初中函数综合试题
苏科版八年级数学上册试题 第6章 一次函数综合测试卷 (含详解)
第6章《一次函数》综合测试卷一、选择题(本大题共10小题,每小题2分,共20分)1.一次函数y =(a+1)x+a+2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣12.若点,在直线上,则m 与n 的大小关系是( ).A .B .C .D .无法确定3.如图,若一次函数y 1=﹣x ﹣1与y 2=ax ﹣3的图像交于点P(m ,﹣3),则关于的不等式﹣x ﹣1>ax ﹣3的解集是( )A .x <2B .x >﹣3C .x >2D .x <﹣34.一次函数中,当函数值时,自变量x 的取值范围为( )A .B .C .D .5.如图1,在等边中,点D 是边的中点,点P 为边上的一个动点,设,图1中线段的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边的周长为())A m 3,2B n ⎛⎫ ⎪⎝⎭1y x =+m n >m n <m n =36y x =-+0y <ABC V BC AB AP x =DP ABC VA .4B .C .12D .6.如图,点A ,B ,C 在一次函数y =-2x +b 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积和是( )A .1B .3C .3(b -1)D.7.如图,直线与直线相交于点P ,若不等式的解集是,则的值等于( )A .B .C .3D .8.如图,一次函数与一次函数的图象交于P (1,3),则下列说法正确的个数是( )个(1)方程的解是(2)方程组的解是(3)不等式的解集是(4)不等式的解集是.()223b -1:3m y x =+2:m y kx b =+(3)0kx b x +-+<1x >-b k 1313-3-1y ax b =+24y kx =+3ax b +=1x =4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩4ax b kx ++>1x >44kx ax b ++>>01x <<A .1B .2C .3D .49.在地球中纬度地区,从地面到高空大约之间,气温随高度的升高而下降,每升高,气温大约下降;高于但不高于,气温几乎不再变化,某城市地处中纬度地区,该市某日的地面气温为,设该城市距离地面高度为处的气温为,则与的函数图像是( )A .B .C .D .10.如图,在平面直角坐标系中,点是直线与直线的交点,点B 是直线与y 轴的交点,点P 是x 轴上的一个动点,连接PA ,PB ,则的最小值是()11km 1km 6C ︒11km 20km 20C ︒()km 020x x ≤≤C y ︒y x ()3,A a 2y x =y x b =+y x b =+PA PB +A .6B .C .9D .二、填空题(本大题共6小题,每小题2分,共12分)11.已知正比例函,当时,.则比例系数k=__________.12.若是正比例函数,则______.13.若直线是由直线向下平移了3个单位长度得到的,则kb =______.14.直线y =kx +b (k ≠0)平行于直线且经过点,那么这条直线的解析式是______.15.如图,直线y =﹣x+7与两坐标轴分别交于A 、B 两点,点C 的坐标是(1,0),DE 分别是AB 、OA 上的动点,当△CDE 的周长最小时,点E 的坐标是 _____.16.如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(本大题共10题,共68分)17.(4分)判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.y kx =2x =-10y =()212a y a x b =++-()2021a b -=y kx b =+21y x =--12y x =()0,2ABCD (1,0)A (3,0)D -AD x :L y kx =ABCD O E 35OE <<k18.(4分)在平面直角坐标系中,一次函数的图像经过和.(1)求一次函数解析式.(2)当,求y 的取值范围.19.(6分)小明从A 地出发向B 地行走,同时晓阳从B 地出发向A 地行走,小明、晓阳离A 地的距离y (千米)与已用时间x (分钟)之间的函数关系分别如图中、所示.(1)小明与晓阳出发几分钟时相遇?(2)求晓阳到达A 地的时间.20.(6分)如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A (-6,0),B(1,0)(0,2)23x -<≤1l 2l(0,3)两点,点C 在直线AB 上,C 的纵坐标为4.(1)求k 、b 的值及点C 坐标;(2)若点D 为直线AB 上一动点,且△OBC 与△OAD 的面积相等,试求点D 的坐标.21.(8分)如图,直线与直线相交于点.(1)求a ,b 的值;(2)求△ADC 的面积;(3)根据图象,写出关于x 的不等式的解集.22.(8分)定义:在平面直角坐标系中,对于任意一点如果满足,我们就把点称作“和谐点”.(1)在直线上的“和谐点”为________;:AD y x b =-+1:12BC y x =+()2,B a 1012x b x <-+<+xOy ()P x y ,2||y x =()P x y ,6y =(2)求一次函数的图象上的“和谐点”坐标;(3)已知点,点的坐标分别为,,如果线段上始终存在“和谐点”,直接写出的取值范围是________.23.(6分)某校开展爱心义卖活动,同学们决定将销售获得的利润捐献给福利院.初二某班的同学们准备制作A 、B 两款挂件来进行销售.已知制作3个A 款挂件、5个B 款挂件所需成本为46元,制作5个A 款挂件、10个B 款挂件所需成本为85元.已知A 、B 两款挂件的售价如下表:手工制品A 款挂件B 款挂件售价(元/个)128(1)求制作一个A 款挂件、一个B 款挂件所需的成本分别为多少元?(2)若该班级共有40名学生.计划每位同学制作2个A 款挂件或3个B 款挂件,制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍.设安排m 人制作A 款挂件,请说明如何安排,使得总利润最大,最大利润是多少?2y x =-+P Q (2)P m ,(,5)Q m PQ m24.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图像解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;25.(10分)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点在第二象限内,点、点在轴的负半轴上,,.(1)求点的坐标;(2)如图,将绕点按顺时针方向旋转到的位置,其中交直线于点,分别交直线、于点、,则除外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)(3)在(2)的基础上,将绕点按顺时针方向继续旋转,当的函数表达式.26.(10分)在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点是点的等和点,已知点.(1)在中,点的等和点有__________;(2)点在直线上,若点的等和点也是点的等和点,求点的坐标;(3)已知点和线段,点C 也在 x 轴上且满足,线段上总存在线段上每个点的等和点.若的最小值为5,直接写出的值.A B C x 30CAO ∠=︒4OA =C ACB △C 30°A CB ''V A C 'OA E A B ''OA CA F G A B C AOC ''≌△△A CB ''V C COE V CE xOy 11(,)P x y 22(,)Q x y 1212x x y y +=+Q P ()3,0P ()()()1230,31,421,,Q Q Q --,P A 5y x =-+P A A (,0)B b MN 1BC =MN PC MN b答案一、选择题1.D【解析】解:∵一次函数y=(a+1)x+a+2的图象过一、二、四象限,∴a+1<0,a+2>0解得-2<a <-1.故选:D .2.B【解析】∵一次函数中,∴随的增大而增大∴故选:B .3.A【解析】解:由题意,将点代入一次函数得:,解得,不等式表示的是一次函数的图像位于一次函数的图像上方,则由函数图像得:,1y x =+10k =>y x 32<m n<(),3P m -11y x =--13m --=-2m =13x ax -->-11y x =--23y ax =-2x <故选:A .4.B【解析】解:∵一次函数y=-3x+6,∴当y=0时,x=2,y 随x 的增大而减小,∴当函数值y <0时,自变量x 的取值范围为x >2,在数轴上表示为: ,故选:B .5.C【解析】解:由图2可得y 最小值∵△ABC 为等边三角形,分析图1可知,当P 点运动到DP ⊥AB 时,DP 长为最小值,∴此时DP ∵DP ⊥AB ,∴,∵△ABC 为等边三角形,∵∠B =60°,AB=BC=AC ,∴,∴BD=2BP ,根据勾股定理可知,,∴,∴或(舍去),,∵D 为BC 的中点,∴BC =4,∴AB=BC=AC=4,∴等边△ABC 的周长为12.故选:C .90DPB ∠=︒906030PDB ∠=︒-︒=︒222BD BP DP =+22212BD BD ⎛⎫=+ ⎪⎝⎭2BD =2BD =-6.B【解析】解:由题意可得A 、C 的坐标分别为(-1,b +2)、(2,b -4),又阴影部分为三个有一直角边都是1,另一直角边的长度和为A 点纵坐标与C 点纵坐标之差的三角形,所以阴影部分的面积为:,故选B .7.B【解析】∵kx+b −(x+3)<0的解集是x>−1∴P 点横坐标是−1,则纵坐标为2则P (−1,2),由图可知直线m 2与y 轴的交点坐标是(0,-1),把P (−1,2)和(0,−1)代入∴ ∴ 故选:B .8.C【解析】解:因为一次函数与一次函数的图象交于P (1,3),所以(1)方程ax+b=3的一个解是x=1,正确;(2)方程组的解是,错误;(3)不等式ax+b>kx 十4的解集是x>1,正确;(4)不等式4>kx 十4>ax+b 的解集是0<x<1,正确.()()112432b b ⎡⎤⨯⨯+--=⎣⎦y kx b =+21k b b -+=⎧⎨=-⎩31k b =-⎧⎨=-⎩13b k =-1y ax b =+24y kx =+4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩9.B【解析】解:由题意可知,当高度x=0时,y=20℃;当x=11时,y=20-11×6=-46℃,∴y=-6x+20()当时,y=-46根据一次函数的性质可知,只有B 选项的图像符合题意.故答案为:B .10.D【解析】解:作点A 关于x 轴的对称点,连接,如图所示:则PA+PB 的最小值即为的长,将点A (3,a )代入y=2x ,得a=2×3=6,∴点A 坐标为(3,6),将点A (3,6)代入y=x+b ,得3+b=6,解得b=3,∴点B 坐标为(0,3),根据轴对称的性质,可得点A'坐标为(3,-6)∴∴PA+PB 的最小值为故选:D .二、填空题011x ≤<1120x ≤≤A 'A B 'A B 'A B '==【解析】解:把,代入得:,∴.故答案为:.12.【解析】∵是正比例函数,∴,,,∴,,∴,故答案为:.13.8【解析】解∶ 直线向下平移了3个单位长度得到,∴k=-2,b=-4,∴.故答案为:8.14.【解析】解:根据题意得,将代入得b =2,直线解析式为,故答案为:.15.10【解析】解:如图,点C 关于OA 的对称点(-1,0),点C 关于直线AB 的对称点,∵直线AB 的解析式为y=-x+7,∴直线C 的解析式为y=x-1,由,得 2x =-10y =y kx =102k =-5k =-5-1-()212a y a x b =++-10a +≠21a =20b -=1a =2b =()2021121-=-1-21y x =--24y x =--(2)(4)8kb =-⨯-=122y x =+12k =()0,212y x b =+∴122y x =+122y x =+C 'C ''C ''71y x y x =-+⎧⎨=-⎩43x y =⎧⎨=⎩∴F (4,3),∵F 是C 中点,∴可得(7,6).连接与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,△DEC 的周长=DE+EC+CD=E +ED+D ==10.故答案为10.16.且【解析】解:如图,设BC 与y 轴交于点M ,,,,∴E 点不在AD 边上,;①如果,那么点E 在AB 边或线段BM 上,当点E 在AB 边且时,由勾股定理得,,,,C ''C ''C 'C ''C 'C ''C 'C ''k >0k <43k ≠-13OA =< 3OD =3OE >0k ∴≠0k >3OE =222918AE OE OA =-=-=AE ∴=(1E ∴当直线经过点,时,,,当点E 在线段BM 上时,,②如果,那么点E 在CD 边或线段CM 上,当点E 在CD 边且时,E 与D 重合;当时,由勾股定理得,,,,此时E 与C 重合,当直线经过点时,.当点E 在线段CM 上时,,且,符合题意;综上,当时,的取值范围是且,故答案为:且.三、解答题17.解:设过A ,B 两点的直线的表达式为y =kx +b .由题意可知,解得 ∴过A ,B 两点的直线的表达式为y =x -2.∵当x =4时,y =4—2=2.∴点C (4,2)在直线y =x -2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.18.(1)解:设一次函数解析式为∵一次函数的图像经过和y kx =(1k =22216117OB AB OA =+=+= 5OB ∴=<5OE OB <=<k ∴>0k <3OE =5OE =22225916DE OE OD =-=-=4DE ∴=(3,4)E ∴-y kx =()3,4-43k =-5OE OC <=0k ∴<43k ≠-35OE <<k k >0k <43k ≠-k >0k <43k ≠-1320k b b =+⎧⎨-=+⎩12k b =⎧⎨=-⎩(0)y kx b k =+≠(1,0)(0,2)解得:∴一次函数解析式为;(2)解:由(1)得:,一次函数的图像y 随x 的增大而减小,当时,,当时,,当时,.19.(1)解:设的解析式为:.∵函数的图象过,,即,,当时,,∴小明与晓阳出发12分钟时相遇.(2)解:∵晓阳的速度为(千米/分钟),∴晓阳到达A 地的时间为分钟.20.(1)解:(1)依题意得: 解得 ∴∵点C 在直线AB 上,C 的纵坐标为402k b b +=⎧∴⎨=⎩22k b =-⎧⎨=⎩22y x =-+20k =-<∴2x =-()2226y =-⨯-+=3x =2324y =-⨯+=-∴23x -<≤46y -≤<2l 11y k x =()30,41430k ∴=1215k =1215y x ∴=1 1.6y =12x =4 1.60.212-=4200.2==603k b b -+=⎧⎨=⎩123k b ⎧=⎪⎨⎪=⎩1,32k b ==点C 坐标为(2,4)(2)∵B (0,3),C 的纵坐标为4∴∴设点D 点坐标为,又点A (-6,0)∴ 解得 当时当时∴点D 坐标为(-4,1)或(-8,-1)21.(1)解∶∵直线经过点,∴,∴点B 的坐标为,∵直线经过点,∴,∴;(2)解:∵,∴直线AD 的解析式为,令,则,令,则,∴A (0,4),D (4,0),∴OA=OD=4,直线与x 轴交于点C ,令,则,∴C (-2,0),∴OC=2,∴CD=6,13422x x +==13232OBC S ∆=⨯⨯=3OAD S ∆=(),D D x y 162D OA y ⨯⨯=1D y =±1=D y 4D x =-1D y =-8D x =-112y x =+()2,B a 12122a =⨯+=22(,)y x b =-+()2,2B 22b =-+4b =4b =4y x =-+0x =4y =0y =4x = 112y x =+0y =2x -=∴;(3)解:点B 的坐标为,点D 的坐标为,∴根据图象可得:关于x 的不等式的解集为.22.(1)解:由题意得:,解得:x =3或x =-3,在直线上的“和谐点”为:(3,6)和(-3,6);(2)由“和谐点”的定义可知或,联立,解得:,联立,解得:,所以一次函数的图象上的“和谐点”坐标为(,)和(-2,4);(3)如图为的函数图象的简图,PQ y 轴,①当m >0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是;②当m <0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是,综上,当或时,线段上始终存在“和谐点”.11641222ACD S CD OA =⋅=⨯⨯=V 22(,)40(,)1012x b x <-+<+24x <<26x =6y =2y x =2y x =-22y x y x =-+⎧⎨=⎩2343x y ⎧=⎪⎪⎨⎪=⎪⎩22y x y x =-+⎧⎨=-⎩24x y =-⎧⎨=⎩2y x =-+23432y x =∥22y x ==1x =25y x ==52x =PQ m 512m ≤≤22y x =-=1x =-25y x =-=52x =-PQ m 512m -≤≤-512m ≤≤512m -≤≤-PQ23.(1)由题意可设制作一个A 款挂件、一个B 款挂件所需的成本分别为x 、y 元,则,解得将①得6x+10y=92,再将①②得x=7,再将x=7回代②得y=5,解得,答:制作一个A 款挂件、一个B 款挂件所需的成本分别7元、5元;(2)由题意得设(40)人制作B 款挂件,总利润为w 元,则w=(12),∴w 随m 的增大而增大,∵制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍,∴,解得10∵m 为正整数,∴当m=17时,w 取得最大值,此时w=377,(40)=23,答:当安排17人制作A 款挂件,23人制作B 款挂件时,总利润最大,最大利润为377元.24.(1)根据图像信息:货车的速度(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,354651085x y x y +=⎧⎨+=⎩①②2⨯-75x y =⎧⎨=⎩m -7-2(85)3(40)360m m m ⨯+-⨯-=+7253(40)5903(40)22m m m m ⨯+⨯-≤⎧⎨-≥⨯⎩1177m ≤≤m -300605v ==货∴轿车到达乙地时,货车行驶的路程为:(千米).此时,货车距乙地的路程为:(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD 段函数解析式为()().∵,在其图像上,∴,解得.∴CD 段函数解析式:;25.(1)解:在中,,,所以,则;(2)解:或或(3)解:如图1,过点作于点.∵∴.∵在Rt △AOC 中,,IOC=2,∠ACO=90°,∴∴点A(-2,,设直线OA 的解析是为,则,∴,∴直线OA 的解析式为,令,解得x=,∴点的坐标为. 4.560270⨯=30027030-=y kx b =+0k≠ 2.5 4.5x ≤≤(2.5,80)C (4.5,300)D 2.5804.5300k b k b +=⎧⎨+=⎩110195k b =⎧⎨=-⎩(1101952.5 4.)5y x x =-≤≤Rt AOC V 4OA =30CAO ∠=︒122CO OA ==()2,0C -A EF AGF '≌△△B GC CEO '≌△△A GC AEC'≌△△E 1E M OC ⊥M 1112COE S CO E M =⋅=△1E M =4OA =AC ===y mx =()2m =⨯-m =y ==14-1E 14⎛- ⎝设直线的函数表达式为,,解得.∴.同理,如图2所示,点的坐标为.设直线的函数表达式为,则,解得 .∴综上所得或.26.(1)Q 1(0,3),则0+3=3+0,∴Q 1(0,3)是点P 的等和点;Q 2(1,4),则1+3=4+0,∴Q 2(1,4)是点P 的等和点;Q 3(-2,-1),则-2+3≠-1+0,∴Q 3(-2,-1)不是点P 的等和点;故答案为:Q 1,Q 2;(2)设点P (3,0)的等和点为(m ,n ),∴3+m=n ,有m-n=-3,1CE 11y k x b =+11112014k b k b -+=⎧⎪⎨-+=⎪⎩11k b ⎧=⎪⎪⎨⎪=⎪⎩y x =+2E 1,4⎛ ⎝2CE 22y k x b =+22222014k b k b -+=⎧⎪⎨+=⎪⎩22k b ⎧=⎪⎪⎨⎪=⎪⎩y x =y x =+y =∵A 在直线y=-x+5上,∴设A (t ,-t+5),则A 点的等和点为(m ,n ),∴t+m=-t+5+n ,由m-n=-2t+5,∴-3=-2t+5,解得t=4,∴A (4,1);(3)∵P (3,0),∴P 点的等和点在直线l :y=x+3上,∵B (b ,0),BC=1,且C 在x 轴上,∴C (b-1,0)或(b+1,0)∴C 点的等和点在直线l 1:y=x+b-1或y=x+b+1上,设直线l 1与y 轴交于C',直线l 与y 轴交于P',则C'(0,b-1)或(0,b+1),P'(0,3),①当点C 在点B 的左边时,如图1,直线CC'与直线l 交于N ,当M 与C'重合时,MN 最小为5,∵△MNP'是等腰直角三角形,∴∴,∴如图2,同理得∴3+(1-b )∴②当点C 在点B 的右边时,如图3,同理得:∴,∴如图4,同理得:,∴,∴综上,b 的值是2−或4−或.。
中考数学 二次函数综合试题附详细答案
中考数学 二次函数综合试题附详细答案一、二次函数1.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.【详解】(1)∵抛物线的对称轴为直线x=1, ∴− 221bb a-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3;(2)∵抛物线与x 轴交于A 、B 两点,当y=0时,x 2-2x-3=0.∴x1=-1,x2=3.∵A点在B点左侧,∴A(-1,0),B(3,0)设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,则033k mm==+⎧⎨-⎩,∴13 km⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(6-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-621+62∵点P在第三象限.∴P2(6-52).综上所述:满足条件为P1(2-2),P2(6-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2.∴P (1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y=>,所以可以通过(3)令8y=,即212486x x-++=,可得212240x x-+=,解得12623,623x x=+=-1243x x-=答:两排灯的水平距离最小是43考点:二次函数的实际应用.5.如图,抛物线212222y x x=-++与x轴相交于A B,两点,(点A在B点左侧)与y轴交于点C.(Ⅰ)求A B,两点坐标.(Ⅱ)连结AC,若点P在第一象限的抛物线上,P的横坐标为t,四边形ABPC的面积为S.试用含t的式子表示S,并求t为何值时,S最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(A B ;(Ⅱ)2(2S t t =--+<<,当t =时,S =最大;(Ⅲ)满足条件的点m n 、的值为:34m n ==,或154m n ==-,或14m n == 【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论.【详解】解:(Ⅰ)抛物线21222y x x =-++,令0y =,则212022x x -++=,解得:x =x =∴((,A B(Ⅱ)由抛物线21222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q ,∵P 的横坐标为t ,∴设(),P t p ,∴212,,22p t PQ p BQ t OQ t =-++===,∴()()11122222AOC PQB OCPQ S S S S p t t p =++=++⨯+⨯⨯V V 梯形 1122t pt pt t =++-=++21222t t ⎫=-+++⎪⎪⎭2t t =+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =, ∴)2,2P ,∵抛物线212222y x x =-++的对称轴为22x =, ∴设2122,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()2,0A ,①当AP 和HG 为对角线时, ∴()2112111222,20222222m m n ⎛⎛⎫=++=-+++ ⎪ ⎪⎝⎭⎝⎭, ∴234m n ==, ②当AG 和PH 是对角线时, ∴(()2112112122,20222222m m n ⎛⎫=-++=+ ⎪ ⎪⎭⎝⎭, ∴215,24m n ==-, ③AH 和PG 为对角线时, ∴(()2121112122,22022222m m n ⎛⎛⎫-=+-+++=+ ⎪ ⎪⎝⎭⎝⎭, ∴3214m n ==, 即:满足条件的点m n 、的值为: 2324m n =-=,或5215,24m n ==-,或32124m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.6.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B . (Ⅱ)CDB ∆为直角三角形.理由如下: 由抛物线解析式,得顶点D 的坐标为()1,4. 如答图1所示,过点D 作DM x ⊥轴于点M , 则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=; 在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=; 在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=, ∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+, ∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩,解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+, ∵()()3,0,1,4B D , ∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=,∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中: (1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩,∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J . ∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PBPJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.7.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M 82秒. 【解析】 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;(2)计算出C 点的坐标,设出M 点的坐标,再根据△ABM 的面积为S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB ,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA ′∽△OA ′B ,再结合A ′H +A ′C ≥HC 即可计算出t 的最小值. 【详解】(1)将x =0代入y =﹣3x +3,得y =3, ∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3, ∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-, 化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A′H+A′C≥HC=2218233⎛⎫+=⎪⎝⎭,∴t≥82,即点M在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t的取值范围,难度系数较大,是中考的压轴题.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
最新初中数学二次函数综合题及答案(经典题型)复习过程
二次函数试题论:①抛物线1212--=x y 是由抛物线221x y -=怎样移动得到的? ②抛物线2)1(21+-=x y 是由抛物线221x y -=怎样移动得到的?③抛物线1)1(212-+-=x y 是由抛物线1212--=x y 怎样移动得到的?④抛物线1)1(212-+-=x y 是由抛物线2)1(21+-=x y 怎样移动得到的?⑤抛物线1)1(212-+-=x y 是由抛物线221x y -=怎样移动得到的?选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( )A -1B 2C -1或2D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—25、抛物线y= 21x 2-6x+24的顶点坐标是( )A (—6,—6)B (—6,6)C (6,6)6、已知函数y=ax 2+bx+c,①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2A 1 B 2 C 3 D 47、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则c b a + =c a b + =ba c+ 的值是( ) A -1 B 1 C 21 D -218、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( )二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。
2025年中考数学复习:二次函数综合压轴题常考热点试题汇编 解析版
2025年中考数学复习:二次函数综合压轴题常考热点试题汇编1.如图,已知抛物线y =-x 2+bx +c 与一直线相交于A -1,0 ,C 2,3 两点,与y 轴交于点N .其顶点为D .(1)求抛物线及直线AC 的函数表达式;(2)设点M 3,m ,求使MN +MD 的值最小时m 的值;(3)若点P 是抛物线上位于直线AC 上方的一个动点,过点P 作PQ ⊥x 轴交AC 于点Q ,求PQ 的最大值.【答案】(1)解:由抛物线y =-x 2+bx +c 过点A -1,0 ,C 2,3 得-1-b +c =0-4+2b +c =3,解得b =2c =3 ,∴抛物线为y =-x 2+2x +3;设直线为y =kx +n 过点A -1,0 ,C 2,3 ,得-k +n =02k +n =3,解得k =1n =1 ,∴直线AC 为y =x +1;(2)解:∵y =-x 2+2x +3=-x -1 2+4,∴D 1,4 ,令y =0,则0=-x 2+2x +3,解得x =-1或x =3,即抛物线与x 轴的另一个交点为3,0 ,作直线x =3,作点D 关于直线x =3的对称点D ,得D 坐标为5,4 ,如图,连接ND 交直线x =3于点M ,此时N 、M 、D 三点共线时,NM +MD 最小,即NM +MD 最小,设直线ND 的关系式为:y =ax +b ,把点N 0,3 和D 5,4 代入得b =35a +b =4 ,1∴直线NM 的函数关系式为:y =15x +3,当x =3时,y =185,∴m =185;(3)解:如图,∵PQ ⊥x 轴交AC 于点Q ,∴设Q x ,x +1 ,则P x ,-x 2+2x +3 ,∴PQ =-x 2+2x +3 -x +1 =-x 2+x +2=-x -12 2+94,∵-1<0,∴PQ 有最大值,最大值为94.2.如图,在平面直角坐标系中,已知点B 的坐标为-1,0 ,且OA =OC =5OB ,抛物线y =ax 2+bx +c a ≠0 图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD ⊥AC 于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【答案】(1)解:∵点B 的坐标为-1,0 ,∴OB =1,∵OA =OC =5OB ,∴OA =OC =5,∴点A 5,0 ,C 0,-5 ;把点C0,-5代入得:-5a=-5,解得:a=1,故抛物线的表达式为:y=x+1x-5=x2-4x-5;(3)解:∵直线CA过点C0,-5,∴可设其函数表达式为:y=kx-5,将点A5,0代入得:5k-5=0解得:k=1,故直线CA的表达式为:y=x-5,过点P作y轴的平行线交CA于点H,∵OA=OC=5,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,∴PD=PH,∵PD⊥AC,∴PD=22PH,设点P x,x2-4x-5,则点H x,x-5,∴PD=22x-5-x2+4x+5=-22x2+522x=-22x-522+2528,∵-22<0,∴PD有最大值,当x=52时,其最大值为252 8,此时点P52,-354 .3.如图抛物线y=ax2+bx+c经过点A(-1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E是直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBP A 的面积分为3:5两部分,求点P 的坐标.【答案】(1)解:∵OB =OC ,点C (0,3),∴点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a ,将点C (0,3)代入得,故-3a =3,解得:a =-1,故抛物线的表达式为:y =-x 2+2x +3,∵y =-x 2+2x +3=-x -1 2+4,函数的对称轴为:x =1;(2)四边形ACDE 的周长=AC +DE +CD +AE ,其中AC =AO 2+CO 2=12+32=10、DE =1是常数,故CD +AE 最小时,周长最小,取点C 关于直线x =1对称点C (2,3),则CD =C D ,如图所示,取点A -1,1 ,则A D =AE ,点C 与C 关于x =1对称,则C 2,3 ,∴A C =32+22=13,∴CD +AE =A D +DC ,则当A 、D 、C 三点共线时,CD +AE =A D +DC 最小,周长也最小,四边形ACDE 的周长的最小值=AC +DE +CD +AE=10+1+A D +DC=10+1+A C 10+1+13;(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBP A 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB ×(y C -y P ):12AE ×(y C -y P )=BE :AE ,则AE=52或32,即:点E的坐标为32,0或12,0,∵C0,3,设直线CP的表达式:y=kx+3,将点E的坐标代入直线CP的表达式:y=kx+3,解得:k=-6或-2,故直线CP的表达式为:y=-2x+3或y=-6x+3,联立y=-x2+2x+3y=-2x+3,y=-x2+2x+3y=-6x+3,解得:x=4或x=8(x=0舍去),故点P的坐标为(4,-5)或(8,-45).4.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0),与y轴交于点C,作直线BC,点P是抛物线在第四象限上一个动点(点P不与点B,C重合),连结PB,PC,以PB,PC为边作▱CPBD,点P的横坐标为m.(1)求抛物线对应的函数表达式;(2)当▱CPBD有两个顶点在x轴上时,则点P的坐标为;(3)当▱CPBD是菱形时,求m的值.(4)当m为何值时,▱CPBD的面积有最大值?【答案】(1)解:∵抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0),∴抛物线的解析式为y=(x+1)(x-3),即y=x2-2x-3,(2)解:∵抛物线的解析式为y=x2-2x-3,令x=0,则y=-3,∴C(0,-3),∵▱CPBD有两个顶点在x轴上时,∴点D在x轴上,∵四边形CPBD是平行四边形,∴CP∥BD,∴点P和点C为抛物线上的对称点,∵抛物线y=x2-2x-3的对称轴为x=--22×1=1,C(0,-3),∴P(2,-3),故答案为:(2,-3);(3)解:设点P的坐标为(m,y),∵B(3,0),C(0,-3),∴BP2=(3-m)2+y2,CP2=m2+(m+3)2,∵▱CPBD 是菱形,∴BP =CP ,∴BP 2=CP 2,∴(3-m )2+y 2=m 2+(y +3)2,9-2m +m 2+y 2=m 2+y 2+6y +9,m +y =0,∵y =m 2-2m -3,∴m +m 2-2m -3=0,m 2-m -3=0,m =-(-1)±(-1)2-4×1×(-3)2×1=1±132,即m 1=1+132,m 2=1-132,∵点P 是抛物线在第四象限上一个动点(点P 不与点B ,C 重合),∴0<m <3,∴m =1+132;(4)解:如图所示,过点P 作PE ∥y 轴交直线BC 于点E ,设直线BC 的解析式为y =kx +b (k ≠0),将B (3,0),C (0,-3)代入得,3k +b =0b =-3 ,解得,k =1b =-3 ,∴直线BC 的解析式为y =x -3,设P (m ,m 2-2m -3),则E (m ,m -3),∴PE =-m 2+3m ,∴S △PBC =12×3(-m 2+3m ),∵S ▱CPBD =2S △PBC=2×12×3(-m 2+3m )=-3m 2+9m=-3m -32 2+274,∴当m =32时,平行四边形CPBD 的面积有最大值.5.二次函数y =ax 2+bx +4a ≠0 的图象经过点A -4,0 ,B 1,0 ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)在对称轴上是否存在一个点M ,使MB +MC 的和最小,存在的话,请求出点M 的坐标.不存在的话请说明理由.(3)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式.【答案】(1)解:把A -4,0 ,B 1,0 代入y =ax 2+bx +4a ≠0 得:16a -4b +4=0a +b +4=0 ,解得a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)在对称轴上存在一个点M ,使MB +MC 的和最小,理由如下:连接AC 交对称轴于M ,则MB +MC 的和最小,如图:∵MA =MB ,∴MB +MC =MA +MC ,而C ,M ,A 共线,∴此时MB +MC 最小,在y =-x 2-3x +4中,令x =0得y =4,∴C 0,4 ,设直线AC 的表达式为y =rx +s ,由A -4,0 ,C 0,4 可得-4r +s =0s =4解得r =1s =4 ∴直线AC 解析式为y =x +4,由y =-x 2-3x +4=-x +32 2+254知抛物线对称轴为直线x =-32,在y =x +4中,令x =-32得y =52,∴M -32,52;(3)设BP 交y 轴于K ,如图:∵PD⊥x轴,∴∠DPB=∠OKB,∵∠DPB=2∠BCO,∴∠OKB=2∠BCO,∴∠CBK=∠BCO,∴BK=CK,设OK=m,则CK=BK=4-m,∵OB2+OK2=BK2,∴12+m2=4-m2,解得m=15 8,∴K0,158,设直线BP的表达式为y=px+q,由B1,0,K0,15 8得到p+q=0q=158解得p=-158 q=158∴直线BP的表达式为y=-158x+158.6.如图,抛物线y=14x2-32x交x轴正半轴于点A,M是抛物线对称轴上的一点,过点M作x轴的平行线交抛物线于点B,C(B在C左边),交y轴于点D,连结OM,已知OM=5.(1)求OD的长.(2)P是第四象限内抛物线上的一点,连结P A,AC,OC,PO.设点P的横坐标为m,四边形OCAP的面积为S.①求S关于m的函数表达式.②当∠POC=∠DOC时,求S的值.【答案】解:(1)抛物线对称轴为x=-b2a=3,∴DM=3,OA=6;∵OM =5,∴OD =OM 2-DM 2=52-32=4.(2)过点P 作PN ⊥OA 于N ,①由y =0得,0=14x 2-32x解得:x =0(舍去),x =6∴OA =6,∴S 四边形OCAF =S △OAC +S △OAP=12⋅OA ⋅OD +12⋅OA ⋅PN=12×6×4+12×6-14m 2-32m=12+3-14m 2+32m=-34m 2+92m +12所以,S 关于m 的表达式为:S =-34m 2+92m +12②MC =CD -DM =5=OM ,∴∠MOC =∠MCO .∵BC ∥x 轴,∴∠AOC =∠MCO =∠MOC .∵∠POC =∠DOC ,∴∠POC -∠AOC =∠DOC -∠MOC ,∴∠POE =∠DOM ,∴tan ∠POA =tan ∠DOM =34,∴-y p x P =34∴y P =-34x p ,代入抛物线解析式得-34x p =14x 2p -32x p解得x P =0(舍去)或x P =3,∴y P =-34x p =-34×3=-94∴S 四边形OCAF =S △OAC +S △OAP=12⋅OA ⋅OD +12⋅OA ⋅PN =18.757.如图,已知抛物线y =-x 2+bx +c 经过B -3,0 ,C 0,3 两点,与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E ,使得AE +CE 的值最小,求点E 的坐标;(3)设点P 为x 轴上的一个动点,写出所有使△BPC 为等腰三角形的点P 的坐标,并把求其中一个点P 的坐标的过程写出来.【答案】(1)解:将点B -3,0 ,C 0,3 代入抛物线解析式得-9-3b +c =0c =3,解得b =-2c =3 ,∴抛物线的解析式为y =-x 2-2x +3;(2)解:∵抛物线解析式为y =-x 2-2x +3=-x +1 2+4,∴抛物线的对称轴为直线x =-1,∵点A 、B 关于对称轴对称,∴BE =AE ,∴AE +CE =BE +CE ,∴当B 、C 、E 三点共线时,BE +CE 最小,即此时AE +CE 最小,∴BC 与对称轴的交点即为点E ,如下图,设直线BC 解析式为y =mx +n ,∴-3m +n =0n =3,解得m =1n =3 ,∴直线BC 的解析式为y =x +3;当x =-1时,y =x +3=2,∴E -1,2 ;(3)解:∵B -3,0 ,C 0,3 ,∴OB =OC =3,∴BC =32+32=32,当B 为顶点时,则PB =BC =32,∴点P 的坐标为32-3,0 或-32-3,0 ;当C为顶点时,则PC=BC,∴点P与点B关于y轴对称,∴点P的坐标为3,0;当BC为底边时,则PC=PB,设点P的坐标为m,0,∴-3-m2=m2+32,解得m=0∴点P的坐标为0,0;综上,点P的坐标为0,0或3,0或32-3,0或-32-3,0.8.如图,在平面直角坐标系xOy中,将抛物线y=12x2平移,使平移后的抛物线仍经过原点O,新抛物线的顶点为M(点M在第四象限),对称轴与抛物线y=12x2交于点N,且MN=4.(1)求平移后抛物线的表达式;(2)如果点N平移后的对应点是点P,判断以点O、M、N、P为顶点的四边形的形状,并说明理由;(3)抛物线y=12x2上的点A平移后的对应点是点B,BC⊥MN,垂足为点C,如果△ABC是等腰三角形,求点A的坐标.【答案】(1)解:由题意得,平移后的抛物线表达式为:y=12x2+bx,则点M的坐标为:-b,-1 2 b2,当x=-b时,y=12x2=12b2,即点N-b,12b2,则MN=12b2+12b2=4,解得:b=2(舍去)或b=-2,则平移后的抛物线表达式为:y=12x2-2x;(2)解:四边形OMPN是正方形,根据题意可得O0,0,M2,-2,N2,2,P4,0,记MN与OP交于点G,则G2,0,∴OG=GP=2,MG=NP=2,MN=OP=4,NO=NP=22,∴四边形OMPN是平行四边形,∵MN=OP=4,∴四边形OMPN是矩形,∵NO=NP=22,∴四边形OMPN是正方形;(3)解:设A a ,12a 2 ,B a +2,12a 2-2 ,C 2,12a 2-2 ,可得AB =22,AC =a -2 2+22,BC =a 2,①AB =AC ,22=a -2 2+22,即a 2-4a =0,解得a 1=4,a 1=0(舍去0),∴A 4,8 ;②AB =BC ,22=a 2,解得a 1=22,a 1=-22,∴A 22,4 或A -22,4 ;③AC =BC ,a -2 2+22=a 2,解得a =2,∴A 2,2 ;综上,点A 的坐标是4,8 、22,4 、-22,4、2,2 .9.综合与探究如图,抛物线y =12x 2-32x -2与x 轴交于A ,B 两点,与y 轴交于点C .过点A 的直线与抛物线在第一象限交于点D 5,3 .(1)求A ,B ,C 三点的坐标,并直接写出直线AD 的函数表达式.(2)点P 是线段AB 上的一个动点,过点P 作x 轴的垂线,交抛物线于点E ,交直线AD 于点F .试探究是否存在一点P ,使线段EF 最大.若存在,请求出EF 的最大值;若不存在,请说明理由.(3)若点M 在抛物线上,点N 是直线AD 上一点,是否存在以点B ,D ,M ,N 为顶点的四边形是以BD 为边的平行四边形?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.【答案】(1)解:令y =0,则12x 2-32x -2=0,解得x =4或x =-1,∴A -1,0 ,B 4,0 ,令x =0,则y =-2,∴C 0,-2 ,设直线AD 的函数表达式为y =kx +b ,将A -1,0 ,D 5,3 的坐标代入得,-k +b =05k +b =3 ,解得:k =12b =12,∴y =12x +12;(2)解:存在,理由如下:设P a ,0 ,则E a ,12a 2-32a -2 ,F a ,12a +12,∵P 线段AB 上的一个动点,∴E 在x 轴下方,∴EF =12a +12-12a 2-32a -2 =-12a 2+2a +52=-12a -2 2+92,∵-12<0,∴当a =2时,EF 有最大值,最大值为92;(3)解:存在,点M 的坐标为0,-2 ,2+14,4+142 或2-14,4-142;设M m ,12m 2-32m -2 ,N n ,12n +12,∵B 4,0 ,D 5,3 ,①当平行四边形对角线为BN 和DM 时,则4+n 2=5+m 20+12n +122=3+12m 2-32m -22 ,解得:m =0n =1 或m =4n =5 (当m =4时,M 4,0 与B 点重合,不符合题意,舍去)∴点M 的坐标为0,-2 ;②当平行四边形对角线为BM 和DN 时,则4+m 2=5+n 20+12m 2-32m -22=3+12n +122 ,解得:m =2+14n =1+14 或m =2-14n =1-14 ,∴点M 的坐标为2+14,4+142 或2-14,4-142,综上所述,点M 的坐标为0,-2 ,2+14,4+142 或2-14,4-142 .10.如图,已知直线y =34x +3与x 轴交于点D ,与y 轴交于点C ,经过点C 的抛物线y =-14x 2+bx +c 与x 轴交于A -6,0 、B 两点,顶点为E .(1)求该抛物线的函数解析式;(2)连接DE ,求tan ∠CDE 的值;(3)设P 为抛物线上一动点,Q 为直线CD 上一动点,是否存在点P 与点Q ,使得以D 、E 、P 、Q 为顶点的四边形是平行四边形?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.【答案】(1)解:对于y =34x +3,由x =0,得y =3,∴C 0,3 ,∵抛物线过点A -6,0 、C 0,3 ,-14×-6 2-6b +c =0c =3 ,解得:b =-1c =3 ,∴该抛物线为y =-14x 2-x +3;(2)解:由y =-14x 2-x +3=-14x +2 2+4得顶点E -2,4 ,过点E 分别作EF ⊥x 轴于F ,作EG ⊥y 轴于G ,连接EC ,则EF =4,DF =2,EG =2,CG =1,∴DF EF =12=CG EG,∵∠DFE =∠CGE =90°,∴△DFE ∽△CGE∴∠DEF =∠CEG ,EC DE =CG DF=12.∵∠CEG +∠CEF =90°,∠DEF +∠CEF =90°,∴∠DEC =90°,∴tan ∠CDE =EC DE =12;(3)设Q m ,34m +3 ①若DE 为平行四边形的一边,且点P 在点Q 的上方,∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P m +2,34m +7 ,代入抛物线得:34m +7=-14m +2 2-m +2 +3,解得m 1=-7,m 2=-4(舍去)∴Q -7,-94;②若DE 为平行四边形的一边,且点P 在点Q 的下方,∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P m -2,34m -1 ,同理得Q -3+892,15+3898或Q -3-892,15-3898 ,③若DE 为平行四边形的对角线∵∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P -m -6,-34m +1 代入抛物线得:-34m +1=-14-m -6 2--m -6 +3,解得m 1=-1,m 2=-4(舍去)∴Q -1,94,综上所述,点Q 的坐标为-7,-94 Q -3+892,15+3898 或Q -3-892,15-3898或-1,94 .11.如图,已知抛物钱经过点A (-1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式;(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于点N .若点M 的横坐标为m ,请用含m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB 、NC ,当m 为何值时,△BNC 的面积最大,最大面积是多少?【答案】(1)解:根据题意,抛物钱与x 轴交于点A (-1,0),B (3,0)设抛物线解析式为y =a x +1 x -3将C (0,3)代入可得:-3a =3,解得a =-1即y =-x +1 x -3 =-x 2+2x +3;(2)设直线BC 的解析式为y =kx +b将B (3,0)、C (0,3)代入可得:3k +b =0b =3 ,解得k =-1b =3即y =-x +3,则M (m ,-m +3),N (m ,-m 2+2m +3),MN =-m 2+2m +3--m +3 =-m 2+3m ;(3)由题意可得:S △BNC =S △BNM +S △MNC =12×MN ×OB =32-m 2+3m =-32m 2+92m∵-32<0,开口向下,∴m =-92-2×32=32时,S △BNC 面积最大,∴最大面积为S △BNC =-32×32 2+92×32=278.12.如图,已知抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于C 点,顶点为D ,其中A 1,0 ,C 0,3 .直线y =mx +n 经过B ,C 两点.(1)求直线BC 和抛物线的解析式;(2)在抛物线对称轴上找一点M ,使MA +MC 最小,直接写出点M 的坐标;(3)连接BD ,CD ,求△BCD 的面积.【答案】解:(1)将点A 1,0 ,C 0,3 代入y =-x 2+bx +c ,得-1+b +c =0,c =3,解这个方程组,得b =-2,c =3.∴抛物线的解析式为y =-x 2-2x +3.当y =0时,0=-x 2-2x +3=-x +3 x -1 ,解得x 1=-3,x 2=1,∴点B 的坐标为-3,0 ,∵直线y =mx +n 经过B ,C 两点,∴-3m +n =0n =3,解得m =1n =3 ,∴直线BC 解析式为y =x +3;∴当点M是直线BC和对称轴的交点时,MA+MC取得最小值,∵抛物线y=-x2-2x+3=-x+12+4,∴点D的坐标为-1,4,对称轴为直线x=1,将x=1代入直线y=x+3,得:y=-1+3=2,∴点M的坐标为-1,2;(3)∵点D-1,4,点M-1,2,∴DM=4-2=2,∵点B-3,0,∴BO=3,∴S△BCD=S△DMB+S△DMC=12DM⋅BO=12×2×3=3.13.抛物线y=ax2+bx-4(a≠0)与x轴交于点A-2,0和B4,0,与y轴交于点C,连接BC.点P是线段BC下方抛物线上的一个动点(不与点B,C重合),过点P作y轴的平行线交BC于M,交x轴于N,设点P的横坐标为t.(1)求该拋物线的解析式;(2)用关于t的代数式表示线段PM,求PM的最大值及此时点M的坐标;(3)过点C作CH⊥PN于点H,S△BMN=9S△CHM,①求点P的坐标;②连接CP,在y轴上是否存在点Q,使得△CPQ为直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.2∴4a-2b-4=016a+4b-4=0,即2a-b=24a+b=1,∴a=12 b=-1∴抛物线的解析式为:y=12x2-x-4;(2)解:令x=0得y=-4,∴C0,-4设直线BC的解析式为y=kx+b,∴b=-44k+b=0∴k=1b=-4 ,∴直线BC的解析式为:y=x-4 ∵P的横坐标为t,PM∥y轴,∴P t,12t2-t-4,M t,t-4,∴PM=t-4-12t2-t-4=-12t2+2t=-12t-22+2,∵-12<0,∴当t=2时,PM有最大值2,此时M2,-2;(3)解:①∵B4,0、C0,-4,∴OB=OC=4,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∵PN∥y轴∴∠NMB=∠OCB=45°,∠MNB=∠COB=90°,∴∠NBM=∠NMB,∴BN=MN,∴S△BMN=12BN2,又∠CMH=∠NMB=45°,∠CHM=90°,∴△CHM是等腰直角三角形∴S△CHM=12CH2∵S△BMN=9S△CHM∴12BN 2=9×12CH 2∴BN =3CH ,∵BN +CH =OB =4,∴CH =1∴P 1,-92 ;②设Q 0,m ,则CQ 2=4+m 2,CP 2=1+-4+92 2=54,PQ 2=1+m +92 2,(Ⅰ)当∠CQP =90°时,54=4+m 2+1+m +92 2,解得:m =-4(舍去)或m =-92,∴Q 0,-92 ;(Ⅱ)当∠CPQ =90°时,54+1+m +92 2=4+m 2,解得:m =-132, ∴Q 0,-132(Ⅲ)当∠PCQ =90°时54+4+m 2=1+m +92 2解得:m =-4(舍去)综上所述,存在点Q 0,-132 或Q 0,-92使得△CPQ 为直角三角形.14.如图,抛物线y =ax 2+bx +c a >0 交x 轴于A 、B 两点(点A 在点B 左侧),交y 轴于点C .(1)若A(-1,0),B(3,0),C(0,-3),①求抛物线的解析式;②若点P为x轴上一点,点Q为抛物线上一点,△CPQ是以CQ为斜边的等腰直角三角形,求出点P的坐标;(2)若直线y=bx+t t>c与抛物线交于点M、N(点M在对称轴左侧),直线AM交y轴于点E,直线AN交y轴于点D.试说明点C是线段DE的中点.【答案】解:(1)①把A(-1,0),B(3,0),C(0,-3)分别代入y=ax2+bx+c,得a-b+c=09a+3b+c=0c=-3,解得a=1b=-2 c=-3 ,∴抛物线的解析式为y=x2-2x-3.②设P(m,0),过Q作QH⊥x轴于H,则∠PHQ=90°,∵△CPQ是以CQ为斜边的等腰直角三角形,∴PC=PQ,∠CPQ=90°,∴∠OPC+∠HPQ=90°,∠HQP+∠HPQ=90°,∴∠OPC=∠HQP,在△POC和△QHP中∠OPC=∠HQP∠COP=∠PHQCP=QP,∴△POC≌△QHP AAS,∴QH=OP=m,PH=OC=3.当点H在点P的右侧时,OH=m+3,∴Q(m+3,-m),把Q(m+3,-m)代入y=x2-2x-3,得-m=m+32-2m+3-3,解得m=0或-5,此时,P(0,0)或P(-5,0).当点H在点P的左侧时,H(m-3,0),∴Q (m -3,m ),代入y =x 2-2x -3,得m =m -3 2-2m -3 -3,整理,得m 2-9m +12=0,解得m =9±332,此时P 9+332,0 或9-332,0 综上,点P 的坐标为P (0,0)或P (-5,0)或P 9+332,0或9-332,0 (2)设直线AM 为y =kx +m ,直线AN 为y =k 1x +m 1,联立y =bx +t y =ax 2+bx +c ,得ax 2+c -t =0,∴x M +x N =0.联立y =kx +m y =ax 2+bx +c ,得ax 2+b -k x +c -m =0,∴x A x M =c -m a .同理,得x A x N =c -m 1a.∴x A x M +x A x N =x A x M +x N =0,∴c -m a +c -m 1a=0,∴c -m =m 1-c .∵D (0,m 1),E (0,m ),C (0,c ),∴CD =m 1-c ,CE =c -m ,∴CE =CD ,∴点C 为线段DE 的中点.15.如图,二次函数y =-x 2+c 的图象交x 轴于点A 、点B ,其中点B 的坐标为(2,0),点C 的坐标为(0,2),过点A 、C 的直线交二次函数的图象于点D .(1)求二次函数和直线AC的函数表达式;(2)连接DB,则△DAB的面积为;(3)在y轴上确定点Q,使得∠AQB=135°,点Q的坐标为;(4)点M是抛物线上一点,点N为平面上一点,是否存在这样的点N,使得以点A、点D、点M、点N为顶点的四边形是以AD为边的矩形?若存在,请你直接写出点N的坐标;若不存在,请说明理由.【答案】解:(1)∵二次函数y=-x2+c的图象过点B(2,0),∴0=-22+c,解得c=4∴二次函数解析式为y=-x2+4∴A点坐标为(-2,0)设直线AC的解析式为y=kx+b∴0=-2k+b2=b,解得:k=1b=2∴直线AC的解析式为y=x+2(2)∵直线AC:y=x+2与二次函数交于点A、D∴联立y=-x2+4y=x+2,解得x=-2y=0或x=1y=3∴D点坐标为:(1,3)∵AB=4∴S△DAB=12AB×y D =12×3×4=6(3)∵C(0,2),A点坐标为(-2,0)∴∠CAB=45°当Q在正半轴时,∵∠AQB=135°,QA=QB∴∠QAO=22.5°=12∠CAO∴AQ平分∠CAO过Q作PQ⊥AC于P设OQ =x ,则OQ =PQ =x ,CQ =2PQ =2x∴OC =OQ +CQ =2x +x =2解得x =22-2∴Q 点坐标为(0,22-2)当Q 在与轴负半轴时,根据对称性可得Q 点坐标为(0,2-22)∴Q 点坐标为(0,2-22)或(0,22-2)(4)当AD 是矩形边长时过A 作AM ⊥AD 交抛物线于M∵直线AC 的解析式为y =x +2∴设直线AM 的解析式为y =-x +b 1代入A 点(-2,0)得b 1=-2∴直线AM 的解析式为y =-x -2∴联立y =-x 2+4y =-x -2,解得x =-2y =0 或x =3y =-5 ∴M 点坐标为(3,-5)∵此时MN 平行且等于AD∴由A (-2,0)平移到D (1,3)与由M (3,-5)平移到N 的平移方式一致∴N 点坐标为(6,-2)同理::过D 作DM ⊥AD 交抛物线于M ,此时M (0,4),N (-3,1)综上所述,存在,N 点坐标为(6,-2)或(-3,1)16.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为D(2,1),抛物线的对称轴交直线BC 于点E.(1)求抛物线y =-x 2+bx +c 的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h (h >0),在平移过程中,该抛物线与直线BC 始终有交点,求h 的最大值;(3)M 是(1)中抛物线上一点,N 是直线BC 上一点.是否存在以点D ,E ,M ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)解:由D (2,1)可知,-b 2×-1 =24×-1 c -b 24×-1 =1,解得:b =4c =-3 ,∴y =-x 2+4x -3.(2)分别令y =-x 2+4x -3中,x =0,y =0得,B (3,0),C (0,-3);设BC 的表达式为:y =kx +n k ≠0 ,将B (3,0),C (0,-3)代入y =kx +n 得,0=3k +n -3=0+n 解得:k =1n =-3 ;∴BC 的表达式为:y =x -3;抛物线平移后的表达式为:y =-x 2+4x -3-h ,根据题意得,y =-x 2+4x -3-h y =x -3,即x 2-3x +h =0,∵该抛物线与直线BC 始终有交点,∴-3 2-4×1×h ≥0,∴h ≤94,∴h 的最大值为94.(3)存在,理由如下:将x =2代入y =x -3中得E 2,-1 ,①当DE 为平行四边形的一条边时,∵四边形DEMN 是平行四边形,∴DE ∥MN ,DE =MN ,∵DE ∥y 轴,∴MN ∥y 轴,∴设M m,-m2+4m-3,N m,m-3,当-m2+4m-3-m-3=2时,解得:m1=1,m2=2(舍去),∴N1,-2,当m-3--m2+4m-3=2时,解得:m1=3+172,m2=3-172,∴N3+172,17-3 2或N3-172,-17+32;②当DE为平行四边形的对角线时,设M p,-p2+4p-3,N q,q-3,∵D、E的中点坐标为:(2,0),∴M、N的中点坐标为:(2,0),∴p+q2=2-p2+4p-3+q-32=0 ,解得:p1=1 q1=3,p2=2q2=2(舍去),∴此时点N的坐标为(3,0);综上分析可知,点N的坐标为:1,-2或3+172,17-32或3-172,-17+32或(3,0).。
初中函数测试题及答案
初中函数测试题及答案一、选择题(每题3分,共30分)1. 函数y=2x+3中,当x=1时,y的值为()A. 5B. 4C. 3D. 22. 下列哪个函数的图像是一条直线?()A. y=x^2B. y=2x+1C. y=x/(x-1)D. y=√x3. 函数y=-2x+1的斜率是多少?()A. 2B. -2C. 1D. -14. 函数y=3x-5与y轴的交点坐标是()A. (0, -5)B. (0, 3)C. (5, 0)D. (-5, 0)5. 如果函数y=kx+b的图像经过点(2, 6)和(3, 9),那么k的值是()A. 3B. 2C. 1D. 06. 函数y=4x+5的图像与x轴的交点坐标是()A. (-5/4, 0)B. (5/4, 0)C. (0, 5)D. (0, -5)7. 函数y=x^2-4x+3的顶点坐标是()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)8. 函数y=1/x的图像在哪个象限?()A. 第一象限和第三象限B. 第二象限和第四象限C. 第一象限和第二象限D. 第三象限和第四象限9. 函数y=|x|的图像关于哪个轴对称?()A. x轴B. y轴C. 原点D. 都不是10. 下列哪个函数是奇函数?()A. y=x^2B. y=x^3C. y=x+1D. y=x-1二、填空题(每题4分,共20分)11. 函数y=2x-1的图像与x轴的交点坐标是______。
12. 函数y=-3x+4的斜率是______。
13. 函数y=x^2-6x+8的顶点坐标是______。
14. 函数y=1/x的图像在第一象限的斜率是______。
15. 函数y=|x-2|的图像与y轴的交点坐标是______。
三、解答题(每题10分,共50分)16. 已知函数y=5x-2,求当x=-1时,y的值。
17. 已知函数y=-4x+7,求该函数与y轴的交点坐标。
18. 已知函数y=2x^2-3x+1,求该函数的顶点坐标。
人教版九年级数学上册第22章二次函数 单元综合测试题(含解析)
2022-2023学年人教版九年级数学上册《第22章二次函数》单元综合测试题(附答案)一、选择题(本大题共12小题,共36分)1.下列函数中不属于二次函数的是()A.y=(x+1)(x﹣2)B.y=(x+1)2C.y=2(x+2)2﹣2x2D.y=1﹣x22.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+2 3.已知抛物线y=x2﹣x+1,与x轴的一个交点为(m,0),则代数式m2﹣m+2022的值为()A.2020B.2021C.2022D.20234.将抛物线y=2(x﹣4)2﹣1先向右平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣35.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=36.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)7.已知抛物线y=a(x﹣2)2+k(a>0,a,k为常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.9.抛物线y=﹣x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.x<﹣4或x>1B.x<﹣3或x>1C.﹣4<x<1D.﹣3<x<1 10.已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()A.ac<0B.b<0C.b2﹣4ac<0D.a+b+c<0 11.若二次函数y=ax2+bx+c(a<0)图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值612.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0二、填空题(本大题共6小题,共24分)13.顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为.14.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.把二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,则y=ax2+bx+c图象顶点坐标是.16.如图,一为运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+,此运动员将铅球推出m.17.是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是.18.如图,线段AB=8,点C是AB上一点,点D、E是线段AC的三等分点,分别以AD、DE、EC、CB为边作正方形,则AC=时,四个正方形的面积之和最小.三、解答题(本大题共7小题,共60分)19.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象写出A、B、C三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴.20.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出方程ax2+bx+c<0时x的取值范围;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.22.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,﹣m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是直线x=﹣)25.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案一、选择题(本大题共12小题,共36分)1.解:A、y=(x+1)(x﹣2)是二次函数,故此选项不合题意;B、y=(x+1)2是二次函数,故此选项不合题意;C、y=2(x+2)2﹣2x2=8x+8不是二次函数,故此选项符合题意;D、y=1﹣x2是二次函数,故此选项不合题意;故选:C.2.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.3.解:∵抛物线y=x2﹣x+1与x轴的一个交点为(m,0),∴m2﹣m+1=0,∴m2﹣m+2022=m2﹣m+1+2021=2021.故选:B.4.解:抛物线y=2(x﹣4)2﹣1的顶点坐标为(4,﹣1),∵向右平移4个单位长度,再向下平移2个单位长度,∴平移后的函数图象的顶点坐标为(8,﹣3),∴平移后所得抛物线解析式为y=2(x﹣8)2﹣3,故选:D.5.解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是直线x==1.故选:A.6.解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.7.解:抛物线y=a(x﹣2)2+k(a>0,a,k为常数)的对称轴为直线x=2,所以A(﹣3,y1)到直线x=2的距离为5,B(3,y2)到直线x=2的距离为1,C(4,y3)到直线的距离为2,所以y2<y3<y1.故选:C.8.解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选:B.9.解:函数的对称轴为:x=﹣1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(﹣3,0),故:y<0时,x<﹣3或x>1,故选:B.10.解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵﹣>0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选:B.11.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.12.解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选:B.二、填空题(本大题共6小题,共24分)13.解:设顶点式y=a(x+2)2﹣5,将点(1,﹣14)代入,得a(1+2)2﹣5=﹣14,解得a=﹣1,∴y=﹣(x+2)2﹣5,即y=﹣x2﹣4x﹣9.14.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.15.解:y=2(x﹣1)2的顶点坐标为(1,0),∵二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,∴二次函数y=ax2+bx+c的解析式为:y=2(x+1)2﹣3,∴二次函数y=ax2+bx+c的顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).16.解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.17.解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(﹣2,﹣2)点,故﹣2=4a,a=﹣,故y=﹣.18.解:设AC为x,四个正方形的面积和为y.则BC=8﹣x,AD=DE=EC=,∴y=3×()2+(8﹣x)2=x2﹣16x+64=,∴x=﹣=6时,四个正方形的面积之和最小.故答案为6.三、解答题(本大题共7小题,共60分)19.解:(1)根据二次函数的图象可知:A(﹣1,0),B(0,﹣3),C(4,5),把A(﹣1,0),B(0,﹣3),C(4,5)代入y=ax2+bx+c可得,解得.即二次函数的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=y=(x﹣1)2﹣4,∴此抛物线的顶点坐标(1,﹣4),和对称轴x=1.20.解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.21.解:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴y=(x﹣1)2﹣4令y=0得(x﹣1)2﹣4=0令y=0得(x﹣1)2﹣4=0解得x1=3,x2=﹣1∴A(﹣1,0),B(3,0)(2)∵△P AB与△MAB同底,且S△P AB=S△MAB,∴|y P|=×4=5,即y P=±5又∵点P在y=(x﹣1)2﹣4的图象上∴y P≥﹣4∴y P=5,则(x﹣1)2﹣4=5,解得x1=4,x2=﹣2∴存在合适的点P,坐标为(4,5)或(﹣2,5).22.解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.23.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.24.解:(1)设二次函数的解析式为y=a(x﹣2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=﹣.所以二次函数的解析式为y=﹣(x﹣2)2+1;(2)∵抛物线y=﹣(x﹣2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2;(3)∵点P(m,﹣m)(m≠0)为抛物线y=﹣(x﹣2)2+1上一点,∴﹣m=﹣(m﹣2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,﹣8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(﹣4,﹣8).25.解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).。
初中函数专题试题及答案
初中函数专题试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 - 2x \)答案:B2. 函数 \( y = 3x - 5 \) 的图象与x轴的交点坐标是:A. \( (0, -5) \)B. \( (5, 0) \)C. \( (-5, 0) \)D. \( (0, 5) \)答案:C3. 如果函数 \( y = 2x + 1 \) 在 \( x = 2 \) 时的值为5,那么\( x = 1 \) 时的值是:A. 3B. 4C. 2D. 1答案:A4. 函数 \( y = -\frac{1}{2}x + 3 \) 的斜率是:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{3}{2} \)D. \( -3 \)答案:B5. 函数 \( y = 4x^2 \) 的顶点坐标是:A. \( (0, 0) \)B. \( (0, 4) \)C. \( (2, 0) \)D. \( (0, -4) \)答案:A6. 函数 \( y = x^2 - 6x + 9 \) 可以写成完全平方的形式:A. \( (x - 3)^2 \)B. \( (x + 3)^2 \)C. \( (x - 3)^2 + 3 \)D. \( (x + 3)^2 - 3 \)答案:A7. 函数 \( y = 2x^2 - 8x + 7 \) 的最小值是:A. 1B. 3C. 7D. 无法确定答案:A8. 函数 \( y = \frac{1}{x} \) 的图象是:A. 一条直线B. 两条直线C. 一个双曲线D. 一个抛物线答案:C9. 函数 \( y = 3x^2 + 2x - 5 \) 的对称轴是:A. \( x = -\frac{2}{3} \)B. \( x = \frac{2}{3} \)C. \( x = -1 \)D. \( x = 1 \)答案:B10. 函数 \( y = 2x + 3 \) 和 \( y = -x + 1 \) 的交点坐标是:A. \( (-2, -1) \)B. \( (2, 5) \)C. \( (-1, 1) \)D. \( (1, 3) \)答案:C二、填空题(每题4分,共20分)11. 函数 \( y = 2x + 1 \) 在 \( x = -1 \) 时的值为 _______。
初中数学二次函数综合复习基础题(含答案)
初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。
专题二次函数性质综合-学易金卷:2023年中考数学一模试题分项汇编(山东专用)
专题13 二次函数性质综合一.选择题(共14小题)(2023•新泰市一模)1. 抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A. ()2313y x =++ B. ()2353y x =-+C. ()2351y x =-- D. ()2311y x =+-(2023•泰山区校级一模)2. 抛物线y =x 2+1经过平移得到抛物线y =(x ﹣6)2+4,平移过程正确的是( )A. 先向左平移6个单位,再向上平移3个单位B. 先向左平移6个单位,再向下平移3个单位C. 先向右平移6个单位,再向上平移3个单位D. 先向右平移6个单位,再向下平移3个单位(2023•岱岳区校级一模)3. 函数y =ax 2+bx +a +b (a ≠0)的图象可能是()A. B.C. D.(2023•宁阳县校级一模)4. 在二次函数2y ax bx c =++,x 与y 的部分对应值如下表:x …2-023…y…8003…则下列说法:①图象经过原点;②图象开口向下;③当1x >时,y 随x 的增大而增大;④图象经过点()13-,;⑤方程20ax bx c ++=有两个不相等的实数根.其中正确的是( )A. ①②③④B. ①②③⑤C. ①②④⑤D. ①③④⑤5. 如图,一条抛物线与x 轴相交于M 、N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动.若点A 、B 的坐标分别为(﹣2,3)、(1,3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A. ﹣1B. ﹣3C. ﹣5D. ﹣7(2023•新泰市一模)6. 二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+与反比例函数c y x=在同一平面直角坐标系中的大致图象为【 】A. B. C.D.(2023•惠民县一模)7. 二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =-的图象和反比例函数a b c y x-+=的图象在同一平面直角坐标系中大致为( )A. B. C.D.(2023•东明县一模)8. 在同一平面直角坐标系中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是( )A. B. C.D.(2023•东平县校级一模)9. 如图,抛物线y 1=ax 2+bx +c (a ≠0)的顶点坐标A (﹣1,3),与x 轴的一个交点B (﹣4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点,下列结论:①2a ﹣b =0;②抛物线与x 轴的另一个交点坐标是(2,0);③7a +c >0;④方程ax 2+bx +c ﹣2=0有两个不相等的实数根;⑤当﹣4<x <﹣1时,则y 2<y 1.其中正确结论的个数为( )A. 2B. 3C. 4D. 5(2023•惠民县一模)10. 二次函数()20y ax bx c a =++≠的部分图象如图,图象过点()10-,,对称轴为直线2x =,下列结论:①40a b +=;②93a c b +>;③当0x <时,y 的值随x 值的增大而增大;④b c >;⑤24b ac >.其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个(2023•郓城县一模)11. 小明从图所示的二次函数y =ax 2+bx +c 的图象中,观察得出了下面五条信息:①c <0;②abc >0;③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0,你认为其中正确信息的个数有( )A. 2个B. 3个C. 4个D. 5个(2023•东平县一模)12. 如图,二次函数2y ax bx c =++的图象与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A. 0a > B. 当=1x -时,y 的值随x 值的增大而增大C. 点B 的坐标为()4,0 D. 420a b c ++>(2023•利津县一模)13. 如图,已知抛物线y =ax 2+bx +c (a ≠0)交x 轴于点A (﹣1,0)和x 轴正半轴于点B ,且BO =3AO 交y 轴正半轴于点 C .有下列结论:①abc >0;②2a +b =0;③x =1时y 有最大值﹣4a ;④3a +c =0,其中,正确结论的个数是( )A. 1B. 2C. 3D. 4(2023•滕州市一模)14. 如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为直线=1x -,①240b ac ->②40a c +<③当31x -≤≤时,0y ≥④若15,2B y ⎛⎫- ⎪⎝⎭,21,2C y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y >,以上结论中正确的有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共6小题)(2023•新泰市一模)15. 二次函数()20y ax bx c a =++≠的图象的一部分如图所示.已知图象经过点()10-,,其对称轴为直线1x =.下列结论:①0abc >;②420a b c ++<;③若抛物线经过点()3n -,,则关于x 的一元二次方程()200ax bx c n a ++-=≠,的两根分别为3-,5;④5<0a c +,上述结论中正确的是_________(只填序号)(2023•菏泽一模)16. 如图,若二次函数()20y ax bx c a =++≠的图象的对称轴为直线1x =,与y 轴交于点C ,与x 轴交于点A 、点()1,0B -,则下列结论:①0abc >;②二次函数的最大值为a b c ++;③<0a b c -+;④240b ac -<;⑤当0y >时,13x -<<.⑥30a c +=;其中正确的结论有________.(2023•泰山区校级一模)17. 二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表x﹣1013y ﹣1353下列结论:①ac <0;②当x >1时,y 的值随x 值的增大而减小.③3是方程ax 2+(b ﹣1)x +c =0的一个根;④当﹣1<x <3时,ax 2+(b ﹣1)x +c >0.其中正确的结论是______.(2023•岱岳区校级一模)18. 如图,抛物线2123y a x +-=()与221312y x =-+()交于点()13A ,,过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②23a =;③当0x =时,216y y -=;④10AB AC +=;其中正确结论是______.(2023•泰山区校级一模)19. 已知抛物线y =ax 2+bx +c 如图所示,它与x 轴的两交点的横坐标分别是-1,5.对于下列结论:①abc >0;②方程ax 2+bx +c =0的根是x 1=-1,x 2=5;③9a -3b +c <0;④当x <2时,y 随着x 的增大而增大.其中正确的结论是_________(填写结论的序号).(2023•泰山区校级一模)20. 已知二次函数()20y ax bx c a =++≠的图象如图所示,有5个结论:①0abc >;②b a c >+;③930a b c ++>; ④3c a <-; ⑤()a b m am b +≥+,其中正确的有是_____.专题13 二次函数性质综合一.选择题(共14小题)(2023•新泰市一模)【1题答案】【答案】C【解析】【分析】将题意中的平移方式转换成函数图像的平移,再求解析式即可.【详解】解:若将x 轴向上平移2个单位长度,相当于将函数图像向下平移2个单位长度,将y 轴向左平移3个单位长度,相当于将函数图像向右平移3个单位长度,则平移以后的函数解析式为:23(23)12y x =--+-化简得:23(5)1y x =--,故选:C .【点睛】本题主要考查二次函数图像的平移,将题意中的平移方式转换为函数图像的平移是解决本题的关键.(2023•泰山区校级一模)【2题答案】【答案】C【解析】【分析】根据平移的规律,求解即可,平移的规律为“上加下减,左加右减”.【详解】解:抛物线y =x 2+1向右平移6个单位,再向上平移3个单位,可得抛物线2(6)4y x =-+,故选:C .【点睛】此题考查了二次函数的平移,解题的关键是掌握二次函数图像的平移规律.(2023•岱岳区校级一模)【3题答案】【答案】C【解析】【分析】根据各选项中函数的图像可以得到a 、b 、c 的关系,从而可以判断各选项中那个函数图像可能是正确的.【详解】解: A:由图像可知,开口向下,则a<0,又因为顶点在y 轴左侧,则b<0,则a+b <0,而图像与y 轴交点为(0,a+b)在y 轴正半轴,与a+b <0矛盾故此选项错误;B:由图像可知,开口向下,则a<0,又因为顶点在y 轴左侧,则b<0,则a+b <0,而图像与y 轴交点为(0,1)在y 轴正半轴,可知a+b =1与a+b <0矛盾,故此选项错误;C :由图像可知开口向上,则a>0,顶点在y 轴右侧,则b<0,a+b=1,故此选项正确;D:由图像可知开口向上则a>0,顶点在y 轴右侧,则b<0,与y 轴交于正半轴则a+b >0,而图像与x 轴的交点为(1,0),则a+b+a+b =0,即a+b =0与a+b >0矛盾,故此选项错误;故选C.【点睛】本题考查了二次函数的图像和性质,中等难度,逐项分析是解题关键.(2023•宁阳县校级一模)【4题答案】【答案】D【解析】【分析】结合图表可以得出当0x =或2时,0y =;3x =时,3y =,根据待定系数法可求出二次函数解析式,从而根据二次函数的性质判断.【详解】解:∵由图表可以得出当0x =或2时,0y =;3x =时,3y =,∴0420933c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:120a b c =⎧⎪=-⎨⎪=⎩,∴22y x x =-,∵0c ,∴图象经过原点,故①正确;∵10a =>,∴抛物线开口向上,故②错误;∵抛物线的对称轴是212x -=-=,∴1x >时,y 随x 的增大而增大,故③正确;把=1x -代入得,3y =,∴图象经过点()13-,,故④正确;∵抛物线2y ax bx c =++与x 轴有两个交点()00,、()20,,∴20ax bx c ++=有两个不相等的实数根,故⑤正确;综上,正确的有①③④⑤.故选:D .【点睛】此题主要考查了待定系数法求二次函数解析式,熟知二次函数的性质是解题的关键.【5题答案】【答案】C【解析】【分析】根据顶点P 在线段AB 上移动,又知点A 、B 的坐标分别为(﹣2,3)、(1,3),分别求出对称轴过点A 和B 时的情况,即可判断出M 点横坐标的最小值.【详解】解:根据题意知,点N 的横坐标的最大值为4,此时对称轴过B 点,点N 的横坐标最大,此时的M 点坐标为(﹣2,0),当对称轴过A 点时,点M 的横坐标最小,此时的N 点坐标为(1,0),M 点的坐标为(﹣5,0),故点M 的横坐标的最小值为﹣5,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.(2023•新泰市一模)【6题答案】【解析】【详解】∵二次函数图象开口向上,∴a >0,∵对称轴为直线b x 2a =-,∴b <0.∵与y 轴的正半轴相交,∴c >0.∴y ax b =+的图象经过第一、三、四象限;反比例函数c y x=图象在第一、三象限,只有B 选项图象符合.故选B .(2023•惠民县一模)【7题答案】【答案】A【解析】【分析】通过二次函数图象分析可得a<0,0b <,0c >,0y a b c =-+>,再利用一次函数和反比例函数的性质对图象逐一进行判断即可得到答案.【详解】解:由二次函数图象可知,图象开口向下,对称轴在y 轴左侧,与y 轴交点在正半轴,<0a ∴,0b <,0c >,当=1x -时,0y a b c =-+>,∴一次函数y ax b =-的图象经过第一、二、四象限,反比例函数a b c y x -+=的图象位于一、三象限,故选A .【点睛】本题考查了二次函数的图像与系数的关系,反比例函数的图像和性质,一次函数的图像和性质,熟练掌握相关函数的性质是解题关键.(2023•东明县一模)【8题答案】【解析】【分析】根据二次函数2y ax =与一次函数y bx c =+的图象可知0a >,0b >,0c <,从而判断出二次函数2y ax bx c =++的图象.【详解】解:∵二次函数2y ax =的图象开口向上,∴0a >,∵次函数y bx c =+的图象经过一、三、四象限,∴0b >,0c <,对于二次函数2y ax bx c =++的图象,∵0a >,开口向上,排除A 、B 选项;∵0a >,0b >,∴对称轴02b x a=-<,∴D 选项符合题意;故选:D .【点睛】本题考查了一次函数的图象以及二次函数的图象,根据二次函数的图象和一次函数图象经过的象限,找出0a >,0b >,0c <是解题的关键.(2023•东平县校级一模)【9题答案】【答案】D【解析】【分析】①利用对称轴方程进行解答;②利用抛物线的对称性质求解便可;③把(2,0)代入二次函数解析式,并把b 换成a 的对称代数式便可;④根据抛物线抛物线y =ax 2+bx +c (a ≠0)与直线y =2的交点情况解答;⑤根据两函数图象的位置关系解答.【详解】解:①由抛物线对称轴知,x =2b a -=-1,∴2a ﹣b =0,则此小题结论正确;②设抛物线与x 轴的另一个交点坐标是(m ,0),根据题意得,412m -+=-,∴m =2,则此小题结论正确;③把(2,0)代入y =ax 2+bx +c 得,4a +2b +c =0,∵x =2b a-=-1,∴b =2a ,∴4a +2×2a +c =0,∴8a +c =0,∴7a +c =﹣a >0,则此小题结论正确;④由函数图象可知,直线y =2与抛物线y =ax 2+bx +c 有两个交点,∴ax 2+bx +c =2有两个不相等的实数根,即ax 2+bx +c ﹣2=0有两个不相等的实数根,则此小题结论正确;⑤由函数图象可知,当﹣4<x <﹣1时,抛物线在直线上方,于是y 2<y 1.则此小题结论正确.故选:D .【点睛】本题主要考查了二次函数的图象与系数的关系.对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由∆决定:∆=b 2﹣4ac >0时,抛物线与x 轴有2个交点;∆=b 2﹣4ac =0时,抛物线与x 轴有1个交点;∆=b 2﹣4ac <0时,抛物线与x 轴没有交点.(2023•惠民县一模)【10题答案】【答案】C【解析】【分析】根据图象信息首先确定出22b a-=,240b ac ->,即可变形判断①⑤;结合增减性以及3x =-的函数值,即可判断②;根据增减性直接判断③,根据=1x -时的函数值,以及22b a-=,用含a 的式子表示出b 和c ,即可判断④,从而得出结论即可.【详解】解:由图象信息可知,a<0,0b >,0c >,22b a-=,240b ac ->,∴4b a =-,40a b +=,24b ac >,故①⑤正确;∵抛物线过点()10-,,对称轴为直线2x =,∴抛物线与x 轴的另一个交点坐标为()50,,∴当1x <-或5x >时,0y <,∵当3x =-时,93y a b c =-+,∴930a b c -+<,93a c b +<,故②错误;由图象知,当0x <时,y 的值随x 值的增大而增大,故③正确;当=1x -时,0y a b c =-+=,∴5c b a a =-=-,∵4b a =-,a<0,∴45a a -<-,即b c <,故④错误,∴正确的结论有:①③⑤,有3个.故选:C【点睛】本题考查了二次函数图象与性质、抛物线与x 轴的交点问题,二次函数图象与系数的关系:二次函数()20y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小,当0a >时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即0ab >),对称轴在y 轴左侧;当a 与b 异号时(即0ab <),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于()0c ,;抛物线与x 轴交点个数由∆决定,240b ac ∆=->时,抛物线与x 轴有2个交点;240b ac ∆=-=时,抛物线与x 轴有1个交点;24<0b ac ∆=-时,抛物线与x 轴没有交点.(2023•郓城县一模)【11题答案】【答案】C【分析】观察图象易得a>0,123ba-=>0,所以b<0,2a-3b>0,因此abc>0,由此可以判定①②是正确的,而④是错误的;当x=-1,y=a-b+c,由点(-1,a-b+c)在第二象限可以判定a-b+c>0,③是正确的;当x=2时,y=4a+2b+c=2×(-3b)+2b+c=c-4b,由点(2,c-4b)在第一象限可以判定c-4b>0⑤是正确的.【详解】解:∵抛物线开口方向向上,∴a>0,∵与y轴交点在x轴的下方,∴c<0,∵123ba-=>0,∵a>0,∴b<0,∴2a﹣3b>0,∴abc>0,∴①②是正确的,∵对称轴x123ba=-=,∴3b=﹣2a,∴2a+3b=0,∴④是错误的;当x=﹣1,y=a﹣b+c,而点(﹣1,a﹣b+c)在第二象限,∴a﹣b+c>0∴③是正确的;当x=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴c﹣4b>0∴⑤是正确的.【点睛】本题考查了二次函数的图象和性质.能从函数图象中正确获取信息是解题的关键.(2023•东平县一模)【12题答案】【答案】D【解析】【分析】根据该抛物线的开口方向,即可判断A ;根据点A 的坐标,即可判断B ;根据点A 的坐标和对称轴,可求出点B 的坐标,即可判断C ;根据点B 的坐标,即可判断D .【详解】解:A 、∵该抛物线开口向下,∴a<0,故A 不正确,不符合题意;B 、∵()1,0A -,∴当=1x -时,0y =,故B 不正确,不符合题意;C 、∵()1,0A -,该抛物线对称轴是直线1x =,∴()3,0B ,故C 不正确,不符合题意;D 、∵该抛物线对称轴是直线1x =,∴当1x >时,y 的值随x 值的增大而减小,∵()3,0B ,该抛物线开口向下,∴当=2x 时,0y >,∴420a b c ++>,故D 正确,符合题意;故选:D .【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握二次函数的增减性,对称性,根据图象确定各项系数的符号以及式子的正负.(2023•利津县一模)【13题答案】【答案】C【解析】【分析】根据抛物线开口方向得到a <0;对称轴在y 轴的右侧,a 与b 异号,得到b >0,又抛物线与y 轴的交点在x 轴上方,则c >0,于是可判断①错误;根据OB =3OA =3,确定点B 的坐标,可得抛物线的对称轴为直线x =1,于是可判断②正确;根据A (-1,0)和点B (3,0)确定抛物线的解析式,并化为顶点式,于是可判断③正确;根据a -b +c =0和b =-a 可判断④正确.【详解】解:①∵抛物线开口向下,∴a <0,又∵对称轴在y 轴的右侧,∴x =-2b a>0,∴b >0,又∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误;②∵A (-1,0),∴OA =1,∵OB =3OA ,∴OB =3,∴B (3,0),∴对称轴为:直线x =132-+=1,即-2b a=1,∴2a +b =0,所以②正确;③∵抛物线y =ax 2+bx +c (a ≠0)交x 轴于点A (-1,0)和点B (3,0),∴y =a (x +1)(x -3)=a (x -1)2-4a ,∵a <0,∴x =1时,y 有最大值-4a ,所以③正确;④当x =-1时,a -b +c =0,由②知:b =-2a ,∴a +2a +c =0,∴3a +c =0,所以④正确.正确结论有②③④,共有3个.故选:C .【点睛】本题考查了二次函数的顶点式,与x 轴的交点及二次函数y =ax 2+bx +c (a ≠0)的图象与系数的关系:当a <0,抛物线开口向下;抛物线的对称轴为直线x=-2b a;抛物线与y 轴的交点坐标为(0,c );解题的关键是熟练掌握二次函数的图象和性质,属于中考常考题型.(2023•滕州市一模)【14题答案】【答案】C【解析】【分析】根据二次函数的图象与性质解答.【详解】解:由题意可知二次函数图象与x 轴有两个交点,即方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确;由函数图象对称性可得函数图象经过()3,0-和()1,0两点,930a b c ∴-+=①,0a b c ++=②,3+⨯①②并化简得:30a c +=,430a c a a c a ∴+=++=<,故②正确;由函数图象对称性可得函数图象经过()3,0-和()1,0两点,∴由函数整个图象可得当31x -≤≤时,0y ≥,故③正确;设32x =-时,函数值为3y ,则由函数图象的对称性可得:23y y =,53122-<-<- ,∴由函数的增减性可得:13y y <,12y y ∴<,故④错误;故正确的有①②③,共3个,故选:C .【点睛】本题考查二次函数图象与系数的关系,解题的关键是灵活应用图中信息解决问题.二.填空题(共6小题)(2023•新泰市一模)【15题答案】【答案】③④##④③【解析】【分析】根据二次函数图象的性质,得0a <,2b a =-,根据二次函数的对称性,得42a b c c ++=、点()3n -,关于()20y ax bx c a =++≠对称轴1x =的对称点为()5n ,;根据二次函数()20y ax bx c a =++≠的图象和x 轴的交点,得30a c +=,通过计算即可得到答案.【详解】解:∵二次函数()20y ax bx c a =++≠的图象开口向下,∴0a <,∵二次函数()20y ax bx c a =++≠的对称轴为直线1x =,∴12b a-=,即2b a =-,∴0b >,∵二次函数()20y ax bx c a =++≠的图象和y 轴的交点,在y 轴的正半轴,∴0c >,∴0abc <,即①不正确;∵二次函数()20y ax bx c a =++≠的对称轴为直线1x =,∴0x =和2x =对应的函数值相同,即42a b c c ++=,∴420a b c ++>,即②不正确;点()3n -,关于()20y ax bx c a =++≠对称轴1x =的对称点为()5n ,,∵抛物线经过点()3n -,,∴关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3-,5,即③正确;∵二次函数()20y ax bx c a =++≠的图象和x 轴的交点为:()10-,,且2b a =-,∴当=1x -时,2230y ax ax c a c =-+=+=,∵0a <,∴53220a c a c a a +=++=<,即④正确;综上,正确的有③④;故答案为:③④.【点睛】本题考查了二次函数、一元二次方程的知识;解题的关键是熟练掌握二次函数图象的性质,从而完成求解.(2023•菏泽一模)【16题答案】【答案】②⑤⑥【解析】【分析】根据对称轴在y 轴的右侧,与y 轴相交在正半轴,可判定①;由顶点坐标即可判断②;由()1,0B -即可判断③;由抛物线与x 轴有两个交点即可判断④;有抛物线与x 轴交点的横坐标即可判断⑤;由对称轴方程得到2b a =-,由1x =时函数值为0即可判断⑥.【详解】解: 二次函数对称轴在y 轴的右侧,与y 轴相交在正半轴,0,0,0ab c abc ∴<><,故①不正确;二次函数()20y ax bx c a =++≠的图象的对称轴为直线1x =,∴顶点坐标为(1,)a b c ++,且开口向下,二次函数的最大值为a b c ++,故②正确;抛物线过()1,0B -,1x ∴=-时,0y =,即0a b c -+=,故③不正确;抛物线与x 轴有两个交点,240b ac ∴->,故④正确;对称轴为直线1x =,()1,0B -,(3,0)A ∴,有图象可知,13x -<<时,0y >,故⑤正确;12b x a=-= ,即2b a =-,而=1x -时,0y =,即0a b c -+=,20a a c ∴++=,30a c ∴+=,故⑥正确,故答案为:②⑤⑥.【点睛】本题考查了二次函数的图象与系数的关系、二次函数图象与x 轴的交点等知识点,熟练掌握二次函数的性质是解题的关键.(2023•泰山区校级一模)【17题答案】【答案】①③④【解析】【详解】∵x =﹣1时y =﹣1,x =0时,y =3,x =1时,y =5,∴135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得133a b c =-⎧⎪=⎨⎪=⎩,∴y =﹣x 2+3x +3,∴ac =﹣1×3=﹣3<0,故①正确;对称轴为直线332(1)2x =-=⨯-,∴当x >32时,y 的值随x 值的增大而减小,故②错误;方程为﹣x 2+2x +3=0,整理得,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴3是方程ax 2+(b ﹣1)x +c =0的一个根,正确,故③正确;﹣1<x <3时,ax 2+(b ﹣1)x +c >0正确,故④正确;综上所述,结论正确的是①③④.故答案为:①③④(2023•岱岳区校级一模)【18题答案】【答案】①②④【解析】【分析】根据221312y x =-+()的图象在x 轴上方即可得出2y 的取值范围;把()13A ,代入抛物线2123y a x +-=()即可得出a 的值;由抛物线与y 轴的交点求出21y y -的值;根据两函数的解析式求出A 、B 、C 的坐标,计算出6AB =与4AC =的长,即可得到+AB AC 的值.【详解】∵21(3)02x -≥,∴221(3)102y x =-+>,∴无论x 取何值,2y 的值总是正数,①正确;∵抛物线21(2)3y a x =+-与221(3)12y x =-+交于点()13A ,,∴393a =-,∴23a =,②正确;当0x =时,113y =-,2112y =,∴当0x =时,21356y y -=,③错误;当3y =时,212(2)333y x =+-=,解得5x =-或1,当3y =时,221(3)132y x =-+=,解得1x =或5,∴6AB =,4AC =即10AB AC +=,④正确;综上正确的有①②④,故答案为:①②④.【点睛】本题考查的是二次函数的图象和性质,解题的关键是根据题意利用数形结合进行解答,同时要熟悉二次函数图象上点的坐标特征.(2023•泰山区校级一模)【19题答案】【答案】②③④【解析】【分析】由抛物线开口方向,对称轴,以及与y 轴的交点即可判断①;根据抛物线与x 轴的交点即可判断②;根据图形即可判断③;求得对称轴,根据二次函数的性质即可判断④.【详解】解:∵抛物线开口向下、顶点在y 轴右侧、抛物线与y 轴交于正半轴,∴a <0,b >0,c >0,∴abc <0,故①错误;∵抛物线y =ax 2+bx +c 与x 轴的两交点的横坐标分别是-1,5.∴方程ax 2+bx +c =0的根是x 1=-1,x 2=5,故②正确;∵当x =-3时,y <0,∴9a -3b +c <0,故③正确;∵抛物线y =ax 2+bx +c 与x 轴的两交点的横坐标分别是-1,5,∴抛物线的对称轴为直线1522x -+==,∵抛物线开口向下,∴当x <2时,y 随着x 的增大而增大,故④正确;故答案为:②③④.【点睛】此题考查了二次函数图象与系数的关系.二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.(2023•泰山区校级一模)【20题答案】【答案】②④⑤【解析】【分析】根据抛物线的开口方向、=1x -、3x =时的函数值小于0、对称轴12b x a=-=及函数的最大值逐一判断可得.【详解】∵抛物线的开口向下,∴a<0,∵02b a->,∴0b >,∵抛物线与y 轴的交点在x 轴的上方,∴0c >,∴<0abc ,∴结论①错误;∵当=1x -时,0y a b c =-+<,即b a c >+,∴结论②正确;∵当=1x -和3x =时,函数值相等,均小于0,∴930y a b c =++<,∴结论③错误;∵12b x a=-=,∴2b a =-,∵由=1x -时,0y a b c =-+<得20a a c ++<,即3c a <-,∴结论④正确;∴由图象知当1x =时函数取得最大值,∴2am bm c a b c ++≤++,即()a b m am b +≥+,∴结论⑤正确.故填:②④⑤.【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的a>时,抛物关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当0线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决ab>),对称轴在y轴左侧;当a与b异号时定对称轴的位置;当a与b同号时(即0ab<),对称轴在y轴右侧,(简称:左同右异)③常数项c决定抛物线与y轴(即00,c.交点,抛物线与y轴交于()。
2022年九年级中考复习数学函数综合 试题
中考试题之函数综合题1. 如图,已知点A (tan α,0),B (tan β,0)在x 轴正半轴上,点A 在点B 的左边,α、β 是以线段AB 为 斜边、顶点C 在x 轴上方的Rt △ABC 的两个锐角.(1)若二次函数y =-x 2-25kx +(2+2k -k 2)的图象经过A 、B 两点,求它的解析式;(2)点C 在(1)中求出的二次函数的图象上吗?请说明理由.2.已知抛物线2y x kx b =++经过点(23)(10)P Q --,,,. (1)求抛物线的解析式.(2)设抛物线顶点为N ,与y 轴交点为A .求sin AON ∠的值. (3)设抛物线与x 轴的另一个交点为M ,求四边形OANM 的面积.yxN3.如图9,抛物线y=ax 2+8ax+12a 与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ ACB 为直角,且恰使△OCA ∽△OBC. (1) 求线段OC 的长.(2) 求该抛物线的函数关系式.(3) 在x 轴上是否存在点P ,使△BCP 为等腰三角形? 若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.4.已知函数y=x2和y=kx+l(k≠O). (1)若这两个函数的图象都经过点(1,a),求a 和k 的值;(2)当k 取何值时,这两个函数的图象总有公共点?5.已知如图,矩形OABC 的长OA=3,宽OC=1,将△AOC 沿AC 翻折得△APC 。
(1)填空:∠PCB=____度,P 点坐标为( , );(2)若P ,A 两点在抛物线y=-34 x 2+bx+c 上,求b ,c 的值,并说明点C 在此抛物线上;(3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.6.如图,二资助函数c bx x y ++=2的图象经过点M (1,—2)、N (—1,6). (1)求二次函数c bx x y ++=2的关系式.(2)把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A 、B 的坐标分别为(1,0)、(4,0),BC = 5。
知识点详解人教版八年级数学下册第十九章-一次函数综合训练试题(含详细解析)
人教版八年级数学下册第十九章-一次函数综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关系式中,y 是x 的一次函数的是( )A .2y xB .21y x =-+C .2y x =D .221y x =+2、在某火车站托运物品时,不超过3kg 的物品需付1.5元,以后每增加1kg (不足1kg 按1kg 计)需增加托运费0.5元,则下列图象能表示出托运费y 与物品重量x 之间的函数关系式的是( )A .B .C .D .3、在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是( )A.11xy=⎧⎨=⎩B.12xy=⎧⎨=⎩C.21xy=⎧⎨=⎩D.22xy==⎧⎨⎩4、已知两个一次函数y1=ax+b与y2=bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()A.B.C.D.5、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣126、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b ﹣1<0的解集为()A.x<0 B.x>0 C.x>1 D.x<17、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是().A.-2 B.2C.4 D.﹣48、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0B.k<2 C.k>2 D.k≠29、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-310、已知一次函数y =kx +1的图象经过点A (1,3)和B (a ,-1),则a 的值为( )A .1B .2C .1-D .2-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数32y x =--在y 轴上的截距为__2、如果用总长为60m 的篱笆围成一个长方形场地,设长方形的面积为S (m 2),周长为p (m ),一边长为a (m ),那么在S ,p ,a 中是变量的是______.3、函数y =_____.4、点()11,y -、()22,y 是直线y =-2x +b 上的两点,则1y _____________2y (填“>”或“=”或“<”).5、直线y =2x-3与x 轴的交点坐标是______,与y 轴的交点坐标是______.三、解答题(5小题,每小题10分,共计50分)1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y 1(km )与行驶的时间x (h )之间的函数关系,如图1中线段AB 所示.慢车离甲地的路程y 2(km )与行驶的时间x (h )之间的函数关系,如图1中线段AC 所示.根据图象解答下列问题.(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).①当两车之间距离S=300km时,求x的值;②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).2、一次函数的图像过A(1,2),A(3,−2)两点.(1)求函数的关系式;(2)画出该函数的图像;(3)由图像观察:当x时,y>0;当x时,y<0;当0≤A≤3时,y的取值范围是.3、已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点A、B的坐标.(2)画出函数的图象.(3)求△AOB的面积.4、利用函数图象解方程组{3A +2A =−12A −A =−3. 5、已知直线A =A +2和直线A =−A +4相交于点A ,且分别与x 轴相交于点B 和点C .(1)求点A 的坐标;(2)求△AAA 的面积.---------参考答案-----------一、单选题1、B【解析】【分析】根据一次函数的定义:形如:(0)y kx b k =+≠的式子,据此判断即可.解:A 、2y x ,自变量次数为二次,不属于一次函数,不符合题意;B 、21y x =-+,属于一次函数,符合题意;C 、2y x=,等号右边为分式,不属于一次函数,不符合题意; D 、221y x =+,自变量次数为二次,不属于一次函数,不符合题意;故选:B .【点睛】本题考查了一次函数的识别,熟练掌握一次函数的定义是解本题的关键.2、D【解析】【分析】根据题意分析出 托运费y 与物品重量x 之间的函数关系,画出图像即可.【详解】解:由题意可得,当0<3x ≤时, 1.5y =,∵物品重量每增加1kg (不足1kg 按1kg 计)需增加托运费0.5元,∴托运费y 与物品重量x 之间的函数图像为:【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y 与物品重量x 之间的函数关系.3、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y ⎧⎨⎩==. 故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.4、B【解析】【分析】先由一次函数y 1=ax +b 图象得到字母系数的符号,再与一次函数y 2=bx +a 的图象相比较看是否一致.【详解】解:A 、∵一次函数y 1=ax +b 的图象经过一二四象限,∴a >0,b >0;由一次函数y 2=bx +a 图象可知,b <0,a >0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;C、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a>0,b>0,两结论矛盾,故错误;D、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a<0,b=0,两结论相矛盾,故错误.故选:B.【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+经过一、三、四象限;③当=+经过一、二、三象限;②当k>0,b<0时,函数y kx bk<0,b>0时,函数y kx b=+经过二、三、四象=+经过一、二、四象限;④当k<0,b<0时,函数y kx b限,解题的关键是掌握一次函数图像与系数的关系.5、B【解析】【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.6、D【解析】【分析】利用函数的增减性和x =1时的函数图像上点的位置来判断即可.【详解】解:如图所示:k >0,函数y = kx +b 随x 的增大而增大,直线过点B (1,1),∵当x =1时,kx +b =1,即kx +b -1=0,∴不等式kx +b ﹣1<0的解集为:x <1.故选择:D .【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.7、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.8、C【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围.【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,20k ∴-<,2k ∴>.故选C .【点睛】本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b =+中,0k >,y 随x 的增大而增大,0k <,y 随x 的增大而减小.9、A【解析】【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.10、C【解析】【分析】代入A 点坐标求一次函数解析式,再根据B 点纵坐标代入解析式即可求解.【详解】解:∵一次函数y =kx +1的图象经过点A (1,3),∴311k =⨯+,解得k =2,∴一次函数解析式为:21y x =+,∵B (a ,-1)在一次函数上,∴121a -=+,解得1a =-,故选:C .【点睛】本题主要考查了一次函数的基本概念以及基本性质,解本题的要点在于求出直线的解析式,从而得到答案.二、填空题1、-2【解析】【分析】根据一次函数的表达式,即可得到答案.【详解】解:∵一次函数32y x =--,∴在y 轴上的截距为2-;故答案为:2-.【点睛】本题考查一次函数定义及y 轴上的截距,掌握截距及一次函数定义是解题的关键.2、S 和a【解析】【分析】由题意根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【详解】 解:篱笆的总长为60米,∴周长p 是定值,而面积S 和一边长a 是变量,故答案为:S 和a .【点睛】本题考查常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量. 3、2x ≥-【解析】【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.【点睛】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4、>【解析】【分析】根据题意直接利用一次函数的增减性进行判断即可得出答案.【详解】解:在一次函数y=-2x+b中,∵k=-2<0,∴y随x的增大而减小,∵-1<2,∴y1>y2,故答案为:>.【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的而增大,当k<0时,y随x的增大而减小.5、 (32,0)##(1.5,0) (0,﹣3)【解析】【分析】分别根据x 、y 轴上点的坐标特点进行解答即可.【详解】令y =0,则2x ﹣3=0,解得:x 32 ,故直线与x 轴的交点坐标为:(32,0);令x =0,则y =﹣3,故直线与y 轴的交点坐标为:(0,﹣3). 故答案为(32,0),(0,﹣3).【点睛】本题考查了x 、y 轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.三、解答题1、(1)450;y 1=﹣150x +450,2;(2)①23或4;②见解析.【解析】【分析】(1)由一次函数的图象可得甲、乙两地之间的距离为450km ,设线段AB 的解析式为y 1=k 1x +b 1,利用待定系数法可得出AB 的解析式,根据路程、时间和速度的关系即可得答案; (2)根据题意得出函数解析式为S ={450−225A (0≤A <2)225A −450(2≤A <3)75A (3≤A ≤6),①把S =300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.【详解】解:(1)由图象可得:甲、乙两地之间的距离为450km ;设线段AB 的解析式为y 1=k 1x +b 1,∵A (0,450),B (3,0),∴{A 1=4503A 1+A 1=0, 解得:{A 1=−150A 1=450 , ∴线段AB 的解析式为y 1=450﹣150x (0≤x ≤3);设两车在慢车出发x 小时后相遇,(4503+4506)x =450, 解得:x =2,答:两车在慢车出发2小时后相遇.故答案为:450;y 1=﹣150x +450;2;(2)4503+4506=225,根据题意得出S 与慢车行驶时间x (h )的函数关系式如下:S ={450−225A (0≤A <2)225A −450(2≤A <3)75A (3≤A ≤6),①当0≤x <2时,S =450−225x =300,解得:x =23,当2≤x <3时,S =225x −450=300,解得:x =103(舍去),当3≤x ≤6时,S =75x =300,解得:x =4,综上所述:x 的值为23或4.②其图象为折线图如下:【点睛】本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.2、(1)A =−2A +4;(2)见解析;(3)A <2;A >2;−2≤A ≤4【解析】【分析】(1)运用待定系数法求出函数关系式即可;(2)根据“两点确定一条直线”画出直线即可;(3)根据函数图象解答即可.【详解】解:(1)设经过A ,B 两点的直线解析式为y =kx +b ,把A (1,2),A (3,−2)两点坐标代入,得{A +A =23A +A =−2解得,{A =−2A =4 ∴直线的解析式为A =−2A +4;(2)当x =0时,y =4,当y =0时,x =2,∴直线经过(0,4),(2,0),画图象如图所示,(3)根据图象可得:当A<2时,A>0;当A>2时,A<0;当0≤A≤3时,−2≤A≤4故答案为:A<2;A>2;−2≤A≤4【点睛】本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.3、(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,∴0=-2x+4解得:x=2;让x =0时,∴y =-2×0+4=4,∴一次函数y =-2x +4的图象与x 轴、y 轴的交点坐标是A (2,0),B (0,4);(2)如下图是一次函数y =-2x +4的图象;(3)S △AOB =12×AA ×AA =12×2×4=4【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A 、B 的坐标.4、{A =−1A =1. 【解析】【分析】直接利用两函数图象的交点横纵坐标即为x ,y 的值进而得出答案.【详解】解:方程组对应的两个一次函数为:A =−32A −12与A =2A +3,画出这两条直线,如图所示:由图像知两直线交点坐标为(-1,1).所以原方程组的解为{A =−1A =1 . 【点睛】此题主要考查了一次函数与二元一次方程组的解,正确利用数形结合分析是解题关键.5、(1)A (1,3);(2)9【解析】【分析】(1)根据题意联立两直线解析式解二元一次方程组即可求得点A 的坐标;(2)分别令A =0,即可求得点A ,A 的坐标,进而求得A △AAA【详解】解:(1)由题意得{A =A +2A =−A +4解得,{A =1A =3∴A (1,3).(2)过A作AD⊥x轴于点D.∵y=x+2与x轴交点B(-2,0),y=-x+4与x轴交点C(4,0).∴BC=6. ∵A(1,3),∴AD=3.∴S△ABC=12AA×AA=12×6×3=9【点睛】本题考查了两直线交点问题,两直线与坐标轴围成的三角形的面积,数形结合是解题的关键.。
初三二次函数综合测试题及答案
二次函数单元测评一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)( )A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x轴上D. y轴上二、4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是(A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06.二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( ) A. 一B. 二C. 三 D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( )A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A. B. C. D.二、填空题(每题4分,共32分)11. 二次函数y=x 2-2x+1的对称轴方程是______________.12. 若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.(m/s)竖直向上抛物16. 在距离地面2m高的某处把一物体以初速度v出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:=10m/s,则该物体在运(其中g是常数,通常取10m/s2).若v动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.的值是18. 已知抛物线y=x2+x+b2经过点,则y1三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0) (1)求此二次函数图象上点A关于对称轴对称的点A′的坐标(2)求此二次函数的解析式;20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象与性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,.解析:需满足抛物线与x轴交于两点,与y轴有交点,与△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.答案:.19. 考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20.考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x 1+1)(x 2+1)=-8 ∴x 1x 2+(x 1+x 2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5∴y=x 2-9为所求(2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9).21. 解:(1)依题意:。
初中数学二次函数综合题及答案(经典题型)印.pdf
选择题: 1、y=(m-2)xm2- m 是关于 x 的二次函数,则 m=( )
A -1 B 2 C -1 或 2 D m 不存在
2、下列函数关系中,可以看作二次函数 y=ax2+bx+c(a≠0)模型的是( )
A 在一定距离内,汽车行驶的速度与行驶的时间的关系
B 我国人中自然增长率为 1%,这样我国总人口数随年份变化的关系
a
b
=
b+c a+c
A -1 B 1
ቤተ መጻሕፍቲ ባይዱ
c
=
a+b 1
C
2
的值是( )
1
D-
2
-1 0
x
8、已知一次函数 y= ax+c 与二次函数 y=ax2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的(
x )
y
y
y
y
x
A
B
x
x
x
C
D
二填空题: 13、无论 m 为任何实数,总在抛物线 y=x2+2mx+m 上的点的坐标是————————————。 16、若抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=2,最小值为-2,则关于方程 ax2+bx+c=-2的根为—
且交点 M 始终位于抛物线上 A、C 两点之间时,试探究:当 n 为何值时,四边形 AMCN 的面积取得最大值,并求出这个最大
值.
y
y
l:x=n
M
A
A
O
B
D
C x
O
B
C
N
x
D
6、如图所示,在平面直角坐标系中,四边形 ABCD 是直角梯形,BC∥AD,∠BAD=90°,BC 与 y 轴相交于点 M,且 M 是 BC
初中函数综合试题及答案
初中函数综合试题及答案一、选择题(每题3分,共30分)1. 函数y=2x+3的图象是一条直线,其斜率k和截距b分别是()A. k=2, b=3B. k=3, b=2C. k=-2, b=3D. k=-3, b=22. 若函数y=x^2-4x+3的最小值是-1,则x的值是()A. 2B. 3C. 4D. 53. 函数y=-2x+1与y=-x-1的交点坐标是()A. (0,1)B. (1,-1)C. (-1,-3)D. (2,-3)4. 函数y=x+1/x的值域是()A. (-∞,-2]∪[2,+∞)B. (-∞,-1]∪[1,+∞)C. (-∞,0)∪(0,+∞)D. (-∞,-1)∪(1,+∞)5. 函数y=x^3-3x^2+2在区间(1,2)上是()A. 增函数B. 减函数C. 先增后减D. 先减后增6. 若函数y=x^2+2x-3与x轴有两个交点,则这两个交点的横坐标之和是()A. -2B. 2C. -4D. 47. 函数y=1/x的图象关于()A. 原点对称B. y轴对称C. x轴对称D. 直线y=x对称8. 函数y=x^2-6x+8的顶点坐标是()A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)9. 函数y=2x-1与直线y=3x+2平行的条件是()A. 斜率不相等B. 斜率相等C. 截距不相等D. 截距相等10. 函数y=x^2-4x+m的图象与x轴有两个交点,则m的取值范围是()B. m<4C. m≥4D. m≤4二、填空题(每题3分,共15分)1. 函数y=x^2-6x+8的对称轴是直线x=______。
2. 若函数y=x^2-4x+3的图象向上平移2个单位,则新的函数解析式为y=______。
3. 函数y=-2x+1与y=-x-1的交点坐标是(1,-1),因此函数y=-2x+1的图象经过点______。
4. 函数y=x+1/x在x=1处的导数为______。
函数(一)综合测试题
函数(一)综合测试题一、选择题1、若点A(-3,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限2、下列各曲线中表示y是x的函数的是()A.B.C.D.3、在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,-3),N(-4,6)B.M(-2,3),N(4,6)C.M(-2,-3),N(4,-6)D.M(2,3),N(-4,6)4、已知点A(a,1)与点A′(-5,b)是关于原点O的对称点,则a+b的值为()A.1 B.5 C.6 D.45、线段MN是由线段EF经过平移得到的,若点E(-1,3)的对应点M(2,5),则点F(-3,-2)的对应点N的坐标是()A.(-1,0)B.(-6,0)C.(0,-4)D.(0,0)6、一次函数y=kx-(2-b)的图象如图所示,则k和b的取值范围是()A.k>0,b>2 B.k>0,b<2 C.k<0,b>2 D.k<0,b<27、当k>0时,反比例函数y= kx和一次函数y=kx+2的图象大致是()A.A.C.D.8、已知反比例函数y= 12mx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m<0 B.m>0 C.m<12D.m>129、如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),4x+2<kx+b<0的解集为()A.x<-2 B.-2<x<-1 B.-2<x<-1 D.x>-110、如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .二、填空题 11、在函数y=3x -+12x -中,自变量x 的取值范围是____ 12、若点A (1,-3),B (m ,3)在同一反比例函数的图象上,则m 的值是____13、如图,若在象棋棋盘上建立直角坐标系,使“帅”位于点(-3,-2),“炮”位于点(-2,0),则“兵”位于的点的坐标为____14、如图,A 、B 两点在双曲线y=4x上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=____15、已知关系x ,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图象的交点坐标为(1,-1),则a=____,b=___16、已知m 是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=____17、已知函数y=ax 和y=4a x-的图象有两个交点,其中一个交点的横坐标为1,则两个函数图象的交点坐标为____18、如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标为____三、解答题19、常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置20、已知y关于x的一次函数y=(2m2-32)x3-(n-3)x2+(m-n)x+m+n.(1)若该一次函数的y值随x的值的增大而增大,求该一次函数的表达式,并在如图所示的平面直角坐标系中画出该一次函数的图象;(2)若该一次函数的图象经过点(-2,13),求该函数的图象与坐标轴围成的三角形的面积21、如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少22、如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=k x的图象上,过点A的直线y=x+b交反比例函数y=kx的图象于另一点B.(1)求k和b的值;(2)求△OAB的面积23、心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目参考答案一、选择题1、A2、D3、A4、D5、D6、B7、C8、C9、B10、B二、填空题11、x≥312、-113、(-5,1),14、615、a=2,b=316、:-3或-217、(1,2)和(-1,-2).18、(20,0).三、解答题19、解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3 2处20、解:(1)∵y关于x的一次函数y=(2m2-32)x3-(n-3)x2+(m-n)x+m+n,∴2m2-32=0,n-3=0,解得:m=±4,n=3,又∵该一次函数的y值随x的值的增大而增大,∴m-n>0,则m=4,n=3,∴该一次函数的表达式为:y=x+7,如图所示:;(2)∵该一次函数的图象经过点(-2,13),∴y=-7x-1,如图所示:,当x=0,则y=-1,当y=0,则x=-17,故该函数的图象与坐标轴围成的三角形的面积为12×1×17=11421、解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F。
初中数学函数总复习题
初中数学函数总复习题《函数》复习题坐标1(P(1-m, 3m+1)到x,y轴的的距离相等,则P点坐标为2(A(4,3),B点在坐标轴上,线段AB的长为5,则B点坐标为3(正方形的两边与x,y轴的负方向重合,其中正方形一个顶点为C(a-2, 2a-3),则点C的坐标为 .4(点A(2x,x-y)与点B(4y,12Cos60?)关于原点对称,P(x,y)在双曲线x2上,则k的值为 5(点A(3x-4,5-x)在第二象限,且x是方程的解,则A点的坐标为6((2006年芜湖市)如图,在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转得到,则点的坐标是( ),(,,((4,,(,4) ,((3,函数概念和图象:1(已知等腰三角形周长是20,?底边长y与腰长x的函数关系是 ;?自变量x的取值范围是 ;?画出函数的图象(坐标轴方向,原点,关系式,自变量范围)2(已知P(tanA,2)为函数图象不在)在函数y=x-1图象上;Q(23x上一点,则Q(3cosA,sinA) (答在、x轴y 轴、关于原点的对称点到直线y=x-13cosA,sinA)关于的距离分别是3((05甘肃兰州)四边形ABCD为直角梯形,CD?AB,CB?AB,且CD=BC=12AB,若直线l?AB,直线l截这个所得的位于此直线左方的图形面积为y,点A到直线1的距离为x,则y与x的函数关系的大致图象为( )4((05北京)在平行四边形ABCD中,?DAB=60?,AB=5,BC=3,点P从起点D出发,沿DC,CB向终点B匀速运动,设点P走过的路程为x点P经过的线段与线段AD,AP 围成图形的面积为y,y随x的变化而变化,在下列图象中,能正确反映y与x的函数关系的是( )15((05江苏徐州)有一根直尺的短边长2厘米,长边长10厘米,还有一块锐角为45?的直角三角形纸板,它的斜边长12厘米,如图?,将直尺的短边DE放置与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移如图?,设平移的长度为x厘米(0?x?10),直尺和角三角形纸板的重叠部分(图中阴影部分)的面积为S, (1)当x=0时(如图?),S= ;当x=10时,S= (2)当0<x?4时, (如图?), 求S关于x的函数关系式;(3)当4<x<10时, 求S关于x的函数关系式;并求出S的最大值(同学可在图??中画草图)6((05河南课改)Rt?PMN中,?P=90?,PM=PN,MN=8厘米,矩形ABCD的长和宽分别为8厘米和2厘米,C点和M点重合,BC和MN在一条直线上,令Rt?PMN不动,矩形ABCD沿MN所在直线向右以每秒1厘米的速度移动,直到C点与N点重合为止,设移动x秒后,矩形ABCD与?PMN重叠部分的面积为y平方厘米,则y与x之间的函数关系是7((2006重庆)如图1所示,一张三角形纸片ABC,?ACB=90?,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成和两个三角形(如图2所示).将纸片沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1) 当平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;(2) 设平移距离D2D1为x,与重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原面积的若存在,求x的值;若不存在,请说明理由.14.8((07西城期末试题)在等腰梯形ABCD中AB?DC,已知AB=12,BC=42,?DAB=45?,2以AB所在直线为x轴,A为坐标原点建立直角坐标系,将等腰梯形ABCD绕A 点按逆时针方向旋转90?,得到等腰梯形OEFG(0、E、F、G分别是A、B、C、D旋转后的对应点)(1) 写出C、F两点坐标(2) 将等腰梯形ABCD沿x轴的负半轴平行移动,设移动后的OA的长度是x如图2,等腰梯形ABCD与等腰梯形OEFG重合部分的面积为y,当点D移动到等腰梯形OEFG的象限2. (06陕西)直线与x轴,y轴围的三角形面积为3(直线y=kx+b与直线平行且与直线的交点在y 轴上,则直线y=kx+b与两轴围成的三角形的面积为4(直线只可能是( )5((06昆明)直线与直线L交于P点,P点的横坐标为-1,直线L与y轴交于A(0,-1)点,则直线L的解析式为6((2006浙江金华)如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,3)两点, ,点C为线段AB上的一动点,过点C作CD?x轴于点D.(1)求直线AB的解析式;(2)若S梯形OBCD,3,求点C的坐标;(3)在第一象限象限32((05四川)如图直线AB与x轴y轴交于B、A,与双曲线的一个交点是C,CD?x轴于D,OD=2OB=4OA=4,则直线和双曲线的解析式为3((06南京)某种灯的使用寿命为1000小时,它可使用天数y与平均每天使用小时数x之间的函数关系是4((06北京)直线y=-x绕原点O顺时针旋转90?得到直线l,直线1与反比例函数的图象的一个交点为A(a,3),则反比例函数的解析式为5((06天津)正比例函数的图象与反比例函数(4,2)(1)则这两个函数的解析式为 (2)这两个函数的其他交点为 6(点P(m,n)在第一象限,且在双曲线6xmx的图象都经过kx和直线上,则以m,n 为邻边的矩形面积为 ;若点P(m,n)在直线y=-x+10上则以m,n 为邻边的矩形的周长为二次函数1((06大连)如图是二次函数y1,ax,bx,c和一次函数y2,mx,n的图象,观察图象写出y2?y1时,x的取值范围______________ 2((06陕西)抛物线的函数表达式是( ) A((((3((06南通)已知二次函数当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取时的函数值与( )A(时的函数值相等 B(时的函数值相等 C(14942D(时的函数值相等时的函数值相等24((06山东)已知关于x的二次函数2与22,这两个二次函数的图象中的一条与x轴交于A,B两个不同的点,(1)过A,B两点的函数是 ; (2)若A(-1,0),则B点的坐标为(3)在(2)的条件下,过A,B两点的二次函数当x 时,y的值随x的增大而增大 5((05江西)已知抛物线与x轴交点为A、B(B2在A的右边),与y轴的交点为C.(1)写出m=1时与抛物线有关的三个结论;(2)当点B在原点的右边,点C在原点的下方时,是否存在?BOC为等腰三角形,若存在,求出m的值;若不存在,请说明理由; (3)请你提出一个对任意的m值都能成立的正确命题.4的图象经过点M(1,-2)、N(-1, 6((2006年长春市)如图二次函数6)((1)求二次函数的关系式(BC放在坐标系内,其中?CAB = 90?,点A、B的坐标分别为(1, (2)把Rt?A0)、(4,0),BC = 5(将?ABC沿x轴向右平移,当点C落在抛物线上时,求?ABC平移的距离(7((2006湖南长沙)如图1,已知直线与抛物线交于A,B两点((1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处(用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形,如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由(8((2006吉林长春)如图,在平面直角坐标系中,两个函数的图象交于2点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ?x轴一边向下作正方形PQMN,设它与?OAB重叠部分交直线BC于点Q,以PQ为的面积为S.(1)求点A的坐标.(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式.(3)在(2)的条件下,S是否有最大值,若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与?OAB重叠部分面积最大时,运动时间t满足的条件是____________.9(?M交x,y轴于A(-1,0),B(3,0),C(0,3)(1)求过A,B,C三点的抛物线的解析式;(2)求过A,M的直线的解析式;(3)设(1)(2)中的抛物线与直线的另一个交点为P,求?PAC的面积.10((00上海)已知二次函数的图象经过A(-3,6),并与x轴交于点B(-1,)求这个二次函数的解析式;(2)设D为线段OC上 0)和点C,顶点为P(1一点,且?DPC=?BAC,求D点坐标11.(06北京)已知抛物线与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连结BD并延长,交AC于点E,(1)用含m的代数式表示点A、B的坐标;(2)求CE的值;(3)当C、A两点AE到y轴的距离相等,且时,求抛物线和直线BE的解析式.5《函数》复习题答案.坐标 1( (1,1) ; (2, -2) 2(B(0,0); B(6,0) ;(8,0) 2( 3( 4((-1,--7 (-7, 6)12,0)6. A函数概念及图象1((1)y=-2x+20,(2)5<x<10, (3)略 2(在, 3(A 4(A 5.当423,22 2,22,22,时,S最大1226(27. ADCC1C21BAD1D2B图1图2[解] (1)因为C1D1?C2D2,所以又因为,CD是斜边上的中线,所以,,即所以,,所以6所以,同理:又因为,所以AD2所以(2)因为在中,,所以由勾股定理,得即又因为,所以所以在中,C2到BD2的距离就是的AB边上的高,为245.设的BDh11边上的高为h,由探究,得?,所以.5所以12252又因为,所以又因为,5.所以4x ,S165x2而622525x所以18x22425(3) 存在. 当1S182244时,即25整理,得3x2解得,3即当或时,重叠部分的面积等于原面积的4 8(略一次函数 1( 2 2( 33( 8124( D5(7] (1)直线AB解析式为: 6.[解3333x+3(),那么OD,x,CD, (2)方法一:设点,坐标为(x,33x+3(S梯形OBCD,36,3623(由题意:23 ,433,解得(舍去),(,,3312)方法二:?332,S梯形OBCD,433,?36(由OA=3OB,得?BAO,30?,AD=3CD( 12,CD×AD,32CD,236(可得CD,33(AD=,,OD,,(?C(,,(,)当?OBP,Rt?时,如图33)(若?BOP??OBA,则?BOP,?BAO=30?,BP=3OB=3,33P1(3,)(若?BPO??OBA,则?BPO,?BAO=30?,OP=33OB=1(P2(1,3)(当?OPB,Rt?时过点P作OP?BC于点P(如图),此时?PBO??OBA,?BOP,?BAO, 30?过点P作PM?OA于点M( 方法一: 在Rt?PBO中,BP,12OB,32,OP,3BP,32(在Rt?P,O中,?OPM,30?,8OM,12OP,34;PM,3OM,334(?P3(34,3343)(方法二:设,(x ,3x+3),得OM,x ,PM,33由?BOP,?BAO,得?POM,?ABO(tanPOM==PM3OM=x,tan?ABOC=OAOB=(3,解得x,333x+3,3x4(此时,P3(4,33)(4若?POB??OBA(如图),则?OBP=?BAO,30?,?POM,30?( ? PM,3OM,3(34P34(4,34)(由对称性也可得到点P4的坐标)(时,点P在,轴上,不符合要求. 当?OPB,Rt?综合得,符合条件的点有四个,分别是:P1(3,33),P2(1,3),P3( 3334,4),P34(4,34)(反比例函数 1(四 2( 4x3(4(5(12x,8xA’6(6,20 二次函数1((D 3(B24(9(2). (3,0)(3). X<1-22 (3)最大值 5.(1)顶点(1,1); 对称轴为x=1; 顶点到y轴的距离为1 (2)m= -2为1 6.(1)(2)527. [解](1)解:依题意得解之得,,,2))作AB的垂直平分线交x轴,y轴于C,D两点,交AB于M(如图1) 由 (2 (1)可知:122OMOE54过B作BE?x轴,E为垂足由?BEO??OCM,得:5,,图1同理:,,,,设CD的解析式为的垂直平分线的解析式为:52((3)若存在点P使?APB的面积最大,则点P在与直线AB平行且和抛物线只有一个交10点的直线1( 上,并设该直线与x轴,y轴交于G,H两点(如图2) 212142抛物线与直线只有一个交点, 2,25在直线GH:254中,,,设O到GH的距离为d,121GH,到AB的距离等于O到GH的距离d( S1最大面积121254(8. [解] (1)由可得A(4,4).(2)点P在y = x上,OP = t,则点P坐标为(222t,2t).图21121点Q的纵坐标为2t,并且点Q在上. ?2 ,即点Q坐标为2t).2t. 当时,当0,时,当点P到达A点时,,当32,t,42时,(3)有最大值,最大值应在0,中,当时,S的最大值为12.(4)2(3)S?PAC=358122 (,0) 3511.(1) A(-m,0) B(2m,0) (2). CE343抛物线13。
初中函数综合试题(卷)(附答案解析解析)
二次函数与其他函数的综合测试题一、选择题:(每小题3分,共45分)1.已知h 关于t 的函数关系式为221gt h,(g 为正常数,t 为时间),则函数图象为()(A )(B )(C )(D )2.在地表以下不太深的地方,温度y (℃)与所处的深度x (k m )之间的关系可以近似用关系式y =35x +20表示,这个关系式符合的数学模型是()(A )正比例函数(B )反比例函数.(C )二次函数(D )一次函数3.若正比例函数y =(1-2m )x 的图像经过点A (1x ,1y )和点B (2x ,2y ),当1x <2x 时1y >2y ,则m 的取值范围是()(A )m <0(B )m >0(C )m <21(D )m >214.函数y = k x + 1与函数xyk 在同一坐标系中的大致图象是()OxyOxyOxyOxy(A )(B )(C )(D )5.下列各图是在同一直角坐标系内,二次函数c xc aax y )(2与一次函数y =a x +c 的大致图像,有且只有一个是正确的,正确的是()(A )(B )(C )(D )6.抛物线1)1(22x y的顶点坐标是()A .(1,1)B .(1,-1)C .(-1,1)D .(-1,-1)7.函数y =a x +b 与y =a x 2+bx +c 的图象如右图所示,则下列选项中正确的是()A . a b >0, c>0 B. a b <0, c>0 C . a b >0, c<0 D . a b <0, c<08.已知a ,b ,c 均为正数,且k=bac cab cba ,在下列四个点中,正比例函数kxy 的图像一定经过的点的坐标是()A .(l ,21) B .(l ,2) C .(l ,-21) D.(1,-1)9.如图,在平行四边形ABCD 中,AC=4,B D=6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四边形的两条边分别交于点E ,F .设BP =x ,EF =y ,则能反映y 与x 之间关系的图象为……………()10.如图4,函数图象①、②、③的表达式应为()(A )x y 25,2x y,xy 4(B )x y 25,2x y ,x y 4(C )x y25,2xy,xy4A BCDEFP(D )x y25,2x y,xy411.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()12.二次函数y =x 2-2x +2有()A .最大值是 1B .最大值是 2C .最小值是 1 D.最小值是 213.设A (x 1,y 1)、B (x 2,y 2)是反比例函数y =x2图象上的两点,若x 1<x 2<0,则y 1与y 2之间的关系是()A .y 2< y 1<0B .y 1< y 2<0C .y 2> y 1>0D .y 1> y 2>0 14.若抛物线y =x 2-6x +c 的顶点在x 轴上,则c 的值是 ( )A . 9B . 3C .-9D . 015.二次函数2332xxy 的图象与x 轴交点的个数是()A .0个B .1个C .2个D .不能确定二、填空题:(每小题3分,共30分)1.完成下列配方过程:122px x=________________22px x=____________2x;2.写出一个反比例函数的解析式,使它的图像不经过第一、第三象限:_________.3.如图,点P 是反比例函数2y x上的一点,P D ⊥x 轴于点D ,则△P OD 的面积为;4、已知实数m 满足022mm,当m =___________时,函数11m x m xym的图象与x 轴无交点.5.二次函数)1()12(22m x m x y 有最小值,则m =_________;6.抛物线322xxy向左平移5各单位,再向下平移2个单位,所得抛物线的解析式为___________;7.某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件.若商场平均每天要赢利1200元,则每件衬衫应降价__________;8.某学生在体育测试时推铅球,千秋所经过的路线是二次函数图像的一部分,如果这名学生出手处为A (0,2),铅球路线最高处为B (6,5),则该学生将铅球推出的距离是________;9.二次函数)0(2a c bxaxy的图像与x 轴交点横坐标为-2,b ,图像与y 轴交点到圆点距离为3,则该二次函数的解析式为___________;10.如图,直线)0(2k kxy与双曲线xk y在第一象限内的交点R ,与x 轴、y 轴的交点分别为P 、Q .过R 作RM ⊥x 轴,M 为垂足,若△OPQ 与△PRM 的面积相等,则k 的值等于.三、解答题:(1-3题,每题7分,计21分;4-6题每题8分,计24分;本题共45分)1已知二次函数c bx xy 2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值;(2)试判断点P (-1,2)是否在此函数图像上?2.已知一次函数y kx k 的图象与反比例函数8yx的图象交于点P (4,n ).(1)求n 的值.(2)求一次函数的解析式.3.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;x第3题图y P DO(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.4.已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.5.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)50 60 70 75 80 85 …每天售出件数300 240 180 150 120 90 …假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)6.如图,一单杠高 2.2米,两立柱之间的距离为 1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.(1)(2)(1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1)7.已知抛物线y=-x2+mx-m+2.(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=5,试求m的值;(Ⅱ)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且△MNC的面积等于27,试求m 的值.参考答案:一、选择题: 1.A 2.D 3.D 4.B 5.D 6.A 7.D 8.A9.A 10.C 11.D 12.C 13.C 14.A 15.C 二、填空题:1.2p ,21p ,p ,21p.2y =x2 3. 1 4.2或-1 5.45 6.1082x xy7.10元或20元8.6+52 9.3412xxy或3412x xy 10.22三、解答题:1.2.解:(1)由题意得:84n,2.n (2)由点P (4,2)在ykxk 上,24,kk 25k.一次函数的解析式为2255yx.3.解:(1)由图可知A (-1,-1),B (0,-2),C (1,1)设所求抛物线的解析式为y =ax 2+bx +c依题意,得121ab c c abc,,解得212a b c,,∴y =2x 2+x -2.(2)y =2x 2+x -2=2(x +41)2-817∴顶点坐标为(-41,817),对称轴为x =-41(3)图象略,画出正确图象4.解:(1)函数y =x 2+bx -1的图象经过点(3,2)∴9+3b -1=2,解得b =-2 .∴函数解析式为y =x 2-2x -1(2)y =x 2-2x -1=(x -1)2-2 ,图象略,图象的顶点坐标为(1,-2)(3)当x =3 时,y =2,根据图象知,当x ≥3时,y ≥2∴当x >0时,使y ≥2的x 的取值范围是x ≥3.5.解:(1)由统计数据知,该函数关系为一次函数关系,每天售出件数y 与每件售价x 之间的函数关系为:x y 6600.(2)当168y时,6006168x ,解得:72x;设门市部每天纯利润为z①当72x时,168y52807063406600402xx x z当70x时,5280maxz②当72x 时,168y 53207062406600402x x x z 70x 时,y 随x 的增大而减少72x时,52965320262max z 5280529672x当时,纯利润最大为5296元.6.(1)(2)解:(1)如图,建立直角坐标系,设二次函数解析式为y =ax 2+c∵D (-0.4,0.7),B (0.8,2.2),∴.=+,=+2.264.07.016.0c a c a ∴.=,=2.0528c a ∴绳子最低点到地面的距离为0.2米.(2)分别作EG ⊥AB 于G ,FH ⊥AB 于H ,AG =21(AB -EF )=21(1.6-0.4)=0.6.在Rt △AGE 中,AE =2,EG =22AG AE -=226.02=64.3≈1.9.∴ 2.2-1.9=0.3(米).∴木板到地面的距离约为0.3米.7.解: (I)设点A(x 1,0),B (x 2,0) ,则x 1,x 2是方程x 2-mx +m -2=0的两根.∵x 1 +x 2=m ,x 1·x 2 =m-2 <0 即m <2;又AB =∣x 1 x 2∣=121245x x x x 2(+),∴m 2-4m+3=0 .解得:m =1或m =3(舍去) ,∴m 的值为 1 .(II )设M (a ,b ),则N (-a ,-b ) .∵M 、N 是抛物线上的两点,∴222,2.a ma m b ama m b L L ①②①+②得:-2a 2-2m +4=0 .∴a 2=-m +2.∴当m <2时,才存在满足条件中的两点M 、N .∴2am .这时M 、N 到y 轴的距离均为2m ,又点C 坐标为(0,2-m ),而S △M N C = 27 ,∴2×12×(2-m )×2m =27 .∴解得m =-7 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与其他函数的综合测试题一、选择题:(每小题3分,共45分)1.已知h关于t的函数关系式为221gth=,(g为正常数,t为时间),则函数图象为()(A)(B)(C)(D)2.在地表以下不太深的地方,温度y(℃)与所处的深度x(k m)之间的关系可以近似用关系式y=35x+20表示,这个关系式符合的数学模型是()(A)正比例函数(B)反比例函数.(C)二次函数(D)一次函数3.(A)m<0 (B)m>0 (C)m<21(D)m>214.函数y = k x + 1与函数xyk=在同一坐标系中的大致图象是()O xyO xyOxyO xy(A)(B)(C)(D)5.下列各图是在同一直角坐标系内,二次函数cxcaaxy+++=)(2与一次函数y=a x+c 的大致图像,有且只有一个是正确的,正确的是()(A)(B)(C)(D)6.抛物线1)1(22+-=xy的顶点坐标是()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)7.函数y=a x+b与y=a x2+bx+c的图象如右图所示,则下列选项中正确的是()A.a b>0,c>0 B.a b<0,c>0C.a b>0,c<0 D.a b<0,c<08.已知a,b,c均为正数,且k=baccabcba+=+=+,在下列四个点中,正比例函数kxy=的图像一定经过的点的坐标是()A.(l,21)B.(l,2)C.(l,-21)D.(1,-1)9.如图,在平行四边形ABCD 中,AC=4,B D=6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四边形的两条边分别交于点E ,F .设BP =x ,EF =y ,则能反映y 与x 之间关系的图象为……………( )10.如图4,函数图象①、②、③的表达式应为( )(A )x y 25-=,2+=x y ,x y 4-= (B )x y 25=, 2+-=x y ,x y 4=(C )x y 25-=,2-=x y ,x y 4=(D )x y 25-=,2-=x y ,xy 4-=11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系( )12.二次函数y =x 2-2x +2有 ( ) A . 最大值是1 B .最大值是2 C .最小值是1 D .最小值是213.设A (x 1,y 1)、B (x 2,y 2)是反比例函数y =x2-图象上的两点,若x 1<x 2<0,则y 1与y 2之间的关系是( )A . y 2< y 1<0B . y 1< y 2<0C . y 2> y 1>0D . y 1> y 2>0 14.若抛物线y =x 2-6x +c 的顶点在x 轴上,则c 的值是 ( )A . 9B . 3C .-9D . 0 15.二次函数2332+-=x x y 的图象与x 轴交点的个数是( ) A .0个 B .1个 C .2个 D .不能确定二、填空题:(每小题3分,共30分)1.完成下列配方过程:x第3题图yPD O A BCDEFP122++px x =()[]()________________22+++px x=()()____________2++x ;2.写出一个反比例函数的解析式,使它的图像不经过第一、第三象限:_________. 3.如图,点P 是反比例函数2y x=-上的一点,P D ⊥x 轴于点D ,则△P OD 的面积为 ; 4、已知实数m 满足022=--m m ,当m =___________时,函数()11++++=m x m x y m的图象与x 轴无交点.5.二次函数)1()12(22-+++=m x m x y 有最小值,则m =_________;6.抛物线322--=x x y 向左平移5各单位,再向下平移2个单位,所得抛物线的解析式为___________; 7.某商场销售一批名牌衬衫,平均每天可售出20件,每件可 盈利40元.为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件.若商场平均每天要赢利1200元,则每件衬衫应降价__________;8.某学生在体育测试时推铅球,千秋所经过的路线是二次函数图像的一部分,如果这名学生出手处为A (0,2),铅球路线最高处为B (6,5),则该学生将铅球推出的距离是________; 9.二次函数)0(2≠++=a c bx ax y 的图像与x 轴交点横坐标为-2,b ,图像与y 轴交点到圆点距离为3,则该二次函数的解析式为___________; 10.如图,直线)0(2〉-=k kx y 与双曲线xky =在第一象限内的交点R ,与x 轴、y 轴的交点分别为P 、Q .过R 作RM ⊥x 轴,M 为垂足,若△OPQ 与△PRM 的面积相等,则k 的值等于 .三、解答题:(1-3题,每题7分,计21分;4-6题每题8分,计24分;本题共45分)1已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点. (1)求b 和c 的值;(2)试判断点P (-1,2)是否在此函数图像上?2.已知一次函数y kx k =+的图象与反比例函数8y x=的图象交于点P (4,n ). (1)求n 的值.(2)求一次函数的解析式.3.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.4.已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.5.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)6.如图,一单杠高米,两立柱之间的距离为米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.(1) (2)(1)一身高米的小孩站在离立柱米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系一块长为米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈,64.3≈,36.4≈)7.已知抛物线y =-x 2+mx -m +2.(Ⅰ)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且AB 5,试求m 的值;(Ⅱ)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值.参考答案:一、选择题: 1.A 2.D 3.D 4.B 5.D 6.A 7.D 8.A 9.A 10.C 11.D 12.C 13.C 14.A 15.C 二、填空题:1.2p ,21p -,p ,21p - .2 y =x 2-3. 1 4.2或-1 5. 45- 6.1082++=x x y 7.10元或20元8.6+52 9. 3412--=x x y 或 3412+=-=x x y 10.22三、解答题:1.2.解:(1)由题意得:84n =, 2.n ∴= (2)由点P (4,2)在y kx k =+上,24,k k ∴=+ 25k ∴=. ∴一次函数的解析式为2255y x =+. 3.解:(1)由图可知A (-1,-1),B (0,-2),C (1,1) 设所求抛物线的解析式为y =ax 2+bx +c依题意,得121a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩,, 解得212a b c =⎧⎪=⎨⎪=-⎩,, ∴ y =2x 2+x -2.(2)y =2x 2+x -2=2(x +41)2-817 ∴ 顶点坐标为(-41,817),对称轴为x =-41 (3)图象略,画出正确图象4.解:(1)函数y =x 2+bx -1的图象经过点(3,2)∴9+3b -1=2,解得b =-2 . ∴函数解析式为y =x 2-2x -1(2)y =x 2-2x -1=(x -1)2-2 ,图象略, 图象的顶点坐标为(1,-2) (3)当x =3 时,y =2, 根据图象知,当x ≥3时,y ≥2 ∴当x >0时,使y ≥2的x 的取值范围是x ≥3.5.解:(1)由统计数据知,该函数关系为一次函数关系,每天售出件数y 与每件售价x 之间的函数关系为: x y 6600-=.(2)当168=y 时, 6006168+-=x , 解得:72=x ; 设门市部每天纯利润为z ①当72<x 时,168>y()()()52807063406600402+--=⨯---=x x x z当70=x 时,5280max =z②当72≥x 时,168≤y()()()53207062406600402+--=⨯---=x x x z70≥x Θ时,y 随x 的增大而减少72=∴x 时,52965320262max =+⨯-=z52805296>Θ 72=∴x 当时,纯利润最大为5296元.6.(1) (2)解:(1)如图,建立直角坐标系, 设二次函数解析式为 y =ax 2+c ∵ D (-,),B (,), ∴ ⎩⎨⎧.=+,=+2.264.07.016.0c a c a∴ ⎪⎩⎪⎨⎧.=,=2.0528c a ∴绳子最低点到地面的距离为米.(2)分别作EG ⊥AB 于G ,FH ⊥AB 于H , AG =21(AB -EF )=21(-)=. 在Rt △AGE 中,AE =2,EG =22AG AE -=226.02-=64.3≈.∴ -=(米). ∴ 木板到地面的距离约为米.7.解: (I)设点A(x 1,0),B (x 2,0) , 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根.∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即m <2;又AB =∣x 1 x 2∣=121245x x x x -=2(+),∴m 2-4m +3=0 .解得:m =1或m =3(舍去) ,∴m 的值为1 . (II )设M (a ,b ),则N (-a ,-b ) .∵M 、N 是抛物线上的两点,∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩L L ①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2.∴当m <2时,才存在满足条件中的两点M 、N . ∴2a m =±-.这时M 、N 到y 轴的距离均为2m -, 又点C 坐标为(0,2-m ),而S △M N C = 27 ,∴2×12×(2-m )×2m -=27 . ∴解得m =-7 .。