结构方程模型案例汇总-共18页

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构方程模型( Structural Equation

,SEM)

Modeling

20 世纪——主流统计方法技术:因素分析回归分析

20 世纪70 年代:结构方程模型时代正式来临结构方程模型是一门基于统计分析技术的研究方法学,它主要用于解决社会科学研究中的多变量问题,用来处理复杂的多变量研究数据的探究与分析。在社会科学及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。SEM能够对抽象的概念进行估计与检定,而且能够同时进行潜在变量的估计与复杂自变量/ 因变量预测模型的参数估计。

结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济学、社会学、行为科学等领域的研究。实际上,它是计量经济学、计量社会学与计量心理学等领域的统计分析方法的综合。多元回归、因子分析和通径分析等方法都只是结构方程模型中的一种特例。

结构方程模型是利用联立方程组求解,它没有很严格的假定限制条件,同时允许自变量和因变量存在测量误差。在许多科学领域的研究中,有些变量并不能直接测量。实际上,这些变量基本上是人们为了理解和研究某类目的而建立的假设概念,对于它们并不存在直接测量的操作方法。人们可以找到一些可观察的变量作为这些潜在变量的“标识”,然而这些潜在变量的观察标识总是包含了大量的测量误差。在统计分析中,即使是对那些可以测量的变量,也总是不断受到测量误差问题的侵扰。自变量测量误差的发生会导致常规回归模型参数估计产生偏差。虽然传统的因子分析允许对潜在变量设立多元标识,也可处理测量误差,但是,它不能分析因子之间的关系。只有结构方程模型即能够使研究人员在分析中处理测量误差,又可分析潜在变量之间的结构关系。

简单而言,与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。”

目前,已经有多种软件可以处理SEM,包括:LISREL,AMOS, EQS, Mplus.

结构方程模型包括测量方程(LV和MV之间关系的方程,外部关系)和结构方程

(LV之间关系的方程,内部关系),以ACSI模型为例,具体形式如下:

测量方程 y =Λyη+εy , x =Λxξ+εx=(1 )

结构方程 η=Bη+Гξ+ζ 或 (I- Β)η =Гξ+ζ (2) 其中,η和ξ分别是内生 LV 和外生 LV ,y 和x 分别是和的 MV ,Λx 和Λy 是载荷矩阵,

Β和Г 是路径系数矩阵, ε和ζ是残差。

三种分析方法对比

线性相关分析: 线性相关分析指出两个随机变量之间的统计联

系。 等,没有因变量和自变量之分。因此相关系数不能反映单指标与总体之间的因果关系

测量模式

两个变量地位平

线性回归分析:线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为

共线性的原因,导致出现单项指标与总体出现负相关等无法解释的数据分析结果。

结构方程模型分结构方程模型是一种建立、估计和检验因果关系模型的

模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模

型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对

总体的作用和单项指标间的相互关系。

结构方程模型假设条件

⑴合理的样本量(James Stevens 的Applied Multivariate Statistics for the Social Sciences 一书中说平均一个自变量大约需要15 个case ;Bentler and Chou (1987)

说平均一个估计参数需要5 个case 就差不多了,但前提是数据质量非常好;这两种说法基本上是等价的;而Loehlin (1992)在进行蒙特卡罗模拟之后发现对于包含2~4 个因子的模型,至少需要100 个case ,当然200 更好;小样本量容易导致模型计算时收敛的失败进而影响到参数估计;特别要注意的是当数据质量不好比如不服从正态分布或者受到污染时,更需要大的样本量)

⑵连续的正态内生变量(注意一种表面不连续的特例:underlying

continuous ;对于内生变量的分布,理想情况是联合多元正态分布即JMVN)

⑶模型识别(识别方程)(比较有多少可用的输入和有多少需估计的参数;模型不

可识别会带来参数估计的失败)

⑷完整的数据或者对不完整数据的适当处理(对于缺失值的处理,一般的统计软件给出的删除方式选项是pairwise 和listwise ,然而这又是一对普遍矛盾:

pairwise 式的删除虽然估计到尽量减少数据的损失,但会导致协方差阵或者相关系数阵的阶数n 参差不齐从而为模型拟合带来巨大困难,甚至导致无法得出参数估计;listwise 不会有pairwise 的问题,因为凡是遇到case 中有缺失值那么该case 直接被全部删除,但是又带来了数据信息量利用不足的问题——全杀了吧,难免有冤枉的;不杀吧,又难免影

响整体局势)

⑸模型的说明和因果关系的理论基础(实际上就是假设检验的逻辑——你只能说你

的模型不能拒绝,而不能下定论说你的模型可以被接受)

结构方程模型的技术特性:

1.SEM具有理论先验性

2.SEM同时处理测量与分析问题

3.SEM以协方差的运用为核心,亦可处理平均数估计

4.SEM适用于大样本的分析——一般而言,大于200 以上的样本,才可称得上是

个中型样本。

5.SEM包含了许多不同的统计技术。

6.SEM重视多重统计指标的运用

结构方程模型的实施步骤

⑴模型设定。研究者根据先前的理论以及已有的知识,通过推论和假设形成一个关于组变量之间相互关系(常常是因果关系)的模型。这个模型也可以用路径表明制定变量之间的因果联系。

⑵模型识别。模型识别时设定SEM模型时的一个基本考虑。只有建设的模型具有识别性,才能得到系统各个自由参数的唯一估计值。其中的基本规则是,模型的自由参数不能够多于观察数据的方差和协方差总数。

⑶模型估计。SEM模型的基本假设是观察变量的反差、协方差矩阵是一套参数的函数。把固定参数之和自由参数的估计带入结构方程,推导方差协方差矩阵Σ ,使每一个元素尽可能接近于样本中观察变量的方差协方差矩阵S中的相应元素。也就是,使Σ与S 之

间的差异最小化。在参数估计的数学运算方法中,最常用的是最大似然法(ML)和广义最小二乘法(GLS)。

⑷模型评价。在已有的证据与理论范围内,考察提出的模型拟合样本数据的程度。模型的总体拟合程度的测量指标主要有χ2检验、拟合优度指数(GFI)、校正的拟合优度指数(A

GFI)、均方根残差(RMR)等。关于模型每个参数估计值的评价可以用“ t ”值。

⑸模型修正。模型修正是为了改进初始模型的适合程度。当尝试性初始模型出现不能拟合观察数据的情况(该模型被数据拒绝)时,就需要将模型进行修正,再用同一组观察数据来进行检验。

相关文档
最新文档