生化知识点
生化知识点重点总结
生化知识点重点总结1. 生物大分子:生体内的大分子主要包括蛋白质、核酸、多糖和脂质等。
蛋白质是生物体内最重要的大分子之一,它具有结构和功能多样性;核酸是DNA和RNA的总称,它携带了生物体的遗传信息;多糖是由许多单糖分子聚合而成,主要包括淀粉、糖原和纤维素等;脂质是生物体内比较复杂的一类大分子,包括脂肪、磷脂和皂质等。
2. 蛋白质的结构和功能:蛋白质是生物体内最重要的大分子之一。
它的结构可以分为一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶作用、结构作用、传递作用和免疫作用等。
3. 核酸的结构和功能:核酸是DNA和RNA的总称,它携带了生物体的遗传信息。
DNA是双链结构,RNA是单链结构。
核酸的功能主要包括遗传信息的传递和蛋白质合成等。
4. 多糖的结构和功能:多糖是由许多单糖分子聚合而成。
它主要包括淀粉、糖原和纤维素。
多糖的功能包括能量储备和结构支持等。
5. 脂质的结构和功能:脂质是生物体内比较复杂的一类大分子,包括脂肪、磷脂和皂质等。
脂质的功能包括能量储备、结构支持和传递信号等。
6. 细胞膜的结构和功能:细胞膜是细胞的外层膜。
它主要由脂质分子和蛋白质分子构成。
细胞膜的功能包括细胞的结构支持、物质的进出和信号的传递等。
7. 酶的性质和作用:酶是生物体内的一类特殊蛋白质,它在生物体内具有催化作用。
酶的作用包括降低反应活化能、增加反应速率和特异性催化等。
8. 代谢途径:代谢是生物体内的一系列化学反应过程。
代谢途径主要包括糖代谢、脂质代谢、核酸代谢和蛋白质代谢等。
9. 能量的利用和储存:能量是维持生命活动的重要物质基础。
生物体内的能量主要通过ATP和NADH等化合物来储存和利用。
10. 酶的调控:酶的活性受到多种因素的调控,包括底物浓度、温度、pH值和酶的抑制剂等。
11. 免疫系统:免疫系统是生物体内的一套防御系统,它包括天然免疫和获得性免疫两个部分。
12. 体内环境平衡:体内的环境平衡主要包括细胞内外离子平衡、酸碱平衡和渗透压平衡等。
生化基础知识点总结
生化基础知识点总结生化学是研究生命活动的化学基础的一门学科,它主要探讨生命现象在分子层面上的发生和发展规律。
生化学知识对于医学、生物学、药学等相关专业的学习和研究具有重要的意义。
本文就生化学的基础知识点进行总结,希望对读者能有所帮助。
一、生物分子1. 蛋白质蛋白质是生物体内最重要的一种生物分子,它广泛参与人体的生理活动。
蛋白质由氨基酸通过肽键连接而成,具有多种结构和功能。
蛋白质的功能包括酶催化、结构支持、信号传导等。
2. 脂质脂质是生物体内一类重要的生物分子,它在细胞膜的构建、能量代谢和信号传导等方面扮演重要角色。
常见的脂质包括甘油三酯、磷脂等。
3. 碳水化合物碳水化合物是生物体内最常见的一种生物分子,它在能量代谢和细胞信号传导等方面具有重要作用。
碳水化合物包括单糖、双糖和多糖等。
4. 核酸核酸是生物体内以信息传递为主要功能的一种生物分子,它是构成遗传物质的基本单位。
核酸分为DNA和RNA两大类,它们在DNA复制、基因表达等方面扮演重要角色。
二、酶与酶促反应1. 酶的结构与功能酶是生物体内一种生物催化剂,它在生物体内促进化学反应的进行。
酶的结构包括活性中心和辅基,它们对酶的催化活性起着重要作用。
2. 酶促反应机制酶促反应是生物体内一种特殊的化学反应,它是在酶的催化下进行的。
酶促反应机制包括底物与酶的结合、底物与酶形成复合物、底物转化为产物等步骤。
3. 酶的调节酶的活性受到多种因素的调节,包括温度、pH值、底物浓度等。
正常的酶活性调节对于维持生物体内的代谢平衡具有重要作用。
三、生物能量代谢1. 细胞呼吸细胞呼吸是生物体内一种重要的代谢过程,它通过氧化有机物质来释放能量。
细胞呼吸包括糖酵解、三羧酸循环和呼吸链三大步骤。
2. 光合作用光合作用是植物体内一种特殊的代谢过程,它能够将光能转化为化学能。
光合作用包括光反应和暗反应两大步骤,它们共同完成了光合作用的进行。
3. ATP的合成ATP是生物体内一种重要的高能化合物,它储存了细胞内的大部分能量。
生化知识点总结大全
生化知识点总结大全生物化学是研究生物分子、细胞和组织等生物学基本单位在化学层面上的结构、功能和相互关系的一门学科。
生物化学知识的掌握对于理解生物体内各种生理过程以及疾病的发生、发展和治疗都具有重要意义。
下面将对生化知识点进行总结,包括生物大分子、酶和代谢、细胞信号传导、遗传信息的传递和表达等内容。
一、生物大分子1. 蛋白质蛋白质是由氨基酸组成的大分子,是生物体内最重要的大分子之一。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,分别代表了氨基酸序列、局部结构、全局结构和蛋白质的组装形式。
蛋白质在生物体内担任着结构、酶、携氧等多种重要功能。
2. 核酸核酸是构成生物体遗传信息的重要大分子。
核酸包括DNA和RNA两类,其中DNA是生物体内遗传信息的主要携带者,而RNA则参与了蛋白质的合成过程。
核酸的结构包括磷酸、核糖和碱基,它们通过磷酸二酯键相连而形成长链状结构。
3. 脂类脂类是一类绝缘性物质,其分子结构包含甘油酯和磷脂,具有水、油双亲性,是细胞膜的主要构成成分。
脂类还包括胆固醇和脂蛋白,它们在人体内参与了能量储存、细胞膜形成、传递体内信息等多种生理活动。
二、酶和代谢1. 酶的分类和特性酶是一类生物催化剂,可以加速生物体内的化学反应。
酶根据其作用的基质可以分为氧化还原酶、水解酶、转移酶等多种类型;根据作用反应的特点还可以分为氧化酶、脱氢酶、水合酶等。
酶的活性受到PH值、温度、离子浓度等因素的影响。
2. 代谢途径代谢是生物体维持生命活动所必需的化学反应过程,包括物质的合成、降解和转化等步骤。
常见的代谢途径包括糖酵解、三羧酸循环、氧化磷酸化等。
这些代谢途径通过调控酶的活性来维持生物体内各种代谢物质的平衡。
三、细胞信号传导1. 受体的结构和功能受体是细胞膜上的一类蛋白质,可以感知外界信号并将其转化为细胞内信号传导的起始物质。
受体的结构包括外部配体结合区、跨膜区和细胞内信号传递区,它可以通过配体结合激活下游信号分子,从而引发细胞内的生理反应。
生化所有重点知识点总结-个人精心整理
1.生物化学,是研究生物体内化学分子和化学反应的科学,从分子水平探讨生命现象的本质。
2.分子生物学,是研究核酸、蛋白质等所有生物大分子的结构、功能及基因结构、表达与调控的科学。
7.primary structure of protein—一级结构,是蛋白质分子中,从N-端到C-端的氨基酸排列顺序。
8.chromatography—层析,是蛋白质分离纯化的重要手段之一,待分离蛋白溶液(流动相)经过一种固态物质时,根据溶液中待分离的蛋白质颗粒大小、电荷多少及亲和力等,将待分离的蛋白质组分在两相中反复分配,并以不同的速度流经固定相而达到分离蛋白质的目的。
1.peptide unit—肽单元,是指一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水生成的酰胺键称为肽键。
参与肽键形成的6个原子(Cα1、C、O、N、H、Cα2)位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成所谓的肽单元。
2.motif—模体,是具有特殊功能的超二级结构,由两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。
一个模体总有其特征性的氨基酸序列,并发挥特殊的功能。
4.electrophoresis—电泳,指带电粒子在电场中向带相反电荷一极泳动的现象。
5.salt precipitation—盐析,指将中性盐加入蛋白质溶液中,使蛋白质水化膜脱去,电荷被中和,导致蛋白质在水溶液中的稳定因素去除而沉淀。
11.protein denaturation—蛋白质变性,指在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。
一般认为蛋白质的变性主要发生二硫键和非共价键的破坏,不涉及一级结构中氨基酸序列的改变。
13.domain—结构域,是三级结构层次上的局部折叠区,指分子量大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域举例说明蛋白质一级结构、空间结构与功能之间的关系。
生化知识点总结
生化知识点总结一、蛋白质结构与功能。
1. 氨基酸。
- 结构特点:氨基酸是蛋白质的基本组成单位,具有共同的结构通式,即中心碳原子连接一个氨基、一个羧基、一个氢原子和一个侧链基团(R基)。
不同的氨基酸R 基不同,这决定了氨基酸的性质差异。
- 分类:根据R基的化学结构可分为脂肪族氨基酸、芳香族氨基酸、杂环族氨基酸等;根据R基的极性可分为非极性氨基酸、极性中性氨基酸、酸性氨基酸和碱性氨基酸。
- 理化性质:- 两性解离:氨基酸分子中既含有酸性的羧基,又含有碱性的氨基,在不同的pH 溶液中可发生两性解离,当溶液pH等于其等电点(pI)时,氨基酸呈电中性。
- 紫外吸收:色氨酸、酪氨酸在280nm波长附近有最大紫外吸收峰,可用于蛋白质的定量分析。
2. 蛋白质的一级结构。
- 定义:蛋白质的一级结构是指多肽链中氨基酸的排列顺序。
主要化学键为肽键,有些蛋白质还包括二硫键。
- 意义:一级结构是蛋白质空间构象和特异生物学功能的基础。
例如,镰刀型红细胞贫血病就是由于β - 球蛋白N端第6个氨基酸残基由正常的谷氨酸被缬氨酸取代,导致蛋白质的一级结构改变,进而引起其空间结构和功能的异常。
3. 蛋白质的二级结构。
- 定义:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。
- 主要形式:- α - 螺旋:多肽链主链围绕中心轴呈有规律的螺旋式上升,每3.6个氨基酸残基螺旋上升一圈,螺距为0.54nm。
其稳定因素是每个肽键的N - H和第四个肽键的C=O形成的氢键。
- β - 折叠:多肽链充分伸展,相邻肽段之间折叠成锯齿状结构,靠链间氢键维系。
可分为平行式和反平行式β - 折叠。
- β - 转角:常发生于肽链进行180°回折的转角处,由4个氨基酸残基组成,第二个残基常为脯氨酸。
- 无规卷曲:没有确定规律性的肽链结构。
4. 蛋白质的三级结构。
- 定义:整条多肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
生化复习知识点总结
第一章、蛋白质的结构与功能1、主要元素:C、H、O、N、S(P7)2、定氮法:样品中含蛋白质克数=样品的含氮克数×6.253、肽键:肽键是由一个氨基酸α-羟基与另一个氨基酸的α-氨基脱水缩全面行成的化学键,是蛋白质分子中的主要共价键,性质比较稳定。
(P11)4、肽:肽是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。
10个以下氨基酸组成成寡肽,10个以上氨基酸组成称多肽。
(P11)5、多肽和蛋白质分子中的氨基酸均称为氨基酸残基。
具有特殊的生理功能的肽称为活性肽。
(P11)6、蛋白质一级结构:指多肽链中氨基酸(残基)从N端到C端的排列顺序,即氨基酸序列。
主要化学键为肽键。
(P12)7、蛋白质二级结构:指多肽链中相邻氨基酸残基的局部肽链空间结构,是其主链原子的局部空间排布。
主要化学键为氢键。
(P13)8、蛋白质三级结构:指整条多肽链中所有氨基酸残基,包括主链和侧链在内所形成的空间结构。
主要化学键为疏水键。
(P15)9、结构域:分子量大的蛋白质分子由于多肽链上相邻的超二级结构紧密联系,形成多个相对独特并承担不同生物学功能的超三级结构。
(P16)10、蛋白质四级结构:指各具独立三级结构多肽链以各种特定形式接触排布后,结集在此蛋白质最高层次空间结构。
在此空间结构中,各具独立三级结构的多肽链称亚基。
主要化学键为疏水键,氢键,离子键。
(P16)第三章、酶1、同工酶:指催化的化学反应相同,但酶蛋白的分子结构、理化性质及免疫化学特性不同的一组酶。
亚基:骨骼肌形和心肌形。
组成的五种同工酶:LDH1(H4)、LDH2(H3M)、LDH3(H2M4)、LDH4(HM3)、LDH5(M5)。
(P40)2、酶促反应的特点:催化性、特异性、不稳定性、调节性。
(P41)第五章、糖代谢1、糖酵解反应的特点:在无氧条件下发生的不完全的氧化分解反应,整个过程均在胞质中完成,无需氧的参与,终产物是乳酸;反应中适放能量较少,一分子葡萄糖可净生成二分子ATP。
医疗生化知识点总结
医疗生化知识点总结一、生物分子基础1. 蛋白质蛋白质是生物体的重要组成成分,是由氨基酸通过肽键连接而成的大分子化合物。
蛋白质的结构包括一级结构(氨基酸序列)、二级结构(α-螺旋和β-折叠)、三级结构(立体构象)和四级结构(多肽亚单位的组合)。
蛋白质的功能包括酶、激素、抗体、结构蛋白等。
2. 糖类糖类是生物体内重要的能量来源,包括单糖、双糖、多糖等。
糖类在生物体内参与能量代谢、细胞信号传导等生理过程。
3. 脂类脂类是生物体内的重要结构成分,包括甘油三酯、磷脂、胆固醇等。
脂类在细胞膜结构、能量储备、信号传导等方面发挥重要作用。
4. 核酸核酸包括DNA和RNA,是生物体内遗传信息的载体。
DNA包括双链DNA和单链DNA,RNA包括mRNA、tRNA、rRNA等。
核酸在遗传信息传递、蛋白质合成等生理过程中起重要作用。
二、细胞生物化学1. 细胞膜结构细胞膜由磷脂双分子层和蛋白质组成,具有选择性通透性。
细胞膜在维持细胞内外环境平衡、细胞信号传导等方面发挥重要作用。
2. 能量代谢能量代谢包括糖酵解、三羧酸循环和氧化磷酸化等过程,是细胞内产生能量的重要途径。
这些过程产生的ATP是细胞内的能量储备。
3. 细胞信号传导细胞信号传导包括细胞外信号(激素、生长因子等)通过受体与细胞内信号传导蛋白(G蛋白、酶联受体等)相互作用,最终调节细胞内的生理过程。
4. 细胞凋亡细胞凋亡是细胞自身程序性死亡,参与机体发育、免疫调节等生理过程。
细胞凋亡与肿瘤、神经退行性疾病等疾病的发生发展密切相关。
三、临床生化检测1. 血清生化指标血清生化指标包括血糖、血脂、肝功能指标、肾功能指标、电解质等,可以反映机体的代谢、排泄、内分泌等状况。
2. 酶学指标酶学指标包括丙氨酸氨基转移酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、γ-谷氨酰转移酶(GGT)等,可以反映肝脏、心肌等组织损伤的程度。
3. 肿瘤标志物肿瘤标志物是一些特异性蛋白质,可以通过血清或尿液检测来辅助肿瘤的诊断、疗效评价和预后判断。
生化复习知识点
生化:1.核酸的基本结构单位--核甘酸2.核甘酸的三个基本组成成分是碱基、戊糖和磷酸。
3.碱基分为嘌吟和嘧啶。
腺嘌吟A尿嘌吟G (常见胞嘧啶C尿嘧啶U和胸腺嘧啶T)4.DNA中含有AGCT,A脱氧腺昔G脱氧鸟昔C脱氧胞昔T脱氧胸背RNA中含有A GCU,A腺昔G鸟昔C胞昔U尿昔5.核酸中核甘酸的链接方式是3’,5’磷酸二脂键6.DNA的二级结构为双螺旋结构,要点是(1)双螺旋结构的形成:DNA分子由两条反向平行的脱氧核甘酸链、以“右手螺旋〃的方式围绕同一个假想的中心轴形成双螺旋结构。
(2)碱基互补规律A与T之间形成两个氢链,G与C之间形成三个氢键。
A-T(2)、G-C (3)配对的规律成为碱基的互补规律。
(3)形态特征(4)双螺旋结构的维系力7.嘌吟核甘酸从头合成原料:5-磷酸核糖、天冬氨酸、谷氨酸、谷氨酰胺、一碳单位、Co2 等简单物质为原料。
8.嘌吟核甘酸首先合成:次黄嘌呤核甘酸(IMP)。
转化为磷酸腺甘(AMP)和磷酸鸟昔(GMP)9.嘧啶核甘酸从头合成原料:谷氨酰胺和天冬氨酸及CO2。
嘧啶合成从氨基甲酰磷酸为起点合成嘧啶环10.脱氧核糖核甘酸的生成这种还原作用是在二磷酸核甘酸水平上进行的,由核糖核甘酸还原酶催化。
11.嘌吟核甘酸在体内的分解代谢主要是在肝、小肠及肾中进行。
最终生成尿酸。
(临床用别嘌吟醇治疗痛风)13.DNA复制的特点(1)DNA的半保留复制:每个子代DNA分子的一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称为半保留复制。
(2)DNA的半不连续复制:DNA复制时,一条链是连续合成的,而另一条链是不连续的合成的,这种复制方式称为不连续复制。
14.DNA复制过程分为三个阶段:起始、延长、终止。
复制开始原核生物的环状DNA 一般只有一个复制点。
真核生物细胞线状DNA有多个起始点。
15.复制的延长:随从链上不连续合成的DNA片段是有1968年日本科学家冈崎发现的,故称为冈崎片段。
生化常识知识点总结
生化常识知识点总结1. 细胞结构与功能细胞是生命的基本单位,它们在维持生物体的正常功能和生存过程中发挥着重要作用。
细胞包含许多重要的结构组成,如细胞膜、细胞质、细胞核等。
细胞膜是细胞的外围结构,它通过选择性透性调节物质的进出。
细胞质是细胞内的液体部分,含有细胞器和细胞骨架。
细胞核含有DNA和RNA等遗传物质,控制细胞的生长、分裂和代谢等生理功能。
2. 生物分子生物分子是构成细胞和生物体的基本单位,包括蛋白质、核酸、碳水化合物和脂类等。
蛋白质是生物体内最重要的大分子,它们在细胞器和细胞膜上发挥着关键作用。
核酸是DNA 和RNA的组成部分,储存和传递遗传信息。
碳水化合物是细胞内的主要能量来源,也是细胞膜的重要组成成分。
脂类是细胞膜的主要成分,还参与了许多代谢和信号传导过程。
3. 酶和代谢酶是生物体内的催化剂,它们在调节细胞内化学反应速率、能量转化和物质代谢中发挥着关键作用。
酶的活性受到多种因素的影响,包括温度、pH值、底物浓度和抑制剂等。
代谢是细胞内所有化学反应的总称,包括有氧代谢和无氧代谢两种方式,通过代谢可以产生能量和合成细胞需要的物质。
4. 遗传学遗传学是研究遗传现象和遗传变异的科学,包括遗传物质的结构和功能、遗传基因的表达和调控等方面。
遗传物质主要由DNA和RNA组成,它们携带了生物体遗传信息,控制生物体的发育、生长和性状。
遗传基因的表达和调控包括DNA复制、转录和翻译等过程,它们决定了生物体的遗传特征和性状。
5. 免疫学免疫系统是生物体内的一种防御系统,它能够识别和清除外来病原体,保护生物体免受感染和疾病。
免疫系统包括先天免疫和获得免疫两种方式,通过免疫细胞和抗体等进行免疫应答。
免疫系统的异常会导致免疫缺陷和自身免疫疾病等疾病的发生。
6. 能量和物质代谢生物体需要能量来维持生命活动和生长发育,能量主要来源于食物和光合作用。
物质代谢是生物体内分子的合成和降解过程,包括有氧代谢、无氧代谢和光合作用等各种代谢途径。
临床生化基础必学知识点
临床生化基础必学知识点
1. 细胞结构和功能:细胞是生物体的基本功能单位,了解细胞的结构
和功能对于理解生化过程至关重要。
2. 生物大分子:生物体内存在着多种生物大分子,包括蛋白质、核酸、多糖和脂类等。
了解这些生物大分子的结构和功能可以帮助我们理解
生物体内的生化过程。
3. 代谢与能量:代谢是生物体内发生的化学反应的总称,包括有氧和
无氧代谢。
能量是生物体维持生命活动所必需的,了解代谢和能量相
关的基本过程对于理解临床生化非常重要。
4. 酶和酶学:酶是生物体内一种特殊的蛋白质,具有催化化学反应的
能力。
了解酶的结构、功能和调节机制对于理解临床生化反应和疾病
诊断非常重要。
5. 临床指标和试验:了解一些常见的临床生化指标,如血糖、血脂、
血肌酐等,以及相应的试验方法和临床意义。
6. 肝功能与乙醇代谢:肝脏是人体内最重要的代谢器官之一,了解肝
功能和乙醇代谢对于评估肝脏疾病和酒精中毒的程度非常重要。
7. 肾功能与水电解质平衡:肾脏是人体内主要的排泄器官之一,了解
肾功能和水电解质平衡对于评估肾脏疾病和调节体内水电解质平衡非
常重要。
8. 血凝与抗凝系统:了解血液的凝固和抗凝机制,以及一些血凝和抗
凝的常见指标,对于评估凝血功能和预防血栓病非常重要。
9. 免疫和免疫学:了解免疫系统的基本原理和免疫功能对于理解免疫反应和疾病诊断非常重要。
10. 其他重要的临床生化指标和疾病标志物:了解一些与特定疾病相关的生化指标和标志物,如肿瘤标志物、炎症指标等,对于临床疾病的诊断和治疗非常重要。
生化知识点总结归纳
生化知识点总结归纳一、生物大分子结构与功能1. 蛋白质蛋白质是生物体内最丰富的大分子,具有多种功能。
蛋白质的结构包括一级、二级、三级和四级结构,通过氨基酸的序列和侧链相互作用构成。
蛋白质的功能涉及到酶的催化作用、携氧作用、运输作用、膜通道作用等多个方面。
2.核酸核酸是生物体内携带遗传信息的分子,包括DNA和RNA两种。
DNA通过碱基配对形成双螺旋结构,携带了生物体的遗传信息。
RNA参与到蛋白质的合成、修复和调控等多个生物学过程中。
3.多糖多糖是由许多单糖分子通过糖苷键连接而成的高分子化合物。
在生物界中,多糖的重要功能包括能量储存(如糖原)、结构支持(如纤维素)、细胞间质物质(如透明质酸)、免疫相关(如多糖抗原)等。
4.脂质脂质是多种异质的大分子化合物,包括脂肪酸、甘油和其他非蛋白质成分。
脂质在生物体内具有能量储存、结构支持、细胞膜结构和调节等多种重要功能。
5.酶酶是生物体内催化生物化学反应的特殊蛋白质,具有高度的专一性和高效的催化作用。
酶在生物体内参与到代谢、合成、降解、信号传导等多个生物过程中。
6.细胞膜细胞膜是细胞的外部大分子结构,具有选择性通透、信号传递和细胞识别等重要功能。
细胞膜主要由脂质双层和膜蛋白构成,参与到细胞内外物质的交换和信息传导。
二、生物代谢1. 糖代谢糖是生物体内最主要的来源能,糖代谢涉及到醣和糖原的合成、分解、糖酵解、糖异生、葡萄糖酸环等多个反应途径。
2. 脂肪代谢脂肪是生物体内的主要能量储存分子,脂肪代谢包括脂质的合成、降解和调控等多个反应。
β-氧化、脂肪酸合成、胆固醇合成等是脂肪代谢中的重要反应过程。
3. 蛋白质代谢蛋白质是生物体内最丰富的大分子结构,蛋白质代谢包括蛋白质的合成、修复、降解、调控等多个反应过程。
翻译、蛋白质合成、蛋白质降解和泛素化等是蛋白质代谢中的重要反应过程。
4. 核酸代谢核酸是生物体内携带遗传信息的大分子,核酸代谢包括核苷酸的合成、分解、修复和调控等多个反应过程。
生化知识点
绪论一、什么是生物化学?生命的化学是研究生物体内化学分子与化学反应的基础生命科学,生物化学从分子水平探讨生命现象的本质。
二、生物化学研究的主要内容1. 生物分子的结构与功能2. 物质的代谢及其调节3. 基因信息传递及其调控第1章蛋白质的结构与功能一.蛋白质的分子组成1. 蛋白质的元素组成:主要元素:碳、氢、氧、氮其他元素:磷、铁、铜、锌、锰、钴、钼、碘,等等2. 蛋白质元素组成的特点各种蛋白质的含氮量很接近,平均值为16%。
3. 氨基酸的分类非极性脂肪族氨基酸极性中性氨基酸芳香族氨基酸酸性氨基酸碱性氨基酸4. 等电点在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
5. 测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法6. 肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。
肽键化学本质是一个酰胺键。
7. 氨基酸通过肽键缩合而形成的化合物称为肽8. 肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基二、蛋白质的分子结构1. 蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。
(稳定力:肽键)蛋白质一级结构是高级结构与功能的基础2. 蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
蛋白质二级结构的主要有a-螺旋、b-折叠、b-转角、无规卷曲等四种类型。
(稳定力:氢键)a-螺旋的结构特点多肽链的主链围绕中心轴形成右手螺旋每3.6个氨基酸残基螺旋上升一圈,螺距为0.54nm 稳定力:氢键氨基酸残基的侧链在螺旋的外侧,并影响到a-螺旋的稳定性b-折叠的结构特点呈折纸状,即以每个肽单元的Ca为旋转点,依次折叠成锯齿状两条以上的肽链或一条肽链内的若干肽段的锯齿状结构可平行排列,走向可以相同,也可相反稳定力:氢键氨基酸残基的侧链基团交替地位于锯齿状结构的上下方,并影响到折叠的稳定性β-转角一般由四个氨基酸残基组成,并使肽链局部形成一个1800的回折。
生化总结知识点
生化总结知识点一、生物分子结构和性质1. 蛋白质结构和功能(1)蛋白质的组成:蛋白质由氨基酸残基通过肽键连接而成,氨基酸的种类和排列决定了蛋白质的结构和功能。
(2)蛋白质的结构:蛋白质的主要结构包括一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠)、三级结构(空间结构的折叠)、四级结构(多个多肽链的组合)。
(3)蛋白质的功能:蛋白质在生物体内具有多种功能,如酶、结构蛋白、运输蛋白、激素等。
2. 糖类的结构和功能(1)单糖、双糖和多糖:单糖是由一个糖基组成的简单糖类,如葡萄糖、果糖等;双糖是由两个糖基连接而成的复合糖类,如蔗糖、乳糖等;多糖是由多个糖基连接而成的高聚糖类,如淀粉、纤维素等。
(2)糖类的功能:糖类在生物体内具有能量供应、结构支持和细胞识别等功能。
3. 脂质的结构和功能(1)脂质的分类:脂质可分为甘油三酯、磷脂、类固醇等。
(2)脂质的结构:脂质主要由甘油酯和脂肪酸组成,磷脂还包括磷酸基和氨基醇基。
(3)脂质的功能:脂质在生物体内具有储能、细胞膜构成、激素合成等功能。
4. 核酸的结构和功能(1)核酸的组成:核酸由核苷酸组成,核苷酸由含氮碱基、糖、磷酸组成。
(2)核酸的结构:核酸分为DNA和RNA,其结构包括双螺旋和单链结构。
(3)核酸的功能:DNA负责遗传信息的传递和储存,RNA负责基因的表达和蛋白质的合成。
二、酶的特性和调控1. 酶的特性(1)酶的性质:酶是生物体内催化反应的蛋白质,具有高效、高专一性、可逆性等特点。
(2)酶的活性中心:酶的活性中心是其催化作用的关键部位,可与底物特异性结合。
(3)酶的底物与产物:酶对底物催化反应产生产物,反应受限于酶的底物浓度、酶浓度、反应条件等因素。
2. 酶的调控(1)酶的遗传调控:包括共同调控、底物诱导、反馈抑制等机制。
(2)酶的非遗传调控:包括磷酸化、去磷酸化、蛋白质降解等机制。
(3)酶与激素:激素通过调节酶的合成和活性来控制生物体内的代谢和生理功能。
生物化学知识点
生物化学知识点生化知识点概述1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级、二级、三级和四级结构、蛋白质折叠、功能域。
- 核酸:DNA和RNA的结构、碱基配对、双螺旋、RNA的多样性(mRNA, tRNA, rRNA等)。
- 糖类:单糖、多糖、糖蛋白、糖脂。
- 脂质:甘油三酯、磷脂、甾体化合物。
2. 酶学- 酶的定义、特性、命名。
- 酶促反应动力学:米氏方程、酶抑制、酶激活。
- 酶的结构与机制:活性位点、催化机制、酶的调控。
3. 代谢途径- 糖酵解:步骤、调节、能量产出。
- 柠檬酸循环(TCA循环):反应、关键酶、调节。
- 电子传递链与氧化磷酸化:电子载体、质子梯度、ATP合成。
- 脂肪酸代谢:β-氧化、脂肪酸合成、脂肪酸氧化。
- 氨基酸代谢:脱氨基作用、转氨作用、氨基酸的降解和合成。
- 核苷酸代谢:碱基合成、核苷酸合成与降解。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK通路、PI3K/Akt通路、Wnt/β-catenin通路。
5. 基因表达与调控- DNA复制:复制机制、DNA聚合酶、复制起始点。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、蛋白质合成过程。
- 基因调控:表观遗传学、非编码RNA、转录因子。
6. 分子生物学技术- 克隆技术:限制性内切酶、连接酶、载体、转化。
- PCR技术:原理、引物设计、扩增程序。
- 基因编辑:CRISPR-Cas9、TALENs、ZFNs。
- 蛋白质组学:质谱分析、蛋白质芯片、蛋白质互作。
7. 细胞结构与功能- 细胞膜:脂质双层、膜蛋白、膜流动性。
- 细胞器:线粒体、内质网、高尔基体、溶酶体。
- 细胞骨架:微丝、中间丝、微管。
- 细胞周期:G1、S、G2、M期、细胞凋亡。
8. 生物化学疾病- 代谢疾病:苯丙酮尿症、糖原贮积病。
生化主要知识点复习总结
两性电离等电点(pI 〕 在水溶液中能两性电离而成兼性离子 分子呈电中性时的溶液的pH 值 紫外吸取芳香族氨基酸特有(phe ,Tyr,Trp)构造特点:1. 含苯环: phe2.含酚羟基: Tyr3.含吲哚环: Trp4.含羟基:Ser Thr5.含硫: Cys Met6.含胍基:Arg7.含咪唑基: His一、氨基酸的理化性质:2 T二、蛋白质的空间构造定义维系键 举例一级构造 〔1〕多肽链中氨基酸〔残基〕的排列挨次。
〔primary 〔2〕是蛋白质的根本构造。
structure 〕 〔3〕是空间构造、生理功能的根底。
二级构造 多肽链中相邻氨基酸残基形成的局部肽链空(second 间构造, 其主链原子的局部空间排布,并不structure 〕 涉及氨基酸残基侧链的构像。
肽键〔二硫键〕氢键超二级构造〔super secondary structure 〕 和构造域 〔 domain 〕 超二级构造〔 模体, motif 〕 结 构 域 〔 domain 〕 蛋白质多肽链上的一些二级构造单元,有规律地聚拢起来,形成αα,βββ,βαβ, β α, α T α 等构造单个或多个超二级构造进一步集结形成在蛋白质分子空间构造中可明显区分的区域基因表达调控中的转录因子〔 具备功能〕〔锌指,亮氨酸 拉链、α α、β α〕 2脱氢酶蛋白、细胞膜受体蛋白 三级构造 在二级构造的根底上,包括相距较远的氨基酸(tertiary 残基及其侧链R 基团形成的整个多肽链的空间structure) 构象。
特点:为球状或者为椭圆状蛋白质,具有生命活性,可形成亲水外表和疏水内核。
疏水键 肌红蛋白 免疫球蛋白四级构造(quaterna rystucture)指几个各具独立三级构造的多肽链之间的相 互集结,并以特定的方式接触,排列形成更高层次的大分子空间构象亚基:1.具备三级构造,单独存在无活性2. 存在于四级构造中 亚 基 间以 盐 键相连Hb 血红蛋白一级构造 蛋白质构造与功能的关系1、一级构造不同,功能不同2、一级构造一样,功能一样3、一级构造中非关键部位氨基酸残基发生变化,不影响生物活性。
生化所有知识点总结
生化所有知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内最重要的有机分子之一,它们是构成生命的重要组成部分,广泛参与生物体的生理生化过程。
蛋白质的标准结构由氨基酸线性排列组成,其氨基酸残基之间通过肽键相连。
蛋白质的功能包括酶、激素、抗体等。
2. 核酸核酸是生物体内最重要的化学物质之一,包括DNA和RNA。
DNA携带生物体的遗传信息,RNA在蛋白质合成中起着重要的作用。
3. 多糖多糖是由许多单糖分子通过糖苷键连接而成,包括淀粉、糖原、纤维素等。
4. 生物膜生物膜是由脂质和蛋白质组成的薄膜,它存在于细胞表面,构成细胞膜和细胞器膜,起着保护细胞、控制物质进出的作用。
二、生物大分子的结构和功能1. 蛋白质的结构蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
一级结构是蛋白质的氨基酸序列,二级结构是由氢键形成的α-螺旋和β-折叠,三级结构是由蛋白质的各个区域所形成的空间结构,四级结构是由多个蛋白质相互组合形成的功能性结构。
2. 蛋白质的功能蛋白质的功能包括酶、激素、抗体、结构蛋白等。
酶是生物体内的催化剂,参与生物体内的代谢过程;激素是生物体内的调节剂,参与生物体内的内分泌系统;抗体是生物体内的免疫物质,参与生物体内的免疫反应;结构蛋白主要构成生物体内各种组织和器官。
3. 核酸的结构DNA是由脱氧核糖核酸分子组成,是生物体内传递遗传信息的重要分子;RNA是由核糖核酸分子组成,是生物体内蛋白质合成的重要分子。
4. 核酸的功能DNA的功能是存储和传递遗传信息,参与生物体内的遗传过程;RNA的功能是带有遗传信息的DNA按照一定规律转录成RNA,再依据RNA的信息合成蛋白质。
5. 多糖的结构和功能多糖是由许多单糖分子通过糖苷键连接而成的大分子,包括淀粉、糖原、纤维素等。
它们是生物体内的能量来源和结构组分。
6. 生物膜的结构和功能生物膜是由脂质和蛋白质组成的薄膜,其构成了细胞膜和细胞器膜。
生物膜的功能包括保护细胞,控制物质进出,参与细胞信号传导等。
生化课本知识点总结归纳
生化课本知识点总结归纳1. 蛋白质蛋白质是生命活动中功能最为丰富的一类大分子化合物,是细胞的主要结构和功能单位。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、抗体、激素、载体等。
在生化课本中,学生需要了解蛋白质的组成、结构和功能,以及蛋白质的合成、降解和修饰等过程。
2. 核酸核酸是生物体内的重要大分子化合物,包括DNA和RNA。
在生化课本中,学生需要了解核酸的结构、功能和代谢途径。
此外,还需要了解DNA的复制、转录和翻译等过程,以及RNA的功能和合成过程。
3. 碳水化合物碳水化合物是生物体内的主要能量来源,也是细胞壁的主要组成成分之一。
在生化课本中,学生需要了解碳水化合物的结构、分类、代谢途径和生物学意义等知识点。
4. 脂质脂质是生物体内的重要大分子化合物,包括脂肪、磷脂和固醇等。
在生化课本中,学生需要了解脂质的结构、分类、功能和代谢途径,以及脂质在生物体内的生物学意义。
5. 酶酶是生物体内的重要催化剂,可以加快化学反应的速率,降低活化能。
在生化课本中,学生需要了解酶的结构、功能、酶促反应机制、酶与底物的结合方式、酶的特性和分类等知识点。
6. 代谢途径代谢途径是生物体内大量生化反应的有机组织,包括糖代谢途径、脂质代谢途径、蛋白质代谢途径和核酸代谢途径等。
在生化课本中,学生需要了解代谢途径的整体组织结构和相互关系,以及代谢途径中各种酶的作用和调节机制等知识点。
综上所述,生化课本的知识点涉及的内容非常丰富,需要学生具备扎实的化学和生物学基础,才能更好地理解和掌握其中的知识。
通过对生化知识点的总结归纳,可以帮助学生更好地理解生物化学的基本概念和原理,从而更好地应用于相关领域的学习和研究中。
生化课本知识点总结大全
生化课本知识点总结大全一、生物大分子的结构和功能1. 蛋白质:蛋白质是生物体内最重要的大分子之一,对细胞结构和功能的维持起着关键作用。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构等,不同的结构决定了蛋白质的特定功能。
2. 脂质:脂质是生物体内的重要结构材料,也是细胞膜的主要组成部分。
脂质分为甘油三酯、磷脂和类固醇等,它们在生物体内起到能量储存、细胞保护和信号传递等重要作用。
3. 碳水化合物:碳水化合物是生物体内的重要营养物质,包括单糖、双糖和多糖等。
它们在细胞内能够提供能量,并且作为细胞壁的主要组成物质。
4. 核酸:核酸包括DNA和RNA,它们是遗传信息的储存和传递分子。
DNA是细胞的遗传物质,RNA在蛋白质合成过程中起着重要作用。
二、细胞内代谢过程1. 细胞呼吸:细胞通过细胞呼吸将有机物氧化成二氧化碳和水,产生大量的能量(ATP)。
细胞呼吸过程包括糖解、三羧酸循环和氧化磷酸化等。
2. 光合作用:植物细胞通过光合作用将二氧化碳和水合成有机物,同时释放氧气。
光合作用分为光反应和暗反应两个阶段,叶绿体是光合作用的主要场所。
3. 代谢调控:细胞代谢过程受到多种调节因素的影响,包括激素、神经系统、温度和能量等。
代谢调控保持细胞内代谢的平衡状态,确保细胞正常工作。
三、酶的作用1. 酶的作用原理:酶是生物体内的催化剂,能够加速化学反应的速率。
酶对底物具有高度专一性,能够选择性地促进底物的转化。
2. 酶的结构:酶分为蛋白质酶和核酸酶两种,它们在结构上具有特定的活性中心和底物结合位点。
酶的活性受到温度、pH值、金属离子和抑制剂等影响。
3. 酶促反应:酶促反应是一种高效、特异性和可逆的化学转化过程,酶可用于医药、工业和生化研究等领域。
四、遗传信息的传递和表达1. DNA复制:DNA复制是遗传信息传递的基础,它是双链DNA分离后每一链合成一新链的生物过程。
DNA复制由一系列酶和辅因子协同作用完成。
2. 转录:转录是DNA合成mRNA的过程,在细胞核内进行。
生化原理知识点总结大全
生化原理知识点总结大全生化原理是生物学中的一个重要分支,主要研究细胞和生命体内化学反应的机制。
生化原理的学习对于理解生物体内的代谢过程、细胞活动、蛋白质合成等具有重要意义。
下面将对生化原理中的一些重要知识点进行总结。
一、生物分子的组成生物体内包含着众多的有机分子,主要包括碳水化合物、脂肪、蛋白质和核酸等。
这些有机分子是构成生物体结构的基本单位,它们通过不同的化学反应参与了生命体内的各种代谢过程。
1. 碳水化合物碳水化合物是生物体内最主要的能量源,也是构成细胞壁和细胞膜的重要物质。
碳水化合物主要包括单糖、双糖和多糖三种类型,它们由碳、氢、氧三种元素组成。
单糖如葡萄糖、果糖等是生物体内的主要能量来源,而多糖如淀粉、纤维素等则在植物体内起着重要的结构支持和储存能量的作用。
2. 脂肪脂肪是生物体内重要的能量储备物质,它由甘油和脂肪酸组成。
脂肪主要参与体内的能量代谢和细胞膜的构建,同时也具有调节体温和保护器官的功能。
3. 蛋白质蛋白质是生物体内最重要的功能性分子,它们参与了细胞代谢、信号传导、酶的催化等多种生命过程。
蛋白质由氨基酸组成,不同的氨基酸序列决定了蛋白质的功能和结构。
4. 核酸核酸是细胞内的遗传物质,包括DNA和RNA两种类型。
DNA负责存储和传递遗传信息,而RNA则在蛋白质合成过程中起着重要的作用。
二、生物体内的代谢过程代谢是生物体内的一系列化学反应,包括物质的合成和降解两个方面。
代谢过程包括葡萄糖的分解、脂肪的合成和降解、蛋白质的合成和降解等。
1. 葡萄糖的分解葡萄糖是生物体内最主要的能量来源,它通过糖酵解和线粒体呼吸两个途径进行分解。
糖酵解是在细胞质中进行的,通过一系列的酶催化将葡萄糖分解成乳酸或乙醛和丙酮。
线粒体呼吸则是在线粒体内进行的,将葡萄糖分解成二氧化碳和水,并产生大量的ATP分子。
2. 脂肪的合成和降解脂肪主要储存在脂肪细胞中,当需要能量时脂肪会被降解成脂肪酸和甘油,经过β氧化反应生成乙酰辅酶A,最终进入线粒体内参与三羧酸循环。
生化知识点重点章节总结
生化知识点重点章节总结一、生物大分子1. 蛋白质蛋白质是生物体内最重要的类大分子,其主要功能有结构支持、运输、储存、运动、免疫、酶和激素等。
蛋白质由氨基酸组成,具有20种氨基酸,其中9种是人体无法自行合成的必需氨基酸。
蛋白质结构包括初级、二级、三级和四级结构,其中三级结构决定了蛋白质的功能。
2.核酸核酸是生物体内负责遗传信息传递和蛋白质合成的分子,包括DNA和RNA两种类型。
DNA是遗传物质的主要携带者,其分子结构是由磷酸、脱氧核糖和四种碱基组成的双螺旋结构。
RNA主要包括mRNA、tRNA和rRNA三种类型,分别参与基因转录、翻译和蛋白合成。
3.多糖多糖是由单糖分子通过糖苷键连接而成的聚合物,包括淀粉、糖原、纤维素和果胶等。
多糖在生物体内具有储存能量、结构支持、细胞识别和免疫等重要功能。
4.脂质脂质是生物体内最常见的生物大分子,包括甘油三酯、磷脂和固醇等。
脂质在细胞膜的组成和结构中发挥重要作用,同时也是储存和传递能量的重要物质。
二、酶学1.酶的作用机理酶是生物体内的生物催化剂,能够加速生物反应的速率。
酶与底物之间形成酶底物复合物,通过降低活化能来促进反应的进行。
酶的活性受到温度、pH值、离子强度和底物浓度等影响。
2.酶的分类根据酶的催化反应和底物类型,酶可以分为氧化还原酶、转移酶、水解酶、合成酶和同化酶等。
不同类型的酶对底物的选择性和催化效率有所差异。
3.酶的调控酶的活性可以受到底物浓度、反馈抑制、蛋白激酶和蛋白酶等多种因素的调控。
此外,酶的合成和降解也会对其活性产生影响。
三、代谢途径1.糖代谢糖代谢是生物体内糖类物质参与能量产生和生物合成的过程,包括糖解和糖异生两个方面。
在糖解过程中,葡萄糖通过糖酵解或线粒体氧化途径分解产生ATP,而在糖异生过程中,非糖类物质通过逆糖解途径合成葡萄糖。
2.脂肪酸代谢脂肪酸代谢包括脂质的降解和合成两个过程。
脂肪酸通过β氧化途径在线粒体内被分解成辅酶A和乙酰辅酶A,再进入三羧酸循环产生ATP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物氧化一、填空题1.呼吸链是指位于线粒体内膜的一组排列有序的递氢或递电子体构成的功能单位,又称为电子传递链。
2.真核细胞的呼吸链主要存在于线粒体内膜,而原核细胞的呼吸链存在于细胞膜。
3.呼吸链上流动的电子载体包括NAD+、CoA和细胞色素c等几种。
4.P/O值是指氧化磷酸化过程中,每消耗1摩尔氧原子与所消耗的无机磷酸的摩尔数之比,NADH的P/O 值是2.5,FADH的P/0值是1.5。
25.生物合成主要由NADPH提供还原能力。
二、是非题1.[ ×]呼吸链上电子流动的方向是从高标准氧化还原电位到低标准氧化还原电位。
2.[× ]生物氧化只有在氧气的存在下才能进行。
3.[× ]NADH和NADPH都可以直接进入呼吸链。
三、单选题1.[ B ] F1/F0ATPASE的活性中心位于A.α亚基B.β亚基C.γ亚基D.δ亚基E.ε亚基2.[ E]下列哪一种物质最不可能通过线粒体内膜?A.PiB.苹果酸C.柠檬酸D.丙酮酸E.NADH3.[C ]可作为线粒体内膜标志酶的是A.苹果酸脱氢酶B.柠檬酸合成酶C.琥珀酸脱氢酶D.单胺氧化酶E.顺乌头酸酶4.[ B ]在离体的完整的线粒体中,在有可氧化的底物的存在下,加入哪一种物质可提高电子传递和氧气摄入量?A.更多的TCA循环的酶B.ADP D.NADH E.氰化物5.[ D ]下列氧化还原系统中标准氧化还原电位最高的是A.延胡索酸/琥珀酸 C.细胞色素a D.细胞色素b E./NADH6.[ B ]下列化合物中,除了哪一种以外都含有高能磷酸键?B.ADPC.NADPHD.FMNE.磷酸烯醇式丙酮酸7.[C ]下列反应中哪一步伴随着底物水平的磷酸化反应?A.葡萄糖→葡萄糖-6-磷酸B.甘油酸-1,3-二磷酸→甘油酸-3-磷酸C.柠檬酸→α-酮戊二酸D.琥珀酸→延胡索酸E.苹果酸→草酰乙酸8.[E ]乙酰CoA彻底氧化过程中的P/O值是A.2.0B.2.5C.3.0D.3.5E.4.09.[ D ]肌肉组织中肌肉收缩所需要的大部分能量以哪种形式贮存?A.ADPB.磷酸烯醇式丙酮酸C.ATPD.cAMPE.磷酸肌酸10.[ E ]下列化合物中哪一个不是呼吸链的成员?A.CoQB.细胞色素cC.辅酶ID.FADE.肉毒碱糖代谢一、填空题1.葡萄糖在无氧条件下氧化、并产生能量的过程称为糖酵解,实际上葡萄糖有氧分解的前十步反应也与之相同。
2.甘油醛-3-磷酸脱氢酶催化的反应是EMP途径中的第一个氧化反应。
甘油酸-1,3-二磷酸分子中的磷酸基转移给ADP生成ATP,是EMP途径中的第一个产生ATP的反应4.丙酮酸脱氢酶系位于线粒体内膜上,它所催化的丙酮酸氧化脱羧是葡萄糖代谢中第一个产生CO2的反应5.TCA循环中有二次脱羧反应,分别是由异柠檬酸脱氢酶和α-酮戊二酸脱氢酶催化。
脱去的CO中的2C原子分别来自于草酰乙酸中的C1和C4。
6.糖酵解产生的NADH-H+必需依靠甘油磷酸穿梭系统或苹果酸—天冬氨酸穿梭系统才能进入线粒体,分别转变为线粒体中的NADH和FADH2二、是非题1.沿糖酵解途径简单逆行,可从丙酮酸等小分子前体物质合成葡萄糖。
×2.乙醛酸循环作为TCA循环的变体,广泛存在于动、植、微生物体内。
×3.三羧酸循环是在胞浆中进行的。
×4.甘油是糖异生的前体。
×三、选择题1.[ B ]下列途径中哪个主要发生在线粒体中?A.糖酵解途径B.三羧酸循环C.戊糖磷酸途径D.脂肪酸合成(从头合成)2.[ C ]糖原中一个糖基转变为2分子乳酸,可净得几分子ATP?A.1B.2C.3D.4E.53.在葡萄糖有氧分解中,从哪一个中间产物上第一次脱羧? C(A)α-酮戊二酸(B)草酰乙酸(C)丙酮酸(D)异柠檬酸4.有己糖激酶催化的反应的逆反应所需的酶是: C(A)果糖二磷酸酶(B)葡萄糖-6-磷酸酯酶(C)磷酸果糖激酶(D)磷酸化酶5.NADPH主要来源于哪条途径? C(A)糖酵解(B)柠檬酸循环(C)戊糖磷酸途径(D)乙醛酸循环6.三羧酸循环和有关的呼吸链反应中能产生ATP最多的步骤是? CA.柠檬酸→异柠檬酸B.异柠檬酸→α-酮戊二酸C.琥珀酸→苹果酸D.α-酮戊二酸→琥珀酸E.苹果酸→草酰乙酸四名词解释糖酵解:葡萄糖降解产生丙酮酸的过程。
糖异生:以非糖物质作为前体(除甘油)合成葡萄糖的作用呼吸链:代谢物质脱下的成对氢原子通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水的传递途径。
TCA循环:体内物质糖、脂肪或氨基酸有氧氧化的主要过程。
通过生成的乙酰辅酶A与草酰乙酸缩合生成三羧酸(柠檬酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环的过程五.问答题:1.何谓三羧酸循环?循环中有几步脱氢和脱羧?1分子乙酰辅酶经该循环氧化可生成多少分子ATP?这个途径首先是由Krebs提出,故又称Krebs循环。
由于途径的起始是一分子草酰乙酸与一分子乙酰CoA缩合成具有3个羧基的柠檬酸,后经一系列连续反应再生成一分子草酰乙酸故称为三羧酸循环或柠檬酸循环。
每循环一次有1分子乙酰CoA被氧化,包括2次脱羧和4次脱氢反应。
1分子乙酰CoA经该循环可生成12分子ATP2.磷酸戊糖途径有何生理意义?磷酸戊糖途径生成两种重要的化合物具有生理意义:①5-磷酸核糖是合成核苷酸和核酸的原料。
②该途径生成的NADpH+H+具有以下功能:A 是脂肪酸,胆固醇,类固醇激素等生物合成的供氢体。
B 是羟化酶系的辅助因子,参与药物毒物等生物转化作用。
C 是谷胱甘肽还原酶的辅酶,维持谷胱甘肽的含量,保护巯基酶活性,保护红细胞膜的完整性。
3.何谓糖酵解?糖异生与糖酵解代谢途径有那些差异?葡萄糖或糖原在无氧条件下分解为乳酸的过程为糖酵解.糖酵解糖异生关键酶己糖激酶葡萄糖—6—磷酸酯酶磷酸果糖激酶果糖二磷酸酯酶丙酮酸激酶丙酮酸羧化酶反应场所细胞的胞浆中细胞的线粒体中4.为什么说6-磷酸葡萄糖是各个代谢途径的交叉点?各类糖的氧化代谢,包括糖酵解,磷酸戊糖途径,糖原合称和分解,糖异生途径均有6—磷酸葡萄糖中间产物生成。
脂代谢一、填空题1.脂酸的β-氧化包括脱氢、水化、脱氢和硫解四个步骤。
2.含一个以上双键的不饱和脂酸的氧化,可按β-氧化途径进行,但还需另外两种酶即表异构化酶和烯脂酰异构酶。
3.酮体包括丙酮、乙酰乙酸和β-羟丁酸三种化合物。
4.脂肪酸合成过程中,乙酰CoA来源于糖或氨基酸,NADPH来源于磷酸戊糖途径途径。
二、是非题1.脂酸的氧化降解是从分子的羧基端开始的。
×2.仅仅偶数碳原子的脂酸在氧化降解时产生乙酰CoA。
×3.如果动物长期饥饿,就要动用体内的脂肪,这时分解酮体的速度大于生成酮体的速度。
×4.酮体是在肝脏中合成,在肝外利用的。
√三、单选题1.为了使长链脂酰基从胞浆转运到线粒体内进行脂酸的β-氧化,所需要的载体为:BA.柠檬酸B.肉碱C.酰基载体蛋白D.α-磷酸甘油E.CoA2.下列叙述中的哪个最正确地描述了肉碱的功能? EA.它转运中度链长的脂酸进入肠上皮细胞。
B.它转运中度链长的脂酸通过线粒体内膜。
C.它是维生素A的-个衍生物,并参与了视网膜的暗适应作用。
D.它参与了由转移酶催化的转酰基反应。
E.它是脂酸合成酶促反应中所需的一个辅酶。
3.下列关于脂酸β-氧化作用的叙述,哪个是正确的? AA.起始于脂酰CoAB.对细胞来说,没有产生有用的能量C.被肉碱抑制D.主要发生在细胞核中E.通过每次移去三碳单位而缩短脂酸链4.肝脏生成乙酰乙酸的直接前体是 DA.β-羟丁酸B.乙酰乙酰CoAC.β-羟丁酰CoAD.甲羟戊酸E.3-羟基-3-甲基戊二酸单酰CoA四名词解释脂肪酸的β-氧化:脂肪氧化分解供能的重要组成部分,长链脂肪酸在此过程中被分解,释放出大量能量,对机体能量两代谢有重要作用。
酮体: 饥饿或糖尿病时肝中脂肪酸大量氧化而产生乙酰辅酶A后缩合生成的产物。
包括乙酰乙酸、β羟丁酸及丙酮。
酰基载体蛋白:通过硫酯键结合脂肪酸合成的中间代谢物的蛋白质(原核生物)或蛋白质的结构域(真核生物)。
必需脂肪酸:不能被细胞或机体以相应需要量合成或从其膳食前体合成,而必需由膳食供给的多不饱和脂酸。
对哺乳动物而言,亚油酸与亚麻酸皆是营养必需的。
五、问答题1.生物体彻底氧化1分子软脂酸(16C)能产生多少分子ATP?16碳的饱和脂肪酸(软脂酸)彻底氧化要经过7轮β氧化,可产生8乙酰-CoA、7FADH2、7NADH,但是进入线粒体之前的激活过程需要消耗两个高能磷酸键(ATP转化成AMP)。
产生的8乙酰-CoA 进入TCA循环可生成8*10=80ATP,7FADH2可生成7*1.5=10.5ATP,7NADH可生成7*2.5=17.5ATP。
故一分子软脂酸(16碳饱和脂肪酸)总共可生成ATP数为:80+10.5+17.5-2=1062.乙酰CoA可由哪些物质代谢产生?它又有哪些代谢去路?乙酰CoA的来源:由糖、脂肪、氨基酸及酮体分解产生。
乙酰CoA的去路:进入三羧酸循环彻底氧化、合成脂肪酸、胆固醇及酮体。
氨基酸代谢一.选择题:1.生物体内氨基酸脱氨基作用的主要方式是EA、氧化脱氨基B、还原脱氨基C、直接脱氨基D、转氨基E、联合脱氨基2.与下列α氨基酸相应的α-酮酸,何者是三羧酸循环的中间产物 EA、丙氨酸B、鸟氨酸C、缬氨酸D、赖氨酸E、谷氨酸3.哺乳类动物体内氨的主要去路是 BA、渗入肠道B、在肝中合成尿素C、经肾泌氨随尿排出D、生成谷氨酰胺E、合成非必需氨基酸4.仅在肝中合成的化合物是BA、尿素B、糖原C、血浆蛋白D、胆固醇E、脂肪酸5.鸟氨酸循环中,合成尿素的第二分子氨来源于CA、游离氨B、谷氨酰胺C、天冬氨酸D、天冬酰胺E、氨基甲酰磷酸6.L-谷氨酸脱氢酶的辅酶是AA、NAD+B、FADC、FMND、TPPE、CoA-SH二.填充题(1)氨基酸脱氨基作用的主要方式有氧化脱氨、转氨、联合脱氨和非氧化脱氨等,其中最重要的脱氨方式是联合脱氨基。
(2)氨在人体内最主要的代谢去路是在肝脏生成尿素。
(3)氨基酸分解代谢产生的α-酮酸主要去向有再合成氨基酸,转变成糖、脂,彻底氧化(4)L-谷氨酸脱氨酶的辅酶是NAD+,含维生素PP(5)各种转氨酶均以磷酸吡哆醛或磷酸吡哆胺为辅酶,它们在反应中起氨基传递体的作用.三.名词解释:1)必需氨基酸:体内合成的量不能满足机体需要,必须从食物中摄取的氨基酸。
2)转氨基作用:一种α-氨基酸的α-氨基转移到一种α-酮酸上的过程。
3)一碳单位:具有一个碳原子的基团。
四.问答题:1)氨基酸脱氨基作用有哪些方式?其中哪一种最重要,为什么?主要有氧化脱氨、转氨、联合脱氨和非氧化脱氨等,以联合脱氨基最为重要。