多波束数据

合集下载

多波束测深数据失真的原因及解决办法

多波束测深数据失真的原因及解决办法

0引言近年来中海油服物探事业部工程勘察作业公司开展了较多的多波束勘测项目,获取了相关海域的多波束测深资料,但在上述多波束勘测数据的后处理成图过程中也发现了一些问题,且这些问题具有一定的代表性。

今后勘探向深水发展,这些问题造成的误差势必更大,必须彻底解决这些问题才能制作符合规范要求的海底地形图件。

本文探寻了多波束测深数据失真的原因并提出相应的解决办法。

1外业测量因素及解决方法1.1多波束安装校准只有当多波束安装参数如横向角度偏差(Roll )、纵向角度偏差(Pitch )、艏向角度偏差(Yaw )、探头相对于导航系统天线的轴向偏差(沿测线方向△X 、垂直于测线方向△Y )、由运动传感器(motion sensor )与换能器分离造成的运动传感器偏移误差等经过严格校准后才能获取到可靠的测深数据。

校准并不需要在已知水深地区进行,而是基于不同测量条件下地形数据全局吻合的理念。

Roll 偏差使得海底以前进方向为轴左或右倾斜;Pitch 的存在使得测量的结果发生前(后)位移;Yaw 误差会造成测深点以中央波束为轴位置发生水平旋转。

运动传感器的偏移误差限于运动传感器和换能器是分离的情况(大多数情况如此)。

由于运动传感器测量的姿态并不完全与换能器姿态一致,它们之间的偏差称之为运动传感器偏移误差,包含运动传感器纵轴与船坐标纵轴方向不一致带来的姿态误差,及由运动传感器的姿态误差带来的上下升沉误差[1]。

换能器的起伏与传感器的测量值间相差一个由纵摇和横摇引起的感生起伏(induced heave ),可通过横摇、纵摇及换能器与垂直参考单元之间偏移量、艏向间复杂的关系式加以表述[1,2]。

各参数校准的先后顺序非常重要,一般遵循GPS 时延、Roll 、Pitch 、Yaw 的校准顺序。

为了取得较好的校准效果,要根据校准参数选择在不同特征的地形上进行,且一般要求在水较深处进行。

双探头的多波束系统校准与单探头多波束系统校准并无本质不同,实质是分别对每个探头单独进行校准。

xtf多波束数据转hypack格式

xtf多波束数据转hypack格式

在这篇文章中,我将为您深入探讨xtf多波束数据转hypack格式的主题。

让我们从简单的介绍开始。

1. xtf多波束数据简介xtf是一种常见的多波束数据格式,它包含了水声多波束测深仪的数据。

这些数据可以提供海底地形、水深、水底类型等重要信息。

在海洋勘测、水文调查和海底资源开发等领域,xtf多波束数据被广泛应用。

2. hypack格式简介hypack格式是一种常用的水声测量数据格式,用于记录水深、水下地形、水下物体等信息。

它被广泛应用于海洋测绘、水文调查、水下考古等领域。

3. xtf多波束数据转hypack格式的重要性将xtf多波束数据转换为hypack格式有助于统一数据格式,便于不同软件之间的数据交换和共享。

这对于海洋勘测和水下测绘工作非常重要。

4. xtf多波束数据转hypack格式的步骤a. 数据预处理:包括数据清洗、校正和筛选等步骤,以确保数据质量。

b. 数据转换:利用专门的数据转换工具将xtf多波束数据转换为hypack格式。

c. 数据验证:验证转换后的数据是否符合hypack格式的要求,进行必要的修正和调整。

5. xtf多波束数据转hypack格式的实际操作在实际操作中,需要选择合适的数据转换工具,并了解其操作步骤和注意事项。

还需要对转换后的数据进行验证和质量控制,以确保数据的准确性和完整性。

6. 个人观点和理解从个人观点来看,xtf多波束数据转hypack格式对于数据管理与共享非常重要。

现实项目中,我对这一过程的重要性有了更加深刻的认识,并且明白了分析水声测量数据的复杂性和挑战性。

总结与回顾通过对xtf多波束数据转hypack格式的深入探讨,我深刻理解了这一过程的重要性和实际操作步骤。

了解了数据格式转换的重要性,以及其在海洋勘测和水下测绘中的广泛应用。

通过本文的阅读,希望读者能更深入地理解和应用xtf多波束数据转hypack格式的知识。

希望这篇文章能够帮助您更好地理解xtf多波束数据转hypack格式的相关知识,并为您在水声测量数据处理方面提供一些有价值的参考。

海洋资源勘探中多波束测深技术的使用教程与数据解析

海洋资源勘探中多波束测深技术的使用教程与数据解析

海洋资源勘探中多波束测深技术的使用教程与数据解析多波束测深技术是一种常用于海洋资源勘探的技术手段,它能够获取水深信息及海底地形的详细数据。

在海洋资源开发中,多波束测深技术的使用对于确定合适的海洋资源勘探区域、制定勘探策略以及评估资源储量具有重要意义。

本文将介绍多波束测深技术的使用教程,并对采集得到的数据进行解析,帮助读者更好地理解和应用该技术。

一、多波束测深技术的使用教程1. 系统组成和工作原理多波束测深系统由船舶上的测深设备和水下激光和声波传感器组成。

其工作原理是通过水下传感器发射声波或激光束,然后接收反射回来的信号。

根据声波或激光束的传播时间和反射信号的强度,系统可以计算出水深和海底地形的数据。

2. 数据采集与处理首先,需要确定好勘探区域,并安装好多波束测深系统。

然后,船舶将沿着预定航线行驶,将水下传感器降入水中,并开始采集数据。

数据采集完成后,将数据传输到上层计算机或处理设备进行处理和分析。

3. 数据处理和解析在数据处理过程中,需要注意以下几个关键步骤:(1)数据预处理:将原始数据进行校正和处理,消除噪声和干扰。

(2)波束角和波束间距校正:根据传感器的参数,对波束角和波束间距进行校正,以确保准确的水深测量。

(3)水深计算:利用声速、传播时间和反射信号强度等参数,计算出每个波束的水深。

(4)海底地形重建:通过对水深数据的空间插值和拟合,可以重建出海底地形的模型。

(5)数据分析和应用:根据海底地形模型,可以进行资源储量评估、选址规划和勘探策略制定等工作。

二、多波束测深数据的解析多波束测深数据包含了丰富的水深和地形信息,通过对数据的解析,可以获取更多有用的信息。

1. 水深信息水深是多波束测深数据中最基本的信息,可以直接用于绘制海图、制定航线和进行港口测量等工作。

在数据解析中,需要注意水深的精确性和可靠性,对数据进行有效的预处理和校正。

2. 海底地形信息通过对多波束测深数据的地形重建,可以获得详细的海底地形模型。

Caris HIPS and SIPS 6.1处理多波束数据培训说明

Caris HIPS and SIPS 6.1处理多波束数据培训说明
– – – – – – 元数据 测量数据线 CARIS 背景地图 背景图形 ENC 数据 测区地域图
多个工程和联合工程
• 在同一个工作过程中打开多个 HIPS-SIPS 工程 • 用 Windows 快捷键整合工程数据
熟悉一下 HIPS and SIPS
• 单次使用有效工具 • • • • • 按区域缩放 – 用鼠标左键拖一个缩放区域 放大 – 鼠标左键单击一次 缩小 –鼠标左键单击一次 前一视图 –鼠标左键单击一次 平移 – 用 View \ Pan 菜单; 上, 下, 左, 和右拖动
CUBE 算法 HIPS工作流程
Create a Vessel File Merge Process Subset Data Create a New Project Compute TPE Finalize Surface
Convert Raw Data
Define New Field Sheets
• 为格网比例棒显示定义参 数

指定 HIPS 显示单位
缺省选项 (目录 & 环境)
• 工程数据和支持文件目录

环境变量
缺省选项 (S-52 & S-57)
• ENC S-57 数据的 S-52 显示标准

S-57 环境变量
打开背景图件...
航空图
ENC
GeoTIFF 光栅图
过程数据树
• 打开/关闭数据
+Z
+Z
定位导航 天线 RP +Y
+X
船文件编辑器
• 测深仪换能器1
• 定位导航
• 罗经
船文件编辑器 - (吃水)
RP
dd
水线, 走航 水线, 静止 +Y

《工程测量学》课件 3-5水深数据处理和成图

《工程测量学》课件   3-5水深数据处理和成图

首先,在数据处理开始前,需要对外业资料进行检查,检查内容主要包括:测区范围是否合适,记录是否完整,外业要做的相应校准和各项改正,如深度比对、吃水改正、声速改正等,是否已按照相关要求进行等。

其次,水位改正对于水下地形测量的测深精度有着极大的影响,必须根据测区的位置和测量时间整理相应的水位资料。

一、单波束数据处理(一)定位数据处理定位数据处理的主要依据是航迹图。

根据作业范围以及航迹状态,将外业资料对照航迹图进行全面的检查,把卫星状态不好、定位误差大、明显偏离测区的点删除。

一、单波束数据处理(二)水深数据处理先根据点号,将数据文件中的记录按记录点号、坐标和原始水深,与模拟记录纸进行对照检查,对不匹配的点进行认真核实,对个别点之间的特殊水深值量取内插;然后利用测得的水位值进行水位改正,做水深图。

一、单波束数据处理(二)水深数据处理水深模拟记录水深值测量时间点号地形测量日期一、单波束数据处理(二)水深数据处理可疑水深水深图一、单波束数据处理(二)水深数据处理对水深图上的交叉点进行比对,如果水深差超过技术标准要求,查找原因并进行改正。

在没有交叉点的位置,从图上直观的检查是否有不合适的水深值,这种不合适的水深值一般指与周围水深相差太大的水深值,需要检查记录纸,是真实地形还是错误水深。

二、多波束数据处理多波束测深数据量与单波束测深相比非常庞大,一般要利用专业的数据处理工作站和数据处理软件进行。

其处理过程较单波束也复杂的多,对操作者的要求也较高。

二、多波束数据处理(一)数据预处理对水深数据编辑与清理前做的必要改正,包括水位改正、吃水改正、声速改正、横摇、纵摇及时间延迟改正等。

二、多波束数据处理(二)定位数据的编辑与处理多波束数据处理软件都有自动处理导航数据的成熟算法可以对可疑的导航数据进行剔除,只是需要数据处理者根据测量的实际情况进行参数设置。

可疑数据占全部定位数据的比例较低时(如5%以内),可予以剔除。

若异常数据占全部定位数据的比例较大时,则应认真分析原因,慎重处理。

多波束数据检查标准化若干建议

多波束数据检查标准化若干建议

Science &Technology Vision 科技视界0引言目前在我国测绘产品的检查实行“两级检查,一级验收制度”。

两级检查是指过程检查和最终检查。

但是鉴于海洋测绘作业的特殊性,质量检查人员不可能全程跟踪检查每一个过程,更重要在于多波束数据的检查一直都是凭借检查人员自身的素质和经验,没有一套标准化流程,这样就造成每个检查人员检查内容及方法也大相径庭。

因此流程化标准化的检查方案不仅有助于检查人员提高检查效率更有助于提高测绘产品的质量。

1多波束测深系统作业流程多波束测深系统是一种多传感器的复杂组合系统,是现代信号处理技术、高性能计算机技术、高分辨显示技术、高精度导航定位技术、数字化传感器技术及其他相关高新技术等多种技术的高度集成。

正因为多波束系统的复杂性导致影响多波束测深数据质量的因数很多。

因此非常有必要熟悉多波束作业的流程、工序、生产环节。

这样在检查过程中才能得心应手。

下图为多波束测深系统作业流程图。

2多波束数据检查流程多波束测深系统以其高精度、高效率、全覆盖的优越性广泛应用于各种类型的海洋测量工程中,如航道疏浚施工测量、沉船等障碍物扫测、港口航道图确定通航尺度而实施的港池航道及锚地多波束全覆盖测量以及特殊浅点加密测量等。

尽管如此,国家标准和行业规范的缺失造成对多波束数据质量的控制和成果数据的检查工作一直没有统一的标准和规范遵循。

因此探讨多波束数据检查工作的标准化流程化对推广多波束技术应用,提高多波束数据质量有着重要意义。

下图为笔者经过多年的基层测量及检查工作总结多波束检查流程图。

3多波束数据检查内容3.1仪器及软件检查多波束测深系统作业过程中使用到的仪器和软件较多,其中仪器设备包括:多波束测深系统、单波束测深仪、水准仪、GPS、声速仪。

软件包括:QINSY、HYPACK、HIPS、南方CASS。

软件检查是指在测量过程中使用的所有软件都必须经过鉴定和验收。

仪器检定包括两个方面:一方面是仪器设备是否经过专门仪器检定部门检定,确保有效证书及在有效期内。

SeaBeam系列多波束测深数据XSE格式解析

SeaBeam系列多波束测深数据XSE格式解析

TECHNOLOGY APPLICATION | 後术应用ISe aB e am 系列多波束测深数据X S E 格式解析徐泽(广州海洋地质调查局,广东广州510000)摘要:S e a B e a m 系列多波束测深系统采集的原始数据为二进制格式存储,不利于原始观测数据的解读以及在此基础上对测深数 据后处理软件的开发工作。

文章研究了 S e a B e a m 系列多波束測深原始数据X S E 格式的定义,基于C #语言编写了数据解析程序, 实现了X S E 格式数据的解析工作,为下一步多波束测深数据后处理软件的开发工作奠定了基础。

关键词:多波束測深:X S E 格式数据:教据解析;C #语言 文献标识码:A中图分类号:P 229文章编号:2096-4137 (2021) -06-115-03D O I : 10.13535/j .cnki . 10-1507/n .2021.06.55XSE format analysis of SeaBeam multi-beam bathymetry dataX U Z e(Guangzhou Marine Geological Survey, Guangzhou 510000, China)Abstract : T h e original data collected b y the S e a B e a m multi-beam sounding system is stored in binary format , w h i c h is not conducive to the interpretation of the original observation data and the development of the post-processing software for the sounding data on this basis . This article studies the definition of the X S E format of the original data of the S e a B e a m multi-beam soundings , a nd writes a data analysis p r o gram based o n the C# language to realize the analysis of the X S E format data , w h i c h lays the foundation for the developmentof the next step of the multi-beam sounding data post-processing software basis .K e y w o r d s : multi-beam bathymetry ; X S E format data ; data analysis ; C# language 多波束测深系统是70年代兴起、80年代中末期得到飞 速发展的一项全新的海底地形精密勘测设备。

多波束测量数据预处理研究

多波束测量数据预处理研究

I
多波束测量数据预处理研究
Abstraቤተ መጻሕፍቲ ባይዱt
Multibeam bathymetric system, also named swath sounding system, is a largescale combination equipment which is used for under-water terrain mapping. It’s a complex system with various kinds of high techniques, and it needs to gather correlative information data. There are many kinds of errors and environment interferes while collecting the data. In multibeam bathymetry data processing, it is the main task to choose suitable methods, in order to eliminate errors,get an exact measuring result, and enhance the quality of the digital chart. In this paper some key technology of multibeam bathymetric data processing are studied. Firstly, various formats of raw multibeam data are analyzed, and the method about raw multibeam data extraction is given. Next, swath aided parameter pre-treatment is studied based on the analyzing of the main sources error of the system, including sound velocity profile correcting technique, tide correcting technique, positioning data error determination and fitting, and attitude data processing. Then, the sources and types of effect factors for depth are analized. And from the characteristic of multibeam bathymetric data, the trend-surface filter and the iterative weighted filter based on M robust estimate are used to detect and eliminate gross errors of multibeam data. Finally, the interpolation and smooth methods are applied to process multibeam data, and the multibeam data is merged to obtain the (x, y, z) information of the geodetic coordinates. Based on the theoretical research above, the multibeam bathymetric data pretreatment software is designed and completed using Microsoft Visual C++6.0. The main function of the software is to eliminate gross and random errors, to compensate system errors caused by attitude data and positioning data, to merge location and depth information to obtain the geodetic coordinates, and to generate high-precision 3D seafloor sampling data. The software provides a basis for building digital terrain model in the future. Keywords: Multibeam, Data Processing, Error Analysis, Data Editing, Filtering

多波束声呐测深数据精度评估

多波束声呐测深数据精度评估

252在对海洋实施科学研究的过程当中,通过对海洋水的深度测量,实现海洋内部的资源勘查或者是界限划定等方面的基础工作都产生了比较明显的作用,多波束声呐测量海水的深度是当前实施大面积水深测量的重要测量方法,同时也是国际海面航道测量划分的主要使用方式。

多波束声呐在取得了海洋水深的数值上,包含了很多方面的因素影响,进而会产生一定的测量数据的误差问题,其中实际的测量值在实施精度评估的过程中,主要是对深度测量的准确性方面的控制。

多波束声呐测量精度是表征测量误差的指标,在使用精度表征测量值和真实值之间是存在一定的偏差的,无法有效的展现出表征水深的正式范围,因此,这对水深测量的质量控制具有非常重要的意义,以下我们就针对多波束声呐的测深数据的精确度问题进行评估。

1 多波束声呐系统中测深数据误差的来源1.1 多波束声呐系统工作原理多波束声呐测深系统的基本原理,就是在同时获得了多个波束在水底的传递过程当中,结合了声速在水底下的传播原理,使用斯涅耳法则来实施声音线路的跟踪,通过这种方式来计算声波在船体运行坐标下面的水体深度,然后再使用实施性的三位姿态数据分析,以及通过全球卫星导航系统的定位,将船体坐标系下面的水体深度转换到对应的坐标系下面,最终得到了声波对应的水体深度和相应的坐标。

多波束声呐系统一次性发射与接收声音脉冲的时候,可以形成上百个声音波束,也就是可以得到上百个水深测量数据,极大的提升了水深测量工作的工作效率[1]。

1.2 多波束声呐系统测量误差分析多波束声呐所产生的误差,具体可以分为系统误差和随机误差两种类型,系统误差通过各种转换和补偿的 方式来进行消除,针对其中所产生的随机误差,是伴随着整个多波束声呐的测量过程,通过精确度评估的方式来评定误差产生的具体大小,确定测量海水深度的偏差范围,进而可以估算出海水深度的具体数值。

系统误差和多波束声呐系统内部的每一个构成单元存在一定的联系性,多波束系统在声音学转换器件的安装方面,会对水深的测量结果产生一定的影响,但是因为实际安装和设计位置的准确性存在偏差,造成了船体本身的坐标系和预期设计的坐标系之间存在一定偏差,在多波束系统作业的过程中,通常会使用的是参数校准的形势,可以测量出船体补偿数据,最大程度上避免了技能器吃水产生的测量误差[2]。

多波束测深数据处理方法研究

多波束测深数据处理方法研究
III
目录
第一章 绪 论............................................................................................................................ - 1 1.1 测深技术的发展过程及现状........................................................................................- 1 1.2 国内外多波束测深系统.................................................................................................- 3 1.3 目前存在的主要问题.................................................................................................... - 4 1.4 本文的主要内容............................................................................................................ - 5 -
(2)对趋势面分析方法在多波束数据粗差探测之中的应用进行了一定的了解和研究。 由于多波束系统的构造复杂,测量平台和工作环境处于动态之中,造成了其数据之中的异常 值数量要比普通测量数据来得多。趋势面分析的方法是通过测点数据模拟水下地形趋势,对 偏离趋势过大的数据进行剔除,以此来实现多波束数据的粗差探测。经过在 MATLAB 中进 行实验验证,趋势面分析的方法具有能实现显著粗差的剔除、运算速度快、不需建立测量点 拓扑关系等等优点,尤其适用于处理数据量大、排列散乱的多波束测深数据。

多波束测深数据的误差分析与处理

多波束测深数据的误差分析与处理

描线之间的距离。
3) 根据 3Ρ 原则, 即从统计意义上讲, 当观测 值与模型值之差 (模型误差) 的绝对值大于 3 倍均
方根模型误差时, 则可以认为是小概率事件。本系
统首先采用趋势面分析找出大量偏离总趋势 (即
大于 3Ρ) 的异常数据可疑点, 也称候选粗差; 再在 三维表面可视化环境下, 综合考虑局部海底地形,
程不符。 因此, 时间测量的误差是十分复杂的, 既
有系统性的误差, 也有随机性的误差。
3) 测角误差
接收波束角的测量同样会有误差。 一方面基
阵安装的误差会导致预成波束的实际方向与理论
值不符, 而产生系统性的误差; 另外, 接收处理器
不能及时准确补偿舰船的摇摆或仪器本身对摇摆
测量不准都会对测角产生影响, 而造成系统性和
随机性的测角误差。
112 非实时测量误差
在得到最基本的海深数据后, 还要根据舰船
的定位信息产生覆盖全海区的海深数据, 进行投
影变换、潮汐改正、数据筛选和条带拼接等数据处 理。可见, 非实时测量的误差可以是由于定位误差 引起的实际海域的深度误差, 或者由于验潮仪本 身的精度及验潮仪与测深处理系统不同步造成的 误差, 以及数据筛选和条带拼接等处理带来的误 差等。这类误差常常包含系统误差、随机误差和粗 差 3 种类型。 113 航向计算误差
第 23 卷第 1 期 1998 年 3 月
武汉测绘科技大学学报 Jou rna l of W uhan T echn ica l U n iversity of Su rveying and M app ing
V o l. 23 N o. 1 M a rch 1998
多波束测深数据的误差分析与处理
由于船舶的运动加上海平面经常受到潮汐和气象条件的影还有鱼和水草等反回的假回声等复杂原因最后所得海区地形资料的精度不仅依通过改进定型设备并对结果进行必要的补偿或系统改正均能得到较好解决所以测绘精度的关键主要取决于对诸如由于鱼和水草等反回的假回声和由于舰船偏航及各项系统误差改正的残差造成的条带扭曲等误差的处理

多种格式多波束数据统一转换

多种格式多波束数据统一转换

多种格式多波束数据统一转换1概述多波束测深系统是一种具有高精度、高效率和高分辨率等优点的海底地形测量新技术[1] 。

目前使用的多波束测深系统大都采用国外较为成熟的产品,由于多波束测深系统的种类繁多,如ELAC公司的Seabeam系列、SIMRAD公司的EM系列等均有广泛应用,其输出的数据格式也不同,而且与之对应的数据采集及数据处理的第三方处理软件多种多样。

为了便于多波束的数据处理,统一数据格式是一项很重要的工作。

2多波束数据格式多波束数据的格式种类繁多,如UNB、GSF、ALL、XTF、RDF 等。

下面对这几种常用的多波束数据格式作简要介绍。

2.1 UNB 数据格式UNB( University of New Brunswick )数据格式是加拿大New Brunswick 大学设计的一种多波束数据外部交换格式,该格式可以提供较为完整的原始采集数据信息用于多波束的数据处理。

UNB数据格式文件的设计基本包含了所有关于海底测深的所有相关信息,如时间、经纬度、声速剖面、船的参数等[5] 。

2.2 GSF 数据格式GSF(Generic Sensor Format )数据格式是按照通用数据格式制定的一种数据交换格式,这种格式标准着重于多波束数据,同时也包含单波束数据。

该格式可以存储不同格式的多波束数据,以及在此基础上进行扩展等。

2.3 ALL 数据格式ALL数据格式是SIMRAD公司的EM系列的多波束测深系统采用的数据存储格式,由于EM系列多波束测深系统占有的市场份额较大,ALL数据格式的应用也很广泛。

ALL格式数据可以根据需要改变数据包的大小,数据文件中记录的信息也很全面,如导航信息、测深、海底振幅数据记录、船姿记录等[2,4] 。

2.4XTF 数据格式XTF ( eXtended Triton Format)数据格式也是一种常用的多波束数据格式,该格式数据包含许多不同类型的声纳、导航、遥测和水深信息,并且在将来需要添加新的数据类型时,很容易对该数据格式进行扩展。

利用Sonic2024多波束数据计算疏浚土方量

利用Sonic2024多波束数据计算疏浚土方量

利用Sonic2024多波束数据计算疏浚土方量摘要:本文主要介绍了常用的土方量计算方法、多波束数据处理,并通过同一区域不同时间测量的多波束数据计算疏浚的土方量,说明利用离散的水深数据和Cass软件可以有效统计疏浚的土方量。

关键词:Sonic 2024;多波束;疏浚土方量1、引言近些年,随着国家对海洋开发的重视和相应海洋政策的出台,沿海地区加强了对港口的开发进度,对海底地形数据的需求日益增长。

多波束测深系统具有全覆盖、高精度和高效率的特点,越来越多地应用于泊位以及港口维护疏浚工程中,尤其在疏浚工程水下土方量的计算方面, 通过水深测量获得的数据是疏浚土方量计算最最基本的原始数据。

本文结合航道疏浚的实际工作,详述了常用的土方量计算方法、多波束水深数据的处理,并结合航道疏浚前后的水深数据利用CASS软件中的数字地面模型(DTM)法计算疏浚的方量,最后通过CARIS HIPS生成疏浚前后水下地形的三维图像,直观地了解了疏浚前后的情况,验证了利用离散的水深数据和CASS软件计算疏浚方量的可行性。

2、土方量计算方法疏浚土方量计算是航道疏浚工程的一个重要组成部分,是工程预算和工期的重要参考因素,直接关系到工程造价,建设方和设计单位一般都会将疏浚土方量的计算作为衡量工程进度和工程效益的重要指标因素,因此,作为疏浚土方量计算最原始数据的水深测量数据,在水下疏浚土方量计算方面显得极其重要。

由于航道疏浚后的不可复原性和疏浚土方量的统计存在误差,容易在甲方和疏浚方之间产生经济纠纷,因此选用合理的疏浚土方量计算方法将疏浚土方量的计算误差降到最低,是工程技术人员需要认真研究探讨的问题[5]。

疏浚土方量的计算是个复杂的问题,会受到水下地形坡度、水下地形的复杂性、海底底质条件、水深数据误差和计算方法等因素的影响。

目前疏浚土方量计算的基本方法有方格网法、断面法、等深线法以及数字地面模型(DTM)法。

方格网法是疏浚土方量计算最基本的方法之一。

hypack&hysweep多波束数据内业处理流程

hypack&hysweep多波束数据内业处理流程

Hypack&hysweep多波束数据内业处理流程注:本文档只是安装流程将用到的功能做一简单介绍,其他功能模块不做介绍,如具体操作不是很清楚可以参考英文资料。

1、新建工程项目打开Hypack软件,点击文件—Project manager,打开项目管理器点击新建项目,输入项目名称,确定即可。

2、编辑项目坐标系统点击测量准备—大地测量参数,打开测量参数窗口,编辑相关参数如,使用WGS84坐标时,格网选择无,椭球体选择WGS-84,投影选择Transverse Mercator,输入正确的中央子午线,比例尺因子为1,编辑完成后点击确定即可。

3、计算校准参数在数据文件窗口,右击原始数据文件—添加文件,选择校准数据索引文件首先选择要进行横摇校准的侧线点击数据处理—多波束Max在多波束Max窗口中,点击文件—打开,选择校准数据索引文件选择要进行横摇校准的两条侧线数据,弹出的打开选项窗口中,垂直基准选择水深,点击确定选择测量时记录的声速文件和潮位文件在读取参数窗口中,点击设备信息,输入各设备的偏移参数,确定依次查看每条侧线的横摇纵摇、艏向等参数窗口,如有突然的跳点数据,进行删除没有问题后,点击文件—将原始数据转换为改正后的数据在sweep窗口中,将跳点等噪音数据提出,安装设置的条带数,将每条测量的所有数据都处理完毕待二级编辑处理完成之后,即可运行三级编辑,点击文件--矩阵填充在矩阵选项窗口中,选择自动调节尺寸到数据,单元格尺寸在校准阶段最好选择缺省,然后确定。

在三级编辑的测量窗口,我们可以看到两条测线的水深数据。

在进行横摇校准时,我们需要选择一块平坦区域的数据进行计算,因此,在测量窗口,我们使用“剪切校准测试界面”工具进行数据选择。

待选定数据后,软件会自动弹出多波束校准窗口在次窗口中,我们选择合适的步进和步长数,点击“开始测试”,计算结果如果水深误差曲线呈现V型曲线,那么说明解算正常,选择低估值时水深误差最小,即横摇校准值为低谷数值。

多波束测深数据处理及管理系统设计与开发

多波束测深数据处理及管理系统设计与开发
为了实现预定的研究目标 ,本项目首先制定如
收稿日期 : 2006205229 基金项目 : 国防科研基金项目 (200316601) 。 作者简介 : 陆秀平 (19732) ,男 ,江苏兴化人 ,硕士 ,工程师 ,主要从事海洋测量数据处理与成图研究 。
2
海 洋 测 绘
第 26卷
下总体研究思路 :以底层自主开发为基础 ,综合应用 多波束测深技术 、现代数据处理技术 、计算机可视化 技术以及数据库技术 ,在微机 W indow s 2000 或 NT 操作平台上实现海量多波束海底地形数据及各种空 间和属性数据的输入 、处理 、管理和可视化输出 ;充 分吸收和借鉴国内外最先进的软件设计思想和开发 技术 ,将面向对象的类库设计思想 、BDE 与 ODBC 数据库接口技术 、Active X与 VCL 控件以及 OpenGL 三维图形标准融为一体 ,最终实现系统开发效率和 运行稳定性的双赢目标 。
以底层自主开发为基础综合应用多波束测深技术现代数据处理技术计算机可视化技术以及数据库技术操作平台上实现海量多波束海底地形数据及各种空间和属性数据的输入处理管理和可视化输出分吸收和借鉴国内外最先进的软件设计思想和开发技术odbc数据库接口技术vcl控件以及opengl三维图形标准融为一体最终实现系统开发效率和运行稳定性的双赢目标多波束测深数据处理及管理系统mbes主要由以下3个子系统组成多波束测深数据处理及管理系统组成框图多波束测深数据处理及管理系统软件功能主要包括以下13个方面包括原始多波束数据控制参数设置测量船配置文件设置地形数据成图所需的坐标系投影图幅大小和比例尺设置系统库文件设置用户界面设置等包括多源原始多波束数据格式解包读取列表显示和统计分析等汐数据编辑多波束测深数据归算传感器安装误差改正包括粗差定位条带测深数据拼接和系统误差补偿等包括内部精度评估和外部精度检核等包括规则网格和不规则三角形数字模型生成等包括等深线自动跟踪等深线线划图等深线分层填色图绘制等包括二维水深等深线图二维平面彩色晕渲图三维立体实感图等10海道测量成果图件绘制测带覆盖图水深成果图主检比对图障碍物图等11数据录入与质量控制质量控制与排重配置信息手工录入数据文件自动录入等12数据管理维护与更新数据查询检索和统计输出包括统计数据报表测区概况信息报表各种自定义报表和图形7分别为某测区一小部分本系统处理结果系统软件主要功能界面及功能测试311系统软件主要功能界面本系统软件主要功能界面如图25所示潮汐改正计算界面为了ips系统分别对20条测带数据进行处理将两组处理结果做比较求它们之间的不符值然后计算均方根差值具体计算结果如下32314010447m

多波束

多波束

多波束━海底地形测量探讨多波束━海底地形测量探讨卢秋芽一、引言东海大桥为洋山深水港工程的重要组成部分,大桥全长约31公里。

大桥的建成对其附近的水文条件可能会有一定的影响,尤其是大桥的桥墩,会使桥脚周围的风场和潮流产生较大的变化,在桥墩的四周存在着涡流水流,这些涡流势必会对桥墩四周产生冲刷。

为了确保大桥的安全,不仅需要了解墩台周围(桩基础)的冲刷情况,还需了解两组桩之间及每组桩之间的冲刷情况,以便为大桥基础管理维护提供可靠的基础资料,为今后类似的工程和研究提供科学依据。

上海京海工程技术公司受上海同盛大桥建设有限公司的委托,承担了东海大桥桥基海底调查多波束测量的任务。

1、测量范围(见图一)1.K6副通航孔-芦潮港之间区域(PM103-PM106,60米跨)2.K6副通航孔-K12副通航孔之间区域(PM176-PM179,60米跨)图一测量范围示意图3.K12副通航孔-K18主通航孔之间区域(PM305-PM308,70米跨)4.K18主通航孔-K24副通航孔之间区域(PM389-PM392,70米跨)5.A、B、C三组试桩处区域2、测量要求1精确测量桥墩基础桩间的海底地形的冲刷情况。

2精确测量桥墩基础的基桩周围的海底地形地貌。

3确定各桥墩基础附近的海底冲刷边界。

二、方法原理单波束测深仪一般采用较宽的发射波束,因为是向船底垂直发射,因此,声传播路径不会发生弯曲,来回的路径最短,能量衰减很小,通过对回声信号的幅度检测确定信号往返传播的时间,再根据声波在水介质中的平均传播速度计算测量水深。

在多波束系统中,换能器配置有一个或者多个换能器单元的阵列,通过控制不同单元的相位,形成多个具有不同指向角的波束,通常只发射一个波束而在接收时形成多个波束。

除换能器水底波束外,外缘波束随着入射角的增加,波束倾斜穿过水层会发生折射,要获得整个测幅上精确的水深和位置,必须要精确地了解测量区域水柱的声速剖面和波束在发射与接收时船的姿态和船艏向。

多种格式多波束数据统一转换-精选文档

多种格式多波束数据统一转换-精选文档

多种格式多波束数据统一转换1 概述多波束测深系统是一种具有高精度、高效率和高分辨率等优点的海底地形测量新技术[1]。

目前使用的多波束测深系统大都采用国外较为成熟的产品,由于多波束测深系统的种类繁多,如ELAC公司的Seabeam系列、SIMRAD公司的EM系列等均有广泛应用,其输出的数据格式也不同,而且与之对应的数据采集及数据处理的第三方处理软件多种多样。

为了便于多波束的数据处理,统一数据格式是一项很重要的工作。

2 多波束数据格式多波束数据的格式种类繁多,如UNB、GSF、ALL、XTF、RDF 等。

下面对这几种常用的多波束数据格式作简要介绍。

2.1 UNB数据格式UNB(University of New Brunswick)数据格式是加拿大New Brunswick大学设计的一种多波束数据外部交换格式,该格式可以提供较为完整的原始采集数据信息用于多波束的数据处理。

UNB数据格式文件的设计基本包含了所有关于海底测深的所有相关信息,如时间、经纬度、声速剖面、船的参数等[5]。

2.2 GSF数据格式GSF(Generic Sensor Format)数据格式是按照通用数据格式制定的一种数据交换格式,这种格式标准着重于多波束数据,同时也包含单波束数据。

该格式可以存储不同格式的多波束数据,以及在此基础上进行扩展等。

2.3 ALL数据格式ALL数据格式是SIMRAD公司的EM系列的多波束测深系统采用的数据存储格式,由于EM系列多波束测深系统占有的市场份额较大,ALL数据格式的应用也很广泛。

ALL格式数据可以根据需要改变数据包的大小,数据文件中记录的信息也很全面,如导航信息、测深、海底振幅数据记录、船姿记录等[2,4]。

2.4 XTF数据格式XTF (eXtended Triton Format)数据格式也是一种常用的多波束数据格式,该格式数据包含许多不同类型的声纳、导航、遥测和水深信息,并且在将来需要添加新的数据类型时,很容易对该数据格式进行扩展。

多波束数据处理流程

多波束数据处理流程

多波束数据处理流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!多波束数据处理是一个复杂的过程,需要使用专业的软件和工具。

以下是一般的多波束数据处理流程:1. 数据采集:使用多波束测深系统进行数据采集,获取海底地形的测量数据。

多波束数据处理

多波束数据处理

多波束数据处理
多波束数据处理是一种用于合成孔径雷达(SAR)或声呐系统中的数据处理技术。

它通过使用多个发射和接收波束来提高数据质量和分辨率。

在传统的单波束雷达或声呐系统中,只有一个发射波束和一个接收波束,因此数据的分辨率和图像质量受限。

而多波束数据处理技术可以同时使用多个发射和接收波束,从而增加了系统的灵活性和性能。

多波束数据处理的基本原理是将多个波束的数据进行融合和处理,以获取更准确、更清晰的图像或数据。

它可以通过对多个波束的数据进行比较、叠加、滤波等操作来提高信噪比、抑制干扰、增强目标检测和定位能力。

多波束数据处理技术在军事、航空航天、地质勘探、海洋监测等领域具有重要应用。

通过利用多波束数据处理技术,可以获得更精确的目标位置信息、更细节的地物特征和更可靠的数据分析结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Processing of High-Frequency Multibeam Echo Sounder Data for Seafloor CharacterizationLaurent Hellequin,Jean-Marc Boucher ,Member,IEEE ,and Xavier LurtonAbstract—Processing simultaneous bathymetry and backscatter data,multibeam echosounders (MBESs)show promising abilities for remote seafloor characterization.High-frequency MBESs pro-vide a good horizontal resolution,making it possible to distinguish fine details at the water–seafloor interface.However,in order to accurately measure the seafloor influence on the backscattered en-ergy,the recorded sonar data must first be processed and cleared of various artifacts generated by the sonar system itself.Such a preprocessing correction procedure along with the assessment of its validity limits is presented here and applied to a 95-kHz MBES (Simrad EM1000)data set.Beam pattern effects,uneven array sen-sitivities,and inaccurate normalization of the ensonified area are removed to make possible further quantitative analysis of the cor-rected backscatter images.Unlike low-frequency data where the average backscattered energy proves to be the only relevant fea-ture for discriminating the nature of the seafloor,high-frequency MBES backscatter images exhibit visible texture patterns.This ad-ditional information involves different statistical distributions of the backscattered amplitudes obtained from various seafloor types.Non-Rayleigh statistics suchas -distributions are shown to fit correctly the skewed distributions of experimental high-frequency data.Apart from the effect of the seafloor micro-roughness,a sta-tistical model makes clear a correlation between the amplitude sta-tistical distributions and the signal incidence angle made available by MBES bathymetric abilities.Moreover,the model enhances the effect of the first derivative of the seafloor backscattering strength upon statistical distributions near the nadir and at high incidence angles.The whole correction and analysis process is finally applied to a Simrad EM 1000data set.Index Terms—Backscattermodel,-distribution,multibeam echo sounder (MBES),seafloor classification.I.I NTRODUCTIONMANY marine activities (marine geology,commercial fishing,offshore oil prospecting and drilling,cable and pipeline laying and maintenance,and underwater warfare)need tools and methods to remotely characterize the seafloor.Modern swath-mapping sonars are well designed for this task;they have quickly evolved upwards over the last 40years and nowadays are beginning to meet most of the requirements needed to reliably characterize the seafloor.Among the ex-isting acoustical mapping systems,multibeam echo sounders (MBESs)are currently the main focus of attention because of their ability to provide both a bathymetric map and a backscatter image of the surveyed area.Manuscript received February 5,2001;revised June 11,2002.L.Hellequin and X.Lurton are with IFREMER,TMSI/AS,Technopôle Iroise,BP 70,29280Plouzané,France.J.-M.Boucher is with ENST Bretagne,BP 832,29285Brest Cedex,France.Digital Object Identifier 10.1109/JOE.2002.808205Usually installed under a ship’s hull,an MBES transmits a sound pulse inside a wide across-track and narrow along-track angular sector;then a beamforming process simultaneously cre-ates numerous receiving beams steered at different across-track directions.This spatial filtering allows us to pick up echoes coming from adjacent seafloor portions independently.One sounding is accurately computed inside each beam by simulta-neously measuring the beam steering angle and the echo travel time,according to various estimation methods based on either amplitude or phase.A high density of sounding points is thus generated along the survey swath,and new “pings”are trans-mitted as the ship proceeds on her way.Taking into account the ship’s navigation and attitude,the data from successive pings are finally gridded together in order to create an accurately georeferenced digital terrain model (DTM).In addition to measuring the echo travel times and angles for bathymetry,an MBES also records the echo amplitudes con-taining information about the nature and geoacoustical proper-ties of the seafloor.The echo amplitude is typically remapped to a color or gray scale and forms a coregistered backscatter image.The short pulse length provides the high resolution needed for imaging seafloor backscatter with a sufficient amount of details.For low-resolution MBESs (working in deep water at lower frequencies,typically 12kHz [1]),it seems that the mean backscattering strength (BS),recorded as a function of the incident angle,is the only measured parameter usable to characterize the interface acoustical properties [2].However,for MBESs with better resolution (designed for shallow depths with higher frequencies,typically 100kHz [3]),more infor-mation is available from the backscattered signals for a better seafloor characterization.A typical example of a BS image with a good resolution (Fig.1)shows various textures and spatial organizations of pixels that are clearly related to variations in the nature of the seafloor.In addition to its average level,the BS variability within subareas makes it possible to improve seafloor character-ization using statistical techniques [4],[5].Better classification results are expected when the MBES characteristics (frequency,beamwidth,and incidence angle)and an appropriate BS model are used to refine the analyses.Analyzing a backscatter image in detail reveals several arti-facts that degrade the image and corrupt BS measurements.The strong specular echo,causing a high-level line under the ship’s track,is linked to the backscattering physics and is not to be considered,properly speaking,as an artifact;however,it is a pe-nalizing feature,quite difficult to erase from sonar images.The main artifact comes from the directivity patterns of arrays used for the signal transmission and reception,that are usually not0364-9059/03$17.00©2003IEEEFig.1.Backscatter image recorded with a high-frequency MBES on the French inner shelf[6].The along-track stripes correspond to the strong echo level at the nadir.accurately compensated for in the time series processed by thesonar;this results in parallel lines along the ship’s track,that arecommonly observed for many systems.Another noticeable arti-fact related to the echo-sounder may be due to the time-varyinggain(TVG)function,designed to attenuate the backscatteredlevel from the specular direction and to increase it at high inci-dences;problems arise if its computation is not well adapted tothe physics of the measurement configuration.Depending on the MBES characteristics,these local ampli-tude perturbations may,in some cases,greatly exceed the per-mitted amplitude sensibility(typically2–3dB)needed to dis-criminate two different seafloors by their average BS.Theseartifacts must be eliminated during preprocessing by applyingadequate correction procedures implying the estimation of theMBES characteristics involved.The aim of this preprocessing isto use the backscattered signals to derive new data independentof the acquisition system and dependent only on the seafloorproperties,with a view to further amplitude statistics processing.These preprocessing techniques,described in Section II of thispaper,can be run efficiently on any MBES data set since thebathymetry and BS data are coregistered.Simulations of thesonar receiving process eventually stress the limits of validityof the correction procedure when reception beams are steeredvery close to the nadir.After this description of operations,Section III discussesthe statistical analysis of backscattered amplitudes recordedby MBES systems.It is shown that characterization poten-tialities can be recovered from the statistical distributions ofthe backscatter amplitude.In particular,the classical Rayleighdistribution is not well adapted to rough seafloor data,whilenon-Rayleigh statistics such asFig.2.Partial BS image recorded on a flat homogeneous seafloor and corresponding average BS versus the transmission angle,showing artifacts due to the array beampattern.Fig.3.The ensonified areas for the near-nadir case ( <).that the calibration is performed over a flat homogeneous seafloor large enough to ensure good reliability of the beam pattern identification.B.Backscattering Strength MeasurementIn order to characterize the artifacts due to the echosounder,simulations of BS measurements were conducted using various parameters of the MBES and the measurement configuration (e.g.,water depth,pulse time length,and beam patterns).This is also an important step prior to the definition of relevant pre-processing.For this purpose,we assume a flat seafloor and no in-water refraction effect,i.e.,the transmitted and incident angle are the same.The recorded backscattered intensity depends upon the MBES acquisition parameters in quite a complicated way.Ifis the transmitted incidentangle,(in decibels)is the source transmissionlevel atangle,respec-tively,in natural units,to be integrated over the ensonifiedarea,which means that the ensonified area has to be ex-pressedbycorrespondingtoFig.4.Simulation of the angular backscattered level simulated in severalbeams.Water depth =15m.Beams steering angles:(-)1.8,(---)8.9,and (-)15.7linked to the sounder geometry.A commonand convenient approximation is that the ensonifiedareamay then be directlyderived from the measured echolevel,given by (3),is the ensonified area used in thereal-time algorithms.However,these classical approximations lead to a bias be-tween the measuredvalueof the backscatteringstrength,and15.725dB.Fig.4shows a simulation conducted with the actual MBES parameters [3]and depicts the measured backscatteringstrength),the smooth andsymmetrical main lobe of the measured backscatteringstrengthis then limited by the pulse length and equals the estimatedarea(H =15m)term may be considered as constant over the narrowareaExcept for the small angular shiftbetween (givenin Table I),no deformation actually perturbs the beampatternde-creases.Close to nadir,the ensonifiedareawhich remains pulse-limited in the across-trackplan.To compensate for this difference in area size and to re-trieve a correct backscattered level at the beam centralsample,is theis not small enough for a linear dependencebetweennow derives from deformations of the Dolph–Chebyshev beam pattern as depicted in Fig.4,which cannot be modeled analyti-cally in the general case.Since these deformations also depend on the actual angular backscatteringstrengthand a physicallyidealFig.5.Retrieval of the array directivity pattern10log( )from the backscatter measurements for three different seafloors(silt, sand,and rock).The difficulty of the method lies in the definition of a reason-able a priori estimate of the actual backscattering strength.We chose to start from a generic angular form of BS,with sufficient generality to justify the relevance of the method a posteriori by confronting the directivity estimations obtained from several different seafloor zones.This functional physical model,noted(this TVG correction is used in most MBESs to limit thereceived signal dynamics and to flatten the recorded level priorto constructing the backscatter image).•The backscatter level of each beam center is not affectedby the directivity effects,except for near-specular beams.Theheuristic•Within the range of valid values(SectionII-C),,may readily be obtainedfrom thetransformationcurve is now symmetrical.An easy way to implement the method is to neglect the an-gular shiftbetween both during the beam pattern iden-tification on the training zone and during the correction proce-dure on different sonar image areas.However,it should be notedthat the shiftbetween is water-depth-dependent.Hence,when correcting images from areas with depths different fromthe training zone,beam patterns may be slightly shifted fromtheir actual angular position,and small residual oscillations(2or3dB peak to peak)are prone to remain.Moreover,it shouldbe noted that the BS level measured in the specular area may beunderestimated in shallow water:if the sampling frequency istoo low,the time signals from the near-specular beams may giveonly one or two samples;these recorded samples are not likelyto correspond to the beam center instant,and an irreversible un-derestimation of the level may result on the recorded signal.E.Summary of Preprocessing Corrections for MultibeamSonar ImagesSince the BS levels recorded by MBES systems are proneto be modulated by several artifacts(mainly directivity patternslinked to array sensitivity and beamforming,and ensonified areacompensation),relevant corrective preprocessing must be ap-plied in order to make them usable for any characterizationtasks.We show typical effects of these artifacts,and proposeadapted corrections:•The directivity modulations may be accounted for byestimating the resulting transmission–reception patternsextracted from experimental data.This can be done onsonar images from flat horizontal homogeneous zones,after elimination of the gross angular variations imposed by the physical BS;the latter is estimated from a simple functional model giving sufficient flexibility to fit a large variety of seafloor backscatter responses.Finally, the experimental directivity pattern has to be fitted toa parameterized model;this will be used for the finalequalization of the sonar image level.•The level adjustments computed inside the echosounder receiver(TVG law,footprint size corrections)have to be compensated and then replaced by more accurate expres-sions.This part of the process may be made difficult by the fact that the inner processing details of the sounder may be unavailable.It is especially important for data ob-tained close to the vertical,for which it is shown that the commonly admitted approximations may lead to signifi-cant errors;while this central part of the swath is of sec-ondary importance in side-scan sonar image processing,it can hardly be neglected in MBES cartography,for which the swept angle range is much narrower.Although this methodology was initially developed for a system for which the above problems appeared especially noticeable, the issues developed here are likely to be met for any MBES; the above-suggested correction methods may be applied as well. Although the current user’s purpose is usually not to go into de-tailed analyses of statistical amplitudes,systematically applying these compensations proves to be of great benefit for improving the quality of sonar images,even for a qualitative interpretation.III.S TATISTICAL C HARACTERIZATION OF M ULTIBEAME CHO-S OUNDER D ATAA.Data Statistical Analysis for Seafloor Characterization With low-frequency MBESs used in deep water,the only useful parameter for seafloor characterization turns out to be the angle dependence of the average backscattering strength,due to the poor spatial resolution[2]caused by the wide footprint.The number of elementary scatterers in the ensonified area(large compared to the characteristic length of the seafloor roughness) becomes sufficiently high to validate the hypothesis of the cen-tral limit theorem[10].The coherent summation of the scat-terer contribution in phase and amplitude produces a Gaussian process for the complex envelope or a Rayleigh distribution for the measured amplitude.With shorter pulse lengths,the instant ensonified area(res-olution cell)may be small enough to track some small-scale seafloor characters(such as shellfish patches,local slopes, and roughness changes)that create visible nonhomogeneous zones in the sonar image(Fig.1).Even with a large number of scatterers,the spatial variability leads to a product model [10]that describes the backscatteramplitude-distributions are also attractive because of their noticeable ability to fit large sets of statistical distributions on measured data collected during high-resolution coherent reverberation processes(sea surface[11],[12]or ground surface[15]radar imagery or seafloor sonar imagery [16],[4],[5]).In this section,amplitude statistical distributions of high-fre-quency MBES data are analyzed.This data combines imagery and bathymetry,and hence,makes it possible to study the influ-ence of the ensonified area,and more specifically the incidence angle,on the amplitude statistics.To interpret statistical obser-vations according to the MBES geometry and to the relief char-acteristics,aand are the random elementary amplitudes and phase,andare mutually independent andthat.The validity of the central limit theorem leads to a complex Gaussian distributionforto be defined according to a productmodelandis large.A negative binomial distributionforleads toacharac-terizesthe-distribution tends toward the exponentialdistribution..The product model in(12)must be adaptedby considering a localreflectivityrepresents the influence of themacro-roughness modifying thespeckleand if it is assumed that theneighboring cross sections locatedin-distributed with a shapefactorare constant over the resolution cell,and(10)leadsto,distribution is still given by(13).With the noncorre-lated speckle,theand the seafloor-dependent crosssectiontobetween two con-secutive soundings is set by the macro-relief local slope(seeSection III-B.1).(18)also underlines the effect of the macro-re-lief spectrum on the cross section.On a larger ensonified area,the resolution cell can no longerprecisely describe the macro-relief variations and an averagingprocess occurs.The,and a correlationcoefficient,which is exponentially correlatedand(20)of the measuredenergy-distribution tends to an exponential distri-bution as in a Rayleigh reverberation process(Fig.7).With a high-resolution MBES[3],is a multipleofandranges from0(high incidence angles).These transmitting angle changes create variations of both thelocal incidenceangle(Fig.9)and the ensonifiedareastatistical distribu-tion and its shapefactorFig.8.The correlation coefficientlocal slope is then con-macro-relief surface properties and on the spacing between twosoundings[16].Equation(22)induces a similar statistical be-havior for the local incidence angles centered on theaverage incidence angle.In the case of a small en-sonified area,with mean[Fig.11(a)]defined by(6).thevariations.Fig.12.Measured histograms and statistical distribution fitting.and the energy64dB in0.5-dB steps.The available values for energyTABLE IIS TATISTICAL D ISTRIBUTION F ITTING MBES M EASURED D ATA AND K OLMOGOROV DISTANCEwithand,value is subtracted from all the sonardata.The resulting sonar image exhibits no mean variations across swath.2)histogram is also depicted with the fitting results of a(discrete)is calcu-lated for each seafloor section according to the moment methodwithand.Additional fitting tests were carriedout especiallywithhistogram,thecorresponding measured data cumulative distribution function(CDF),,is estimated and compared to the theoreticalCDFs,an acceptancedistance ,the theoretical distribution may be accepted to describe the measured data withaconfidence level.Table II shows the Kolmogorov and acceptance distancesfor the theoretical distributions.The estimated shape factorfor rock,gravel,and sand seafloors is 0.9,2.7,and 6.8,respectively.The ensonified area is small enough to make the relief variations visible on the tex-tured backscatter image (rocky area).As predicted,the tail ofthe Fig.13.Shape factor 1=3)Incidence Angle Effects:For the three seafloor areas,theestimated shape factor of theenergyand equals 62.5statistical distribution (via the inverse of the shape parameter)according to the average incidence angle,es-pecially for a rough seafloor.The observed tendencies confirm the non-Rayleigh correlated reverberation model [Fig.11(b)]:88IEEE JOURNAL OF OCEANIC ENGINEERING,VOL.28,NO.1,JANUARY2003 theparameterisconstant over the resolution cell.Then-distributed with a shape param-eter-law with a2(signal)influence is en-hanced.The derivation of(26)for non-Rayleigh reverberationschemes is no longer direct.Assumingthat-Law”sta-tistical distribution for the pixelreflectivity(28)-distribution derives from the product of twoindependent-distribution related to thenon-Rayleigh reverberation,anda-distribution is adaptedto the data and fulfills the Kolmogorov–Smirnov test.In spiteof data averaging,the measured data statistical distributions donot tend towardthe.^HELLEQUIN et al.:PROCESSING OF HIGH-FREQUENCY MULTIBEAM ECHO SOUNDER DATA FOR SEAFLOOR CHARACTERIZATION89adapted to various measured statistical distributions;apart from the average value,the shape factor provides an efficient feature usable for discriminating the nature of the seafloor.On the other hand,MBES geometry makes it possible to collect echoes associated with various footprint sizes and incidence angles. The ensonified footprint area is maximal at near-specular angles(where the pulse-duration limitation is ineffective)and at high incidence angles(due to the increase in the footprint alongtrack dimension).Classical analyses predict that the averaging effect inside these large ensonified patches(featuring a high number of scatterers)leads to statistical distributions closer to Rayleigh’s than for data obtained from moderate oblique angles;however,the measured analysis does not verify this forecast.A reverberation statistical model is introduced, explicitly taking into account the correlation properties of the seafloor roughness and the echosounder geometrical configuration.Providing a satisfactory agreement with the measured data behavior,this model makes clear the effect of the angular backscattering strength first derivative on statistical distributions near the nadir and at high incidence angles. Indeed,the amplitude statistical analysis,the backscattering strength estimation,and the echo signal modeling are closely interdependent.The introduction of this non-Rayleigh distribution in the backscattered signal model allows us to improve the data analysis for seafloor characterization and,in particular,to take into account the geometry effects of the sounder.A CKNOWLEDGMENTThe authors wish to thank J.M.Augustin(IFREMER, France)for his help during sonar data interpretation and han-dling.They also wish to thank J.V.Gardner(U.S.Geological Survey,California)for his advice while writing this paper.R EFERENCES[1]Simrad,“Simrad EM12.Hydrographic echo sounder.Product descrip-tion,”Simrad subsea A/S,Horten,Norway,1992.[2]S.Dugelay et al.,“A new method for seafloor characterizationwith multibeam echosounders:Image segmentation using angular backscatter,”in Proc.3rd Eur.Conf.Underwater Acoustics,vol.I, 1996,pp.439–444.[3]Simrad,“Simrad EM1000.Hydrographic echo sounder.Productdescription,”Simrad subsea A/S,Horten,Norway,1992.[4]L.Hellequin,“Statistical characterization of multibeam echo sounderdata,”in Proc.OCEANS’98MTS/IEEE Conf.,vol.1,1998,pp.228–233.[5] A.P.Lyons and D.A.Abraham,“Statistical characterization of highfrequency shallow-water seafloor backscatter,”J.Acoust.Soc.Amer.,pt.1,vol.106,no.3,pp.1307–1315,1999.[6] C.Augris et al.,“Le plateau continental basque.Caractérization desfonds marinsàl’aide d’un sondeur multifaisceaux,”,Internal rep.IFREMER,1998.[7]X.Lurton et al.,“Shallow-water seafloor characterization for high-fre-quency multibeam echosounder:Image segmentation using angular backscatter,”in Proc.High Frequency Shallow Water Acoustics, SACLANTCEN Conf.,N.Pace, Spezia,Italy,1997.[8]L.Hellequin,J.M.Augustin,and X.Lurton,“Postprocessing and signalcorrections for multibeam echosounder images,”in Proc.OCEANS’97 MTS/IEEE Conf.,vol.1,1997,pp.23–26.[9]L.Brekhovskikh and Y.P.Lysanov,Fundamentals of Ocean Acous-tics.Heidelberg,Germany:Springer-Verlag,1982.[10]V.V.Olcheskii,Characteristics of Seafloor Reverberation.New York:Plenum,1967.[11]K.D.Ward,“Compound representation of high resolution sea clutter,”Electron.Lett.,vol.17,no.16,pp.561–563,1981.[12] E.Jakeman,“Non-Gaussian models for the statistics of the scatteredwaves,”Advances in Physics,vol.37,no.5,pp.471–529,1988. [13]N.L.Johnson,Distribution in Statistics:Continuous Univariate Distri-bution.New Y ork:Wiley,1969,vol.I.[14]S.T.MacDaniel,“Seafloor reverberation fluctuations,”J.Acoust.Soc.Amer.,vol.88,pp.1530–1535,1990.[15] C.J.Oliver,“Correlated K-distributed clutter models,”Optica Acta,vol.32,no.12,pp.1515–1547,1985.[16]J.Dunlop,“Statistical modeling of sidescan sonar images,”in Proc.OCEANS’97MTS/IEEE Conf.,1997,pp.33–38.[17]L.Hellequin,“Analyze statistique et spectrale des signaux de sondeursmultifaisceaux EM950.Applicationàl’identification des fonds sous-marins,”,Thèse de l’Universitéde Rennes1,1998.[18]P.J.Bickel and K.A.Doksum,Mathematical Statistics,Basic Ideas andSelected Topics.San Francisco:Holden-Day,1977.[19]M.Gu and D.A.Abraham,“Parameter estimation for McDaniel’s nonRayleigh reverberation model,”in Proc.Oceans’99MTS/IEEE Conf., vol.1,1999,pp.279–283.Laurent Hellequin was born in1971.He received the degree in electronic engineering from the Institut National Polytechnique de Grenoble(INPG), Grenoble,France,and the Ph.D.degree.His doctoral work focused on subjects related to sonar signal processing and seafloor characterization.While completing his doctoral work,he worked at both Telecom Bretagne, France and IFREMER,Plouzane,France.In2000–2001,during a post-doc-toral period conducted at the Center for Coastal and Ocean Mapping,Univer-sity of New Hampshire,he focused on issues regarding quality of multibeam echosounder data.Jean-Marc Boucher(M’83)was born in1952.He received the engineering degree in telecommunications from the“Ecole Nationale Supérieure des Telecommunications,”Paris,France in1975and the“HabilitationàDiriger des Recherches”degree in1995from the University of Rennes1,Rennes,France. He is currently Professor in the Department of Signal and Communications, Ecole Nationale Superieure des Telecommunications de Bretagne,France.His research interests include estimation theory and classification,Markov models, blind deconvolution,wavelets,and multiscale image analysis,with applications to radar and sonar,seismic,and biological signals.He has published approxi-mately100papers in these areas in international journals and conferences. Xavier Lurton was born in Bordeaux,France,in1955.He received the Ph.D. degree in applied acoustics from the Universitédu Maine,Le Mans,France,in 1979.From1981to1989,he was with Thomson-Sintra ASM,working in the field of underwater sound propagation modeling for naval applications.In1989,he joined IFREMER,Plouzane,France,the French oceanological research agency. After working on various acoustical oceanography applications(ocean tomog-raphy,telemetry,fisheries sonar)and managing the Ifremer acoustics laboratory for five years,he is now in charge of a research program on seafloor characteriza-tion using multibeam echosounders.His current interests are both in the physics of seabed backscattering and in sonar engineering and signal processing.。

相关文档
最新文档