22.3抛物线与几何图形的综合(专题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3抛物线与几何图形的综合(专题)

姓名学号评价

一.解答题(共4小题)

1.(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

2.(2016•临沂模拟)已知:如图,抛物线y=ax2+3ax+c(a>0)与y 轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.

(1)求抛物线的解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;

(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P 为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

3.(2016•广州一模)如图,在平面直角坐标系xOy中,抛物线

y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=﹣x+3恰好经过B,C两点

(1)写出点C的坐标;

(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;

(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标.

4.(2016•沈丘县二模)如图,抛物线y=﹣x2+mx+n与x轴交于A、

B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).

(1)求抛物线的表达式;

(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

一.解答题(共4小题)

1.(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C 的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

【解答】解:(1)依题意得:,

解之得:,

∴抛物线解析式为y=﹣x2﹣2x+3

∵对称轴为x=﹣1,且抛物线经过A(1,0),

∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,

得,

解之得:,

∴直线y=mx+n的解析式为y=x+3;

(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.

把x=﹣1代入直线y=x+3得,y=2,

∴M(﹣1,2),

即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);

(3)设P(﹣1,t),

又∵B(﹣3,0),C(0,3),

∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;

②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,

③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=

,t2=;

综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).

2.(2016•临沂模拟)已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

【解答】解:(1)∵B(1,0),

∴OB=1;

∵OC=3BO,

∴C(0,﹣3);(1分)

∵y=ax2+3ax+c过B(1,0)、C(0,﹣3),

∴;

解这个方程组,得

∴抛物线的解析式为:(2分)

(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N

在中,令y=0,

得方程

解这个方程,得x1=﹣4,x2=1

∴A(﹣4,0)

设直线AC的解析式为y=kx+b

解这个方程组,得

∴AC的解析式为:(3分)

∵S四边形AB C D=S△AB C+S△ADC

=

=

设,

(4分)

当x=﹣2时,DM有最大值3

此时四边形ABCD面积有最大值(5分)

(3)如图所示,

①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,

∵C(0,﹣3)

∴设P1(x,﹣3)

解得x1=0,x2=﹣3

∴P1(﹣3,﹣3);

相关文档
最新文档