坐标系综合>题型:坐标系中的平移四边形的面积是:故答案为:.B. C. D.(分)如图,在直角坐标系中,、两点的坐标分别为23..题型:坐标系内坐标的特征24(是平面内一动点,且的面积为25已知:26(27(.28(函数>平面直角坐标系D.(29点的竖线为对称轴,以正方形的竖对称轴分别做对称各一个格点三角形.(分)在平面直角坐标系中,一个智能机器人接到如下命令:从原点出发,按向右,向上,向右,向下的方向依次不断移动,每次移动,其行走路线如图所示,第次移动到,第次移动,…,第次移动到3031(32(33(。

第三单元 第9讲 平面直角坐标系及函数(解析版)

第三单元 第9讲 平面直角坐标系及函数(解析版)

第9讲平面直角坐标系及函数一.考纲解读了解:函数的定义、函数的三种表示方法。

理解:平面直角坐标系的有关概念,函数图象所表示的意义。

掌握:会用描点法画出函数的图象,会发现和提出函数的实例,会求自变量的取值范围,会探索具体问题中的数量和变化规律。

1.二、命题规律考情分析:本部分内容是初中的基础内容,也是中考的重点内容,既可单独考查,也可以与后面的其他知识综合命题考查,但难度不大。

预测2014年本部分的考试内容仍然同往年一样,不会有变化!三、知识梳理(一)基本知识点1.平面直角坐标系的概念两条互相过原点且垂直的数轴构成平面直角坐标系。

2.平面直角坐标系的特征原点坐标(0,0);第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-); x 轴的点(a ,0);y 轴的点(0,a ); 第一、三象限角平分线上的点(a ,a );第二、四象限角平分线上的点(-a ,a );3.平面直角坐标系中的点与实数对的关系 坐标系内的点与有序实数对是一一对应的,不同位置点的坐标特征不同; 在坐标系中由一个坐标可以确定一个点的位置,不同位置点的坐标也是不同的;同一平面内一个点在不同的坐标系中坐标也不相同。

4.特殊点的坐标(1)平行于x 轴直线上的点的纵坐标相等;平行于y 直线上的点的横坐标相等.。

(2)点的坐标与线段长度 点到x 轴的距离是该点纵坐标的绝对值; 点到y 轴的距离是该点横坐标的绝对值;由点到坐标轴的距离加上性质符号可得点的坐标。

(3)线段的中点坐标若A (x 1,y 1)、B (x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +)。

5.坐标系中点的变换 (1)点的平移变换图形的平移中对应点的坐标变化,:上下平移,纵坐标上加下减;左右平移,横坐标左减右加。

(2)点的轴对称和中心对称变换 点A (a,b )关于x 轴的对称点的坐标为(a,-b ); 点A (a,b )关于y 轴的对称点的坐标为(-a,b ); 点A (a,b )关于原点的对称点的坐标为(-a,-b ); 点A (a,b )关于直线y=x 的对称点的坐标为(b,a );点A (a,b )关于直线y=-x 的对称点的坐标为(-b,-a );(3)点的旋转变换旋转改变的是位置而不是形状,明确旋转前后的对应关系,作垂直,求垂线段的长可得点的坐标。

中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件

中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件
对自变量x的不同取值,y的值可以相同.
③在某个变化过程中处于主导地位的变量即为自变量,随之变
化且对应值有唯一确定性的另一个变量即为该自变量的函数.
(4)函数自变量取值范围.
①不同类型的函数关系式中自变量取值范围的求解方法:
函数解析式
整式型(y=ax+b)
自变量的取值范围
全体实数,但在实际问题中要注意限
向上平移b个单位
向下平移b个单位
平移后点P'的坐标
特征
(x-a,y)
左减
(x+a,y)
(x,y+b)
(x,y-b)
右加
上加
下减

⁠(Βιβλιοθήκη )中心对称的坐标特征:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)
关于原点的对称点为P'(-x,-y).
(8)图形在坐标系中的旋转的坐标特征.
图形(点)的旋转与坐标变化:
① 点 P ( x , y ) 绕 坐 标 原 点 顺 时 针 旋 转 9 0 °, 其 坐 标 变 为
P'(y,-x);
②点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P'
(-x,-y);
③点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P’
(-y,x);
④点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P'
间的距离为|y1-y2|.
任意两点P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标
1 +2 1 +2
为(

);
2
2
任 意 两 点 P1 ( x1 , y1 ) , P2 ( x2 , y2 ) , 则 线 段 P1P2 =

新初中数学函数之平面直角坐标系解析含答案

新初中数学函数之平面直角坐标系解析含答案

新初中数学函数之平面直角坐标系解析含答案一、选择题1.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为( )A .()23,2B .()4,2C .(4,23D .(2,23 【答案】C【解析】【分析】 由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到2223AD OA '-=于是得到结论.【详解】∵AD ′=AD=4, AO=12AB=2, ∴OD ′2223AD OA '-=∵C ′D ′=4,C′D′∥AB ,∴C ′(4,3),故选C .【点睛】考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD ,又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.如果点在第四象限,那么m 的取值范围是( ). A .B .C .D .【答案】D【解析】【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p (m ,1-2m )在第四象限,∴m >0,1-2m <0,解得:m >,故选D .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.4.点P (a ,b )在y 轴右侧,若P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(3,2)或(3,﹣2)D .(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P 在y 轴右侧可知点P 在第一象限或第四象限,结合点P 到x 轴的距离是2可知点P 的纵坐标是2或2-,而再根据其到y 轴的距离是3得出点P 的横坐标是3,由此即可得出答案.【详解】∵点P 在y 轴右侧,∴点P 在第一象限或第四象限,又∵点P 到x 轴的距离是2,到y 轴的距离是3,∴点P 的纵坐标是2或2-,横坐标是3,∴点P 的坐标是(3,2)或(3,2-),故选:C .【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键.5.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.6.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7.如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .()2,23B .()2,2-C .()2,23-D .()1,3- 【答案】C【解析】【分析】 连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=o o ,OF=4. ∴GF=2,OG=23.∴F (-2,23).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.8.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23π个单位长度/秒,则2019秒时,点P 的坐标是( )A .()2019,0B .()2019,3C .()2019,3-D .()2018,0【答案】C【解析】【分析】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数),根据锐角三角函数和扇形的弧长公式求得414+34+442(41,3),(42,0),(43,3),(44,0)n n n n P n P n P n P n +++++-+,根据201945043=⨯+即可求解点P 的坐标.【详解】如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数)2,60OA AOB ︒=∠=Qsin 3cos 1AB OA AOB OB OA AOB ∴=⋅∠==⋅∠=,圆心角为60°的扇形的弧长为60221803ππ⨯= 12345(13),(2,0),(3,3)(4,0),3),,P P P P P ∴-L1244(41,3),n n P n P ++∴+4+34+4(42,0),(43,3),(44,0)n n n P n P n ++-+201945043=⨯+Q∴2019秒时,点P 的坐标为()2019,3-故答案为:C .【点睛】本题考查了坐标类的规律题,掌握各点坐标的规律是解题的关键.9.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位到达3(1,2)P -,第4次向右跳动3个单位到达4(2,2)P ,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点2019P 的坐标为( ).A .(505,1010)B .(505,505)-C .(505,1010)-D .(505,505)-【答案】C【解析】【分析】 设第n 次跳动至点Pn ,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)”,依此规律结合2019=504×4+3即可得出点P 2019的坐标.【详解】设第n 次跳动至点Pn ,观察发现:P (1,0),P 1(1,1),P 2(−1,1),P 3(−1,2),P 4(2,2),P 5(2,3),P 6(−2,3),P 7(−2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数).∵2019=504×4+3,∴P 2019(-504-1,504×2+2),即(505,1010)-.故选:C .【点睛】本题考查了规律型中点的坐标,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数)”是解题的关键.10.如图,若A、B两点的坐标分别为(﹣3,5)、(3,5),则点C坐标为()A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.11.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C12.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.13.如果点P在第三象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(﹣5,4)D.(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.14.如图,在菱形OABC 中,30AOC ∠=︒,4OA =,以O 为坐标原点,以OA 所在的直线为x 轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点A ,B 为圆心,以大于2AB 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交BC 于点P .则点P 的坐标为( )A .(4,2)B .438,23⎛⎫- ⎪ ⎪⎝⎭C .234,23⎛⎫+ ⎪ ⎪⎝⎭D .()33,2 【答案】C【解析】【分析】 延长BC 交y 轴于点D 可求OD ,CD 的长,进一步求出BD 的长,再解直角三角形BPE ,求得BP 的长,从而可确定点P 的坐标.【详解】延长BC 交y 轴于点D ,MN 与AB 将于点E ,如图,∵四边形OABC 是菱形,∠AOC=30°,∴OA=OC=AB=BC=4,BC ∥OA ,∠ABC=30°,∴∠OCD=∠AOC=30°,∴OD=12OC=2,即点P 的纵坐标是2. ∴3∴BD=BC+CD=4+23,∵MN是AB的垂直平分线,∴BE=12AB=2,∴BP=43cos303BE==︒∴DP=BD-BP=4+23-43=4+23.∴点P的坐标为234,23⎛⎫+⎪⎪⎝⎭故选C.【点睛】此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.15.如图,在平面直角坐标系中.四边形OABC是平行四边形,其中()()2,03,1,A B、将ABCDY在x轴上顺时针翻滚.如:第一次翻滚得到111,AB C OY第二次翻滚得到1122B AO CY,···则第五次翻滚后,C点的对应点坐标为()A.(622,2+B.2,622+C.2,622-D.(622,2-【答案】A【解析】【分析】ABCDY在x轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A的坐标,再利用平移的性质求出C的对应点坐标即可.【详解】连接AC,过点C作CH⊥OA于点H,∵四边形OABC是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2, ∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC , ∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.16.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.17.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(3,4)B .(-3,4)C .(-4,3)D .(4,3)【答案】A【解析】【分析】根据题意,P 点应在第一象限,横、纵坐标为正,再根据P 点到坐标轴的距离确定点的坐标.【详解】解:∵P 点位于y 轴右侧,x 轴上方,∴P 点在第一象限,又∵P 点距y 轴3个单位长度,距x 轴4个单位长度,∴P 点横坐标为3,纵坐标为4,即点P 的坐标为(3,4).故选A .【点睛】本题考查了点的位置判断方法及点的坐标几何意义.18.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.19.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)【答案】B【解析】【分析】根据x 轴上点的纵坐标为0,可得P 点的纵坐标,根据点P 到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】由x 轴上的点P ,得P 点的纵坐标为0,由点P 到y 轴的距离为3,得P 点的横坐标为3或-3,∴点P 的坐标为(3,0)或(-3,0),故选B .【点睛】本题考查了点的坐标,利用y 轴上点的横坐标为得出P 点的横坐标是解题关键,注意点到x 轴的距离是点的纵坐标的绝对值.20.下列结论:①坐标为3-的点在经过点(3,0)-且平行于y 轴的直线上;②0m ≠时,点()2,P m m -在第四象限;③点()3,4-关于y 轴对称的点的坐标是(3,4)--;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1). 其中正确的是( ).A .①③B .②④C .①④D .②③ 【答案】C【解析】【分析】依据点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征,即可得到正确结论.【详解】①横坐标为3-的点在经过点(3,0)-且平等于y 轴的直线上,故正确;②当0m ≠时,点()2,P m m -在第四象限或第一象限,故错误;③与点()3,4-关于y 对称点的坐标是(3,4),故错误;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1),故正确.故选:C .【点睛】本题考查了点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征.。

最新初中数学函数之平面直角坐标系技巧及练习题附答案解析

最新初中数学函数之平面直角坐标系技巧及练习题附答案解析

最新初中数学函数之平面直角坐标系技巧及练习题附答案解析一、选择题1.下列说法中,正确的是( )A .点P (3,2)到x 轴距离是3B .在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C .若y =0,则点M (x ,y )在y 轴上D .在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A 、点P (3,2)到x 轴距离是2,此选项错误;B 、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C 、若y =0,则点M (x ,y )在x 轴上,此选项错误;D 、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确; 故选D .【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.2.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABOC 是正方形,其中,点A 在第二象限,点,B C 在x 轴、y 轴上.若正方形ABOC 的面积为36,则点A 的坐标是( )A .()6,6-B .()6,6-C .(6,6-D .6,6- 【答案】B【解析】【分析】 由正方形的面积可以把正方形的边长计算出来,根据点A 在第二象限和,B C 在x 轴、y 轴上,可以得到点A 的坐标.【详解】解:∵正方形ABOC 的面积为36,∴假设正方形ABOC 的边长为x ,则236x =,解得6x =或者6x =-(舍去),又∵点A 在第二象限,因此,A 点坐标为()6,6-,点,B C 在x 轴、y 轴上,故B 为答案.【点睛】本题主要考查了正方形的性质、正方形的面积公式以及直角坐标系的基本特点,知道正方形面积能反过来求正方形的边长是解题的关键.3.若点P(x ,y)在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是( )A .(-2,3)B .(-2,-3)C .(2,-3)D .(2,3)【答案】B【解析】【分析】根据点P 到x 轴的距离为3,则这一点的纵坐标是3或-3,到y 轴的距离为2,那么它的横坐标是2或-2,再根据点P 所处的象限即可确定点P 的坐标.【详解】∵点P 到x 轴的距离为3,∴点的纵坐标是3或-3,∵点P 到y 轴的距离为2,∴点的横坐标是2或-2,又∵点P 在第三象限,∴点P 的坐标为:(-2,-3),故选B.【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B【解析】 试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .5.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选C.【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.6.在平面直角坐标系中,点P(x﹣3,x+3)是x轴上一点,则点P的坐标是()A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.7.如图,在菱形ABCD中,点,B C在x轴上,点A的坐标为()0,23,分别以点,A B为圆心、大于12AB的长为半径作弧,两弧相交于点,E F.直线EF恰好经过点,D则点B的坐标为()A.()1,0B.)3,0C.()2,0D.()3,0【答案】C【解析】【分析】连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出OB=2,从而得到B点坐标.【详解】解:连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,23),∴OA=23,∵∠ABO=60°,∠AOB=90°,∴∠BAO=30°,∴在Rt△AOB中,AB=2OB,∵OB2+OA2=AB2,232=(2OB)2,∴OB2+()∴OB=2(舍负),∴B(2,0).故选:C.【点睛】本题考查了作图基本作图:作已知线段的垂直平分线,也考查了线段垂直平分线的性质和菱形的性质以及30°的直角三角形的特殊性质.8.如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是()A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)【答案】C【解析】【分析】【详解】∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2),故选C..【点睛】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y轴.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【答案】D【解析】【分析】首先由正方形ABCD,顶点A(1,1)、B(3,1)、C(3,3),然后根据题意求得第1次、2次、3次变换后的点C的对应点的坐标,即可得规律:第n次变换后的点C的对应点的为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3),继而求得把正方形ABCD连续经过2019次这样的变换得到正方形ABCD的点C的坐标.∵正方形ABCD,顶点A(1,1)、B(3,1),∴C(3,3).根据题意得:第1次变换后的点C的对应点的坐标为(3﹣1,﹣3),即(2,﹣3),第2次变换后的点C的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n次变换后的点C的对应点的为:当n为奇数时为(3﹣n,﹣3),当n为偶数时为(3﹣n,3),∴连续经过2019次变换后,正方形ABCD的点C的坐标变为(﹣2016,﹣3).故选D.【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点C的对应点的坐标为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3)是解此题的关键.10.在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=-x上B.直线y=x上C.双曲线y=1xD.抛物线y=x2上【答案】C【解析】【分析】【详解】解:A、若此点坐标是(0,0)时,在直线y=-x上,故本选项错误;B、若此点坐标是(0,0)时,在直线y=x上,故本选项错误;C、因为双曲线y=1x上的点必须符合xy=1,故x、y同号与已知矛盾,故本选项正确;D、若此点坐标是(0,0)时,在抛物线y=x2上,故本选项错误.故选C.【点睛】本题考查反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.11.点P(a,b)在第四象限,则点P到x轴的距离是()A.a B.b C.|a| D.|b|【答案】D【解析】∵点P(a,b)在第四象限,∴b<0,∴点P到x轴的距离是|b|.12.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.13.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故选D.【点睛】本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.14.如图,在菱形OABC 中,30AOC ∠=︒,4OA =,以O 为坐标原点,以OA 所在的直线为x 轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点A ,B 为圆心,以大于2AB 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交BC 于点P .则点P 的坐标为( )A .(4,2)B .438,23⎛⎫- ⎪ ⎪⎝⎭C .23423⎛⎫+ ⎪ ⎪⎝⎭D .()33,2 【答案】C【解析】【分析】 延长BC 交y 轴于点D 可求OD ,CD 的长,进一步求出BD 的长,再解直角三角形BPE ,求得BP 的长,从而可确定点P 的坐标.【详解】延长BC 交y 轴于点D ,MN 与AB 将于点E ,如图,∵四边形OABC是菱形,∠AOC=30°,∴OA=OC=AB=BC=4,BC∥OA,∠ABC=30°,∴∠OCD=∠AOC=30°,∴OD=12OC=2,即点P的纵坐标是2.∴DC=23,∴BD=BC+CD=4+23,∵MN是AB的垂直平分线,∴BE=12AB=2,∴BP=43 cos303BE==︒∴DP=BD-BP=4+23-43=4+23.∴点P的坐标为23 4,23⎛⎫+⎪ ⎪⎝⎭故选C.【点睛】此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.15.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为()2,3,则菱形OABC的面积是()A6B13C 3132D.313【答案】D【解析】【分析】作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13 ∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.16.m mn -有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.17.在平面直角坐标系中,以A (0,2),B (﹣1,0),C (0.﹣2),D 为顶点构造平行四边形,下列各点中,不能作为顶点D 的坐标是( )A .(﹣1,4)B .(﹣1,﹣4)C .(﹣2,0)D .(1,0) 【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,4)若以BC 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,-4)若以AC 为对角线,B ,D 关于y 轴对称,∴D (1,0)故选C .【点睛】本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.在平面直角坐标系中,点(一6,5)位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B .【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.20.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23π个单位长度/秒,则2019秒时,点P 的坐标是( )A .()2019,0B .()2019,3C .()2019,3-D .()2018,0【答案】C【解析】【分析】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数),根据锐角三角函数和扇形的弧长公式求得414+34+442(41,3),(42,0),(43,3),(44,0)n n n n P n P n P n P n +++++-+,根据201945043=⨯+即可求解点P 的坐标.【详解】如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数)2,60OA AOB ︒=∠=Qsin 3cos 1AB OA AOB OB OA AOB ∴=⋅∠==⋅∠=,圆心角为60°的扇形的弧长为60221803ππ⨯=12345(1(2,0),(3,(4,0),,P P P P P ∴L1244(41n n P n P ++∴+4+34+4(42,0),(43,(44,0)n n n P n P n +++ 201945043=⨯+Q∴2019秒时,点P 的坐标为(2019,故答案为:C .【点睛】本题考查了坐标类的规律题,掌握各点坐标的规律是解题的关键.。

专题10 平面直角坐标系及函数初步(解析版)

专题10 平面直角坐标系及函数初步(解析版)

专题10 平面直角坐标系及函数初步命题点1 平面直角坐标系中点的坐标特征1. 已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】∵点P(0,m)位于y轴负半轴,∴m<0.∴-m>0.-m+1>0,∴点M(-m,-m+1)的横坐标和纵坐标都大于0,故其在第一象限.2. 在平面直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A. (4,-3)B. (-4,3)C. (0,-3)D. (0,3)第3题图【答案】C【解析】平面直角坐标系内的点关于原点对称,则横纵坐标均要变号,所以(-2,3)关于原点的对称点为(2,-3),然后根据“左减右加”的平移规则可知向左平移2个单位长度后为(0,-3),故选C.3. 如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )A. O1B. O2C. O3D. O4【答案】 A【解析】∵m∥x轴,n∥y轴,∴如解图,分别过O1、O2、O3、O4作直线m,n的平行线,即可构成以O1,O2,O3,O4为坐标原点的直角坐标系.∵A(-4,2),B(2,-4),∴点A到x 轴的距离为到y 轴距离的12,点B 到x 轴的距离为到y 轴距离的2倍,则只有O 1符合题意.故选A.4. 在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是________.【答案】(-2,3)【解析】∵点A 的坐标是(2,-3),作点A 关于x 轴的对称点A ′,∴A ′的坐标为(2,3),∵作点A ′关于y 轴的对称点,得到点A ″,∴点A ″的坐标是(-2,3).5. 已知平行四边形ABCD 的顶点A 在第三象限,对角线AC 的中点在坐标原点,一边AB 与x 轴平行且AB =2,若点A 的坐标为(a ,b),则点D 的坐标为________.【答案】 (-a -2,-b )或(-a +2,-b )【解析】当点A 、B 在y 轴异侧时,如解图①,∵AB 与x 轴平行且AB =2,A (a ,b ),∴B (a +2,b ),∵对角线AC 的中点在坐标原点,∴点A 、C 关于原点对称,∵四边形ABCD 为平行四边形,∴点B 、D 关于原点对称,∴D (-a -2,-b );当点A 、B 在y 轴同侧时,如解图②,同理可得B (a -2,b ),则D (-a +2,-b ).故点D 的坐标为(-a -2,-b )或(-a +2,-b ).第5题解图命题点2 函数自变量的取值范围6. 函数y =1x +2中,x 的取值范围是( )A . x ≠0B . x >-2C . x <-2D . x ≠-2【答案】D【解析】要使函数有意义,则x +2≠0,则x ≠-2.7. 在函数y=1 2x+4x中,自变量x的取值范围是( )A. x>0B. x≥-8C. x≥-8且x≠0D. x>0且x≠-8【答案】C【解析】根据题意可得12x+4≥0且x≠0,解得x≠0且x≥-8.8. 函数y=x1-x+1中自变量x 的取值范围是____________________.【答案】x≥-1且x≠0【解析】若函数y=x1-x+1有意义,就需满足⎩⎨⎧1-x+1≠0x+1≥0,解得⎩⎪⎨⎪⎧x≠0x≥-1.命题点3 函数图象的分析与判断类型一与实际问题结合9. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米.甲、乙两名长跑爱好者同时从点A出发.甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )【答案】A【解析】由题意可知:甲所跑路程分为3个时段:开始1小时,以15千米/时的速度匀速由点A跑至点B,所跑路程为15千米;第1小时至第32小时休息,所跑路程不变;第32小时至第2小时,以10千米/时的速度匀速跑至终点C,所跑路程为5千米,即甲累计所跑路程为20千米时,所用时间为2小时,并且甲开始1小时内的速度大于第32小时至第2小时之间的速度.因此选项A 、C 符合甲的情况.乙从点A 出发,以12千米/时的速度匀速一直跑至终点C ,所跑路程为20千米,所用时间为53小时,并且乙的速度小于甲开始的速度但大于甲第3时段的速度.所以选项A 、B 符合乙的情况.故选A.10.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误..的是( ) A . 乙前4秒行驶的路程为48米 B . 在0到8秒内甲的速度每秒增加4米 C . 两车到第3秒时行驶的路程相等 D . 在4至8秒内甲的速度都大于乙的速度第10题图第11题图【答案】C【解析】根据图象乙前4秒属于匀速行驶,所以路程为4×12=48(米),故A 正确;甲在0-8 s 内速度由0米/秒增加至32米/秒,所以速度每秒增加4米,故B 正确;甲在0-8 s 内速度时间关系为y =4x ,当x =3时,y =12,S 甲=12×3×122=18(米),S 乙=12×3=36(米),S 甲<S 乙,故C 错误;在4-8s 内,甲的图象一直在乙图象的上方,故甲的速度都大于乙的速度,故D 正确.故选C.11.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回到家.图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s(km )与行走时间t(min )之间的函数关系.则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )【答案】B【解析】由图可知,OA 段离家的距离s 逐渐增大,AB 段离家的距离s 不变,BC 段离家的距离s 又逐渐减小,选项B 中从圆心至圆弧上距离逐渐增大,在圆弧上距离圆心距离保持不变,圆弧另一端至圆心距离又逐渐减小,符合图中离家距离的变化.12. 如图所示,向一个半径为R ,容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )第12题图第13题图【答案】A【解析】当x <R 时,球形容器中水平面圆的半径逐渐增大,故随着x 的增大,容器内水的体积增大的速度为先小后大,故排除B 、C 、D ;当x >R 时,球形容器中水平面圆的半径逐渐减小,故随着x 的增大,容器内水的体积增大的速度为先大后小,故选A.13.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是________米.【答案】175【解析】由图象可知甲前30秒跑了75米,则甲的速度为7530=2.5米/秒,再由图象可知,甲出发180秒时,两人相离0千米,这说明甲出发后180秒时,乙追上了甲,此时两人所行路程相等为180×2.5=450米,乙用的时间为180-30=150秒,所以乙的速度为450150=3米/秒,由此可以求出乙跑到终点所用时间为15003=500秒,此时甲跑的时间为500+30=530秒,甲已跑路程为530×2.5=1325米,甲距终点的距离为1500-1325=175米.类型二 与几何图形结合第14题图14.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B),则△ABP 的面积S 随着时间t 变化的函数图象大致为( )【答案】B【解析】设△ABP 中,AB 边上的高为h ,S =12AB ·h ,当点P 在AD 边上运动时,AB 不变,h 逐渐增大,∴S 随t 增大而增大,图象呈上升趋势;当点P 在DE 边上运动时,AB 、h 均不变;∴S 不随t 变化,图象为水平线段;当点P 在EF 边上运动时,h 逐渐减小,AB 不变,∴S 随t 增大而减小,图象呈下降趋势;当点P 在FG 边上运动时,AB 和h 均不变,S 不随t 变化,图象为水平线段;当点P 在GB 边上运动时,AB 不变,h 逐渐减小,∴S 随t 增大而减小,图象呈下降趋势.15. 如图,边长为4个单位长度的正方形ABCD 的边AB 与等腰直角三角形EFG 的斜边FG 重合,△EFG 以每秒1个单位长度的速度沿BC 向右匀速运动(保持FG ⊥BC),当点E 运动到CD 边上时△EFG 停止运动.设△EFG 的运动时间为t 秒,△EFG 与正方形ABCD 重叠部分的面积为S ,则S 关于t 的函数大致图象为( )第15题图【答案】B【解析】由题易知,△EFG 斜边FG 上的高为2,当0≤t ≤2时,S =12(4-2t +4)×t =-t 2+4t ,其图象为开口向下的抛物线的一部分;当2<t ≤4时,S =12×4×2=4,其图象为平行于x 轴的一条线段;当4<t ≤6时,S =12×2(6-t )(6-t )=(6-t )2,其图象为开口向上的抛物线的一部分.故选B.16.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②所示,则当x =9时,点R 应运动到( )A . M 处B . N 处C . P 处D . Q 处第16题图【答案】D【解析】△MNR 的变化是高的改变,底边不变,当R 运动到点P 时面积最大,从点P 到点Q ,面积不变,从点Q 到点M ,面积变小,∴当x =9时,点R 在点Q 处.17. 某校校园内有一个大正方形花坛,如图甲所示.它由四个边长均为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD 如图乙所示,DG =1米,AE =AF =x 米,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y 与x 的函数图象大致是( )第17题图【答案】A【解析】∵构成大正方形的每个小正方形的边长均为3米,AE =AF =x 米,DG =1米,∴DE =(3-x )米.∴每个小正方形中不种植花卉部分面积为12x 2+12(3-x ) =12(x 2-x +3),于是每个小正方形中种植花卉的面积(五边形面积)为9-12(x 2-x +3).∴y 与x 之间函数关系为y =4[9-12(x 2-x +3)]=-2x 2+2x +30=-2(x -0.5)2+30.5(x <3).分析函数图象,只有选项A 的图象符合题意.18. 如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )第18题图【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°. (1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形, ∴PD =BD =x ,y =12x 2(0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分. 综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.19. 如图,在平行四边形ABCD 中,∠A =60°,AB =6厘米,BC =12厘米,点P 、Q 同时从顶点A 出发,点P 沿A →B →C →D 方向以2厘米/秒的速度前进,点Q 沿A →D 方向以1厘米/秒的速度前进,当Q 到达点D 时,两个点随之停止运动,设运动时间为x 秒,P 、Q 经过的路径 与线段PQ 围成的图形的面积为y(cm 2),则y 与x 的图象大致是( )【答案】A【解析】当点P 在AB 上时,即0≤x ≤3时,P 、Q 经过的路径与线段PQ 围成的图形的面积为12x ×3x =32x 2;当点P 在BC 上时,即3≤x ≤9时,P 、Q 经过的路径与线段PQ 围成的图形的面积为12×3×33+12×(2x -6+x -3)×33=932x -1832,y 随x 的增大而增大;当点P 在CD 上时,即9≤x ≤12时,P 、Q 经过的路径与线段PQ 围成的图形的面积为12×33-12(12-x )(123-3x )=-32x 2+123x -363;综上,图象A 符合题意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题10 平面直角坐标系及函数初步命题点1 平面直角坐标系中点的坐标特征1. 已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】∵点P(0,m)位于y轴负半轴,∴m<0.∴-m>0.-m+1>0,∴点M(-m,-m+1)的横坐标和纵坐标都大于0,故其在第一象限.2. 在平面直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A. (4,-3)B. (-4,3)C. (0,-3)D. (0,3)第3题图【答案】C【解析】平面直角坐标系内的点关于原点对称,则横纵坐标均要变号,所以(-2,3)关于原点的对称点为(2,-3),然后根据“左减右加”的平移规则可知向左平移2个单位长度后为(0,-3),故选C.3. 如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )A. O1B. O2C. O3D. O4【答案】 A【解析】∵m∥x轴,n∥y轴,∴如解图,分别过O1、O2、O3、O4作直线m,n的平行线,即可构成以O1,O2,O3,O4为坐标原点的直角坐标系.∵A(-4,2),B(2,-4),∴点A到x 轴的距离为到y 轴距离的12,点B 到x 轴的距离为到y 轴距离的2倍,则只有O 1符合题意.故选A.4. 在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是________.【答案】(-2,3)【解析】∵点A 的坐标是(2,-3),作点A 关于x 轴的对称点A ′,∴A ′的坐标为(2,3),∵作点A ′关于y 轴的对称点,得到点A ″,∴点A ″的坐标是(-2,3).5. 已知平行四边形ABCD 的顶点A 在第三象限,对角线AC 的中点在坐标原点,一边AB 与x 轴平行且AB =2,若点A 的坐标为(a ,b),则点D 的坐标为________.【答案】 (-a -2,-b )或(-a +2,-b )【解析】当点A 、B 在y 轴异侧时,如解图①,∵AB 与x 轴平行且AB =2,A (a ,b ),∴B (a +2,b ),∵对角线AC 的中点在坐标原点,∴点A 、C 关于原点对称,∵四边形ABCD 为平行四边形,∴点B 、D 关于原点对称,∴D (-a -2,-b );当点A 、B 在y 轴同侧时,如解图②,同理可得B (a -2,b ),则D (-a +2,-b ).故点D 的坐标为(-a -2,-b )或(-a +2,-b ).第5题解图命题点2 函数自变量的取值范围6. 函数y =1x +2中,x 的取值范围是( )A . x ≠0B . x >-2C . x <-2D . x ≠-2【答案】D【解析】要使函数有意义,则x +2≠0,则x ≠-2.7. 在函数y=1 2x+4x中,自变量x的取值范围是( )A. x>0B. x≥-8C. x≥-8且x≠0D. x>0且x≠-8【答案】C【解析】根据题意可得12x+4≥0且x≠0,解得x≠0且x≥-8.8. 函数y=x1-x+1中自变量x 的取值范围是____________________.【答案】x≥-1且x≠0【解析】若函数y=x1-x+1有意义,就需满足⎩⎨⎧1-x+1≠0x+1≥0,解得⎩⎪⎨⎪⎧x≠0x≥-1.命题点3 函数图象的分析与判断类型一与实际问题结合9. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米.甲、乙两名长跑爱好者同时从点A出发.甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )【答案】A【解析】由题意可知:甲所跑路程分为3个时段:开始1小时,以15千米/时的速度匀速由点A跑至点B,所跑路程为15千米;第1小时至第32小时休息,所跑路程不变;第32小时至第2小时,以10千米/时的速度匀速跑至终点C,所跑路程为5千米,即甲累计所跑路程为20千米时,所用时间为2小时,并且甲开始1小时内的速度大于第32小时至第2小时之间的速度.因此选项A 、C 符合甲的情况.乙从点A 出发,以12千米/时的速度匀速一直跑至终点C ,所跑路程为20千米,所用时间为53小时,并且乙的速度小于甲开始的速度但大于甲第3时段的速度.所以选项A 、B 符合乙的情况.故选A.10.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误..的是( ) A . 乙前4秒行驶的路程为48米 B . 在0到8秒内甲的速度每秒增加4米 C . 两车到第3秒时行驶的路程相等 D . 在4至8秒内甲的速度都大于乙的速度第10题图第11题图【答案】C【解析】根据图象乙前4秒属于匀速行驶,所以路程为4×12=48(米),故A 正确;甲在0-8 s 内速度由0米/秒增加至32米/秒,所以速度每秒增加4米,故B 正确;甲在0-8 s 内速度时间关系为y =4x ,当x =3时,y =12,S 甲=12×3×122=18(米),S 乙=12×3=36(米),S 甲<S 乙,故C 错误;在4-8s 内,甲的图象一直在乙图象的上方,故甲的速度都大于乙的速度,故D 正确.故选C.11.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回到家.图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s(km )与行走时间t(min )之间的函数关系.则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )【答案】B【解析】由图可知,OA 段离家的距离s 逐渐增大,AB 段离家的距离s 不变,BC 段离家的距离s 又逐渐减小,选项B 中从圆心至圆弧上距离逐渐增大,在圆弧上距离圆心距离保持不变,圆弧另一端至圆心距离又逐渐减小,符合图中离家距离的变化.12. 如图所示,向一个半径为R ,容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )第12题图第13题图【答案】A【解析】当x <R 时,球形容器中水平面圆的半径逐渐增大,故随着x 的增大,容器内水的体积增大的速度为先小后大,故排除B 、C 、D ;当x >R 时,球形容器中水平面圆的半径逐渐减小,故随着x 的增大,容器内水的体积增大的速度为先大后小,故选A.13.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是________米.【答案】175【解析】由图象可知甲前30秒跑了75米,则甲的速度为7530=2.5米/秒,再由图象可知,甲出发180秒时,两人相离0千米,这说明甲出发后180秒时,乙追上了甲,此时两人所行路程相等为180×2.5=450米,乙用的时间为180-30=150秒,所以乙的速度为450150=3米/秒,由此可以求出乙跑到终点所用时间为15003=500秒,此时甲跑的时间为500+30=530秒,甲已跑路程为530×2.5=1325米,甲距终点的距离为1500-1325=175米.类型二 与几何图形结合第14题图14.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B),则△ABP 的面积S 随着时间t 变化的函数图象大致为( )【答案】B【解析】设△ABP 中,AB 边上的高为h ,S =12AB ·h ,当点P 在AD 边上运动时,AB 不变,h 逐渐增大,∴S 随t 增大而增大,图象呈上升趋势;当点P 在DE 边上运动时,AB 、h 均不变;∴S 不随t 变化,图象为水平线段;当点P 在EF 边上运动时,h 逐渐减小,AB 不变,∴S 随t 增大而减小,图象呈下降趋势;当点P 在FG 边上运动时,AB 和h 均不变,S 不随t 变化,图象为水平线段;当点P 在GB 边上运动时,AB 不变,h 逐渐减小,∴S 随t 增大而减小,图象呈下降趋势.15. 如图,边长为4个单位长度的正方形ABCD 的边AB 与等腰直角三角形EFG 的斜边FG 重合,△EFG 以每秒1个单位长度的速度沿BC 向右匀速运动(保持FG ⊥BC),当点E 运动到CD 边上时△EFG 停止运动.设△EFG 的运动时间为t 秒,△EFG 与正方形ABCD 重叠部分的面积为S ,则S 关于t 的函数大致图象为( )第15题图【答案】B【解析】由题易知,△EFG 斜边FG 上的高为2,当0≤t ≤2时,S =12(4-2t +4)×t =-t 2+4t ,其图象为开口向下的抛物线的一部分;当2<t ≤4时,S =12×4×2=4,其图象为平行于x 轴的一条线段;当4<t ≤6时,S =12×2(6-t )(6-t )=(6-t )2,其图象为开口向上的抛物线的一部分.故选B.16.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②所示,则当x =9时,点R 应运动到( )A . M 处B . N 处C . P 处D . Q 处第16题图【答案】D【解析】△MNR 的变化是高的改变,底边不变,当R 运动到点P 时面积最大,从点P 到点Q ,面积不变,从点Q 到点M ,面积变小,∴当x =9时,点R 在点Q 处.17. 某校校园内有一个大正方形花坛,如图甲所示.它由四个边长均为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD 如图乙所示,DG =1米,AE =AF =x 米,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y 与x 的函数图象大致是( )第17题图【答案】A【解析】∵构成大正方形的每个小正方形的边长均为3米,AE =AF =x 米,DG =1米,∴DE =(3-x )米.∴每个小正方形中不种植花卉部分面积为12x 2+12(3-x ) =12(x 2-x +3),于是每个小正方形中种植花卉的面积(五边形面积)为9-12(x 2-x +3).∴y 与x 之间函数关系为y =4[9-12(x 2-x +3)]=-2x 2+2x +30=-2(x -0.5)2+30.5(x <3).分析函数图象,只有选项A 的图象符合题意.18. 如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )第18题图【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°. (1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形, ∴PD =BD =x ,y =12x 2(0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分. 综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.19. 如图,在平行四边形ABCD 中,∠A =60°,AB =6厘米,BC =12厘米,点P 、Q 同时从顶点A 出发,点P 沿A →B →C →D 方向以2厘米/秒的速度前进,点Q 沿A →D 方向以1厘米/秒的速度前进,当Q 到达点D 时,两个点随之停止运动,设运动时间为x 秒,P 、Q 经过的路径 与线段PQ 围成的图形的面积为y(cm 2),则y 与x 的图象大致是( )【答案】A【解析】当点P 在AB 上时,即0≤x ≤3时,P 、Q 经过的路径与线段PQ 围成的图形的面积为12x ×3x =32x 2;当点P 在BC 上时,即3≤x ≤9时,P 、Q 经过的路径与线段PQ 围成的图形的面积为12×3×33+12×(2x -6+x -3)×33=932x -1832,y 随x 的增大而增大;当点P 在CD 上时,即9≤x ≤12时,P 、Q 经过的路径与线段PQ 围成的图形的面积为12×33-12(12-x )(123-3x )=-32x 2+123x -363;综上,图象A 符合题意.。

相关文档
最新文档