弹性力学总结与复习(2014)概论
弹性力学总结
1、绪论1-1 弹性力学的研究对象和任务课程研究对象研究内容理论力学质点、质点系(刚体)机械运动的一般规律材料力学单根杆件弹性体在外因素作用下所产生的内力、应力、应变和位移,提供强度、刚度和稳定性计算的理论。
结构力学杆系结构弹性力学实体结构、板壳总复习z y x σσσ,,zxyz xy τττ,,zy x εεε,,zxyz xy γγγ,,wv u ,,zy x f f f ,,zy x ff f ,,基本量符号量纲正负号规定应力分量正应力N/m 2正面上沿坐标轴正向为正负面上沿坐标轴负向为正切应力N/m 2应变分量正应变无量纲线段伸长为正切应变无量纲线段间夹角变小为正位移分量m 沿坐标轴正向为正外力体力分量N/m 3面力分量N/m 21-2 弹性力学的基本量直角坐标表示的基本量基本假定引用后的结果物理假设(理想弹性体假设)连续性应力、应变和位移可用坐标的连续函数表示均匀性物理的弹性常数不随坐标位置而改变各向同性物理的弹性常数不随方向而改变完全弹性保证了应力与应变之间的一一对应的线性关系几何假设小变形基本方程化为线性方程,可引用硬化原理、叠加原理1-3 弹性力学的基本假定1-4 弹性力学问题已知量:物体的形状和大小(边界);物体的弹性常数(E、 、G);物体的体力、面力;物体的边界约束。
待求量:应力分量、形变分量、位移分量。
超静定问题。
物理量平面应力问题平面应变问题Oxy平面内的分量(基本未知量)Z方向的分量(不存在或不独立)Oxy平面内的分量(基本未知量)Z方向的分量(不存在或不独立)位移分量仅是x、y的函数,与z无关由积分得到仅是x、y的函数,与z无关应变分量应力分量弹性体形状特征物体厚度方向(Z向)的尺寸远小于板面尺寸(X、Y)的等厚度薄板。
物体长度方向(Z向)的尺寸远大于截面尺寸(X、Y)的等截面柱体。
弹性体受力特征外力平行于板面,作用在板的周边,沿厚度不变;板面上无面力,都为零。
外力垂直于柱体轴线,且沿长度方向(Z向)不变。
弹性力学期末复习提纲_854903739
《弹性力学》期末复习提纲第七章、平面问题1. 会正确区分是否是平面问题,如果是,具体属于哪类平面问题(平面应力、平面应变、广义平面应力、广义平面应变)?2. 明确各类平面问题中的各种非零变量,能够正确写出平面问题的平衡方程、几何方程、本构方程(注意平面应力和平面应变问题的区别,应力→应变、应变→应力)和边界条件。
极坐标下的方程不用专门记忆。
3. 知道根据应变协调条件,严格的平面应力问题必须满足线性条件:ax by c =++Θ或z Ax By C ε=++。
4. 知道根据几何方程,严格的平面应力问题必须满足变形后是平截面的条件:()w Ax By C z =++。
5. 会用位移法求解简单的平面问题,特别是轴对称问题和轴反对称问题(比如7-19题)。
6. 会用Airy 应力函数求解平面问题(直角坐标系、极坐标系,轴对称、非轴对称)。
要求能根据Airy 应力函数的基本性质来构造应力函数,并进一步通过双调和方程得到应力函数的通解,最后由边界条件确定其中的待定常数。
附录B 、泛函极值与变分法(不会专门考,但要求会用)1. 知道泛函和容许自变函数的概念。
2. 会正确计算给定泛函的变分。
3. 会求泛函的无条件极值问题。
4. 会求泛函的条件极值问题。
第十章、能量原理1. 明确“真实状态”、“变形可能状态”和“静力可能状态”的相关概念。
2. 理解“可能功”、“变形功”和“虚功”的概念。
对具体问题能正确写出其广义力和广义位移。
3.明确系统的总势能(应变能+外力势)和总余能(应变余能+余势)的物理意义、相互关系和具体的表达式。
对于具体问题,能够正确写出系统的总势能和总余能。
(注意:总势能中的基本未知量为位移或应变,总余能中的基本未知量为力或应力)4.明确“可能功原理”、“功的互等定理”、“虚功原理”、“极小势能原理”、“最小势能原理”、“余虚功原理”、“极小余能原理”和“最小余能原理”的:(1)表达式(2)物理意义(比如正定理、逆定理)(3)适用范围(4)各种能量原理的相互关系5.会使用“功的互等定理”解题(关键在于通过易求的状态得到难解的状态)6.会根据“虚功原理”、“极小势能原理”和“最小势能原理”,由变分法求得具体问题的欧拉方程和自然边界条件。
弹性力学总结
弹性力学总结第一章绪论一、弹性力学的内容:弹性力学的研究对象、内容和范围。
二、弹性力学的基本量1、外力(1)体力(2)面力2、内力——应力3、应变4、位移以上基本量要求掌握其定义、表达式、分量的符号、正负号规定、量纲。
三、弹性力学中的基本假定1、连续性2、完全弹性3、均匀性4、各向同性以上是对材料性质的假定,凡符合以上四个假定的物体,称为理想弹性体。
5、小变形假定(对物体的变形状态所作的假定)要求掌握各假定的内容和意义(在建立弹性力学基本方程时的作用)。
习题举例:1、弹性力学,是固体力学的一个分支,它的任务是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的(),从而解决各类工程中所提出的强度、刚度和稳定问题。
A.应力、应变和位移;B.弯矩、扭矩和剪力;C.内力、挠度和变形;D.弯矩、应力和挠度。
2、在弹性力学中,作用于物体的外力分为()。
A.体力和应力;B.应力和面力;C.体力和面力;D.应力和应变。
3、重力和惯性力为(C )。
A .应力;B .面力;C .体力;D .应变。
4、分布在物体体积内的力称为( C )。
A .应力;B .面力;C .体力;D .应变。
5、物体在体内某一点所受体力的集度的表达式及体力分量的量纲为( A )。
A .0lim V F f V∆→∆=∆,-2-2L MT ; B .0lim S F f S ∆→∆=∆,-1-2L MT ; C .0lim A F p A ∆→∆=∆,-1-2L MT ; D .0lim V F f V ∆→∆=∆,-1-2L MT 。
6、弹性力学研究中,在作数学推导时可方便地运用连续和极限的概念,是利用了( )假定。
A .完全弹性;B .连续性;C .均匀性;D .各向同性。
7、( A )四个假设是对物体的材料性质采用的基本假设,凡是符合这四个假设的物体,就称为理想弹性体。
A .完全弹性,连续性,均匀性和各向同性;B .完全弹性,连续性,均匀性和小变形;C .连续性,均匀性,各向同性和小变形;D .完全弹性,连续性,小变形和各向同性。
弹性力学基础知识
06
弹性力学的有限元法
有限元法的基本概念
有限元法是一种数值分析方法,通过将复杂的 物理系统离散化为有限个简单元(或称为元素) 的组合,来近似求解复杂的物理问题。
这些简单元在节点处相互连接,形成一个离散 的系统,其行为可以通过物理定律和数学模型 进行描述。
有限元法的核心思想是将连续的求解域离散化, 将复杂的边界条件和应力状态转化为有限个单 元的组合。
弹性力学基础知识
• 弹性力学概述 • 弹性力学的基本假设 • 弹性力学的基本方程 • 弹性力学的基本问题 • 弹性力学的能量原理与变分原理 • 弹性力学的有限元法
01
弹性力学概述
定义与特点
定义
弹性力学是一门研究弹性物体在外力 作用下变形和内力的科学。
特点
弹性力学主要关注物体在受力后发生 的变形,以及这种变形如何影响物体 的内力和应力分布。
在声学领域,有限元法可以用于分析声音的传播、噪音的来源 等。
THANKS
感谢观看
有限元法的求解步骤
单元分析
对每个单元进行受力分析,建 立单元的刚度方程。
求解方程
使用数值方法(如直接法、迭 代法等)求解整体刚度方程, 得到节点的位移和应力。
分析模型建立
首先需要建立待分析系统的数 学模型,包括对系统进行离散 化、定义节点、建立方程等。
系统组装
将所有单元的刚度方程组装成 整体的刚度方程,同时引入边 界条件和载荷。
弹性力学的能量原理与变分原理
弹性力学的能量原理
总结词
弹性力学的能量原理是描述物体在外力 作用下能量变化的重要理论,它为解决 弹性力学问题提供了基础框架。
VS
详细描述
弹性力学的能量原理指出,一个弹性系统 在外力作用下,其能量变化等于外力所做 的功与物体形变所吸收的功之和。这个原 理在解决弹性力学问题时非常有用,因为 它可以将复杂的物理现象转化为数学上的 能量平衡问题。
弹性力学复习提纲课件
边界元法
边界元法是一种只对问题 的边界进行离散化处理的 方法。
边界元法的优点在于其计 算量较小,适用于处理复 杂形状和边界条件的问题。
ABCD
边界元法通过将偏微分方 程转化为边界上的积分方 程,然后利用数值方法进 行求解。
边界元法的缺点在于其对 于内部应力分布的计算精 度较低。
多尺度弹性力学研究还关注多场耦合效应,即在温度、磁场、电场等多
种外部场的作用下,材料的弹性行为和力学性能的变化规律。
非线性弹性力学研究
非线性行为
非线性弹性力学研究关注材料在 受力作用下的非线性响应和失稳 现象,如屈曲、断裂、塑性变形等。
高强度材料
非线性弹性力学研究对于高强度 材料的性能评估和设计优化具有 重要意义,如复合装甲、航空航 天材料等。
02
应变张量
描述应变在三维空间中的分布,包括正应变和剪应变。
03
应变协调方程
确保物体在变形过程中保持连续性和协调性。
弹性力学的基本方程
平衡方程
描述物体在力的作用下保持平衡的方程。
几何方程
描述物体在变形过程中形状变化的方程。
物理方程
描述材料在受力时应力与应变关系的方程。
02
本构方程
描述材料在受力时应力与应变之间关系的方 程,通常由实验确定。
03
基于弹性力学原理,开发新型材料并优化现有材料的性能,以
满足各种工程需求。
谢谢聆听
数值模拟与实验验
证
非线性弹性力学研究需要结合数 值模拟和实验验证,以深入理解 材料的非线性行为和失稳机制, 为工程应用提供理论支持和实践 指导。
弹性力学与其他学科的交叉研 究
05
弹性力学与流体力学的交叉研究
弹性力学简答部分(纯粹个人总结)
1.什么是弹性力学弹性力学,也称弹性理论,固体力学学科的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。
2.弹性力学的基本假定(1)连续性——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。
(2)完全弹性——对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。
完全弹性分为线性弹性和非线性弹性材料弹性常数不随应力或应变的变化而改变(3)均匀性——假设弹性物体是由同一类型的均匀材料组成的。
(4)各向同性——假定物体在各个不同的方向上具有相同的物理性质。
(5)小变形——假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。
3.概念:体力:分布在物体体积内的力,如重力和惯性力。
面力:分布在物体表面上的力,如流体压力和接触力。
内力:外界因素作用下,物体内部各个部分之间的相互作用力应力:分布在物体内部任意点上的力,实质上是面力的一种应变:是描述物体受力后发生变形的相对概念的力学量位移:物体内任一点位置的移动平面应力问题:只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
(1) 几何特征:一个方向的尺寸比另两个方向的尺寸小得多。
(2)应力特征:平面应力问题只有三个应力分量:应变分量、位移分量也仅为x、y 的函数,与z 无关。
平面应变问题:(1) 几何特征:一个方向的尺寸比另两个方向的尺寸大得多,且沿长度方向几何形状和尺寸不变化。
(2)应力特征:以任一横截面为xy 面,任一纵线为z 轴。
设z方向为无限长,则沿z 方向其他变量都不变化,仅为x,y 的函数。
4.圣维南原理(用积分的方式表示)见例题圣维南原理: 若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。
5.逆解法、半逆解法逆解法:(1)根据问题的条件(几何形状、受力特点、边界条件等),假设各种满足相容方程的φ(x,y)的形式;(2)然后利用应力分量计算式,求出(具有待定系数);(3)再利用应力边界条件式,来考察这些应力函数φ(x,y)对应什么样的边界面力问题,从而得知所设应力函数φ(x,y)可以求解什么问题。
弹性力学概念复习
《弹性力学基础》期末复习
一、名词解释
弹性力学、外力、体力、面力、应力、位移、剪应力互等定理、线应变、剪应变、平面应力问题、平面应变问题、主应力和应力主面、平衡微分方程、几何方程、平面应力问题的物理方程、边界条件。
二、简单题
1.简述弹性力学中的基本假定;
2.弹性力学中对应力的符号是如何规定的;
3.请写出什么是平面应力问题和平面应变问题;
4.请写出平面问题的位移边界条件和应力边界条件;
5.简述圣维南原理的两种表述;
6.检验平面问题中的应力分量是否为正确解答的条件是什么?
7.列出应力表示的相容方程并简述其物理意义;
8. 简述半逆解法求解的具体步骤;
9. 试列出极坐标中的平衡微分方程、几何方程和物理方程。
弹性力学概论
弹性力学概论
一,绪论 二,应力状态理论 三,应变状态理论 四,应力和应变的关系 五,弹性力学问题的建立
兰州大学土木工程与力学学院
弹性力学
§1.1 弹性力学的任务、内容、研究方法 弹性力学的任务、内容、
弹性力学 ——也称弹性理论 固体力学学科的一个分支 1 任务: 研究弹性体在外界因素(外力或温度变 化等)作用下的应力、变形和位移。
兰州大学土木工程与力学学院
弹性力学
当求得主应力以后, 当求得主应力以后,利用下式求主方向
l (σ lτ lτ
xy xy x
σ ) + mτ + m (σ + mτ
yz y
yx
+ nτ
zx zy
= 0 = 0
σ ) + nτ + n (σ
z
σ ) = 0
相应的方向余弦, 为了求 σ 1 相应的方向余弦,1 , m 1 , n 1 利用上式的任意二式 l l1 (σ x σ 1 ) + m 1τ yx + n1τ zx = 0
弹性力学
完全弹性假设
——对应一定的温度,如果应力和应变 之间存在一一对应关系,而且这个关系 和时间无关,也和变形历史无关,称为 完全弹性材料。 完全弹性分为线性和非线性弹性,弹性 力学研究限于线性 线性的应力与应变关系。 线性 研究对象的材料弹性常数不随应力或应 变的变化而改变。
兰州大学土木工程与力学学院
1. 若σ1≠σ2≠σ3,特征方程无重根;应力主轴必然相互垂直; 2. 若σ1=σ2≠σ3,特征方程有两重根; σ1和σ2的方向必然垂直于σ3的方向。而σ1和σ2的方向可 以是垂直的,也可以不垂直; 3. 若σ1=σ2=σ3,特征方程有三重根; 三个应力主轴可以垂直,也可以不垂直,任何方向都 是应力主轴
弹性力学基本概念和考点汇总
弹性⼒学基本概念和考点汇总基本概念:(1)⾯⼒、体⼒与应⼒、应变、位移的概念及正负号规定(2)切应⼒互等定理:作⽤在两个互相垂直的⾯上,并且垂直于改两⾯交线的切应⼒是互等的(⼤⼩相等,正负号也相同)。
(3)弹性⼒学的基本假定:连续性、完全弹性、均匀性、各向同性和⼩变形。
(4)平⾯应⼒与平⾯应变;设有很薄的等厚度薄板,只在板边上受有平⾏于板⾯并且不沿厚度变化的⾯⼒或约束。
同时,体⼒也平⾏与板⾯并且不沿厚度⽅向变化。
这时,0,0,0z zx zy σττ===,由切应⼒互等,0,0,0z xz yz σττ===,这样只剩下平⾏于xy ⾯的三个平⾯应⼒分量,即,,x y xy yxσσττ=,所以这种问题称为平⾯应⼒问题。
设有很长的柱形体,它的横截⾯不沿长度变化,在柱⾯上受有平⾏于横截⾯且不沿长度变化的⾯⼒或约束,同时,体⼒也平⾏于横截⾯且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应⼒互等,0,0xz yz ττ==。
由胡克定律,0,0zx zy γγ==,⼜由于z ⽅向的位移w 处处为零,即0z ε=。
因此,只剩下平⾏于xy ⾯的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平⾯应变问题。
(5)⼀点的应⼒状态;过⼀个点所有平⾯上应⼒情况的集合,称为⼀点的应⼒状态。
(6)圣维南原理;(提边界条件)如果把物体的⼀⼩部分边界上的⾯⼒,变换为分布不同但静⼒等效的⾯⼒(主失相同,主矩也相同),那么,近处的应⼒分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(7)轴对称;在空间问题中,如果弹性体的⼏何形状、约束情况,以及所受的外⼒作⽤,都是对称于某⼀轴(通过该轴的任⼀平⾯都是对称⾯),则所有的应⼒、变形和位移也就对称于这⼀轴。
这种问题称为空间轴对称问题。
⼀、平衡微分⽅程:(1) 平⾯问题的平衡微分⽅程;00yxx x xy yy f x yf x yτστσ??++=++=??(记)(2) 平⾯问题的平衡微分⽅程(极坐标);10210f f ρρ?ρ?ρ?ρ?ρ?σ?τσσ?ρρ??ρσ?ττρρρ-+++=+++=1、平衡⽅程仅反映物体部的平衡,当应⼒分量满⾜平衡⽅程,则物体部是平衡的。
弹性力学总结
通过圣维南原理的使用,可以将一些难以处理的边界条件
转化为基本方程所能够满足的边界条件,使得弹性力学问题得 到解答。
应用的注意事项:
1、取代原力系的必须是静力等效力系:主失量和主矩相等。 2、应用时不能讨论局部应力场。
弹性力学问题的提出
极坐标中的基本方程和边界条件
(1)平衡微分方程
1 f 0 2 1 f 0
(2)几何方程
(4-9)
u
u 1 u u u 1 u
(4-13)
弹性力学问题的提出
(3)物理方程(平面应力问题)
1 ( ) E 1 ( ) E 2(1 ) E
xБайду номын сангаас
0, 0,
o
a ( )
a
r
rd cos ( ) r rd sin 0 rd sin ( ) r rd cos 0
y
a ( )
a
r
M
0, ( ) r rd r M 0
习题课
A cos 2 B sin 2 C D
(3)求应力分量一般表达式:将上式代入(4-15),得 应力分量为:
1 1 2 1 2 2 4 A cos 2 4 B sin 2 2 2 0 1 1 ( ) 2 2 A sin 2 2 B cos 2 C
2 2
0
2
(4-14)
弹性力学 复习资料(全) 同济大学
第五章
线性弹性本构关系
不考虑热效应,克定律。 1、应变能密度和本构关系: ★格林公式 ij
W ,其中 W 是应变能,指外力在准静态过程中所做的功全部转化为由 ij
于变形而储存在弹性体内的能量。 2、广义胡克定律: ij Eijkl kl ,其中 Eijkl 为一个四阶张量,称为弹性系数或弹性模量张量。 4、各向同性弹性体:材料沿所有方向的弹性性质都是相同的,在数学上,即应力应变关系 的分量形式与坐标系无关。 令 C12 , C11 C12 / 2 ,称为 Lame(拉梅)系数
第八章 平面问题的极坐标解答
ui ui , 在S(位移边界)上 u
3、叠加原理:基本方程和边界条件都是线性的,叠加原理成立。对于大变形问题、材料非 线性问题和边界条件非线性的小变形问题,叠加原理不成立。 4、解的存在性和唯一性:逆解法和半逆解法。 5、★位移解法:以位移作为基本未知函数,在基本方程中消去应变张量和应力张量,可导 出仅用位移表示的方程组。 ,i 2ui fi 0 Lame Navier方程:
u v 1 u v , y , xy x y 2 y x
1 x x 1 y E1 1 物理方程: y y 1 x E1 1 1 xy xy E1
4
同济大学 弹性力学复习资料
1150899 陈力畅
第七章 平面问题的直角坐标解答
1、平面应变问题: u u x, y ,v v x, y ,w 0 等截面柱形物体;柱体所受的体积力和侧面所受的面力都平行于 Oxy 平面,且它们的分 布沿 z 方向不变。 几何方程: x
第六章
弹性力学总复习
x
2c
y
3、三次式应力函数 面梁纯弯曲。
Φ=ay
3
,求解矩形截
o
M
h/2 h/2
M
x
y
l
( l >>h)
4、轴对称应力一般性解答 轴对称应力一般性解答 轴对称应力一般性
σρ =
1)轴对称应力 轴对称应力 轴对称
A
ρ
2
+ B(1 + 2 ln ρ ) + 2C ;
2
σϕ = −
A
τ ρϕ = 0
2力相应
应力函数Φ解法 五、常体力时引入Airy应力函数 解法 体力时引入 应力函数
∂4 ∂4 ∂4 1、 4 + 2 2 2 + 4 Φ = 0 、 ∂x ∂y ∂y ∂x
1 ∂ 1 ∂2 2 ∂2 ( 2+ ) Φ = 0; + ∂ρ ρ ∂ρ ρ 2 ∂ϕ 2
∂2 ∂2 2 + 2 σx +σ y = 0 ∂x ∂y
(σ ρ ) s = f ρ ( s ) (τ ρϕ ) s = f ϕ ( s ) (σ ϕ ) s = f ϕ ( s )
3) 近似边界条件(圣维南原理): (τ ) = f ( s ) 近似边界条件(圣维南原理): 边界条件 ϕρ s ρ
∫−h / 2 −h / 2 h/ 2 h/ 2 ∫−h / 2 (σ x ) x=±l d y ⋅1⋅ y = ±∫−h / 2 f x ( y) d y ⋅1⋅ y(= M ), h/ 2 h/ 2 ∫−h / 2 (σ x ) x=±l d y ⋅1 = ±∫−h / 2 f y ( y) d y ⋅1(= FS ).
公共基础知识弹性力学基础知识概述
《弹性力学基础知识概述》一、引言弹性力学作为固体力学的一个重要分支,主要研究弹性体在外力作用下的应力、应变和位移。
弹性力学的理论和方法在工程结构设计、材料科学、地球物理学等众多领域都有着广泛的应用。
本文将对弹性力学的基础知识进行全面的阐述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 弹性体弹性体是指在外力作用下,能够产生弹性变形,当外力去除后,能够完全恢复到原来形状和尺寸的物体。
弹性体的变形通常是微小的,其应力与应变之间存在着一定的关系。
2. 应力应力是指单位面积上所承受的力。
在弹性力学中,应力通常分为正应力和切应力。
正应力是垂直于作用面的应力,切应力是平行于作用面的应力。
应力的单位是帕斯卡(Pa)。
3. 应变应变是指物体在受力作用下,形状和尺寸的改变量与原来形状和尺寸的比值。
应变通常分为正应变和切应变。
正应变是长度的改变量与原来长度的比值,切应变是角度的改变量。
应变是无量纲的量。
4. 弹性模量弹性模量是衡量材料弹性性质的指标,它表示材料在受力作用下产生弹性变形的难易程度。
弹性模量通常分为杨氏模量、剪切模量和体积模量。
杨氏模量是正应力与正应变的比值,剪切模量是切应力与切应变的比值,体积模量是体积应力与体积应变的比值。
三、核心理论1. 平衡方程平衡方程是弹性力学的基本方程之一,它描述了弹性体在受力作用下的平衡状态。
平衡方程可以表示为:$\sigma_{ij,j}+f_i=0$其中,$\sigma_{ij}$是应力张量,$f_i$是体积力,$j$表示对坐标的偏导数。
2. 几何方程几何方程描述了弹性体在受力作用下的变形情况。
几何方程可以表示为:$\epsilon_{ij}=\frac{1}{2}(u_{i,j}+u_{j,i})$其中,$\epsilon_{ij}$是应变张量,$u_i$是位移矢量,$j$表示对坐标的偏导数。
3. 物理方程物理方程描述了应力与应变之间的关系。
弹性力学基础知识归纳
弹性力学基础知识归纳第一篇:弹性力学基础知识归纳一.填空题1.最小势能原理等价于平衡微分方程和应力边界条件2.一组可能的应力分量应满足平衡微分方程和相容方程。
二.简答题1.简述圣维南原理并说明它在弹性力学中的作用。
如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。
作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。
(2)将次要的位移边界条件做应力边界条件处理。
2.写出弹性力学的平面问题的基本方程。
应用这些方程时,应注意什么问题?(1).平衡微分方程:决定应力分量的问题是超静定的。
(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。
(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。
但是形变分量完全确定时,位移分量不完全确定。
3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。
4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?由六个分量决定。
在确定方向的时候,正面上的应力沿正方向为正,负方向为负。
负面上的应力沿负方向为正,正方向为负。
5.什么叫平面应力问题和平面应变问题?举出工程实例。
平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。
例如工程中的深梁和平板坝的平板支墩。
平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。
例如6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。
(1)完全弹性假定。
(2)均匀性假定。
(3)连续性假定。
(4)各向同性假定。
(5)小变形假定。
满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。
一般混凝土构件和一般土质地基可以看做为理想弹性体。
弹性力学总复习汇总
1111 22 2 2 33 3 3 2121 2 223 2 3 231 31
两正交线元之间的直角减小量为工程剪应变 t
t 2t 2 t 2ijit j 若 , t 为坐标轴方向的单位矢量,例如 i 1, t j 1(i j) 其余的
方向余弦均为零,则由上式得 ij 2ij (i j)
3 12 2 3 0
1 ii 1 2 3
2
1 2
ii jj ijij
12 23 31
3 eijk1i2 j3k 123
分别称为第一,第二和第三应变不变量。
第三章 应变理论
dV ' dV
dV
由于
1 1 dx1 1 2 dx2 1 3 dx3 dx1dx2dx3
弹性力学与材料力学的区别
第二章 应力理论
1 应力和内力的概念 ,应力张量 2 斜面应力公式(柯西公式):实质是四面体微元的平衡条件。
或 v v v j viij
即:
v1 v1 11v2 21v3 31
v2 v1 12 v2 22 v3 32
v3 v1 13 v2 23 v3 33
ij
2Gij
kkij
ij
1
E
ij
E
kk ij
x
1 E
[ x
y z
1
ExE源自x 2G x ;y
1 E
[ y
z
x
1 E
y
E
即
z
1 E
[ z
x y
1
E
z
E
xy
1 G
xy
yz
1 G
yz
zx
1 G
zx
y 2G y ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、弹性力学问题研究的基本框架:
基本假设与基本量 5个基本假设; 8个基本量:
基本原理 平衡原理 (单元体) 能量原理 (整体)
弹
平衡微分方程(2个):
性
控制微分方程
力
(8个)
几何方程(3个):
学 基本方程 平
物理方程(3个):
面
问
题
边界条件
应力边界条件(2个):
(4个)
(2-15)
3. 常体力下求解的基本方程与步骤: 直角坐标下
(1) 先由方程(2-25)求出应力函数: (x, y)
4
4 4
x4 2 x2y2 y4 0
4 0
(2-25)
(x, y) , , (2) 然后将
代入式(2-26)求出应力分量:
x
2
y 2
fxx
y
2
x2
fyy
xy
2x
xy
单元结点位移 单元结点力
e ui vi u j v j um vm T
F e Fix Fiy Fjx Fjy Fmx Fmy T
整体结点位移 整体结点荷载
u1 v1 u2 v2 T
FL FL1x FL1y FL2x FL2 y
T
2. 基本公式
d N e
B e
S e
N
Ni 0
0 Ni
Nj 0
0 Nj
Nm 0
0
N
m
/ x
B
0
/ y
0 / y / x
Ni 0
0 Ni
Nj 0
0 Nj
Nm 0
0
N
m
S DB
Fe k e k ABT DBdxdyt
FLe tAN T f dxdy
FLe t s N T f ds
3.有限单元法解题步骤: (1)结构的离散化 弹性体划分为有限个单元,并对节点进行编号; 确定全部节点的坐标值; 对单元进行编号,并列出各单元节点的节点号。
位移边界条件(2个) :
求解方法
—— 数学上构成偏微分方程的定解问题
平面问题的基本方程
1. 平衡微分方程
x
x
yx
y
fx
0
xy
x
y
y
fy
(2-2)
0
2. 几何方程
x
u x
y
v y
xy
v x
u y
(2-8)
3. 物理方程
x
1 E
( x
y)
y
1 E
(
y
x)
xy
2(1 E
) xy
(2-12)
(2)单元分析 计算各单元刚度矩阵; 计算各单元的等效载荷
(3)整体分析 集成整体刚度矩阵; 集成整体荷载列阵; 处理约束; 求解线性方程组,得到节点位移; 计算应力矩阵,求得单元应力
四、其它问题
(1)一点应力状态分析; (2)一点应变状态分析;
(3)应力边界条件的列写; (圣维南原理的应用)
复习要求
0
(2)相容方程(形变协调方程)
说明:
(1)对应力边界问题,且为单连 通问题,满足上述方程的解 是唯一正确解。
(2)对多连通问题,满足上述方 程外,还需满足位移单值条 件,才是唯一正确解。
2 y 2
2 x2
( x
y)
(1
)
f x x
f y y
(平面应力情形) (2-21)
(3)边界条件:
l( x )s m( xy )s fx m( y )s l( xy )s f y
(1)《弹性力学》与《材料力学)、《结构力学》课程的异同。 (从研究对象、研究内容、研究方法等讨论)
(2)《弹性力学》中应用了哪些基本假定? 这些基本假定在建立弹性力学基本方程时的作用是什么? 举例说明哪些使用了这些基本假定?
(3)弹性力学中应力分量的正负是如何规定的?与材料力学中有何 不同?
第二章 平面问题的基本理论
1. 平面问题的求解方法 (1)按未知量的性质分:
按位移求解; 按应力求解;
(2)按采用的坐标系分: 直角坐标解答; 极坐标解答;
初等函数解; (3)按采用的函数类型分: 级数解;
复变函数解;
逆解法; 半逆解法;
2. 按应力求解的基本方程
(1)平衡方程
x
x
xy
y
fx
0
(2-2)
yx
x
y
y
fy
4
2
2
1
1
2
2
2
2
0
(4-6)
(2) 由式(4-5)求出相应的应力分量: , ,
1
1-5)
(3) 将上述应力分量 , , 满足问题的边界条件:
位移边界条件: u s u , u s u
应力边界条件: l s m s f
定?需要什么条件?
(6)已知一点的应力分量,如何求任意斜截面的应力、主应力、主 方向?
(7)什么是正应变、切应变? (8)平面应力与平面应变问题的物理方程有何关系? (9)边界条件有哪两类?如何列写?
一、范围
第 1 ~ 4、6章
二、试题形式 概念题;简单叙述、计算、证明题; 分析计算题。
三、其它 考试时间:11月16日(11周日16:00—18:00) 考试地点: 东阶201 202 301 302 西阶202 考试方式:闭卷 答疑安排(南阶二楼,10周四、五晚)
各章节的复习思考题
第一章 绪 论
(平面应力问题)
4. 边界条件
位移:
us u vs v
(2-14)
应力: l( x )s m( xy )s f x m( y )s l( xy )s f y
(2-15)
求解方法
函数解 精确解; 近似解;(如:基于能量原理的解)
数值解(如:有限差分法、有限单元法 等)
实验方法
二、弹性力学平面问题的求解
y
xy
(2-24)
(3) 再让 x , y , xy 满足应力边界条件和位移单值条件(多连体问题)。
ml((x
)s m( y )s l(
xy xy
) )
s s
fx fy
(2-15)
us u
vs
v
(2-14)
极坐标求解步骤:
(1) 由问题的条件求出满足式(4-6)的应力函数 Φ( , )
(1)两类平面问题的特点?(几何、受力、应力、应变等)。 (2)试列出两类平面问题的基本方程,并比较它们的异同。 (3)在建立平面问题基本方程(平衡方程、几何方程)时,作了哪
些近似简化处理?其作用是什么?
(4)位移分量与应变分量的关系如何?是否有位移就有应变? (5)已知位移分量可唯一确定其形变分量,反过来是否也能唯一确
(位移单值条件) l s m s f
u , u 为边界上已知位移
f
,
f
为边界上已知的面力分量。
三、弹性力学问题求解的有限单元法
1. 基本概念与基本量
体力
f fx fy T
应力
( x y xy )T
面力
f ( fx f y )T
应变
x
y
T xy
位移
d u vT