因式分解(竞赛题)含问题详解

合集下载

(完整版)初中数学因式分解(含答案)竞赛题精选1

(完整版)初中数学因式分解(含答案)竞赛题精选1

初中数学因式分解(一)因式分解是代数式恒等变形的基本形式,是解决数学问题的有力工具.是掌握因式分解对于培养学生解题技能,思维能力,有独特作用.1.运用公式法整式乘法公式,反向使用,即为因式分解22(1)a 2-b 2=(a+b)(a-b) ;222(2)a 2±2ab+b2=(a ±b) 2;3 3 2 2(3)a 3+b3=(a+b)(a 2-ab+b 2);3 3 2 2(4)a -b =(a-b)(a +ab+b ) .几个常用的公式:(5)a 2+b2 +c2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3+b3 +c3-3abc=(a+b+c)(a 2+b2+c2-ab-bc-ca) ;(7) a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8) a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;(9) a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n 为奇数. 分解因式,根据多项式字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:5n-1 n 3n-1 n+2 n-1 n+4(1)-2x y +4x y -2x y ;(2)x 3 3 3-8y -z -6xyz ;(3)a 2+b2+c2-2bc+2ca-2ab ;7 52 2 5 7(4)a -a b +ab -b .例 2 分解因式:a3+b3+c3-3abc.例 3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8 .例 5 分解因式:9 6 3(1)x +x +x -3 ;(2)(m 22 2- 1)(n 2-1)+4mn ;4 2 2 4(3)(x+1) 4+(x 2-1) 2+(x-1) 4;(4)a 3b-ab 3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.22例6 分解因式:(x 2+x+1)(x 2+x+2)-12 .22例7 分解因式:(x 2+3x+2)(4x 2+8x+3)-90 .2 2 2例8 分解因式:(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.4 3 2例9 分解因式:6x +7x -36x -7x+6 .2 2 2 2 例10 分解因式:(x +xy+y )-4xy(x +y ).1 .分解因式:10 5小+x -25 4 3 2 2 5(4)(x +x +x +x +x+1) -x .练习一十十扌|32(3)x 3+9x2+26x+24;3.分解因式:2 2 2(1)(2x 2-3x+1) 2-22x 2+33x-1 ;3(3)(x+y) 3+2xy(1-x-y)-12 (4)(x+3)(x 2-1)(x+5)-202.分解因式:32(1)x 3+3x2-4 ; 4 2 2 2(2)x -11x y +y ;4(4)x 4-12x+323 .4 3 2(2)x 4+7x3+14x2+7x+1;初中数学因式分解(一)答案多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) a 2-b2=(a+b)(a -b) ;(2) a 2±2ab+b2=(a±b) 2;(3) a 3+b3=(a+b)(a 2-ab+b2) ;(4) a 3-b3=(a-b)(a 2+ab+b2) .下面再补充几个常用的公式:2 2 2 2(5) a +b +c +2ab+2bc+2ca=(a+b+c) ;3 3 3 2 2 2(6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca) ;(7) a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8) a n-b n=(a+b)(a n-1_a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;(9) a n+b n=(a+b)(a n-1_a n-2b+a n-3 b2-…-ab n-2+b n-1),其中n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例 1 分解因式:5n-1 n 3n-1 n+2 n-1 n+4(1) -2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;3 3 3(2) x -8y -z -6xyz ;222(3) a +b +c -2bc+2ca -2ab;7 5 2 2 5 7(4) a 7-a5b2+a2b5-b7.解(1)原式=-2x n-1 y n(x 4n-2x2ny2+y4)n-1 n 2 2 2 2 2 2=-2x y [(x n) -2x ny +(y ) ]n-1 n 2 2 2=-2x y (x n-y )n-1 n n 2 n 2=-2x n-1 y n(x n-y)2(x n+y)2.⑵原式=x3+(-2y) 3+( -z) 3-3x(-2y)( -Z)2 2 2=(x -2y-z)(x 2+4y2+z2+2xy+xz-2yz) .(3) 原式=(a2-2ab+b2)+( -2bc+2ca)+c2=(a-b) +2c(a - b)+c=(a -b+c) 2.816 15 14 13 2x -仁(x-1)(x +X +X + …x +x+1),9本小题可以稍加变形,直接使用公式 (5),解法如下:原式=a 2+( -b) 2+C 2+2( -b)c+2ca+2a( -b)=(a -b+c)27 5. 2、 / 2. 5 7、⑷ 原式=(a -a b )+(a b -b )=a 5(a 2-b 2)+b 5(a 2-b 2)=(a 2-b 2)(a 5+b 5)4 3 2 2 3 4 =(a+b)(a -b)(a+b)(a -a b+a b -a b +b )=(a+b) 2(a-b)(a 4-a 3b+a 2b 2-ab 3+k >)例 2 分解因式:a 3+b 3+c 3-3abc .本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析我们已经知道公式(a+b) 3=a 3+3a 2b+3ab 2+b 3的正确性,现将此公式变形为3 3 3a +b =(a+b) -3ab(a+b). 这个•式也是一个常用的公式,本题就借助于它来推导.解 原式=(a+b) 3-3ab(a+b)+c 〔3abc=[(a+b)3+c 3] -3ab(a+b+c)2 2=(a+b+c) [ (a+b) -c(a+b)+c ]-3ab(a+b+c) =(a+b+c)(a 2+b+c-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为3,3 3 a +b +C -3abc(A -i-b + :童』:十抚」+ 2c" -2ab -2bc-2cs) --3 + b —“ I (a-b- 3+ Ct-c) J al 二3 3 3 333 333显然,当 a+b+c=O 时,则 a+b+c=3abc ;当 a+b+c > 0 时,则 a+b+c-3abc > 0,即 a +b +C > 3abc , 而且,当且仅当a=b=c 时,等号成立.如果令 x=a 3> 0,y=b 3>0,z=c 3 >0,则有等号成立的充要条件是 x=y=z .这也是一个常用的结论.例 3 分解因式: x 15+x 14+x 13+…+x 2+x+1.分析 这个多项式的特点是:有 16项,从最高次项x 15开始,x 的次数顺次递减至 0,由此想到应用公式a n -b n 来分解.解因为所以点斎厂------------------- - ------------ -- -- 7K - J Z - 1(J +:j〔J十顶工+ 1]伙一号s -1^(3S亠0(1? +0(护+ 1)(3 * 1)说明在本题的分解过程中,用到先乘以(X-1),再除以(X-1)的技巧,这一技巧在等式变形中很常用.2 .拆项、添项法因式分解是多项式乘法的逆运算•在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零•在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项•拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4分解因式:X3-9X+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1将常数项8拆成-1+9.原式=X3-9X-1+9=(X3-1)-9X+92=(x_1)(x +X+1)-9(X-1)=(X -1)(X 2+X-8).解法2将一次项-9x拆成-X-8X.原式=X3-X-8X+8/ 3=(X -X)+(-8X+8)=X(X+1)(X -1) -8(X -1)=(X -1)(X 2+X-8).解法3将三次项x3拆成9X3-8X3 .原式=9X3-8X3-9X+8=(9X 3-9X)+(-8X3+8)=9X(X+1)(X -1)-8(X-1)(X 2+X+1)=(X -1)(X 2+X-8).解法4添加两项-x'+x?.原式=X3-9X+83 2 2=X -X +X -9X+8=X2(X -1)+(X -8)(X -1)1016 15 14 13 2x -仁(x-1)(x +X +X + …x +x+1),11=(X -1)(X 2+X -8).说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主 要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一 种.例 5 分解因式:963(1) x +x +x -3 ;22 (2) (m 2-1)(n 2 -1)+4mn ;(3) (x+1) 3+(x 2-1) 2+(x-1)4;(4)a 4b-ab 5+a 2+b 2+1.解 (1) 将-3拆成 -1-1-1.原式 =x 9+x 6+x 3-1-1-19 6 3 =(x 9-1)+(x 6-1)+(x 6-1)3 6 3 3 3 3=(x 3-1)(x 6+x 3+1)+(x 3-1)(x 3+1)+(x 3-1)=(x 3-1)(x6+2x3+3)2 63 =(x -1)(x +x+1)(x +2x +3) .(2) 将 4mn 拆成 2mn+2m .n原式 =(m -1)(n - 1)+2mn+2mn=m 2n 2 -m 2- n 2+1+2mn+2mn =(m 2n 2+2mn+1)-(m 2-2mn+n 2)=(mn+1)2-(m-n)=(mn+m- n+1)(mn -m+n+1).2 2 2 2 2 2⑶将(X -1)拆成 2 (x -1)-(X -1).原式=(x+1) 4+2 (x 2-1)2-(x 2-l) 2+(x -1)4=[(x+1) 4+2(x+1) 2(x-1)2+(x-1)4]-(x 2-1)2=[(x+1) 2+(x-1)2]2-(x 2-1)2 =(2x 2+2)2-(x 2-1)2=(3x 2+1)(x 2+3).(4) 添加两项 +ab- ab .原式=a 3b-ab 3 +a +b 2+1+ab- ab3 3 2 2 =(a b-ab )+(a -ab)+(ab+b +1)说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加 +ab-ab ,而且添加项 后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体 会到拆项、2=a(a-b) [b(a+b)+1]+(ab+b 2+1)=[a(a -b)+1](ab+b 2+1)=(a 2-ab+1)(b 2+ab+1) . =ab(a+b)(a -b)+a(a -b)+(ab+b 2+1)=(x+2)(x+4)(x 2+5x+8) .12添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来 运算,从而使运算过程简明清晰.例 6 分解因式: (x 2 +x+1)(x 2+x+2) -12.分析 将原式展开,是关于 x 的四次多项式,分解因式较困难.我们不妨将x 2+x 看作一个整体,并用字母 y 来替代,于是原题转化为关于 y 的二次三项式的因式分解问题了.解设x 2+x=y ,则原式 =(y+1)(y+2) -12=y 2+3y-10=(y -2)(y+5)=(x 2+x-2)(x 2+x+5)2 =(x -1)(x+2)(x 2+x+5) .说明本题也可将x 2+x+1看作一个整体,比如今x 2+x+1=u ,一样可以得到同样的结果,有兴趣的同学 不妨试一试.例 7 分解因式:(x 2+3x+2)(4x 2+8x+3) - 90. 分析 先将两个括号内的多项式分解因式,然后再重新组合.解 原式 =(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-9022 =(2x 2+5x+3)(2x 2+5x+2) -90.令 y=2x 2+5x+2,则原式 =y(y+1) -90=y 2+y-90=(y+10)(y -9)=(2x 2+5x+12)(2x 2+5x-7)=(2x 2+5x+12)(2x+7)(x -1) . 说明 对多项式适当的恒等变形是我们找到新元 (y) 的基础.例 8 分解因式:2 2 2(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.解设 x 2+4x+8=y ,则原式 =y 2+3xy+2x 2=(y+2x)(y+x)=(x 2+6x+8)(x 2+5x+8) 说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必 要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例 9 分解因式:6x 4 +7x136x 7- 7x+6.7 2 =(u -3V )解法 1 原式=6(x 4+1) + 7x(x 2-1)-36x2=6 : (X"-2X2+1)+2X2]+7X(X2-1)-36X2=6[(x 2-1)2+2X2]+7X(X 2-1)-36X22 2 2 2=6(x -1) +7x(x -1)-24X2 2=[2(X -1)-3X][3(X -1)+8X]2 2=(2x -3X-2)(3X +8X-3)=(2X+1)(X -2)(3X -1)(X+3).说明本解法实际上是将x2-i看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2匾式=只2 I -I-7K -3t--岬胡+仁Hi r原式=x[6(t 2+2)+7t -36]=x2(6t 2+7t -24)=x2(2t -3)(3t+8)=X2[2(X -1/X)-3][3(X -1/X)+8]2 2=(2x -3X-2)(3X +8X-3)=(2X+1)(X -2)(3X -1)(X+3).例10 分解因式:(x 2+xy+y2)-4xy(x 2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y) 2-xy] 2-4xy[(x+y) 2-2xy].令x+y=u,xy=v,贝U原式=(u 2-v) L4V(U 2-2V)4 2 2=u -6u V+9V=(x 2+2xy+y2-3xy)22 2 2=(x -xy+y ).13。

数学竞赛题精讲_复杂的因式分解问题

数学竞赛题精讲_复杂的因式分解问题

轮换对称式的因式分解问题多元高次轮换对称式的因式分解问题往往是因式分解中的难点,很多初中学生感到棘手。

但笔者却认为,这类问题往往是有迹可循的。

我们今天就通过几个例子讲一讲把“求根”和“待定系数”相结合进行因式分解的方法。

例1 分解因式:【分析与解答】首先观察发现,当时,原式的值为0。

即,如果将原式看作a 的函数,将b看作常数,则是函数的一个根。

故是原式的因式,同理及也是原式的因式。

故是原式的因式,观察发现原式是的三次式,也是三次式,故两式必然只差一个常数。

用待定系数法,设代入,得到,故原式的因式分解结果是例2 分解因式:【分析与解答】和例1类似,首先观察发现,当时,原式的值为0。

故是原式的因式,同理及也是原式的因式。

故是原式的因式,观察发现原式是的五次式,是三次式。

两者都是的轮换对称式,故原式一定可以表示成如下结果:代入,得到代入,得到解得故原式的因式分解结果是例3 化简:【分析与解答】这里虽然是化简而非因式分解,但我们发现分别展开以上四个式子太过复杂,耗时且易错,所以我们仿照例1和例2的方法首先用观察法“求根”以发现因式。

观察发现,当时,原式为故,是原式的一个因式,同理也是原式的因式。

故是原式的因式。

观察发现原式是的三次式,也是三次式,两式必然只差一个常数。

用待定系数法,设代入,得到,故原式的化简结果是配方法及其应用林达复杂的因式分解不仅可以是轮换对称式的因式分解,很多难以直接提出因式的高次多项式也难以分解。

对于这类多项式,配方法往往能出奇效。

相对于更一般的待定系数法,配方法的计算要简单很多。

配方法,顾名思义,就是将多项式或其中的某些项配成平方式或更高次方式(一般配成平方式,有时也可能直接配成三次方式,但更高次的配方很少出现)。

下面我们看几道例题。

例1分解因式:【分析与解答】通过观察或一般的十字相乘法,难以发现这个多项式的因式,这时我们根据这两项想到了配方法——配出平方项。

最后一步用了平方差公式。

初中竞赛数学第一讲因式分解(含解答)

初中竞赛数学第一讲因式分解(含解答)

第一讲 因式分解一、选择题1.下列由左边到右边的变形中,其中是因式分解的是( )A .(2a+3)()2a-3)=4a 2-9;B .4m 2-9=(2m+3)(2m-3)C .m 2-16+3m=(m+4)(m-4)+3m;D .2x(y+z)-3(y+z)=2xy + 2xz – 3y – 3z2.下面各式的因式分解中,正确的是( )A .-7ab – 14 + 49aby = 7ab(1- 2x + 7y);B .)3(33111x y y x y x y x n m n m n m +-=+---+C .6)133)((2)(2)(2+--=---b a b a a b b a ;D .xy(x – y ) – x (y – x ) = x (x – y )(y – 1 )3.下面各式的因式分解中,正确的是( )A .)444221)(221()(81223b ab a b a b a b a ++++++-=+-B .)2)(2(4)(222222222xy y x xy y x y x y x -+++=-+C .22)1(4448-=--a a aD .))()(()()(22b a b a y x x y b y x a -+-=-+-4.下面各式的因式分解中,正确的是( )A .ab – a + b + 1 = (a – 1)(b + 1)B .4xy + 1 – 4)21)(21(22y x y x y x ---+=-C .3a – 3b + 3x – bx = (a – b )(3 – x )D .)21)(21(41422y x y x y x xy --++=--+-5.下列因式分解的变形中,正确的是( )A .))(1()1(22a x x a x a x --=++-B .)13)(12(61652++=++m m m m C .))(()(2222222b y a y b a y b a y ++=+⋅++D .)1)(4)(2)(1(8)3(2)3(222-+--=----x x x x x x x x二、填空题1.在代数式164)3(,)2(,144)1(2222++++-n n mn m x x 中是完全平方式的是__________。

因式分解—2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

因式分解—2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

因式分解学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)若x=1,则1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2013+x(1+ x)2014=.【答案】22015【分析】本题考查了提取公因式法,整式化简求值,熟练掌握提取公因式法是解答本题的关键.将所求代数式反复提取公因式(x+1),得到(1+x)2015,再将x=1代入即得答案.【详解】解:当x=1时,原式=(1+x)[1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2012+x(1+x)2013]=(1+x)2[1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2011+x(1+x)2012]=⋯=1+x2015=22015.故答案为:22015.2(2024·全国·七年级竞赛)若a、b是正整数,且756a=b3,则a的最小值是.【答案】98【分析】本题主要考查了因式分解、有理数乘方等知识点,掌握因式分解的应用是解题的关键.先将756因式分解,然后表示出a的最小值即可解答.【详解】解:∵756=33×22×7,756a=b3,∴a=b3756=b333×22×7,∴a min=2×72=98.故答案为98.3(2024·全国·八年级竞赛)已知a、b为正整数,且满足ab+a+b=2011,则满足条件的有序实数对(a, b)的组数是.【答案】4【分析】本题主要考查因式分解的应用,将ab+a+b+1=2012变形为a+1b+1=22×503,根据a、b为正整数得a+1≥2,b+1≥2,再分类讨论即可求解【详解】解:∵ab+a+b+1=2012,∴a+1b+1=22×503,又a、b为正整数,∴a+1≥2,b+1≥2,∴a+1=2b+1=1006,a+1=4b+1=503,a+1=503b+1=4,a+1=1006b+1=2,共4组,即有序实数对(a,b)共有4组.4(2024·全国·八年级竞赛)设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则ab2+b2-3a+12a2015=.【答案】-1【分析】本题考查了分式的化简求值,将a 2+2a -1=0与b 4-2b 2-1=0的差进行因式分解,得到a +b 2 a -b 2+2 =0,推出a 与b 的关系,并判断其是否满足1-ab 2≠0,最后将其代入ab 2+b 2-3a +12a2015中化简求解,即可解题.【详解】解:a 2+2a -1 -b 4-2b 2-1 =0,a +b 2 a -b 2+2 =0,若a -b 2+2=0,则b 2=a +2,则1-ab 2=1-a a +2 =-a 2+2a -1 =0,矛盾.所以a +b 2=0,即b 2=-a ,所以ab 2+b 2-3a +12a 2015=-a 2-a -3a +12a 2015=-a 2+2a +2a -12a 2015=-2a 2a 2015=-1.故答案为:-1.5(2024·全国·八年级竞赛)若m 2=n +2015,n 2=m +2015m ≠n ,则m 3-2mn +n 3的值为.【答案】-2015【分析】本题考查整式的化简求值,利用m 2=n +2015与n 2=m +2015m ≠n 的差,结合平方差公式进行因式分解,得出m +n =-1,将m 3-2mn +n 3变形为含m +n 的式子,再将m +n =-1代入式子,即可解题.【详解】解:由题知,m 2-n 2=n -m ,则m +n =-1,又m 3-2mn +n 3=m m 2-n -n m -n 2 =2015m +n =-2015.故答案为:-2015.6(2024·全国·八年级竞赛)已知多项式a 2+7ab +kb 2-5a +43b -24分解因式后能够变成两个含有a 、b 的一次因式的乘积,则实数k 的值为.【答案】-18【分析】本题考查了因式分解,多项式乘以多项式,二元一次方程组的求解,根据因式分解结合多项式乘以多项式可得m +n =7①,mn =k ②,3n -8m =43③,利用加减消元法求解二元一次方程组得到m ,n 的值,即可求出最后结果.【详解】解:a 2+7ab +kb 2-5a +43b -24可分解为a +bm +3 a +nb -8 ,∴a +bm +3 a +nb -8=a 2+mab +3a +nab +mnb 2+3nb -8a -8mb -24=a 2+m +n ab +mnb 2-5a +3n -8m b -24,∵a 2+7ab +kb 2-5a +43b -24,∴m +n =7①,mn =k ②,3n -8m =43③,③-3×①得:-8m -3m =43-3×7,解得:m =-2,将m =-2代入①得:n =9,∴k =mn =-18,故答案为:-18.7(2024·全国·八年级竞赛)已知:x =2012t +801,y =2012t +803,z =2012t +805,则x 2+y 2+z 2-xy -yz -zx =.【答案】12【分析】本题主要考查了因式分解的应用,先求出x -y =-2,y -z =-2,x -z =-4,再根据完全平方公式把原式因式分别为12x -y 2+y -z 2+z -x 2,据此代值计算即可.【详解】解:∵x =2012t +801,y =2012t +803,z =2012t +805,∴x -y =-2,y -z =-2,x -z =-4x 2+y 2+z 2-xy -yz -zx=12x 2-2xy +y 2 +12y 2-2yz +z 2 +12x 2-2xz +z 2 =12x -y 2+y -z 2+z -x 2=12-2 2+-2 2+-4 2=124+4+16 =12,故答案为:12.8(2024·全国·八年级竞赛)分解因式:1-m 2-n 2+2mn =.【答案】(1+m -n )(1-m +n )【分析】本题考查了分组分解法进行因式分解,利用添括号把1-m 2-n 2+2mn 后三项放一起,得到1-m 2-2mn +n 2,利用完全平方公式进行因式分解,得到1-m -n 2,再利用平方差公式因式分解即可求解,掌握分组分解法是解题的关键.【详解】解:原式=1-m -n 2,=1+m -n 1-m +n ,故答案为:1+m -n 1-m +n .9(2024·全国·七年级竞赛)若2x -3 +y -2 2=0,则x 2-2xy +y 2=.【答案】14/0.25【分析】根据非负数的性质求出x =32,y =2.再把字母的值代入x 2-2xy +y 2=x -y 2进行求解即可,此题考查了求代数式的值、完全平方公式和非负数的性质,求出字母的值是解题的关键.【详解】解:∵2x -3 +y -2 2=0,2x -3 ≥0,y -2 2≥0,∴2x -3 =0,y -2 2=0,∴2x -3=0,y -2=0,∴x =32,y =2.∴x 2-2xy +y 2=x -y 2=32-2 2=14,故答案为:1410(2024·全国·八年级竞赛)已知△ABC 的三边为a 、b 、c ,且满足1a -1b +1c =1a -b +c,则△ABC 的形状为.【答案】等腰三角形【分析】本题考查因式分解,等腰三角形的判定,先将分式变形得出bc -ac +ab abc =1a -b +c,得出abc =a -b +c ab -c a -b ,再进行因式分解,进而得出a =b 或b =c ,即可得出答案.【详解】∵1a -1b +1c =1a -b +c,∴bc -ac +ab abc =1a -b +c,∴abc =a -b +c ab -c a -b=ab a -b -c a -b 2+abc -c 2a -b ,a -b ab -c a -b -c 2=0,a -b ab -ac +bc -c 2 =0,∴a -b b -c a +c =0,∴a =b 或b =c .故答案为:等腰三角形.11(2024·全国·八年级竞赛)已知a 2+b 2=2,x 2+y 2=1003,则多项式(ax +by )2+(bx -ay )2的值为.【答案】2006【分析】本题考查了整体代入求多项式的值,整式的混合运算,分组法因式分解等知识.先将(ax +by )2+(bx -ay )2进行计算得到a 2x 2+b 2x 2+b 2y 2+a 2y 2,再利用分组因式分解得到a 2+b 2 x 2+y 2 ,整体代入即可求解.【详解】解:(ax +by )2+(bx -ay )2=a 2x 2+b 2y 2+2abxy +b 2x 2+a 2y 2-2abxy =a 2x 2+b 2x 2+b 2y 2+a 2y 2=x 2a 2+b 2 +y 2a 2+b 2 =a 2+b 2 x 2+y 2 =2×1003=2006.12(2015·全国·八年级竞赛)若n 为整数,且n 2+9n +30是自然数,则n =.【答案】-14或-7或-2或5【分析】本题主要考查了因式分解的应用,解二元一次方程组,设n 2+9n +30=p (p 为非负整数),则可推出2n +9 2+39=4p 2,进而得到2p +2n +9 2p -2n -9 =39,再由题意可得2p +2n +9和2p -2n -9都是整数,再由39=-1×-39 =1×39,由此得到2p +2n +9=12p -2n -9=39或2p +2n +9=392p -2n -9=1 或2p +2n +9=32p -2n -9=13 或2p +2n +9=132p -2n -9=3 ,解方程组即可得到答案.【详解】解:设n 2+9n +30=p (p 为非负整数),∴n 2+9n +30=p 2,∴4n 2+36n +120=4p 2∴2n +9 2+39=4p 2,∴4p 2-2n +9 2=39,∴2p +2n +9 2p -2n -9 =39,∵n ,p 都为整数,∴2p +2n +9和2p -2n -9都是整数,∵39=1×39=3×13∴2p+2n+9=12p-2n-9=39或2p+2n+9=392p-2n-9=1或2p+2n+9=32p-2n-9=13或2p+2n+9=132p-2n-9=3,解得p=10n=-14或p=10n=5或p=4n=-7或p=4n=-2∴n=-14或-7或-2或5,故答案为:-14或-7或-2或5.13(2024·全国·九年级竞赛)分解因式:a2-b2-2a+1=.【答案】(a-1+b)(a-1-b)【分析】先分组,得到(a2-2a+1)-b2,运用完全平方公式变形得到(a-1)2-b2,再根据平方差公式分解因式.【详解】a2-b2-2a+1=(a2-2a+1)-b2=(a-1)2-b2=(a-1+b)(a-1-b),故答案为:(a-1+b)(a-1-b).【点睛】此题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解,因式分解常用的方法有:提公因式法,公式法,十字相乘法,分组分解法,因式分解必须分解到每个因式都不能分解为止.14(2024·全国·八年级竞赛)正整数a、b满足ab+a+b=90,则ab=.【答案】72【分析】本题考查因式分解的应用,根据条件可得a+1b+1=91,然后由a、b为正整数,可得a+1>1且b+1>1,进而求出a,b的值,代入求值即可.【详解】解:∵ab+a+b=90,∴ab+a+b+1=91,即a+1b+1=91,又∵a、b为正整数,∴a+1>1且b+1>1∴a+1=7b+1=13,a+1=13b+1=7,解得:a=6 b=12或a=12b=6,∴ab=6×12=72,故答案为:72.15(2024·全国·八年级竞赛)分解因式:2x3-12x2y+18xy2=.【答案】2x x-3y2【分析】本题主要考查提公因式法,公式法分解因式,先提取公因式2x,再运用完全平方公式进行分解因式即可求解,掌握分解因式的方法是解题的关键.【详解】解:2x3-12x2y+18xy2=2x(x2-6xy+9y2)=2x x-3y2,故答案为:2x x-3y2.二、单选题16(2024·全国·八年级竞赛)若a=20072+20072×20082+20082,则关于a的说法正确的是( ).A.是正整数,而且是偶数B.是正整数,而且是奇数C.不是正整数,而是无理数D.无法确定【答案】B【分析】设n=2007,将根号下的整式通过加添项凑成完全平方式,去掉根号,再根据整式的性质进行判断正负性和奇偶性,本题考查了运用完全平方公式分解因式,解题的关键是:熟练掌握完全平方公式,及加添项的分解因式技巧.【详解】设n=2007,a=n2+n2n+12+n+12=n2-2n n+1+n+12+2n n+1+n2n+12=n+1-n2+2n n+1+n n+12=1+2n n+1+n n+12=1+n n+12=1+n n+1∵n n+1是偶数,∴1+n n+1是奇数,选项B符合题意,故选:B.17(2024·全国·九年级竞赛)任意正整数n都能够分解成两个正整数的乘积,若相乘的这两个正整数之差的绝对值最小,则分别记为a、b a≤b,并规定f n=ab.例如:f6 =23,f7 =17,f12=34,现有下列说法:①f2 =12;②f24=38;③若n是一个完全平方数,则f n =1;④若n是一个完全立方数,即n=a3(a是正整数),则f n=1a.其中正确的有( ).A.1个B.2个C.3个D.4个【答案】B【分析】此题主要考查了完全平方数,分解因数,新定义的理解和应用,掌握分解因数的方法是解本题的关键.①将2分解因数,进而找出2的两个因数即可得出结论;②将24分解因数,进而找出24的两个因数即可得出结论;③根据题意找出n的符合题意的分解即可得出结论;;④利用“相乘的这两个正整数之差的绝对值最小”举出反例,进而确定此说法错误即可.【详解】解:①∵2=1×2,∴f2 =12,此说法正确;②24可以分解成1×24,2×12,3×8或4×6,因为24-1>12-2>8-3>6-4,所以4×6是24的符合题意的分解,所以f24=23,故错误;③∵n是一个完全平方数,设n=x2x>0,∴x×x是n的符合题意的分解,则f n =1,此说法正确;④若n是一个完全立方数,即n=a3(a是正整数),∵a是正整数,如64=43=8×8,f64=88≠18,则f n =1a不一定成立,此说法错误.综上所述,有两个正确,故答案为:B .18(2024·全国·八年级竞赛)三位数abc 的平方的末三位数恰好是abc ,这样的三位数abc有()A.0个B.1个C.2个D.多于2个【答案】C【分析】本题考查分解因式的应用,掌握提取公因式分解是解题的关键.【详解】由题意知abc 2-abc =abc abc-1 是1000的倍数,∵1000=8×125,abc ,abc-1=1,∴(1)8整除abc 且125整除abc -1 ;(2)125整除abc 且8整除(abc-1),由(1)得abc =376,由(2)得abc=625,∴共有两个,故选C .19(2024·全国·八年级竞赛)已知实数m 、n 、p 满足m 2-2p =7,n 2-6m =-17,p 2+2n =-1,则m +n +p 的值等于( ).A.2 B.4 C.3 D.5【答案】C【分析】本题考查了因式分解的完全平方公式,代数式求值,熟练掌握完全平方公式是解答本题的关键,先将三式相加,并移项配方成三个完全平方式,即可得到答案.【详解】将m 2-2p =7,n 2-6m =-17,p 2+2n =-1三式相加,得m 2-2p +n 2-6m +p 2+2n =7-17-1整理得m 2-6m +9+n 2+2n +1+p 2-2p +1=0即(m -3)2+(n +1)2+(p -1)2=0∴m =3,n =-1,p =1,∴m +n +p =3.20(2024·全国·八年级竞赛)已知在△ABC 中,a 、b 、c 是三边的长,且a 2-12b 2-c 2+4ab +8bc =0,那么b a +c 的值是( ).A.14 B.12 C.34 D.1【答案】B【分析】本题考查完全平方公式,平方差公式因式分解,根据完全平方公式变形得出a +2b 2-4b -c 2=0,得出a +2b +4b -c a +2b -4b +c =0,求出a -2b +c =0,再代入求值即可得出答案.【详解】解:∵a 2-12b 2-c 2+4ab +8bc =0,∴a 2+4ab +4b 2 -16b 2-8bc +c 2 =0,a +2b2-4b -c 2=0,a +2b +4b -c a +2b -4b +c =0,∵a +b -c >0,∴a +6b -c ≠0,∴a -2b +c =0,∴b a +c =12.故选:B .21(2024·全国·八年级竞赛)已知a 、b 、c 分别是△ABC 的三边,则a 2+b 2-c 2 2-4a 2b 2为()A.正数B.负数C.零D.无法确定【答案】B【分析】本题主要考查了因式分解,三角形三边的关系,先利用平方差公式和完全平方公式把原式分解因式得到a +b +c a +b -c a -b +c a -b -c ,再根据三角形中,任意两边之差小于第三边,任意两边之和大于第三边推出a 2+b 2-c 2 2-4a 2b 2<0即可得到答案.【详解】解:a 2+b 2-c 2 2-4a 2b2=a 2+b 2+2ab -c 2 a 2+b 2-2ab -c 2 =a +b 2-c 2 a -b 2-c 2=a +b +c a +b -c a -b +c a -b -c ,∵a 、b 、c 分别是△ABC 的三边,∴a +b +c >0,a +b -c >0,a +c -b >0,a -b -c <0,∴a +b +c a +b -c a -b +c a -b -c <0,∴a 2+b 2-c 2 2-4a 2b 2<0故选:B .22(2024·全国·八年级竞赛)若多项式x 2+mx +12因式分解得x +3 x +n ,则m +n =()A.8B.9C.10D.11【答案】D【分析】本题考查了因式分解的定义和多项式的乘法运算.根据因式分解的定义,列出等式,利用等式性质分别求出m 和n 的值,再求解即可.【详解】解:由已知,x +3 x +n =x 2+3+n x +3n =x 2+mx +12故可得,3+n =m ,3n =12,∴n =4,m =3+n =7,∴m +n =4+7=11,故选:D三、解答题23(2024·全国·八年级竞赛)有n (n ≥2且为整数)支乒乓球队进行单循环赛,每支参赛队同其他各队都进行一场比赛.如果用a i 和b i 分别表示第i (i =1,2,3,⋯,n )支球队在整个赛程中胜与负的局数求证:a 21+a 22+⋯+a 2n =b 21+b 22+⋯+b 2n .【答案】见解析【分析】本题考查了等式证明问题,利用平方差公式进行因式分解,作差比较是非常常用的方法.找出比赛规则下隐含的条件a i +b i =n -1,且a 1+a 2+⋯+a n =b 1+b 2+⋯+b n 是证题的关键.【详解】证明:∵比赛没有平局,且所有球队胜的总场数与负的总场数相等,∴a i +b i =n -1,且a 1+a 2+⋯+a n =b 1+b 2+⋯+b n .∴a 2i -b 2i =a i +b i a i -b i =n -1 a i -b i ,∵a 21+a 22+⋯+a 2n -b 21+b 22+⋯+b 2n =a 21-b 21 +a 22-b 22 +⋯+a 2n -b 2n=a 1+b 1 a 1-b 1 +a 2+b 2 a 2-b 2 +⋯+a n +b n a n -b n=n -1 a 1-b 1 +n -1 a 2-b 2 +⋯+n -1 a n -b n =n -1 a 1-b 1+a 2-b 2+⋯+a n -b n =n -1 a 1+a 2+⋯+a n -b 1-b 2-⋯-b n =n -1 a 1+a 2+⋯+a n -b 1+b 2+⋯+b n =0;∴a 21+a 22+⋯+a 2n =b 21+b 22+⋯+b 2n .24(2024·全国·九年级竞赛)中国古代数学家秦九韶和古希腊数学家海伦分别提出了一般三角形面积的计算方法:①S =14a 2b 2-a 2+b 2-c 222;②S =p p -a p -b p -c .(其中a 、b 、c 为三角形的三边长,p =a +b +c2,S 为面积)(1)请证明:14a 2b 2-a 2+b 2-c 222=p p -a p -b p -c ;(2)如图,线段MN =6,点B 在MN 上,且MB =4,点A 是线段MB 上一点,分别以A 、B 为圆心,AM 、BN 的长为半径画圆,⊙A 和⊙B 交于点P ,直接写出△PAB 的面积的最大值:.【答案】(1)见解析(2)3【分析】本题考查了乘法公式的应用,二次函数的图象与性质.(1)对被开方数的字母因式利用乘法公式变形即可完成;(2)设AB =a ,则PA =4-a ,利用S =p p -a p -b p -c 表示出面积,再利用二次函数知识即可求解.【详解】(1)证明:∵14a 2b 2-a 2+b 2-c 222 =14ab +a 2+b 2-c 22 ab -a 2+b 2-c 22=14×(a +b )2-c 22×c 2-(a -b )22=14×(a +b +c )(a +b -c )2×(c +a -b )(c -a +b )2=a +b +c 2⋅a +b -c 2⋅c +a -b 2⋅c +b -a 2,∵p =a +b +c 2,∴a +b -c =2p -2c ,c +a -b =2p -2b ,c +b -a =2p -2a ,∴a +b +c 2⋅a +b -c 2⋅c +a -b 2⋅c +b -a 2=p (p -c )(p -b )(p -a ),∴14a 2b 2-a 2+b 2-c 22 2=p p -a p -b p -c ;(2)解:设AB=a,则PA=MB-AB=4-a,PB=BN=MN-MB=2,∴p=12MN=3,∴S=33-a3-23-4-a=3(-a2+4a-3)=-3(a-2)2+3,而对于-3(a-2)2+3,当a=2时,它有最大值3,∴S有最大值3;故答案为:3.25(2024·全国·八年级竞赛)在实数范围内因式分解:(1)-2x3+26x2y-3xy2;(2)a4+a2-6;(3)4(b+1)4-4b2-8b-3.【答案】(1)-x2x-3y2(2)a+2a-2a2+3(3)2b2+4b+12【分析】本题考查了实数范围内的因式分解,熟练掌握因式分解的方法是解答本题的关键.(1)先提取公式因,再利用完全平方公式的方法进行因式分解即可;(2)利用完全平方公式和平方差公式的方法进行因式分解即可;(3)利用完全平方公式的方法进行因式分解即可.【详解】(1)解:-2x3+26x2y-3xy2=-x2x2-26xy+3y2=-x2x2-26xy+3y2=-x2x-3y2;(2)a4+a2-6=a2-2a2+3=a+2a-2a2+3;(3)4(b+1)4-4b2-8b-3=4b+14-4b+12+1=2b+12-12=2b2+4b+12.26(2024·全国·八年级竞赛)已知a=xm2+1+2008,b=xm2+1+2009,c=xm2+1+2010,且abc=6,求abc+bca+cab-1a-1b-1c的值.【答案】1 2【分析】本题考查了分式化简求值,根据题意得出a-b=-1,b-c=-1,c-a=2是解题关键.【详解】解:依题意得:a-b=-1,b-c=-1,c-a=2,原式=a2+b2+c2-bc-ca-ababc=2a2+2b2+2c2-2bc-2ca-2ab2abc=a-b2+b-c2+c-a22abc=-12+-12+222×6=12.27(2024·全国·八年级竞赛)设a,b,c,d都是正整数,且a5=b4,c3=d2,c-a=33,求d+b的值.【答案】5937或375【分析】本题主要考查了幂的乘方、因式分解的应用、解方程组等知识点,灵活运用相关知识成为解题的关键.设a5=b4=m20,c3=d2=n6,则a=m4,b=m5,c=n2,d=n3,进而得到c-a=n2-m4=33;再根据题意因式分解可得n+m2n-m2=33×1=11×3,再分为n+m2=33n-m2=1或n+m2=11n-m2=3两种情况求得m、n,进而求得b、d,最后求和即可.【详解】解:设a5=b4=m20,c3=d2=n6,则a=m4,b=m5,c=n2,d=n3.∵c-a=n2-m4=33,∴n+m2n-m2=33×1=11×3.∵a,b,c,d均为正整数,∴m,n也为正整数,∴n+m2=33n-m2=1或n+m2=11n-m2=3,∴n=17m=4或n=7m=2,∴b=1024d=4913或b=32d=343,∴b+d=5937或375.故答案为:5937或375.28(2024·全国·八年级竞赛)已知a+b=3,x+y=5,ax+by=7.求a2+b2xy+ab x2+y2的值.【答案】56【分析】本题主要考查了因式分解的应用,先把所求式子因式分解成ay+bxax+by,再由一直条件式得到ax+ay+bx+by=15,进而求出ay+bx=8,据此可得答案.【详解】解:a2+b2xy+ab x2+y2=a2xy+b2xy+abx2+aby2=ax ay+bx+by bx+ay=ay+bxax+by,∵a+b=3,x+y=5∴a+bx+y=15,∴ax+ay+bx+by=15,∵ax+by=7,∴ay+bx=8,∴原式=8×7=56.29(2024·全国·八年级竞赛)已知:4a-b是11的倍数,其中a,b是整数,求证:40a2+2ab-3b2能被121整除.【答案】证明见解析【分析】本题考查了因式分解,整数的整除性,熟练掌握因式分解是解答本题的关键.设4a-b=11n,则b =4a-11n,先将代数式40a2+2ab-3b2因式分解,再将b的值代入并化简得121n2a-3n,即能证明结论.【详解】设4a-b=11n,则b=4a-11n,40a2+2ab-3b2=4a-b10a+3b=11n10a+34a-11n=121n2a-3n.故40a2+2ab-3b2能被121整除.30(2021·全国·九年级竞赛)因式分解x4+x2+2ax+1-a2【答案】x2+x+1-ax2-x+a+1【分析】利用“配方法”即先配方,再利用平方差公式分解即可.【详解】解:x4+x2的特点,添上x2,-x2两项,原式=x4+2x2+1-x2+2ax-a2=x2+12-(x-a)2=x2+x+1-ax2-x+a+1【点睛】本题考查了因式分解,解题的关键是掌握完全平方公式,平方差公式.。

初中数学竞赛双十字相乘法因式分解练习100题及答案

初中数学竞赛双十字相乘法因式分解练习100题及答案

初中数学竞赛双十字相乘法因式分解练习100题及答案(1)222541636089x y z xy yz xz+--+-(2)2274012742a ab b a b+-++(3)2227156381341x y z xy yz xz+---+ (4)2224985422242a b c ab bc ac+++--(5)22634455212x xy y x y+-+++ (6)24040593521m mn m n--++(7)22152********x xy y x y+-+--(8)22284233215x y z xy yz xz+--++(9)2263491413206x xy y x y--++-(10)222723531031615x y z xy yz xz+--+-(11)22203973189m mn n m n-+++-(12)22320123346m mn n m n++---(13)22546212x y x y-+-+(14)22152********x xy y x y-+-++ (15)2212104256525x xy y x y+--+-(16)222822472x xy y x y-+-+(17)2227334451818x xy y x y --++-(18)2224275351223x y z xy yz xz --+-+(19)21863733535x xy x y ++++(20)2230774931356x xy y x y ++---(21)22242312501224x xy y x y ---++(22)2230148551025m mn n m n --+-+(23)222122854424m mn n m n +---+(24)221431151421x xy y x y ++--(25)2240316624a ab b a b -+-+-(26)222212721x xy y x y--+-(27)22141122799x xy y x y -+-++(28)226520914x xy y x y -++-+(29)2214217454025p pq q p q -+-++(30)22943103326m mn n m n +-+--(31)222243524222248a b c ab bc ac-+-+-(32)2226364210x xy y x y +----(33)22113021624x xy y x y ++---(34)2228499424218x y z xy yz xz+++++(35)22144775436x xy y x y+-++-(36)2245191712m mn n m n+---+ (37)22225145251720x y z xy yz xz---++ (38)22104121212849m mn n m n-+++-(39)2281721292220m mn n m n-++--(40)224564121012x xy y x y++++(41)2225536242436x y z xy yz xz-++--(42)2224063538a b c ab bc ac-++++ (43)254121521a ab a b++++(44)274283612m mn m n+-+-(45)25649344212x xy x y--+-(46)2243914x xy y x y--++-(47)2272113565287m mn n m n----+ (48)2235834218a ab b a b--+-(49)22728211156p pq q p q-++--(50)22256126112734a b c ab bc ac---+-(51)228953421x xy y x y++++-(52)22351110244535x xy y x y+----(53)22264155161048x y z xy yz xz-+---(54)222151412111327a b c ab bc ac-++++ (55)222827526136p pq q p q+++++ (56)2226435309658x y z xy yz xz+----(57)22202422739a ab b a b----+ (58)2226366132033x y z xy yz xz----+ (59)22216716542440a b c ab bc ac-++--(60)2224544111731x y z xy yz xz----+ (61)22418829187x xy y x y-+-++(62)2221218113315x xy y x y-++-+ (63)22220427749x xy y x y+++--(64)2228189182721x y z xy yz xz--+-+ (65)2212142040525x xy y x y--+++ (66)224217152743x xy y x y+--++ (67)22262124394632a b c ab bc ac--+-+ (68)22291069415x y z xy yz xz-+--+ (69)2228129201218x y z xy yz xz-+--+ (70)22925656612x xy y x y+--++(71)2218236282016a ab b a b +-+--(72)2224137122512x xy y x y +----(73)2225307404012x xy y x y +---+(74)2225621435830x y z xy yz xz -++++(75)22324814682330x xy y x y +---+(76)22123615381114x xy y x y -+-+-(77)222813670942x xy y x y ---++(78)224247310m mn n m n +-+-+(79)2248286741728a ab b a b ---++(80)2210414213910x xy y x y +-++-(81)25628272418m mn m n +++-(82)22251236162424x y z xy yz xz+-+++(83)2226425484111a b c ab bc ac++-+-(84)222402242182x y z xy yz xz+-++-(85)22245615592360x y z xy yz xz+++++(86)2224235207358x y z xy yz xz-+-+-(87)2263024194014x xy y x y +++++(88)22152896x xy y x y+-+-(89)229211825246x xy y x y +-+--(90)228383516388x xy y x y ++--+(91)222271544273a b c ab bc ac +---+(92)2218935187236x xy y x y +-+--(93)22227343033x y z xy yz xz +-+--(94)222191222115x xy y x y --+-+(95)22189201815x xy y x y--++(96)2262521395118x xy y x y -++-+(97)222481225143510x y z xy yz xz-----(98)2492863814p pq p q +--+(99)244211620x xy x y +--+(100)272958510x xy x y --++初中数学竞赛双十字相乘法因式分解练习100题答案(1)(943)(64)x y z x y z---+(2)(727)(6)a b a b-++(3)(73)(56)x y z x y z---+(4)(725)(74)a b c a b c+-+-(5)(723)(924)x y x y++-+ (6)(87)(553)m m n---(7)(347)(563)x y x y++--(8)(42)(8)x y z x y z-+--(9)(922)(773)x y x y+--+ (10)(87)(953)x y z x y z-+--(11)(53)(473)m n m n---+ (12)(326)(61)m n m n+-++ (13)(932)(621)x y x y++-+ (14)(565)(33)x y x y----(15)(375)(465)x y x y+--+ (16)(421)(72)x y x y---(17)(93)(346)x y x y+--+ (18)(6)(775)x y z x y z--++ (19)(277)(95)x y x+++ (20)(671)(576)x y x y+++-(21)(344)(836)x y x y--+-(22)(545)(625)m n m n-+++ (23)(346)(724)m n m n+---(24)(23)(757)x y x y++-(25)(832)(522)a b a b-+--(26)(3)(247)x y x y-++ (27)(723)(23)x y x y----(28)(37)(22)x y x y-+-+ (29)(25)(775)p q p q----(30)(926)(51)m n m n--++(31)(656)(474)a b c a b c+---(32)(62)(265)x y x y++--(33)(64)(56)x y x y+++-(34)(273)(473)x y z x y z++++ (35)(76)(271)x y x y-++-(36)(453)(4)m n m n+---(37)(575)(52)x y z x y z-++-(38)(537)(277)m n m n---+ (39)(925)(964)m n m n-+--(40)(56)(922)x y x y+++(41)(56)(56)x y z x y z--+-(42)(5)(86)a b c a b c++-+(43)(61)(921)a a b+++ (44)(62)(76)m n m+-+ (45)(872)(76)x y x-+-(46)(47)(2)x y x y+--+ (47)(977)(851)m n m n--+-(48)(73)(56)a b a b-++ (49)(32)(773)p q p q-+--(50)(836)(74)a b c a b c+--+ (51)(7)(83)x y x y+++-(52)(755)(527)x y x y++--(53)(855)(83)x y z x y z--+-(54)(323)(574)a b c a b c-+++ (55)(753)(42)p q p q++++ (56)(855)(876)x y z x y z-+--(57)(463)(573)a b a b--+-(58)(926)(73)x y z x y z++--(59)(274)(84)a b c a b c+---(60)(54)(94)x y z x y z++--(61)(421)(47)x y x y----(62)(265)(33)x y x y-+-+ (63)(267)(77)x y x y+-++ (64)(863)(33)x y z x y z--++ (65)(655)(245)x y x y++-+ (66)(731)(653)x y x y--+-(67)(76)(634)a b c a b c++--(68)(353)(322)x y z x y z-+++ (69)(423)(263)x y z x y z++-+ (70)(36)(922)x y x y+---(71)(924)(234)a b a b--++ (72)(33)(874)x y x y--++ (73)(572)(56)x y x y+---(74)(772)(832)x y z x y z++-+ (75)(825)(476)x y x y--+-(76)(257)(632)x y x y---+ (77)(727)(436)x y x y+---(78)(72)(65)m n m n-+++(79)(867)(64)a b a b--+-(80)(572)(225)x y x y+--+ (81)(76)(843)m m n++-(82)(566)(26)x y z x y z+-++(83)(665)(7)a b c a b c----(84)(86)(524)x y z x y z+++-(85)(93)(565)x y z x y z++++ (86)(775)(654)x y z x y z--+-(87)(667)(42)x y x y++++ (88)(32)(543)x y x y-++ (89)(33)(962)x y x y++--(90)(454)(272)x y x y+-+-(91)(954)(33)a b c a b c-+--(92)(676)(356)x y x y--++ (93)(9)(334)x y z x y z+++-(94)(331)(745)x y x y-+++ (95)(343)(65)x y x y-++ (96)(673)(36)x y x y-+-+ (97)(835)(645)x y z x y z++--(98)(72)(747)p p q-+-(99)(445)(4)x y x+--(100)(82)(95)x y x---。

因式分解50题(配完整解析)

因式分解50题(配完整解析)

因式分解50题(配完整解析)考点卡片一.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.二.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.22平方差公式:a ﹣b =(a +b )(a ﹣b );222完全平方公式:a ±2ab +b =(a ±b );2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.三.因式分解-分组分解法1、分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.2、对于常见的四项式,一般的分组分解有两种形式:①二二分法,②三一分法.例如:①ax +ay +bx +by =x (a +b )+y (a +b )=(a +b )(x +y )22②2xy ﹣x +1﹣y 22=﹣(x ﹣2xy +y )+12=1﹣(x ﹣y )=(1+x ﹣y )(1﹣x +y )四.因式分解-十字相乘法等借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.2①x +(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q )2②ax +bx +c (a ≠0)型的式子的因式分解这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一2次项b ,那么可以直接写成结果:ax +bx +c =(a 1x +c 1)(a 2x +c 2).五.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x ﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解2x 2﹣2=x 2﹣(2)2=(x+2)(x-2)一.填空题(共5小题)1.因式分解:-2x 2+2x =.2.因式分解:a 3+2a =.3.分解因式:8x 2-8xy +2y 2=.4.分解因式:ab 2+a 2b =.5.因式分解2x 2y -8y =.二.解答题(共45小题)6.分解因式(1)n 2(m -2)-n (2-m )(2)(a 2+4b 2)2-16a 2b 2.7.因式分解(1)(2a +b )2-(a +2b )2(2)16x 4-8x 2y 2+y 48.已知m -2n =-2,求下列多项式的值:(1)5m -10n +10m 2(2)+n 2-mn -3.49.因式分解:(x 2-3)2+2(3-x 2)+1.10.因式分解:m 2(m -4)2+8m (m -4)+16.11.分解因式:4(a +2)2-9(a -1)2.12.(x 2+4)2-16x 2.13.因式分解:(x -6x )+18(x -6x )+81.14.分解因式:(1)x 4-2x 2+1;(2)a 4-8a 2b 2+16b 4;(3)(a 2+4)2-16a 2;(4)(m 2-4m )2+8(m 2-4m )+16.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )217.分解因式:(x +3)2-(x -3)2.18.(x -5y )2-(x +5y )219.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 221.分解因式:(1)-3x 2+6xy -3y 2;222222222(2)(a +b )(a -b )+4(b -1).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 223.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+927.把下列各式因式分解:(1)12x 4-6x 3-168x 2(2)a 5(2-3a )+2a 3(3a -2)2+a (2-3a )3(3)abc (a 3+b 3+c 3+2abc )+(a 3b 3+b 3c 3+c 3a 3)28.分解因式(1)16-a 4(2)y 3-6xy 2+9x 2y(3)(m +n )2-4m (m +n )+4m 2(4)9-a 2+4ab -4b 229.因式分解(1)-a 2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;124242(4)(x -4x +1)(x +3x +1)+10x 4;31.分解因式:(1)12abc -2bc 2(2)2a 3-12a 2+18a (3)9a (x -y )+3b (x -y )(4)(x +y )2+2(x +y )+1(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .(6)(a+b)(a-b)+4(b-1)32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b235.把下列多项式分解因式:(1)27xy2-3x121x+xy+y22222(3)a-b-1+2b(4)x2+3x-436.因式分解:(1)x2-xy-12y2;(2)(2)a2-6a+9-b237.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(5)p2-5p-36(6)x5-x3(7)(x-1)(x-2)-6(8)a2-2ab+b2-c238.把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+x+1;(4)x3+5x2+3x-9;(5)2a4-a3-6a2-a+2.39.分解因式(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m40.分解因式:(x 2+x +1)(x 2+x +2)-12.41.分解因式:(x 2+4x +8)2+3x (x 2+4x +8)+2x 2.42.分解因式:(1)2a (y -z )-3b (z -y );(2)-x 2+4xy -4y 2;(3)x 2-2(在实数范围内分解因式);(4)4-12(x -y )+9(x -y )2.43.阅读下面的问题,然后回答,分解因式:x 2+2x -3,解:原式=x 2+2x +1-1-3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2-4x +3(2)4x 2+12x -7.44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:22x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a+2a)(x+a-2a)=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2-8a+15;(2)若a+b=6,ab=4,求:①a2+b2;②a4+b4的值;(3)已知x是实数,试比较x2-6x+11与-x2+6x-10的大小,说明理由.11146.小亮在对a4+分解因式时,步骤如下:a4+=a4+a2+-a2(添加a2与-a2,前444三项可利用完全平方公式)1=(a2+)2-a2(写成完全平方式与最后一项又符合平方差公式)211=(a2+a+)(a2-a+).22请你利用上述方法分解因式4x4+1.47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.因式分解50题(配完整解析)参考答案与试题解析一.填空题(共5小题)1.因式分解:-2x2+2x=-2x(x-1).【解答】解:-2x2+2x=-2x(x-1),故答案为:-2x(x-1).2.因式分解:a3+2a=a(a2+2).【解答】解:a3+2a=a(a2+2),故答案为a(a2+2).3.分解因式:8x2-8xy+2y2=2(2x-y)2.【解答】解:原式=2(4x2-4xy+y2)=2(2x-y)2.故答案为:2(2x-y)2.4.分解因式:ab2+a2b=ab(a+b).【解答】解:原式=ab(a+b).故答案是:ab(a+b).5.因式分解2x2y-8y=2y(x+2)(x-2).【解答】解:2x2y-8y=2y(x2-4)=2y(x+2)(x-2)故答案为:2y(x+2)(x-2).二.解答题(共45小题)6.分解因式(1)n2(m-2)-n(2-m)(2)(a2+4b2)2-16a2b2.【解答】解:(1)原式=n(m-2)(n+1);(2)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.7.因式分解(1)(2a+b)2-(a+2b)2(2)16x4-8x2y2+y4【解答】解:(1)(2a+b)2-(a+2b)2=(2a+b-a-2b)(2a+b+a+2b)=3(a-b)(a+b);(2)16x4-8x2y2+y4=(4x2-y2)2=(2x+y)2(2x-y)2.8.已知m-2n=-2,求下列多项式的值:(1)5m-10n+10m2(2)+n2-mn-3.4【解答】解:(1)m-2n=-2,∴原式=5(m-2n)+10=-10+10=0;m-2n=-2,(2)11∴原式=(m2+4n2-4mn)=(m-2n)2-3=1-3=-2.449.因式分解:(x2-3)2+2(3-x2)+1.【解答】解:(x2-3)2+2(3-x2)+1=(x2-3)2-2(x2-3)+1=(x2-3-1)2=(x2-4)2=(x+2)2(x-2)2.10.因式分解:m2(m-4)2+8m(m-4)+16.【解答】解:原式=[m(m-4)]2+2⨯m(m-4)⨯4+42=[m(m-4)+4]2=(m2-4m+4)2=[(m-2)2]2=(m-4)4.11.分解因式:4(a+2)2-9(a-1)2.【解答】解:4(a+2)2-9(a-1)2=[2(a+2)-3(a-1)][2(a+2)+3(a-1)]=(7-a)(5a+1).12.(x2+4)2-16x2.【解答】解:(x2+4)2-16x2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2.13.因式分解:(x-6x)+18(x-6x)+81.222【解答】解:(x-6x)+18(x-6x)+81222=(x2-6x+9)2=(x-3)4.14.分解因式:(1)x4-2x2+1;(2)a4-8a2b2+16b4;(3)(a2+4)2-16a2;(4)(m2-4m)2+8(m2-4m)+16.【解答】解:(1)原式=(x2-1)2=[(x+1)(x-1)]2=(x+1)2(x-1)2;(2)原式=(a2-4b2)2=[(a+2b)(a-2b)]2=(a+2b)2(a-2b)2;(3)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2;(4)原式=(m2-4m+4)2=[(m -2)2]2=(m -2)4.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.【解答】解:(1)x -4xy +4y =(x -2y );(2)4a -12ab +9b =(2a -3b );(3)a b +2ab +1=(ab +1).16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )2【解答】解:(1)(2x -y +z )(2x -y -z )222222222222222=(2x -y )2-z 2=4x 2+y 2-4xy -z 2;(2)25(a +b )2-16(a -b )2=[5(a +b )-4(a -b )][5(a +b )+4(a -b )]=(a +9b )(9a +b ).17.分解因式:(x +3)2-(x -3)2.【解答】解:(x +3)2-(x -3)2=(x +3-x +3)(x +3+x -3)=12x .18.(x -5y )2-(x +5y )2【解答】解:(x -5y )2-(x +5y )2=(x -5y +x +5y )(x -5y -x -5y )=-20xy .19.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.【解答】解:(1)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(2)(3m +2n )2-(2m +3n )2=[(3m +2n )-(2m +3n )][(3m +2n )+(2m +3n )]=(m -n )(5m +5n )=5(m -n )(m +n ).20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 2【解答】解:(1)原式=(a -b )(x -y +x +y )=2x (a -b ).(2)原式=5m (2x -y +n )(2x -y -n ).21.分解因式:(1)-3x 2+6xy -3y 2;(2)(a +b )(a -b )+4(b -1).【解答】解:(1)-3x 2+6xy -3y 2=-3(x 2-2xy +y 2)=-3(x -y )2;(2)(a +b )(a -b )+4(b -1)=a 2-b 2+4b -4=a 2-(b -2)2=(a +b -2)(a -b +2).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 2【解答】解:(1)原式=9a 2(x -y )-4b 2(x -y )=(x -y )(3a +2b )(3a -2b );(2)原式=-(4a 2-4ab +b 2)=-(2a -b )2.23.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.【解答】解:(1)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2);(2)ax 2-4axy +4ay 2=a (x 2-4xy +4y )=a (x -2y )2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )【解答】解:(1)原式=-a (25x 2-10x +1)=-a (5x -1)2;(2)原式=4x 2(a -b )-y 2(a -b )=(a -b )(2x +y )(2x -y ).25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)【解答】解:(1)原式=5(x 2+2x +1)=5(x +1)2;(2)原式=a 2-16+3a +6=a 2+3a -10=(a -2)(a +5).26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+9【解答】解:(1)9m 2-25n 2=(3m +5n )(3m -5n );(2)m 2-mn +n 2141=(m-n)2;2(3)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2;(4)(y2-1)2+6(1-y2)+9=[(1-y2)+3]2=(1-y2+3)2.=(4-y2)2=(2+y)2(2-y)2.27.把下列各式因式分解:(1)12x4-6x3-168x2(2)a5(2-3a)+2a3(3a-2)2+a(2-3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【解答】解:(1)原式=6x2(2x2-x-28)=6x2(2x+7)(x-4);(2)原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3=a(2-3a)[a4+2a2(2-3a)+(2-3a)2]=a(2-3a)(a2+2-3a)2=a(2-3a)(a-1)2(a-2)2;(3)原式=a4bc+a3(b3+c3)+2a2b2c2+abc(b3+c3)+b3c3=bc(a4+2a2bc+b2c2)+a(b3+c3)(a2+bc)=bc(a2+bc)2+a(b3+c3)(a2+bc)=(a2+bc)[bc(a2+bc)+a(b3+c3)]=(a2+bc)[(bca2+ab3)+(b2c2+ac3)]=(a2+bc)[ab(ca+b2)+c2(b2+ac)]=(a2+bc)(b2+ac)(c2+ab).28.分解因式(1)16-a4(2)y3-6xy2+9x2y(3)(m+n)2-4m(m+n)+4m2(4)9-a2+4ab-4b2【解答】解:(1)原式=(4+a2)(4-a2)=(4+a2)(2+a2)(2-a2);(2)原式=y(y2-6xy+9x2)=y(y-3x)2;(3)原式=(m+n-2m)2=(n-m)2;(4)原式=9-(a-2b)2=(3-a+2b)(3+a-2b).29.因式分解(1)-a2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.【解答】解:(1)-a 2-a =-a (a +1)(2)(x +y )(5m +3n )2-(x +y )(m -n )2=(x +y )(5m +3n +m -n )(5m +3n -m +n )=(x +y )(6m +2n )(4m +4n )=8(x +y )(3m +n )(m +n )(3)(a 2+6a )2+18(a 2+6a )+81=(a 2+6a +9)2=(a +3)4(4)x 2-4x -y 2+4=(x -2)2-y 2=(x -2+y )(x -2-y )30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;12(4)(x 4-4x 2+1)(x 4+3x 2+1)+10x 4;【解答】解:(1)令a 2+1=b ,则原式=(b +a )(b -6a )+12a 2(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .=b 2-5ab -6a 2+12a 2=b 2-5ab +6a 2=(b -2a )(b -3a )=(a 2+1-2a )(a 2+1-3a )=(a -1)2(a 2-3a +1);(2)原式=[(2a +5)(a -3)][(a +3)(2a -7)]-91=(2a 2-a -15)(2a 2-a -21)-91=(2a 2-a )2-36(2a 2-a )+224=(2a 2-a -28)(2a 2-a -8)=(a -4)(2a +7)(2a 2-a -8);(3)设x +y =a ,xy =b ,则原式=b (b +1)+(b +3)-2(a +)-(a -1)212=(b 2+2b +1)-a 2=(b +1+a )(b +1-a )=(xy +1+x +y )(xy +1-x -y );(4)令x 4+1=a ,则原式=(a -4x 2)(a +3x 2)+10x 4=a 2-x 2a -2x 4=(a -2x 2)(a +x 2)=(x 4+1-2x 2)(x 4+1+x 2)=(x +1)2(x -1)2(x 2+x +1)(x 2-x +1);(5)原式=(2x3-x2z)+(-4x2y+2xyz)+(2xy2-y2z) =x2(2x-z)-2xy(2x-z)+y2(2x-z)=(2x-z)(x2-2xy+y2)=(2x-z)(x-y)2.31.分解因式:(1)12abc-2bc2(2)2a3-12a2+18a(3)9a(x-y)+3b(x-y)(4)(x+y)2+2(x+y)+1(5)x2-1+y2-2xy(6)(a+b)(a-b)+4(b-1)【解答】解:(1)12abc-2bc2=2bc(6a-c);(2)2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2;(3)9a(x-y)+3b(x-y)=3(x-y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2;(5)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(6)(a+b)(a-b)+4(b-1)=a2-b2+4b-4=a2-(b-2)2=(a-b+2)(a+b-2).32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.【解答】解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(2)16(a-b)2-9(a+b)2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(4a-4b+3a+3b)(4a-4b-3a-3b)=(7a-b)(a-7b);(3)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(4)(m+n)2-2(m2-n2)+(m-n)2=[(m+n)-(m-n)]2=(m+n-m+n)2=(2n)2=4n2;(5)x2-5x+6=(x-2)(x-3);(6)x2-5x-6=(x-6)(x+1);(7)x2+5x-6=(x+6)(x-1);(8)x2+5x+6=(x+2)(x+3).33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.【解答】解:(1)-3x3-6x2y-3xy2;=-3x(x2+2xy+y2)=-3x(x+y)2;(2)(a2+9)2-36a2=(a2+9+6a)(a2+9-6a)=(a+3)2(a-3)2;(3)25m2-(4m-3n)2=(5m)2-(4m-3n)2,=(5m+4m-3n)(5m-4m+3n)=3(3m-n)(m+3n);(4)(x2-2x)2-2(x2-2x)-3=(x2-2x-3)(x2-2x+1)=(x-3)(x+1)(x-1)2.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b2【解答】解:(1)x2-5x-6=(x-3)(x+2);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);=y2-(x2-6x+9)=y2-(x-3)2=(y+x-3)(y-x+3);(4)(a2+4b2)2-16a2b2=(a2+4b2+4ab)(a2+4b2-4ab) =(a+2b)2(a-2b)2.35.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-4【解答】解:(1)27xy2-3x =3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=1(x2+2xy+y2 2)=1(x+y)22;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).36.因式分解:(1)x2-xy-12y2;(2)a2-6a+9-b2【解答】解:(1)x2-xy-12y2,=(x+3y)(x-4y);(2)a2-6a+9-b2,=(a-3)2-b2,=(a-3+b)(a-3-b).37.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(6)x 5-x 3(7)(x -1)(x -2)-6(8)a 2-2ab +b 2-c 2【解答】解:(1)8a 3b 2-12ab 3c =4ab 2(2a 2-3bc );(2)-3ma 3+6ma 2-12ma =-3ma (a 2-2a +4)=-3ma (a -2)2;(3)2(x -y )2-x (x -y )=(x -y )(2x -2y -x )=(x -y )(x -2y );(4)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(5)p 2-5p -36=(p -9)(p +4);(6)x 5-x 3=x 3(x 2-1)=x 3(x +1)(x -1);(7)(x -1)(x -2)-6=x 2-3x +2-6=(x -4)(x +1);(8)a 2-2ab +b 2-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).38.把下列各式分解因式:(1)4x 3-31x +15;(2)2a 2b 2+2a 2c 2+2b 2c 2-a 4-b 4-c 4;(3)x 5+x +1;(4)x 3+5x 2+3x -9;(5)2a 4-a 3-6a 2-a +2.【解答;(;(5522232】解:(1)4x 3-31x +15=4x 3-x -30x +15=x (2x +1)(2x -1)-15(2x -1)=(2x -1)(2x 2+x -15)=(2x -1)(2x -5)(x +3)2)2a b +2a c +2b c -a -b -c =4a b -(a +b +c +2a b -2a c -2b c )=(2ab )-(a +b -c )=(2ab +a +b -c )(2ab -a -b +c )=(a +b +c )(a +b -c )(c +a -b )(c -a +b )32222)3x +x +1=x -x +x +x +1=x (x -1)+(x +x +1)=x (x -1)(x +x +1)+(x +x +1)=(x +x +1)(x -x 2+1);(;(4)x 3+5x 2+3x -9=(x 3-x 2)+(6x 2-6x )+(9x -9)=x 2(x -1)+6x (x -1)+9(x -1)=(x -1)(x +3)25)2a -a -6a -a +2=a (2a -1)-(2a -1)(3a +2)=(2a -1)(a -3a -2)=(2a -1)(a +a -a -a -2a -2)=(2a -1)[a (a +1)-a (a +1)-2(a +1)]=(2a -1)(a +1)(a 2-a -2)=(a +1)(a -2)(2a -1).39.分解因式(1)20a 3x -45ay 2x(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m【解答】解:(1)原式=5ax (4a 2-9y 2)=5ax (2a +3y )(2a -3y );(2)原式=(1+3x )(1-3x );(3)原式=(2x )2-12x +9=(2x -3)2;(4)原式=(2xy-1)2;(5)原式=(p+4)(p-9);(6)原式=(y-3)(y-4);(7)原式=3(x2-2x+1)=3(x-1)2;(8)原式=-a(a2-2a+1)=-a(a-1)2;(9)原式=m(m2-m-20)=m(m+4)(m-5).40.分解因式:(x2+x+1)(x2+x+2)-12.【解答】解:设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x-1)(x+2)(x2+x+5)41.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.【解答】解:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).42.分解因式:(1)2a(y-z)-3b(z-y);(2)-x2+4xy-4y2;(3)x2-2(在实数范围内分解因式);(4)4-12(x-y)+9(x-y)2.【解答】解:(1)原式=2a(y-z)+3b(y-z)=(y-z)(2a+3b);(2)原式=-(x2-4xy+4y2)=-(x-2y)2;(3)原式=(x+2)(x-2);(4)原式=[3(x-y)-2]2=(3x-3y-2)2.43.阅读下面的问题,然后回答,分解因式:x2+2x-3,解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2-4x+3(2)4x2+12x-7.【解答】解:(1)x2-4x+3=x2-4x+4-4+3=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2)4x 2+12x -7=4x 2+12x +9-9-7=(2x +3)2-16=(2x +3+4)(2x +3-4)=(2x +7)(2x -1)44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.【解答】解:(1)(2)设x -2x =y原式=y (y +2)+1222(x 2-4x +4)2=(x -2)4,∴该同学因式分解的结果不彻底.=y 2+2y +1=(y +1)2=(x 2-2x +1)2=(x -1)4.故答案为:不彻底.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:x 2+2ax -3a 2=(x 2+2ax +a 2)-a 2-3a 2=(x +a )2-4a 2=(x +a +2a )(x +a -2a )=(x +3a )(x -a )像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a 2-8a +15;(2)若a +b =6,ab =4,求:①a 2+b 2;②a 4+b 4的值;(3)已知x 是实数,试比较x 2-6x +11与-x 2+6x -10的大小,说明理由.【解答】解:(1)a 2-8a +15=(a 2-8a +16)-1=(a -4)2-12=(a -3)(a -5);(2)a +b =6,ab =4,a2+b2=(a+b)2-2ab=36-8=28.a4+b4=(a2+b2)2-2a2b2=282-2⨯16=752.(3)x2-6x+11=(x-3)2+22,-x2+6x-10=-(x-3)2-1-1,∴x2-6x+11>-x2+6x-10.46.小亮在对a4+1114分解因式时,步骤如下:a4+4=a4+a2+4-a2三项可利用完全平方公式)=(a2+12)2-a2(写成完全平方式与最后一项又符合平方差公式)=(a2+a+12)(a2-a+12).请你利用上述方法分解因式4x4+1.【解答】解:4x4+1=4x4+4x2+1-4x2=(2x2+1)2-4x2=(2x2+2x+1)(2x2-2x+1).47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.【解答】解:(1)x2+3x+2=(x+1)(x+2);(2)x2-3x+2=(x-1)(x-2);(3)x2+2x-3=(x+3)(x-1);(4)x2-2x-3=(x-3)(x+1);(5)x2+5x+6=(x+3)(x+2);(6)x2-5x-6=(x-6)(x+1);(7)x2+x-6=(x+3)(x-2);a2与-a2,前(添加(8)x2-x-6=(x-3)(x+2);(9)x2-5x-36=(x-9)(x+4);(10)x2+3x-18=(x+6)(x-3);(11)2x2-3x+1=(2x-1)(x-1);(12)6x2+5x-6=(2x+3)(3x-2).48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.【解答】解:(x+1)(x+3)(x+6)(x+8)+9=[(x+1)(x+8)][(x+3)(x+6)]+9=(x2+9x+8)(x2+9x+18)+9=(x2+9x)2+26(x2+9x)+153=(x2+9x+9)(x2+9x+17).49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.【解答】解:(1)x4-7x2+6=(x2-1)(x2-6)=(x+1)(x-1)(x+6)(x-6);(2)x4-5x2-36=(x2-9)(x2+4)=(x+3)(x-3)(x2+4)(3)4x4-65x2y2+16y4=(2x2-4y2)2-49x2y2=(2x2-4y2+7xy)(2x2-4y2-7xy)=(2x-1)(2x+1)(1-4y)(1+4y);(4)a6-7a3b3-8b6=(a3-8b3)(a3+b3)=(a-2b)(a2+2ab+b2)(a+b)(a2-ab+b2)=(a-2b)(a+b)3(a2-ab+b2);(5)6a4-5a3-4a3=6a4-9a3=3a3(2a-3);(6)4a6-37a4b2+9a2b4=a2(4a4-37a2b2+9b4)=a2(4a4-12a2b2+9b4-25a2b2)=a2[(2a2-3b2)2-25a2b2]=a2(2a+1)(2a-1)(1-3b)(1+3b).50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.【解答】解:(1)原式=[(x+y)2-4][(x+y)2+5]=(x+y+2)(x+y-2)(x2+y2+2xy+5);(2)原式=(x2-2x)2-11(x2-2x)+24=(x2-2x-3)(x2-2x-8)=(x-3)(x+1)(x-4)(x+2);(3)原式=(x+1)(x+3)(x-5)(x-7)-105=(x2-4x-5)(x2-4x-21)-105=(x2-4x)2-26(x2-4x)=(x2-4x)(x2-4x-26)=x(x-4)(x2-4x-26)(4)原式=(x2-6-5x)(x2-6+x)=(x-6)(x+1)(x-2)(x+3).第21页(共21页)。

因式分解难题竞赛题

因式分解难题竞赛题

因式分解难题竞赛题一、已知多项式 x4 + ax3 + bx2 + cx + d 的因式分解中含有一个因式 (x - 2)2,且当 x = 1 时,多项式的值为 1。

则下列哪个选项可能是该多项式的因式分解形式?A. (x - 2)2(x2 + 4x + 7)B. (x - 2)2(x2 + 5x + 8)C. (x - 2)2(x2 + 3x + 5)D. (x - 2)2(x2 + 6x + 9)(答案:C)二、多项式 x3 + ax2 + bx + c 分解因式后有一个因式是 x + 1,且当 x = 2 时,多项式值为 0;当 x = -2 时,多项式值为 -27。

下列哪个选项是该多项式的因式分解?A. (x + 1)(x2 - x + 3)B. (x + 1)(x2 - 2x - 3)C. (x + 1)(x2 - 3x + 9)D. (x + 1)(x2 - x - 9)(答案:C)三、多项式 x4 - ax3 + bx2 - ax + 1 在进行因式分解时,有一个因式是 x2 + 1,且常数项为 1。

下列哪个选项可能是该多项式的另一个因式?A. x2 - ax - 1B. x2 - ax + 2C. x2 - ax - 2D. x2 - ax + 3(答案:A)四、已知多项式 2x4 - 11x3 + 19x2 - 11x + 2 可以完全分解,且含有一个二次因式。

下列哪个选项是该多项式的一个因式?A. x2 - 5x + 1B. x2 - 4x + 2C. x2 - 3x + 1D. x2 - 6x + 2(答案:B)五、多项式 x3 + ax2 + bx + c 有一个因式 x - 1,且满足 x = 0 时多项式为 -6,x = 2 时多项式为 0。

下列哪个选项是该多项式的因式分解?A. (x - 1)(x2 + x - 6)B. (x - 1)(x2 + 2x - 6)C. (x - 1)(x2 + 3x - 6)D. (x - 1)(x2 + 4x - 6)(答案:A)六、多项式 x4 + 6x3 + ax2 + bx + c 有一个因式 (x + 1)(x + 2),且常数项 c 为正数。

(完整版)因式分解(竞赛题)含答案

(完整版)因式分解(竞赛题)含答案

因式分解1、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

二、知识点回顾:1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a 3+b 3+c 3-3abc . 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析 我们已经知道公式(a+b)3=a 3+3a 2b+3ab 2+b 3 的正确性,现将此公式变形为a 3+b 3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解 原式=(a+b)3-3ab(a+b)+c 3-3abc =[(a+b)3+c 3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a 2+b 2+c 2-ab -bc -ca). 说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a 3+b 3+c 3-3abc 显然,当a+b+c=0时,则a 3+b 3+c 3=3abc ;当a+b+c >0时,则a 3+b 3+c 3-3abc≥0,即a 3+b 3+c 3≥3abc,而且,当且仅当a=b=c 时,等号成立. 如果令x=a 3≥0,y=b 3≥0,z=c 3≥0,则有 等号成立的充要条件是x=y=z .这也是一个常用的结论.※※变式练习 1分解因式:x 15+x 14+x 13+…+x 2+x+1. 分析 这个多项式的特点是:有16项,从最高次项x 15开始,x 的次数顺次递减至0,由此想到应用公式a n -b n 来分解. 解 因为 x 16-1=(x -1)(x 15+x 14+x 13+…x 2+x+1), 所以 说明 在本题的分解过程中,用到先乘以(x -1),再除以(x -1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例3 分解因式:x3-9x+8. 分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧. 解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9 =(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8). 解法2 将一次项-9x拆成-x-8x. 原式=x3-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x2+x-8). 解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8) =9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8). 说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1 =(x9-1)+(x6-1)+(x3-1) =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2 =(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2 =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1) =(a2-ab+1)(b2+ab+1). 说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12. 分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解设x2+x=y,则 原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5) =(x-1)(x+2)(x2+x+5). 说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:(x2+3x+2)(4x2+8x+3)-90. 分析先将两个括号内的多项式分解因式,然后再重新组合. 解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x2+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9) =(2x2+5x+12)(2x2+5x-7) =(2x2+5x+12)(2x+7)(x-1). 说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习 1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2. 解设x2+4x+8=y,则 原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法 分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可以看作是关于x的二次三项式.的二次三项式,也可以用十字相乘法,分解为 对于常数项而言,它是关于y 即:-22y2+35y-3=(2y-3)(-11y+1).的二次三项式分解 再利用十字相乘法对关于x 所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1). 上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是: (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 例1 分解因式: (1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4; (3)xy+y2+x-y-2; (4)6x2-7xy-3y2-xz+7yz-2z2. 解 (1)原式=(x-5y+2)(x+2y-1).(2) 原式=(x+y+1)(x-y+4).来分解. (3)原式中缺x2项,可把这一项的系数看成0 原式=(y+1)(x+y-2). (4) 原式=(2x-3y+z)(3x+y-2z). 说明 (4)中有三个字母,解法仍与前面的类似.2.求根法 我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根. 定理2 的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数. 我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解. 例2 分解因式:x3-4x2+6x-4. 分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有 f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2. 解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2). 解法2 用多项式除法,将原式除以(x-2), 所以原式=(x-2)(x 2-2x+2). 说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习 1. 分解因式:9x 4-3x 3+7x 2-3x-2. 分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为: 所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1) 说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例3 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习 1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有有 由bd=7,先考虑b=1,d=7 所以 原式=(x2-7x+1)(x2+5x+7). 说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2). 分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式. 解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则 原式=(u2-v)2-4v(u2-2v) =u4-6u2v+9v2 =(u2-3v)2 =(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.五、反思总结。

第3讲_因式分解(竞赛班)答案[1]

第3讲_因式分解(竞赛班)答案[1]

第三讲因式分解因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.【例1】将x4+8分解因式正确的是()A、(x4﹣16)B、(x2+4)(x2﹣4)C、(x2+4)(x+2)(x﹣2)D、(x2+2)(x2﹣2)2考点:因式分解-运用公式法。

分析:先提取公因式,然后套用公式a2﹣b2=(a+b)(a﹣b),再进一步分解因式.解答:解:x4+8,=(x4﹣16),=(x2﹣4)(x2+4),=(x﹣2)(x+2)(x2+4).故选C.点评:本题考查了用公式法进行因式分解的能力,进行因式分解时,若一个多项式有公因式首先提取公因式,然后再套用公式进行因式分解,同时因式分解要彻底,直到不能分解为止.【例2】20、分解因式:(x﹣3)(x﹣1)+1.考点:因式分解-运用公式法。

专题:常规题型。

分析:先根据多项式的乘法整理成多项式的一般形式,然后再利用完全平方公式进行因式分解.解答:解:(x﹣3)(x﹣1)+1=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2.点评:本题考查了利用完全平方公式分解因式,先利用多项式的乘法整理成多项式的一般形式是解题的关键.【例3】分解因式x4﹣2x2+1.解:x4﹣2x2+1=(x2﹣1)2=[(x﹣1)(x+1)]2=(x﹣1)2(x+1)2.【例4】多项式x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz因式分解后的结果是()A、(y﹣z)(x+y)(x﹣z)B、(y﹣z)(x﹣y)(x+z)C、(y+z)(x一y)(x+z)D、(y十z)(x+y)(x一z)考点:因式分解-分组分解法。

分析:原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式(y﹣z)x2+(z2+y2﹣2yz)x+z2y﹣y2z,再运用提取公因式法和十字相乘法分解因式.解答:解:x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz=(y﹣z)x2+(z2+y2﹣2yz)x+z2y﹣y2z=(y﹣z)x2+(y﹣z)2x﹣yz(y﹣z)=(y﹣z)[x2+(y﹣z)x﹣yz]=(y﹣z)(x+y)(x﹣z).故选A.点评:本题考查了用分组分解法进行因式分解,难点是将原式重新整理成关于x的二次三项式,改变其结构,寻找分解的突破口.【例5】分解因式:(x2+3x)2﹣2(x2+3x)﹣8=(x+1)(x+2)(x﹣1)(x+4).考点:因式分解-十字相乘法等。

初二因式分解奥数竞赛题

初二因式分解奥数竞赛题

初二因式分解奥数竞赛题初二数学中的因式分解是一个重要的知识点,也是奥数竞赛中常出现的题目类型之一。

因式分解是将一个多项式按照因子的形式进行拆解的过程,可以帮助我们简化计算和解决问题。

下面,我们就来看一道关于因式分解的奥数竞赛题目。

题目:将多项式 $x^3 + 8$ 进行因式分解。

解析:首先,我们观察到多项式中有一个立方项 $x^3$,可以联想到一个公式:立方差公式,即 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$。

我们可以将多项式 $x^3 + 8$ 看作 $x^3 + 2^3$,这样就可以应用立方差公式来进行因式分解。

根据立方差公式,我们有:$x^3 + 8 = (x + 2)(x^2 - 2x + 4)$这就是多项式 $x^3 + 8$ 的因式分解形式。

通过这道题目的解析,我们可以看到因式分解在奥数竞赛中的重要性。

因式分解不仅可以帮助我们简化计算,还可以帮助我们发现多项式的特点和规律,从而解决复杂的数学问题。

除了这道题目,奥数竞赛中还有很多关于因式分解的题目。

下面,我们来看两道典型的奥数竞赛题目。

题目一:将多项式 $x^4 - 16$ 进行因式分解。

解析:我们观察到多项式中有一个平方项 $x^4$ 和一个常数项 $-16$,可以联想到一个公式:平方差公式,即 $a^2 - b^2 = (a + b)(a - b)$。

我们可以将多项式 $x^4 - 16$ 看作 $x^4 - 4^2$,这样就可以应用平方差公式来进行因式分解。

根据平方差公式,我们有:$x^4 - 16 = (x^2 + 4)(x^2 - 4)$这就是多项式 $x^4 - 16$ 的因式分解形式。

题目二:将多项式 $x^2 - 7x + 12$ 进行因式分解。

解析:我们观察到多项式中有一个二次项 $x^2$、一个一次项 $-7x$ 和一个常数项 $12$,可以使用因式分解的方法来进行拆解。

根据因式分解的基本原则,我们需要找到两个因子的乘积等于 $12$,并且它们的和等于 $-7$。

初中数学竞赛1.5 因式分解的应用(含答案)

初中数学竞赛1.5 因式分解的应用(含答案)

1.5 因式分解的应用◆赛点归纳因式分解在初中数学竞赛中,用途很广泛,具体来说用得较多的有如下几个方面:(1)利用因式分解简化计算;(2)利用因式分解求较复杂的代数式的值;(3)利用因式分解确定多项式中的某些相关的待定系数;(4)利用因式分解解决某些数的整除问题;(5)利用因式分解解某些特殊的方程或方程组等问题.◆解题指导例1化简:222 2000199819971997 19982000199820014+--⨯-.【思路探究】本题直接计算比较复杂,由于分子和分母都有平方与差的关系,由此可联想到运用因式分解方法简化计算.例2 (2001,“五羊杯”,初二)若(x-1)(y+1)=3,xy(x-y)=4,则x7-y7=_______.【思路探究】由(x-1)(y+1)=3,知xy+(x-y)=4,经观察可知,两个条件等式都含有xy和x-y的关系式.若设xy=u,x-y=v,则u+v=4,uv=4,于是有u(4-u)=4,经过变形知它符合完全平方公式,即(u-2)2=0,故可知u=2,v=2,即xy=2,x-y=2.至此,将x7-y7分解成和xy和x-y相关的因式就不难求值.【思维误区】有位同学这样解答例2,你认为对吗?解:∵(x-1)(y+1)=3,∴xy+(x-y)=4.设xy=u,x-y=v,则u+v=4.①uv=4.②由①、②,得u2-4u+4=0.∴(u-2)2=0.∴u=2.∴v=2.∴x2+y2=(x-y)2+2xy=22+2×2=8,x3-y3=(x-y)(x2+xy+y2)=2(8+2)=20,x4+y4=(x2+y2)2-2x2y2=82-2×22=56.∴x7-y7=(x4+y4)(x3-y3)=56×20=1120.例3 (2004,“TRULY○R信利杯”)已知实数a、b、x、y满足a+b=x+y=•2,•ax+by=5,则(a2+b2)xy+ab(x2+y2)的值为________.【思路探究】求待求式的值,由条件等式可知,需将待求式进行合理变形,使它含有因式ax+by.这里用多项式分解因式的方法是可以达到的.例4 (2001,北京市竞赛)证明恒等式:a4+b4+(a+b)4=2(a2+ab+b2)2.【思路探究】若能证明a4+b4+(a+b)4-2(a2+ab+b2)2的值为零,则可说明左右相等.•由观察可知,这个“差式”具有平方差公式的特征.因此,可先设法利用平方差公式分解因式,然后证明其中某个因式为零.例5 (2002,太原市竞赛)已知a、b、c为△ABC的三条边,且满足a2+ab-ac-bc=0,b2+bc-ba-ca=0,则△ABC是().A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形【思路探究】要判断这个三角形的形状,由条件等式要么证明三边的平方关系,要么证明三边有两边或三边相等关系.这由条件等式分解因式就可判断.例6 (2000,“五羊杯”,初二)设自然数N是完全平方数,N至少是3位数,它的末2位数字不是00,且去掉此2•位数字后,•剩下的数还是完全平方数.•则N•的最大值是_______.【思路探究】由N是完全平方数和去掉它的末两位数仍是完全平方数,可知这个数是一个特殊数.若设N=x2,去掉的末两位数为y,去后所得的整数M=m2,•则可得它们之间的关系式x2=100m2+y,故y=x2-100m2.利用平方差公式可得两个关于x的一次式.再根据题设不难探求N 的最大值.【拓展题】已知多项式x 3+bx 2+cx+d 的系数都是整数,bd+cd 是奇数,求证这个多项式不能分解为两个整系数多项式的积.◆探索研讨因式分解是初中数学的常用解题方法,加之解法比较多,因此,对于它在不同的方面的应用应选择不同的思维方式,有时要整体分解因式,有时要部分分解因式.请结合本节的例题,总结自己的发现.◆能力训练1.已知四个代数式:①m+n ;②m -n ;③2m+n ;④2m -n ,当用2m 2n 乘以上述四个式中的两个的积时,便得到多项式4m 4n -2m 3n 2-2m 2n 3,那么这两个式子的编号是( ).A .①与②B .①与③C .②与③D .③与④2.(2005,全国竞赛)已知A=48×(22211134441004+++---).则与A 最接近的正整数是( ).A .18B .20C .24D .253.*若3x 3-x=1,则9x 4+12x 3-3x 2-7x+2002的值等于( ).A .2002B .2004C .2005D .20064.已知三个整数a 、b 、c 的和为奇数,那么,a 2+b 2-c 2+2ab ( ).A .一定是非零偶数B .等于零C .一定是奇数D .可能是奇数,也可能是偶数5.关于x 、y 的方程x 2y=180的正整数解有( ).A .1组B .2组C .3组D .4组6.方程2x 2-3xy -2y 2=98的正整数解有( ).A .3组B .2组C .1组D .0组7.(2001,全国竞赛)若x 2+xy+y=14,y 2+xy+x=28,则x+y 的值为______.8.*设m 2+m -1=0,则m 3+2m 2+2005=________.9.若x 3+3x 2-3x+k 有一个因式是x+1,则k=______.10.(2000,“五羊杯”,初二)若x-y=1,x3-y3=4,则x13-y13=______.11.(2003,四川省竞赛)对一切大于2的正整数n,•数n5-5n3+4n的最大公约数是________.12.设x3+3x2-2xy-kx-4y可分解为一次与二次因式之积,则k=________.13.*若a=20052+20062+20052·20062,求证:a是一个完全平方数.14.某校在向“希望工程”捐款活动中,甲班的m个男生和11•个女生的捐款总数与乙班的9个男生和n个女生的捐款总数相等,都是(mn+9m+11n+145)元,•已知每人的捐款数相同,且都是整数,求每人的捐款数.15.已知A=a+2b+3c+4d=3,B=a-2b+4c+5d=2,试求a+10b+c+2d的值.16.(2000,武汉市竞赛)如果一个自然数的立方的末三位数字为999,则称这样的自然数为“千禧数”,试求最小的“千禧数”.答案:解题指导例1 设1998=x,则原式=2222(54)(32)(1)(4)(1)(2) (2)(34)(1)(2)(1)(4)x x x x x x x xx x x x x x x x++-+++--=--+-+--+=1.例2 1136.[提示:设xy=u,x-y=v,则u+v=4,uv=4,从而可得(u-2)2=0,即u=2.∴v=2.于是x2+y2=(x-y)2+2xy=22+2×2=8,x3-y3=(x-y)(x2+xy+y2)=2(8+2)=20,x4+y4=(x2+y2)2-2x2y2=82-2×22=56.∴x7-y7=(x4+y4)(x3-y3)+x3y3(x-y)=56·20+23·2=1136.]例3 -5.[提示:由a+b=x+y=2,得(a+b)(x+y)=ax+by+ay+bx=4.①∵ax+by=5,将它代入①式,得ay+bx=-1.∴(a2+b2)xy+ab(x2+y2)=(a2xy+aby2)+(b2xy+abx2)=ay(ax+by)+bx(by+ax)=(ax+by)(ay+bx)=5×(-1)=-5.]例4 ∵a4+b4+(a+b)4-2(a2+ab+b2)=(a2+b2)2-2a2b2+(a2+2ab+b2)2-2(a2+ab+b2)2=[(a2+b2)2-(a2+ab+b2)2]+[(a2+2ab+b2)2]-(a2+ab+b2)2]-2a2b2=(2a2+2b2+ab)(-ab)+(2a2+3ab+2b2)·ab-2a2b2=ab(-2a2-2b2-ab+2a2+3ab+2b2-2ab)=0,∴a4+b4+(a+b)4=2(a2+ab+b2)2.你还能给出别的证法吗?不妨试一试.例5 C [提示:由a2+ab-ac-bc=0,得a(a+b)-c(a+b)=0,∴(a+b)(a-c)=0,∴a=c,a=-b (舍去).由b2+bc-ba-ca=0,得b(b+c)-a(b+c)=0,∴(b+c)(b-a)=0,∴b=a,b=-c(舍去).∴a=b=c,∴△ABC是等边三角形.]例6 1681.[提示:设N=x2,x为自然数,N的末2位数字组成整数y,去掉此2•位数字后得到整数M,M=m2,m为自然数,则1≤y≤99.∴x2=100m2+y.∴y=x2-100m2=(x+10m)(x-10m).令x+10m=a,x-10m=b,则b≥1,m≥1.x=10m+b≥11,a=x+10m≥21.若m≥4,则x=10m+b≥41,a=x+10m≥81,唯有b=1,m=4,x=41,a=81,y=81,M=16,N=1681.显然当m≤3时,x≤40,故N=1681为所求的最大值.]【拓展题】假设x3+bx2+cx+d=(x+p)(x2+qx+r),其中p、q、r均为整数.令x=0,得pr=d,由bd+cd=(b+c)d为奇数知,b+c与d•均为奇数,从而p、r也都是奇数,再取x=1.由假设有1+(b+c)+d=(1+p)·(1+q+r).左边是3个奇数之和,必为奇数;右边的因式(1+p)为偶数,从而(1+p)(1+q+r)必为偶数,显然奇数不等于偶数,所以假设不成立,故原式不能分解成两个整系数多项式的积.能力训练1.C [提示:对多项式做因式分解:原式=2m2n(2m2-mn-n2)=2m2n(2m+n)(m-n).]2.D [提示:对于正整数n(n≥3),有21111(),442211111148[(1)()]429856102111111112(1)2349910010110211112512().9910010110211114112()12,99100101102992n n n A =---+=⨯+++-+++=+++----=-++++++<⨯<则 ∴与A 最接近的正整数为25.]3.D [提示:由3x 3-x=1,得3x 3=x+1,∴3x 4=x (3x 3)=x (x+1)=x 2+x .∴原式=3·3x 4+4·3x 3-3x 2-7x+2002=3(x 2+x )+4(x+1)-3x 2-7x+2002=3x 2+3x+4x+4-3x 2-7x+2002=4+2002=2006.]4.C [提示:a 2+b 2-c 2+2ab=(a+b )2-c 2=(a+b+c )(a+b -c ).∵a+b+c 为奇数,∴a 、b 、c 三数中可能有一个奇数、两个偶数,或者三个都是奇数. 当a 、b 、c 中有一个奇数、两个偶数时,则a+b -c 为奇数;当a 、b 、c 中三个都是奇数时,也有a+b -c 为奇数.∴(a+b+c )(a+b -c )是奇数.]5.D [提示:∵180=1×22×32×5,又x 2y=180.∴x 2y=1×22×32×5,且x 、y 为正整数/∴12,3,6,1804520 5.x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩或或或 故共有四组正整数解.]6.C [提示:∵(x -2y )(2x+y )=98,x 、y 是正整数,∴x>2y ,且2x+y>x -2y .∴方程可能的解只有以下情形:21,22,27,298;249;214.x y x y x y x y x y x y -=-=-=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩ 其中只有第二种情形有解x=20,y=9.]7.6或-7. [提示:把两个已知等式相加,得(x+y )2+(x+y )=42,即(x+y )2+(x+y )-42=0.∴(x+y -6)(x+y+y )=0.∴x+y=6或x+y=-7.]8.2006. [提示:原式=m 3+m 2-m+m 2+m -1+2006=m (m 2+m -1)+(m 2+m -1)+2006=(m 2+m -1)(m+1)+2006.∵m 2+m -1=0,∴原式=2006.]9.-5. [提示:∵x 3+3x 2-3x+k 有一个因式是x+1,∴x 3+3x 2-3x+k=x 3+x 2+2x 2+2x -5x -5+5+k=x 2(x+1)+2x (x+1)-5(x+1)+(k+5)=(x+1)(x 2+2x -5)+(k+5).∴当k+5=0,即k=-5时,原多项式有一个因式是x+1.]10.521. [提示:由x 3-y 3=(x -y )(x 2+xy+y 2)=4和x -y=1,可得x 2+xy+y 2=4; 由(x -y )2=x 2-2xy+y 2=1,可得xy=1.又x 6+y 6=(x 3-y 3)2+2x 3y 3)=42+2×13=18,x 4+y 4=(x 2+y 2)2-2x 2y 2=(1+2×1)2-2×12=7,x 7-y 7=(x 4+y 4)(x 3-y 3)+x 3y 3(x -y )=7×4+1×1=29.从而x 13-y 13=(x 7-y 7)(x 6+y 6)-x 6y 6(x -y )=29×18-16×1=522-1=521.] 11.120. [提示:n 5-5n 3+4n=(n -2)(n -1)n (n+1)(n+2).对于大于2的任何正整数n,数n5-5n3+4n都含有公约数1×2×3×4×5=120.故这些数的最大公约数是120.]12.-2.[提示:x3+3x2-2xy-kx-4y=(x3+3x2-kx)-(2xy+4y)=x(x2+3x-k)-2y(x+2).欲使此式可分解,则x2+3x-k应含因式x+2.将x=-2代入得(-2)+3(-2)-k=0,即-2-k=0,故k=-2.]13.∵a=20052+20062+20052·20062=(2005·2006)2+20052-1+20062+1=(2005·2006)2+(2005+1)(2005-1)+20062+1=(2005·2006)2+2006·2004+20062+1=(2005·2006)2+2006(2004+2006)+1=(2005·2006)2+2×2005·2006+1=(2005·2006+1)2.∴a是一个完全平方数.14.mn+9m+11n+145=(m+11)(n+9)+46,由已知m+11│(mn+9m+11n+145),(n+9)│(mn+9m+11n+145),m+11=n+9,得(m+11)│46,(n+9)│46.∵46=46×1=23×2,∴m+11=n+9=46,或m+11=n+9=23.由此可得,每人捐款数为47元或25元.15.设a+10b+c+2d=mA+mB=(m+n)a+(2m-2n)b+(3m+4n)c+(4m+5n)d.则m+n=1,2m-2n=10,3m+4n=1,4m+5n=2.解得m=3,n=-2.故a+10b+c+2d=3A-2B=3×3-2×2=5.16.设“千禧数”为x,则x3=1000k+999(k为自然数).∴x3+1=1000(k+1),即(x+1)(x2-x+1)=1000(k+1).∵x2-x+1=x(x-1)+1为奇数,可设x+1=8m(m为自然数),∴m(x2-x+1)=125(k+1).下面证明5(x2-x+1).若5│x,显然5(x2-x+1),若5トx,设x=5n+p(1≤p≤4).当p=1时,x2-x+1=5n1+1;当p=2时,x2-x+1=5n2+3;当p=3时,x2-x+1=5n3+2;当p=4时,x2-x+1=5n4+3.综上所述5 ト(x2-x+1).∴x+1=1000t,为使x最小,应取t=1,∴x=999.经验证得999是“千禧数”.故最小的“千禧数”是999.。

(完整版)因式分解竞赛题

(完整版)因式分解竞赛题

因式分解【例 1】 分解因式:2222(48)3(48)2x x x x x x ++++++提示:将248x x u ++=看成一个字母,可利用十字相乘【例 2】 (“希望杯”培训试题)分解因式:22(52)(53)12x x x x ++++-【解析】 方法1:将25x x +看作一个整体,设25x x t +=,则方法2:将252x x ++看作一个整体,设252x x t ++=,则方法3:将253x x ++看作一个整体,【巩固】 分解因式:(1)(3)(5)(7)15x x x x +++++ (1)(2)(3)(4)24a a a a ----- 22(1)(2)12x x x x ++++-【例 3】 证明:四个连续整数的乘积加1是整数的平方.【巩固】 若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【例 4】 (湖北黄冈数学竞赛题)分解因式2(25)(9)(27)91a a a +---【巩固】 分解因式22(32)(384)90x x x x ++++-【例 5】 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.【巩固】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+-【巩固】 分解因式:21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-【例 6】 (重庆市竞赛题)分解因式:44(1)(3)272x x +-+-练习:1 .分解因式x x 3234+-2.求证:多项式的值一定是非负数3.分解因式:()()()a b c a b b c ++-+-+23334.在∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++=.求证:a c b +=25.已知:6.若x 为任意整数,求证:()()()7342---x x x 的值不大于100。

最新因式分解(竞赛题)含答案

最新因式分解(竞赛题)含答案

1因式分解2一、导入:3有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是4最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选5一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断6地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!7启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

8二、知识点回顾:91.运用公式法10在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1112(1)a2-b2=(a+b)(a-b);13(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);1415(4)a3-b3=(a-b)(a2+ab+b2).16下面再补充几个常用的公式:17(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;18(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);19(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;20(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;21(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.22运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正23确恰当地选择公式.24三、专题讲解25例1 分解因式:26(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz;27解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)28=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]29=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.3031(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)32=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.3334本题实际上就是用因式分解的方法证明前面给出的公式(6).35分析我们已经知道公式36(a+b)3=a3+3a2b+3ab2+b337的正确性,现将此公式变形为38a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.3940解原式=(a+b)3-3ab(a+b)+c3-3abc41=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)4243=(a+b+c)(a2+b2+c2-ab-bc-ca).44说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们45将公式(6)变形为46a3+b3+c3-3abc474849显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即50a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.51如果令x=a3≥0,y=b3≥0,z=c3≥0,则有5253等号成立的充要条件是x=y=z.这也是一个常用的结论.54※※变式练习551分解因式:x15+x14+x13+…+x2+x+1.56分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,57由此想到应用公式a n-b n来分解.58解因为59x16-1=(x-1)(x15+x14+x13+…x2+x+1),60所以6162说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等63式变形中很常用.642.拆项、添项法65因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类66项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,67需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多68项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使69多项式能用分组分解法进行因式分解.70例3 分解因式:x3-9x+8.71分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、72添项的目的与技巧.73解法1 将常数项8拆成-1+9.74原式=x3-9x-1+975=(x3-1)-9x+976=(x-1)(x2+x+1)-9(x-1)77=(x-1)(x2+x-8).78解法2 将一次项-9x拆成-x-8x.79原式=x3-x-8x+880=(x3-x)+(-8x+8)81=x(x+1)(x-1)-8(x-1)82=(x-1)(x2+x-8).83解法3 将三次项x3拆成9x3-8x3.84原式=9x3-8x3-9x+885=(9x3-9x)+(-8x3+8)86=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).8788解法4 添加两项-x2+x2.89原式=x3-9x+8=x3-x2+x2-9x+89091=x2(x-1)+(x-8)(x-1)92=(x-1)(x2+x-8).93说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并94无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分95解诸方法中技巧性最强的一种.※※变式练习96971分解因式:98(1)x9+x6+x3-3;99(2)(m2-1)(n2-1)+4mn;100(3)(x+1)4+(x2-1)2+(x-1)4;101(4)a3b-ab3+a2+b2+1.102解 (1)将-3拆成-1-1-1.103原式=x9+x6+x3-1-1-1104=(x9-1)+(x6-1)+(x3-1)105=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) 106=(x3-1)(x6+2x3+3)107=(x-1)(x2+x+1)(x6+2x3+3).108(2)将4mn拆成2mn+2mn.109原式=(m2-1)(n2-1)+2mn+2mn110=m2n2-m2-n2+1+2mn+2mn111=(m2n2+2mn+1)-(m2-2mn+n2)112=(mn+1)2-(m-n)2113=(mn+m-n+1)(mn-m+n+1).114(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.115原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4116=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2117=[(x+1)2+(x-1)2]2-(x2-1)2118=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).119(4)添加两项+ab-ab.120原式=a3b-ab3+a2+b2+1+ab-ab121=(a3b-ab3)+(a2-ab)+(ab+b2+1)122=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)123=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)124125=(a2-ab+1)(b2+ab+1).126说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,127128找到公因式.这道题目使我们体会到129拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.1303.换元法131换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字132母替代这个整体来运算,从而使运算过程简明清晰.133例4 分解因式:(x2+x+1)(x2+x+2)-12.134分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看135作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.136解设x2+x=y,则137原式=(y+1)(y+2)-12=y2+3y-10138=(y-2)(y+5)=(x2+x-2)(x2+x+5)139=(x-1)(x+2)(x2+x+5).140说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结141果,有兴趣的同学不妨试一试.142例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.143144分析先将两个括号内的多项式分解因式,然后再重新组合.145解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90146147=(2x2+5x+3)(2x2+5x+2)-90.148令y=2x2+5x+2,则149原式=y(y+1)-90=y2+y-90150=(y+10)(y-9)151=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).152153说明对多项式适当的恒等变形是我们找到新元(y)的基础.154※※变式练习1.分解因式:155156(x2+4x+8)2+3x(x2+4x+8)+2x2.157解设x2+4x+8=y,则158原式=y2+3xy+2x2=(y+2x)(y+x)159=(x2+6x+8)(x2+5x+8)160=(x+2)(x+4)(x2+5x+8).161说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题162目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多163项式.1641.双十字相乘法165分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式166(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.167例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作168常数,于是上式可变形为1692x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.170171对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为172173即:-22y2+35y-3=(2y-3)(-11y+1).174再利用十字相乘法对关于x的二次三项式分解175所以,原式=[x+(2y-3)][2x+(-11y+1)]176177=(x+2y-3)(2x-11y+1).178上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图179合并在一起,可得到下图:180181它表示的是下面三个关系式:182(x+2y)(2x-11y)=2x2-7xy-22y2;183(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.184185这就是所谓的双十字相乘法.186用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:187(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);188(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉189之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.190例1 分解因式:(1)x2-3xy-10y2+x+9y-2;191192(2)x2-y2+5x+3y+4;193(3)xy+y2+x-y-2;194(4)6x2-7xy-3y2-xz+7yz-2z2.195解 (1)196原式=(x-5y+2)(x+2y-1).197(2)198199原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.200201202原式=(y+1)(x+y-2).203(4)原式=(2x-3y+z)(3x+y-2z).204说明 (4)中有三个字母,解法仍与前面的类似.2052.求根法206我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项207式,并用f(x),g(x),…等记号表示,如208f(x)=x2-3x+2,g(x)=x5+x2+6,…,209当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)210f(1)=12-3×1+2=0;211f(-2)=(-2)2-3×(-2)+2=12.212若f(a)=0,则称a为多项式f(x)的一个根.213定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x) 214有一个因式x-a.215根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对216于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整217数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.218定理2219的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式220f(x)的整数根均为an 的约数.221我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行222因式分解.223例2 分解因式:x3-4x2+6x-4.224225分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4 226的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,227228即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.229解法1 用分组分解法,使每组都有因式(x-2).230原式=(x3-2x2)-(2x2-4x)+(2x-4)231=x2(x-2)-2x(x-2)+2(x-2)232=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),233234235所以原式=(x-2)(x2-2x+2).236237说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.238239※※变式练习2401. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±241242243为:244245所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2246247=9x4-3x3-2x2+9x2-3x-2248=x2(9x3-3x-2)+9x2-3x-2249=(9x2-3x-2)(x2+1)250=(3x+1)(3x-2)(x2+1)251说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,252如上题中的因式253可以化为9x2-3x-2,这样可以简化分解过程.254总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可255以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对256g(x)进行分解了.2573.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解258259中的应用.260在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于261262这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原263有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这264种因式分解的方法叫作待定系数法.265例3 分解因式:x2+3xy+2y2+4x+5y+3.266分析由于267(x2+3xy+2y2)=(x+2y)(x+y),268若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应269用待定系数法即可求出m和n,使问题得到解决.270解设271x2+3xy+2y2+4x+5y+3272=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,273274比较两边对应项的系数,则有275解之得m=3,n=1.所以276277原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.278279※※变式练习2801.分解因式:x4-2x3-27x2-44x+7.281分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则282只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原283式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设284285原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,286287所以有288289由bd=7,先考虑b=1,d=7有290291292所以293原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果294295b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直296到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找297298到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.299四、巩固练习:3001. 分解因式:(x2+xy+y2)-4xy(x2+y2).301分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的302多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分303解因式.304解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则305原式=(u2-v)2-4v(u2-2v)306=u4-6u2v+9v2307=(u2-3v)2308=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.309310311312313314315五、反思总结。

因式分解(含答案)

因式分解(含答案)

1.4 因式分解◆赛点归纳因式分解是中学数学的一种重要的恒等变形,也是解决许多数学问题的重要途径和方法.在初中数学竞赛中,常用的方法除教材中介绍的提取公因式法、公式法、分组分解法外,还有十字相乘法、折(添)项法、换元法和待定系数法等.◆解题指导例1 (2001,重庆市竞赛)因式分解:4x2-4x-y2+4y-3=______.【思路探究】这是一个二次五项式,显然没有公因式可以提取,这就要用其他因式分解法,经观察可用分组分解法.如何分组呢?例2 (2001,大连市第八届“育英杯”)分解因式x(x-1)+y(y+1)-2xy•的结果是_________.【思路探究】显然没有公因式可以提取,所以必须先运用整式乘法将它展开,展开后的多项式与例1相似,故宜用分组分解法.例3 (2002,北京市竞赛)a4+4分解因式的结果是().A.(a2+2a-2)(a2-2a+2)B.(a2+2a-2)(a2-2a-2)C.(a2+2a+2)(a2-2a-2)D.(a2+2a+2)(a2-2a+2)【思路探究】本题不可分组,又无法直接运用公式法,但这两项都是完全平方数,因此可通过添项利用公式法分解.例4分解因式:x3-3x2+4.【思路探究】这是一个关于x的三次式,直接运用分组分解法是难以完成的,•可以先将二次项或常数项进行拆项,再进行恰当的分组分解.例5 分解因式:x2+xy-6y2+x+13y-6.【思路探究】这是二次六项式,运用分组分解法有困难.根据整式乘法可知,这个二次六项式可分解为两个一次三项式,且前三项二次项x2+xy-6y2可分解为(x+3y)(x-2y).由此可知,这两个一次式的常数项待定,因此,可用待定系数法分解.例6 (2000,“五羊杯”,初三)分解因式:(x4+x2-4)(x4+x2+3)+10=______.【思路探究】这是一道八次多项式因式分解题,在展开它时,要有目标,即在运用整式乘法将它展开后,必须考虑下一步能否分解因式.由观察可知,这两个四次三项式结构相同,因此,将四次项与二次项的和作为一个整体展开可分解因式.【拓展题】分解因式:(x2+xy+y2)2-4xy(x2+y2).◆探索研讨提取公因式法、公式法和分组分解法是因式分解的基本方法.对于一些较为复杂的多项式因式分解,就需用到换元法、拆(添)项法、待定系数法.请结合本节的例题,总结拆(添)项法、换元法可分别化归为哪些基本方法?待定系数法实质是化归为解什么问题?◆能力训练1.下列四个从左到右的变形中,是因式分解的是().A.(x+1)(x-1)=x2-1 B.(a-b)(m-n)=(b-a)(n-m)C.ab-a-b+1=(a-1)(b-1)D.m2-2m-3=m(m-2-3m)2.把多项式x2-y2-2x-4y-3因式分解之后,正确的结果是().A.(x+y+3)(x-y-1)B.(x+y-1)(x-y+3)C.(x+y-3)(x-y+1)D.(x+y+1)(x-y-3)3.将多项式x2-4y2-9z2-12yz分解成因式的积,结果是().A.(x+2y-3z)(x-2y-3z)B.(x-2y-3z)(x-2y+3z)C.(x+2y+3z)(x+2y-3z)D.(x+2y+3z)(x-2y-3z)4.下列五个多项式:①a2b2-a2-b2-1;②x3-9ax2+27a2x-27a3;③x(b+c-d)-y(d-b-c)-2c+2d-2b;④3m(m-n)+6n(n-m);⑤(x-2)2+4x.其中在有理数范围内可以进行因式分解的有().A.①,②,③B.②,③,④C.③,④,⑤D.①,②,④5.已知二次三项式21x2+ax-10可分解成两个整系数的一次因式的积,那么().A.a一定是奇数B.a一定是偶数C.a可为奇数也可为偶数D.a一定是负数6.将a4+b4+c4-2a2b2-2b2c2-2c2a2分解因式得().A.(a2-b2-c2)2B.(a2-b2-c2+2bc)(a2-b2-c2-2bc)C.(a+b-c)(a-b+c)(a+b+c)(a-b-c)D.(a+b-c)(b+c-a)(c+a-b)(a+b+c)7.分解因式3a2-7a-6=______.8.分解因式x2+4xy-4+4y2=_______.9.把代数式(x+y-2xy)(x+y-2)+(xy-1)2分解成因式的乘积,应当是______.10.分解因式(x2-1)(x+3)(x+5)+12=_______.11.分解因式x5+x+1=_______,x5+x-1=______.12.(2000,“五羊杯”,初二)分解因式(x-2)3-(y-2)3-(x-y)3.13.(2001,“五羊杯”,初二)分解因式(2x-3y)3+(3x-2y)3-125(x-y)3.14.(2002,“五羊杯”,初二)分解因式(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6.15.分解因式(x+1)4+(x+3)4-272.16.分解因式6x2-5xy-6y2-2xz-23yz-20z2.答案:解题指导例1 (2x+y-3)(2x-y+1).[提示:4x2-4x-y2+4y-3 =(4x2-4x+1)-(y2-4y+4)=(2x-1)2-(y-2)2=(2x+y-3)(2x-y+1).]例2 (x-y)(x-y-1).[提示:x(x-1)+y(y+1)-2xy =x2-x+y2+y-2xy=(x-y)2-(x-y)=(x-y)(x-y-1).]例3 D [提示:a4+4=a4+4a2+4-4a2=(a2+2)2-(2a)2 =(a2+2a+2)(a2-2a+2).]例4 (x+1)(x-2)2.解法1 x3-3x2+4=x3+x2-4x2+4=x2(x+1)-4(x+1)(x-1)=(x+1)(x-2)2.解法2 x3-3x2+4=x3+1-3x2+3=(x+1)(x2-x+1)-3(x+1)(x-1)=(x+1)(x2-4x+4)=(x+1)(x-2)2.解法3 x3-3x2+4=x3+x2-4x2-4x+4x+4=x2(x+1)-4x(x+1)+4(x+1)=(x+1)(x2-4x+4)=(x+1)(x-2)2.例5 设x2+xy-6y2+x+13y-6=(x+3y+m)(x-2y+n)=x2-2xy+nx+3xy-6y2+3ny+mx-2my+mn=x2+xy-6y2+(n+m)x+(3n-2m)y+mn.比较左、右两边对应项系数,得1,2,3213, 3.6.m n m n m n mn +=⎧=-⎧⎪-=⎨⎨=⎩⎪=-⎩解得 ∴x 2+xy -6y 2+x+13y -6=(x+3y -2)(x -2y+3).例6 (x 2+2)(x+1)(x -1)(x 2+x+1)(x 2-x+1).[提示:(x 4+x 2-4)(x 4+x 2+3)+10=(x 4+x 2)2-(x 4+x 2)-12+10=(x 4+x 2)2-(x 4+x 2)-2=(x 4+x 2-2)(x 4+x 2+1)=(x 2+2)(x 2-1)[(x 4+2x 2+1)-x 2]=(x 2+2)(x 2-1)[(x 2+1)2-x 2]=(x 2+2)(x+1)(x -1)(x 2+x+1)(x 2-x+1).]【拓展题】 设a=x+y ,b=xy ,则(x 2+xy+y 2)2-4xy (x 2+y 2)=[(x+y )2-xy] 2-4xy[(x+y )2-2xy]=(a 2-b )2-4b (a 2-2b )=a 4-6a 2b+9b 2=(a 2-3b )2=(x 2+2xy+y 2-3xy )2=(x 2-xy+y 2)2.能力训练1.C [提示:根据因式分解的概念判断.]2.D [提示:x 2-y 2-2x -4y -3=(x 2-2x+1)-(y 2+4y+4)=(x -1)2-(y+2)2=[(x -1)+(y+2)][(x -1)-(y+2)]=(x+y+1)(x -y -3).]3.D [提示:x 2-4y 2-9z 2-12yz=x 2-(4y 2+9z 2+12yz )=x 2-(2y+3z )2=[x+(2y+3z )][x -(2y+3z )]=(x+2y+3z)(x-2y-3z).]4.B [提示:②式=(x-3a)3;③式=x(b+c-d)+y(b+c-d)-2(b+c-d)=(b+c-d)(x+y-2);④式=(m-n)(3m-6n)=3(m-n)(m-2n).所以②、③、④式合乎要求.]5.A [提示:利用十字相乘法可推断.]6.C [提示:原式=a4-a2b2-2a2bc-a2c2-a2b2+2a2bc -a2c2+b4-2b2c2+c4=a4-a2(b2+2bc+c2)-a2(b2-2bc+c2)+(b2-c2)2 =a4-a2(b+c)2-a2(b-c)2+(b+c)2(b-c)2=[a2-(b+c)2][a2-(b-c)2]=(a+b+c)(a-b-c)(a+b-c)(a-b+c).]7.(3a+2)(a-3).8.(x+2y+2)(x+2y-2).[提示:x2+4xy-4+4y2 =(x2+4xy+4y2)-4=(x+2y)2-4=(x+2y+2)(x+2y-2).]9.(x-1)2(y-1)2.[提示:(x+y-2xy)(x+y-2)+(xy-1)2.=(x+y)2-2xy(x+y)-2(x+y)+4xy+x2y2-2xy+1 =(x+y)2-2(x+y)(xy+1)+(xy+1)2=(x+y-xy-1)2=(x-1)2(y-1)2.]10.(x2+4x-3)(x2+4x+1).[提示:(x2-1)(x+3)(x+5)+12=(x+1)(x+3)(x-1)(x+5)+12=(x2+4x+3)(x2+4x-5)+12=(x2+4x)2-2(x2+4x)-15+12=(x2+4x-3)(x2+4x+1).]11.(x3-x2+1)(x2+x+1);(x3+x2-1)(x2-x+1).[提示:x5+x+1=x2(x3-1)+(x2+x+1)=(x2+x+1)[x2(x-1)+1]=(x3-x2+1)(x2+x+1);x5+x-1=x2(x3+1)-(x2-x+1)=(x2-x+1)[x2(x+1)-1]=(x3+x2-1)(x2-x+1).] 12.(x-2)3-(y-2)3-(x-y)3=[(x-2)-(y-2)][(x-2)2+(x-2)(y-2)+(y-2)2]-(x-y)=(x-y)[(x-2)2+(x-2)(y-2)+(y-2)2-(x-y)2]=3(x-y)(xy-2y-2x+4)=3(x-2)(y-2)(x-y).13.A3+B3+C3-3ABC=(A+B+C)(A2+B2+C2-BC-CA-AB).若A+B+C=0,便有A3+B3+C3=3ABC.令A=2x-3y,B=3x-2y,C=5y-5x,则符合上述条件,易得A3+B3+C3=3ABC,即(2x-3y)3+(3x-2y)3-125(x-y)3=15(2x-3y)(3x-2y)(y-x).14.设(t+1)3=x,y=2+t+t2,则原式=[(4+2t+2t2)-3(1+3t+3t2+t3)][(2+t+t2)-(1+3t+3t2+t3)]-[(t+1)3] 2=(2y-3x)(y-x)-x2=2x2-5xy+2y2=(2x-y)(x-2y)=[2(t3+3t2+3t+t)-(t2+t+2)][(t3+3t2+3t+1)-2(t2+t+2)]=(2t3+5t2+5t)(t3+t2+t-3)=t(2t2+5t+5)(t-1)(t2+2t+3).15.令y=(1)(3)2x x+++=x+2,则原式=(y -1)4+(y+1)4-272=2(y 4+6y 2+1)-272=2(y 4+6y 2-135)=2(y 2-9)(y 2+15)=2(y+3)(y -3)(y 2+15)=2(x+5)(x -1)(x 2+4x+19).16.5-422-33由上面的双十字相乘法,得2×5-3×(-4)=10-12=-2.∴6x 2-5xy -6y 2-2xz -23yz -20z 2=(2x -3y -4z )(3x+2y+5z ).。

初中数学因式分解有答案竞赛题

初中数学因式分解有答案竞赛题

初中数学因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.双十字相乘法因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;2.求根法形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.例3 分解因式:9x4-3x3+7x2-3x-2.3.待定系数法在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.例5 分解因式:x4-2x3-27x2-44x+7.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.初中数学因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(2x-3y+z)(3x+y-2z).2.求根法我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、真题精解:1)已知多项式ax3+bx2+cx+d除以x-1时的余数是1,除以x-2时的余数是3,那么,它除以(x-1)(x-2)时所得的余数是什么?(第12届“希望杯”试题)解:设原式=(x-1)(x-2)(ax+k)+(mx+n),当x=1时,原式=1,即m+n=1;当x=2时,原式=3,即2m+n=3,解此关于m、n的方程组得m=2,n=-1,故原式除以(x-1)(x-2)时的余数为x-12)k为何值时,多项式x2-2xy+ky2+3x-5y+2能分解成两个一次因式的积?(天津市竞赛试题)解:原式中不含y的项为x2+3x+2可分解为 (x+1)(x+2),故可设原式=[(x+1)+ay][(x+2)+by],将其展开得:x2+(a+b)xy+aby2+3x+(2a+b)y+2,与原式对比系数得:a+b=-2, ab=k, 2a+b=-5,解之得a=-3,b=1,k=-3 3)如果x3+ax2+bx+8有两个因式x+1和x+2,求a+b的值。

相关文档
最新文档