导数解决含参恒成立问题(多变量问题).
如何运用导数解决含参函数问题的研究
如何运用导数解决含参函数问题的研究作者:黄清鹏来源:《中学课程辅导·教师通讯》2018年第02期【内容摘要】导数的学习和解决方法的掌握,不仅是高中数学重要的组成部分,在高考中也是作为考试的考查重点。
含参函数问题主要是以函数为载体,运用导数工具来解决这一类问题,这是一种方法,主要是考查函数性质,促进学生深入研究和分析导数和更好地应用导数。
因此,运用导数解决含参函数问题,必须把握好最近几年函数命题的规律,深入了解和分析导数的性质和应用,结合试题特点和命题趋向的同时,要充分运用导数来解决含参函数问题。
要把握好导数的性质,根据导数来求出含参数函数问题中参数的取值范围,这种求存在性问题是常考的范围,也是常规的解题思路,通过等价转化将复杂的数学思想进行简单转化,有利于将学生不熟悉、复杂的问题简单化,进而变为他们熟悉、规范和简单的含参函数问题。
运用导数解决含参函数问题,对提高学生对导数性质认识和创新方法与思路去解决含参函数问题具有极强的指导意义。
【关键词】含参函数问题导数数学历年高考试题中常常出现含参函数问题,这考察的不仅是学生对含参函数问题的解决能力,也是学生解题思路的一种培养。
常用的解题方法就是导数求解法。
实际上,学生对这类含参函数问题比较头疼和恐惧,因为此类问题涉及的数学知识内容多、面广,具有极强的综合性。
学生面对这类问题时,不知道如何确定参数范围,也不知道所包括的函数关系或不等关系是怎么来的。
含参函数问题以函数为载体,对学生函数性质及导数应用的考察要求较为严格,也是近些年高考数学命题的趋向。
实际上,运用导数解决含参数函数问题,求参数取值范围,作为探索性问题对于数学解题来说非常常见,通过等价转化来把握住数学思想,就可以将这些复杂的数学问题转化成为学生熟悉的、规范的和简单的问题。
运用导数解决含参函数问题,就是基于不等式的结构特征,把握好含参数不等式的存在性,适当构造函数,来探讨含参函数的最值,利用导数就可以求出范围。
导数在数学含参问题中的应用
导数在数学含参问题中的应用新课程利用导数解决含参问题或恒成立问题,导数是分析和解决问题的有效工具。
但学生在运用导数解决含参的问题时,往往会束手无措,特别是对其中的分离参数无法纯粹的分离出来感到苦恼。
其实这一部分主要就是根据函数的单调性求出函数在一定条件下的最值,进而解决恒成立问题,含参数问题既是高中教学的重点和难点,又是历年高考的热点。
本文从常见题型对含参函数问题进行了分析与研究,着重介绍常见题型利用导数解决这些问题的基本策略。
标签:导数函数的单调性参数的取值范围恒成立导数的思想最初是由法国的数学家费马(Fermat)为研究极值问题而引入的,但随着人们对导数概念和性质的进一步认识和研究便发现它的引出和定义始终贯穿着函数思想。
新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强它在解决函数的含参问题上带来了很大的便利。
以函数为载体,以导数为工具,运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。
解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。
解决的主要途径是将含参数不等式的存在性或恒成立问题根据其不等式的结构特征,恰当地构造函数,等价转化为含参函数的最值讨论。
这也是最近几年高考在命题是在函数与导数交汇试题的显著特点和命题趋向。
由于这类题目涉及的知识面广,综合性强,不少考生在处理这类问题时,不知道确定参数范围的函数关系或不等关系从何而来,以至于处于无从下手的盲区,希望下面一些拙见能对一些考生的备考有所作用。
一、含参函数的单调性的问题导数的运算,导数与函数单调性的关系,利用导数的性质对参数进行分类讨论综合运用化归与转化的思想。
【例1】已知函数f(x)=lnx-a2x2+ax(a∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.解析:(1)当a=1时,f(x)=lnx-x2+x,其定义域是(0,+∞),f′(x)= -2x+1=令f′(x)=0,即- =0,解得x=- 或x=1∵x>0,∴x=1.当00;当x>1时,f′(x)0,∴f(x)在区间(1,+∞)上为增函数,不合题意.②当a>0时,f′(x)≤0(x>0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥,此时f(x)的单调递减区间为.③当a0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥- ,此时f(x)的单调递减区间为得a≤- .综上,实数a的取值范围是∪[1,+∞).【例2】已知函数f(x)= -2x2+lnx,其中a为常数.(1)若a=1,求函数f(x)的单调区间;(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.解析:(1)若a=1,则f(x)=3x-2x2+lnx的定义域为(0,+∞),f′(x)= -4x+3= = (x>0).当x∈(0,1),f′(x)>0时,函数f(x)=3x-2x2+lnx单调递增.当x∈(1,+∞),f′(x)<0时,函数f(x)=3x-2x2+lnx单调递减.故函数f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)f′(x)= -4x+ ,若函数f(x)在区间[1,2]上为单调函数,即在[1,2]上,f′(x)= -4x+ ≥0或f′(x)= -4x+ ≤0,即-4x+ ≥0或-4x+ ≤0在[1,2]上恒成立.即≥4x- 或≤4x- .令h(x)=4x- ,因为函数h(x)在[1,2]上单调递增,所以≥h(2)或≤h(1),即≥ 或≤3,解得a<0或0<a≤ 或a≥1.二、含参函数中的恒成立问题可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离或半分离(无法纯粹的分离),得到函数关系,从而使这种具有函数背景的范围问题迎刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。
利用导数解决恒成立问题
恒成立问题常见处理恒成立问题的三种方法:第一种:参变分离法求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0),一般地:m x f >)(恒成立⇔m x f >min )(;m x f <)(恒成立⇔m x f <max )(;第二种:变更主元法:(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 第三种:构造函数求最值 题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型,或直接求最值。
例1. 设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--; (1)若()y f x =在区间(]3,0上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.例 2.已知函数32()f x x ax =+图象上一点P(1,b)处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (1)求,a b 的值;(2)当[1,4]x ∈-时,求()f x 的值域;(3)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
例3.(2014陕西)设函数()ln ,m f x x m R x=+∈. (1)当m e =(e 为自然对数的底数)时,求()f x 的最小值;(2).讨论函数()'()3x g x f x =-零点的个数(3)若对任意()()0,1f b f a b a b a ->><-恒成立,求m 的取值范围.练习1.已知函数f (x )=|x |,g (x )=﹣|x ﹣4|+m(Ⅰ)解关于x 的不等式g [f (x )]+2﹣m >0;(Ⅱ)若函数f (x )的图象恒在函数g (x )图象的上方,求实数m 的取值范围.2.已知函数f (x )=lnx ﹣.(Ⅰ)若a >0,试判断f (x )在定义域内的单调性;(Ⅱ)若f (x )在[1,e ]上的最小值为,求实数a 的值;(Ⅲ)若f (x )<x 2在(1,+∞)上恒成立,求实数a 的取值范围.3.已知f (x )=xlnx ﹣ax ,g (x )=﹣x 2﹣2.(1)当a=﹣1时,求f (x )的单调区间;(2)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:对一切x∈(0,+∞),都有成立.4.设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)设F(x)=f(x)+ax2+ax,问F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)设A(x1,y1),B(x2,y2)是函数g(x)=f(x)+ax图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为为k.证明:k>g′(x0).5.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.6.已知f(x)=+nlnx(m,n为常数)在x=1处的切线为x+y﹣2=0.(1)求y=f(x)的单调区间;(2)若任意实数x∈[,1],使得对任意的t∈[,2]上恒有f(x)≥t3﹣t2﹣2at+2成立,求实数a的取值范围.7.已知函数f(x)=e x(其中e是自然数的底数),g(x)=x2+ax+1,a∈R.(1)记函数F(x)=f(x)•g(x),且a>0,求F(x)的单调增区间;(2)若对任意x1,x2∈[0,2],x1≠x2,均有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数a的取值范围.8.已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.(Ⅰ)求函数f(x)的最小值;(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅲ)证明:对一切x∈(0,+∞),都有成立.9.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.。
导数在高考不等式中应用的新视角——“恒成立”问题与“存在成立”问题的区别及解决办法
. 一 C )
<2恒成 立 , c 求 的取值
c
范围 .
2 c三 <<
.
2
错由 得=卜) 解题 × ,兰< :设 4(I 2 l” 化
为
防范策 略 :这是一类极易 出现 的错误 ,教 学中 应尽量从直观出发 ,列举具体实例 ,让 学生感知错
1 误 用逻辑 关 系 0
()当k 2 2 = 时, 应有0 c 姜; <<
() 当 k=3时 ,应 有 c 或 c ; 3 < > /
学 生解 题 时误 用 逻 辑 关 系导 致 谬 误 的现 象 也 很 常 见 ,而且 这种 错误 不 易被 发现 .
例1 o各项均为正数的等比数列 { } a ,其前 项
福建中学数 学
() 1若对任 意 x∈_,3 , [3 ] 都有 f() gx 成立 , x ()
求 k的取 值 范 围 ;
2 1 年第 4期 02
I ( = ( =a 1 f 1 一, ) )
lm () () e + e fa X =f e=a 一 a. x
1 命题 引入 命题 l①定义在 区间 [ 】 a 上的函数 f x 满足 ,b ( )
fx ( k ( ) k为 常 数 ) 恒 成 立
∈[,b ; a ]
厂 呲() , k
2典例剖析 例 1 已 知 函 数 / x = x + 6 — , () 8。 1x k
gx =2 + ,其 中 k为参 数 . () x +5 4
C >
(成或 4 ̄ ( 立c-/…2 ) <6/ )  ̄
— —
成立 .
导数 在高考不等式 中应用 的新视 角
导数分类讨论解决含参问题(三种常见类型)
导数中分类讨论的三种常见类型高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径,而所谓分类讨论,就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释.几乎所有的高中生都对分类讨论思想有所了解,而能正确运用分类讨论思想解决问题的不到一半,不能运用分类讨论思想解决具体问题的主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类,下面根据导数中3种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论.类型一:导函数根的大小比较实例1:求函数()321132a f x x x ax a -=+--,x R ∈的单调区间.分析:对于三次或三次以上的函数求单调区间,基本上都是用求导法,所以对函数()321132a f x x x ax a -=+--进行求导可以得到导函数()()'21f x x a x a =+--,观察可知导函数可以因式分解为()()()()'211f x x a x a x a x =+--=-+,由此可知方程()'0f x =有两个实根1x a =,21x =-,由于a 的范围未知,要讨论函数()321132a f x x x ax a -=+--的单调性,需要讨论两个根的大小,所以这里分1a <-,1a =-,1a >-三种情况进行讨论:当1a <-时,()f x ,()'f x 随x 的变化情况如下:x (),a -∞a(),1a --1()1,-+∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -.当1a =-时,()'0f x ≥在R 上恒成立,所以函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间.当1a >-时,()f x ,()'f x 随x 的变化情况如下:x (),1-∞--1()1,a -a(),a +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.综上所述,当1a <-时,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -;当1a =-时,函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当1a >-时,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.点评:这道题之所以要分情况讨论,是因为导函数两个根的大小不确定,而两根的大小又会影响到原函数的单调区间,而由于a R ∈,所以要分1a <-,1a =-,1a >-三种情况,这里注意不能漏了1a =-的情况.类型二:导函数的根的存在性讨论实例2:求函数()32f x x ax x =++的单调区间分析:这道题跟实例1一样,可以用求导法讨论单调区间,对函数()32f x x ax x =++进行求导可以得到导函数()'2321f x x ax =++,观察可以发现,该导函数无法因式分解,故无法确定方程23210x ax ++=是否有实根,因此首先得考虑一下方程是否有解,所以我们可以求出根判别式2412a ∆=-,若24120a ∆=-<即a <<23210x ax ++=没有实根,即()'0f x >在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=-=即a =,方程23210x ax ++=有两个相等的实根123ax x ==-,即()'0f x ≥在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=->即a a <>,则方程23210x ax ++=有两个不同实根,由求根公式可解得13a x --=,23a x -+=,显然12x x <此时()f x ,()'f x 随x 的变化情况如下:x ()1,x -∞1x ()12,x x 2x ()2,x +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增综上所述,当a ≤≤时,()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当a a <>时,()f x 的单调递增区间为,3a ⎛---∞ ⎪⎝⎭和,3a ⎛⎫-++∞ ⎪ ⎪⎝⎭,单调递减区间为,33a a ⎛---+ ⎝⎭点评:实例2和实例1都是求三次函数的单调区间,但是两道题分类讨论的情况不一样,实例2主要是因为导函数所对应的方程根的情况未知,所以需要讨论根的存在性问题,而实例1是因为导函数所对应的方程可以因式分解,所以可以确定方程的根肯定是存在的,因此不用再讨论,而需要讨论的是求出来两个根的大小关系,实例2则相反,实例2在方程有两个不同实根的情况下求出来的两根大小已知,所以不用再讨论。
利用导数研究双变量恒成立问题 教案-2022届高三数学二轮复习微专题复习
导数二轮复习微专题利用导数研究双变量恒成立问题作为进一步学习数学和其他自然学科的基础,导数在数学教学体系内具有重要的地位和广泛的应用。
近些年来,导数内容受到广大教育工作者的广泛关注,并成为命题热点。
作为分析问题和解决问题的有力工具,导数能够与函数、不等式、解析几何等串联起来,所以,将传统内容与导数内容相结合,在知识网络的交汇处设计问题成为趋势。
这样的命题思路不仅能有效检验学生的基础功底,强化能力考察力度,同时也能使试题具有更为广泛的实践意义。
因此,在实际教学过程中,我们要突出导数的重要性,强化学生运用导数知识解决数学问题的意识。
一、2022年高考命题的要求2022高考命题优化情境设计,增强试题开放性、灵活性,充分发挥高考命题的育人功能和积极导向作用,引导减少死记硬背和“机械刷题”现象。
并坚持把创新思维和学习能力考查渗透到命题全过程,落实“重思维、重应用、重创新”的命题要求,使高考由“解答试题”转向“解决问题”。
二、2022年高考命题的十项原则1.方向明确,立意鲜明,情景新颖,贴近实际。
2.考查基础,变换情景,设问科学,注重创新。
3.入易出难,路多口小,层层设卡,步步有难。
4.材料在外,答案在内,考查思维,体现能力。
5.体现国情,公平公正,以生考熟,直击软肋。
6.起点很高,高屋建瓴,落点较低,回归体系。
7.重点必考,主干多考,次点轮考,补点选考。
8.共性好考,个性难考,试题开放,探究创新。
9.小口切入,深入挖掘,小中见大,思维穿透10.掌握理论,学以致用,学科价值,重在应用。
三、部分高考压轴题函数模型年份 函数模型考查内容及思想方法 2013Ⅱ理)ln()(m x e x f x +-=证明不等式 2014Ⅱ理 xbe x ae x f x x1ln )(-+=证明不等式 2015Ⅱ理 2()mx f x e x mx =+- 双变量恒成立问题2016Ⅱ理 2)1()2()(-+-=x a e x x f x零点求参,双变量问题,极值点偏移问题 2017Ⅱ理 x e a ae x f x x --+=)2()(2 讨论单调性 零点求参 2017Ⅱ理 )ln ()(x a ax x x f --=证明极值范围 2018Ⅱ理 x a x xx f ln 1)(+-=证明双变量不等式 2018Ⅱ理 2)(ax e x f x -= 证明不等式,零点2019Ⅰ理 ()sin ln(1)f x x x =-+证明函数零点个数 2019Ⅱ理 ()11ln x f x x x -=-+ 证明零点个数,证明切线相等 2019Ⅱ 理 32()2f x x ax b=-+利用最值求参数2020Ⅱ理 121)(32+≥-+=x x ax e x f x 单调性,恒成立求参 2020Ⅱ 理 x x x f 2sin sin )(2= .33()8f x ≤最值,证明不等式 2020 Ⅱ 理 3()f x x bx c=++切线,零点的范围 2021新课标Ⅱf (x )=x(1−1nx)双变量恒成立问题,极值点偏移问题思考1:基本元素 ,ln ,,ln ,x x xe x e x x 多项式函数 思考2:基本问题和应对策略1.切线问题:注意两类切线问题。
专题04 利用导数解决恒成立与存在性问题(解析版)
专题04 利用导数解决恒成立与存在性问题常见考点考点一 恒成立问题典例1.已知函数()e xf x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-.(1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.【答案】(1)1a =-,1b =- (2)()0,e 1- 【解析】 【分析】(1)求导,由切线为y a b =-,可得(0)10(0)1f a f b a b=+=⎧⎨=+=-'⎩,运算即得解;(2)参变分离可得e 1x m x <-,令()e 1xg x x=-,求导分析单调性,可得()g x 的最小值为()1e 1g =-,分析即得解 (1)()e x f x ax b =++可得()e x f x a '=+,因为曲线()y f x =在点()()0,0f 处的切线为y a b =-.所以(0)10(0)1f a f b a b =+=⎧⎨=+=-'⎩,解得1a =-,1b =-.(2)由(1)知()e 1xf x x =--,∵不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴e xx mx ->在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,即e1xm x<-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立.令()e 1xg x x=-,∵()()2e 1x x g x x ='-,当()()2e 10x x g x x '-==时,解得1x =. ∴当11ex <<时,()0g x '<,()g x 为减函数,当1e x <≤时,()0g x '>,()g x 为增函数,∴()g x 的最小值为()1e 1g =-,∴e 1m <-,∴正实数m 的取值范围为()0,e 1-. 变式1-1.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.【答案】(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造 函数()h =ln 1x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l x x x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()h =ln 1,0x x x x +-∈+∞,则(),1=10h x x+>,所以()h x 在()0+∞上单调递增,又()h 1ln1110=+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾.所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()11x t x x xx +⎛⎫'=--=- ⎪⎝⎭221110e e ,011e ex x x +∴<≤≤∴<+≤≤+,所以()0t x '<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为,()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明, 对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.变式1-2.已知函数()ln(1)xf x e a x =++.(1)当1a =-时,求函数()f x 的单调区间; (2)若()1f x ≥恒成立,求实数a 的值.【答案】(1)递减区间为(1,0)-,递增区间为(0,)+∞; (2)1-.【解析】 【分析】(1)当1a =-时,求得()11x x xe e f x x +-'=+,令()1x xg x xe e =+-,得到()0g x '>,且()00g =,即可求得函数的单调区间;(2)求得()(1)1x x e a f x x ++'=+,设()(1)xg x x e a =++,当0a ≥时,不满足题意;当0a <时,得到()g x 单调递增,设()0g x =有唯一的零点0x ,使得00(1)0xx e a ++=,结合函数单调性得到()()00min 01[(1)1]ln()ln()1f x f x a x a a a a a x ==-++-+-≥-+-+,再令()ln(),(,0)h a a a a a =-+-∈-∞,结合单调性求得()1f x ≤,即可求解. (1)解:当1a =-时,函数()ln(1)xf x e x =-+,其定义域为(1,)-+∞可得()1111x x xxe e f x e x x +-'=-=++, 令()1x x g x xe e =+-,可得()(2)0xg x e x '=+>,()g x 单调递增,又由()00g =,当(1,0)x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当,()0x ∈+∞时,()0g x '>,可得()0f x '>,()f x 单调递增, 所以()f x 的递减区间为(1,0)-,递增区间为(0,)+∞. (2)解:由()ln(1)xf x e a x =++,可得()(1)11x xa x e a f x e x x ++'=+=++, 设()(1)xg x x e a =++,当0a ≥时,()0g x >,可得()0f x '>,()f x 单调递增, 当1x →-时,()f x →-∞,不满足题意;当0a <时,由()(2)0xg x x e '=+>,()g x 单调递增,设()0g x =有唯一的零点0x ,即00(1)0xx e a ++=,当0(1,)x x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当0(,)x x ∈+∞时,()0g x '>,可得()0f x '<,()f x 单调递增,所以()()000000min ln(1)lnln()x xx x af x f x e a x e a e a a ax e-==++=+=+-- 00001ln()()ln()11a ax a a a x a a x x =--+-=-++-++ 001[(1)1]ln()1a x a a x =-++-+-+ 因为010x +>,可得001121x x ++≥+, 当且仅当00x =时,等号成立,所以001(1)111x x ++-≥+,所以001[(1)1]ln()ln()1a x a a a a a x -++-+-≥-+-+,因为()1f x ≥恒成立,即ln()1a a a -+-≥恒成立,令()ln(),(,0)h a a a a a =-+-∈-∞,可得()1ln()1ln()h a a a '=-+-+=-, 当(,1)a ∈-∞-时,()0h a '>,()h a 单调递增; 当(1,0)a ∈-时,()0h a '<,()h a 单调递减, 所以()()11h a h ≤-=,即()1f x ≤,又由()1f x ≥恒成立,即()ln()0h a a a a =-+-=,所以1a =-.变式1-3.已知函数()2ln x x f x ax x =--(a R ∈)恰有两个极值点12,x x 且12x x <.(1)求实数a 的取值范围;(2)若不等式122ln ln 2x x λλ+>+恒成立,求实数λ的取值范围. 【答案】(1)10,2e ⎛⎫ ⎪⎝⎭(2)[)2,+∞ 【解析】 【分析】(1)对()f x 求导后分析其导数的零点(2)将12,x x 代入后消去a ,然后为不等式恒成立问题,换元后分类讨论最值 (1)∵()'ln 2f x x ax =-,依题意得12,x x 为方程ln 20x ax -=的两不等正实数根, ∴0a ≠,ln 2x a x =,令()ln x g x x=,()21ln 'xg x x -=, 当()0,e x ∈时,()'0g x >;当()e,x ∈+∞时,()'0g x <,∴()g x 在(0,e)上单调递增,在()e,+∞上单调递减,且()10g =,当e x >时,()0g x >, ∴()102e ea g <<=,解得102e a <<,故实数a 的取值范围是10,2e ⎛⎫ ⎪⎝⎭; (2)由(1)得11ln 2x ax =,22ln 2x ax =,两式相减得()1212ln ln 2x x a x x -=-,1212ln ln 2x x a x x -=-, ()12122ln ln 2222x x a x x λλλλ+>+⇔+>+()()1112122211222ln2ln ln 221x x x x x x x x x x x x λλλλ⎛⎫+ ⎪+-⎝⎭⇔>+⇔>+--, ∵120x x <<,令()120,1x t x =∈,∴()2ln 21t t t λλ+>+-,即()()()2ln 210t t t λλ+-+-<, 令()()()()2ln 21h t t t t λλ=+-+-,则需满足()0h t <在()0,1上恒成立, ∵()'2ln h t t tλλ=+-,令()2ln I t t tλλ=+-,则()2222't I t t t tλλ-=-=(()0,1t ∈), ①当2λ≥时,()'0I t <,∴()'h t 在()0,1上单调递减,∴()()''10h t h >=, ∴()h t 在(0,1)上单调递增,∴()()10h t h <=,符合题意,②当0λ≤时,()'0I t >,∴()'h t 在()0,1上单调递增,∴()()''10h t h <=, ∴()h t 在()0,1上单调递减,∴()()10h t h >=,不符合题意, ③当02λ<<时,()'012I t t λ>⇔<<,∴()'h t 在,12λ⎛⎫⎪⎝⎭上单调递增,∴()()''10h t h <=, ∴()h t 在,12λ⎛⎫⎪⎝⎭上单调递减,∴()()10h t h >=,不符合题意,综上所述,实数λ的取值范围是[)2,+∞.考点二 存在性问题典例2.已知函数2()(2)ln (0)f x ax a x x a =-++>. (1)讨论函数()f x 的单调性;(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,求实数a 的取值范围. 【答案】(1)答案见解析 (2)10,e ⎛⎤⎥⎝⎦ 【解析】 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论对a 进行分类讨论,由min e ()f x ≤-,结合构造函数法以及导数来求得a 的取值范围. (1)已知函数2()(2)ln f x ax a x x =-++,定义域为(0,)+∞,212(2)1(1)(21)()2(2)ax a x ax x f x ax a x x x-++--=-++==',①当02a <<时,11>,()f x 在110,,,2a ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减; ②当2a =时,2142()0x f x x⎛⎫- ⎪⎝⎭'=≥,函数()f x 在(0,)+∞单调递增; ③当2a >时,112a <,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减. 综上所述,02a <<时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫⎪⎝⎭上单调递减;2a =时,()f x 在(0,)+∞单调递增;2a >时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减.(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,即使得min e ()f x ≤-.由(1),可知当1a ≥时,()f x 在[1,)+∞上单调递增,()min (1)2f f x ==-, 不满足min e ()f x ≤-; 当01a <<时,11a>min 11()1ln f x f a a a ⎛⎫==--- ⎪⎝⎭,所以e 11ln a a ---≤-,即1ln 1e a a +≥-,令1()ln (01)g x x x x =+<<,∴22111()0x g x x x x-='=-<, ∴1()ln g x x x=+在(0,1)上单调递减,又∵1e 1e g ⎛⎫=- ⎪⎝⎭,由1ln 1e a a +≥-,得10ea <≤.综上,实数a 的取值范围为10,e ⎛⎤⎥⎝⎦.变式2-1.已知函数()()ln 11xf x x x =>-.(1)判断函数()f x 的单调性;(2)已知0λ>,若存在()1,x ∈+∞时使不等式()()1eln 0xx f x λ--≥成立,求λ的取值范围.【答案】(1)函数()y f x =在区间()1,+∞上单调递减; (2)1(0,]e. 【解析】 【分析】(1)求出函数()f x 的导数()f x ',判断()f x '的符号作答.(2)对给定不等式作等价变形,借助(1)脱去法则“f ”,分离参数构造函数,再求出函数最值作答. (1) 函数ln 1xf xx ,1x >,求导得:()()211ln 1x x f x x --'=-,令()11ln g x x x =--,1x >,则()210xg x x-'=<,即函数()y g x =在区间()1,+∞单调递减, 而()10g =,则当()1,x ∈+∞时,()(1)0g x g <=,即()0f x '<, 所以函数()y f x =在区间()1,+∞上单调递减. (2)当1x >时ln 0x >,()()()()()ln 1eln 0e e 1xxxxx f x f f f x x λλλ--≥⇔≥⇔≥-, 因0λ>且1x >,则()e 1,xλ∈+∞,由(1)知,()y f x =在()1,+∞单调递减,则存在()1,x ∈+∞,不等式()()ln e e ln x xxf f x x x x xλλλλ≥⇔≤⇔≤⇔≤成立, 令()()ln 1x x x x ϕ=>,则()21ln xx xϕ-'=,当()1,e x ∈时,()0x ϕ'>,当()e,x ∈+∞时,()0x ϕ'<, 因此,函数()x ϕ在()1,e 上单调递增,在()e,+∞上单调递减,()()max 1e e x ϕϕ==,于是得10eλ<≤, 所以λ的取值范围是1(0,]e. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,再利用函数的导数探讨解决问题.变式2-2.已知函数()()222ln f x x a x =++.(1)当5a =-时,求()f x 的单调区间; (2)若存在[]2,e x ∈,使得()2242a f x x x x+->+成立,求实数a 的取值范围. 【答案】(1)单调递减区间为()0,2,单调递增区间为()2,+∞;(2)2e e 2,e 1∞⎛⎫-++⎪-⎝⎭. 【解析】 【分析】(1)当5a =-时,()28ln f x x x =-,得出()f x 的定义域并对()f x 进行求导,利用导数研究函数的单调性,即可得出()f x 的单调区间; (2)将题意等价于()24222ln 0a x a x x ++-+<在[]2,e 内有解,设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,对()h x 进行求导,令()0h x '=,得出2x a =+,分类讨论2a +与区间[]2,e 的关系,并利用导数研究函数()h x 的单调和最小值,结合()min 0h x <,从而得出实数a 的取值范围. (1)解:当5a =-时,()28ln f x x x =-,可知()f x 的定义域为()0,+∞,则()28282,0x f x x x x x-'=-=>, 可知当()0,2x ∈时,0f x ;当()2,x ∈+∞时,0fx ;所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞. (2)解:由题可知,存在[]2,e x ∈,使得()2242a f x x x x+->+成立, 等价于()24222ln 0a x a x x++-+<在[]2,e 内有解, 可设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <, ()()()()()()()22222122422222242x x a a a x a x a h x x xx x ⎡⎤+-+++-+-+⎣⎦∴=--==',令()0h x '=,即()()120x x a ⎡⎤+-+=⎣⎦,解得:2x a =+或1x =-(舍去), 当2e a +≥,即e 2a ≥-时,()0h x '<,()h x 在[]2,e 上单调递减,()()min24e 2e+220e a h x h a +∴==--<,得2e e 2e 1a -+>-,又2e e 2e 2e 1-+>--,所以2e e 2e 1a -+>-; 当22a +≤时,即0a ≤时,()0h x '>,()h x 在[]2,e 上单调递增,()()()min 2622ln 20h x h a a ∴==+-+<,得6ln 40ln 41a ->>-,不合题意; 当22e a <+<,即0e 2a <<-时,则()h x 在[]2,2a +上单调递减,在[]2,e a +上单调递增,()()()()min 22622ln 2h x h a a a a ∴=+=+-++,()ln 2ln 2lne 1a <+<=,()()()22ln 222ln 2222a a a a ∴+<++<+, ()()()22622ln 226224h a a a a a a ∴+=+-++>+--=,即()min 4h x >,不符合题意;综上得,实数a 的取值范围为2e e 2,e 1∞⎛⎫-++ ⎪-⎝⎭.【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题: (1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.变式2-3.已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞⎪-⎝⎭【解析】 【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果 (1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-=令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+,所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +. (3)存在[]01x e ∈,,使得()()00f x g x <成立,等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x <由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值,由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为 令()()12ln 1h a a a a +=+-+因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.巩固练习练习一 恒成立问题1.已知函数()1ln x f x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 【答案】(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可;(2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=,令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.2.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性;(2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【答案】(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x ++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减, 所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122x ax x x ax ---≥-恒成立可得3211e 2xx x a x++-≥恒成立,设3211e 2()x x x h x x ++-=,则()4223333111e 222(2)1e e 22x x x h x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x⎛⎫ ⎪⎝⎭=⎛⎫-+-+-----⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max 7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.3.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围. 【答案】(1)(],2-∞-(2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2xax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2x e a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-; (2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤, 当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==,则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2mine ()(2)4g x g ==,则2e 4a ≤,综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.4.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围. 【答案】(1)25y x =+ (2)[1,)-+∞ 【解析】 【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a +->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10x x x x a --+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+. (2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立.等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立.构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a +>-+-在(2,)x ∈+∞上恒成立等价于e()x h a(1)h x >-在(2,)x ∈+∞上恒成立.因为20e <≤a ,所以2e e ,xx a-≥令函数2()e 1(2)x H x x x -=-+>,则2()e1x H x -'=-,显然()H x '是增函数,则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=,故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x'=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞) 【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.练习二 存在性问题5.己知函数()2ln f x x ax x =+-.(1)当1a =时,求()f x 的单调区间.(2)存在1≥x ,使得()3112f x x ≥+成立,求整数a 的最小值. 【答案】(1)增区间为()0,∞+,无单减区间 (2)2 【解析】 【分析】(1)利用导数与函数的单调性之间的关系可求得结果; (2)由题意可知,存在1≥x ,使得2111ln 2x a x x x -≥++,构造函数()211ln 12x g x x x x +=+-,其中1≥x ,利用导数分析函数()g x 的单调性,求出()min g x 的取值范围,可求得整数a 的最小值. (1)解:当1a =时,()2ln f x x x x =+-,该函数的定义域为()0,∞+,则()121110f x x x'=+-≥=>,当且仅当2x =时,等号成立, 故函数()f x 的增区间为()0,∞+,无单减区间. (2)解:存在1≥x ,使得231ln 12x ax x x +-≥+成立,即2111ln 2xa x x x -≥++,令()211ln 12x g x x x x +=+-,其中1≥x ,则()min a g x ≥, ()323312ln 3112ln 322x x x x g x x x x-+--'=-+=,令()312ln 32h x x x x =-+-,则()3232324122x x h x x x x-+'=-+=,令()3324m x xx =-+,()2920m x x '=->对任意的1≥x 恒成立,故函数()m x 在[)1,+∞上为增函数,则()()15m x m ≥=, 即()0h x '>对任意的1≥x 恒成立,则函数()h x 为增函数. 因为34532ln 02162h ⎛⎫=-+< ⎪⎝⎭,()22ln 210h =->,所以存在3,22t ⎛⎫∈ ⎪⎝⎭,使得()()312ln 302h t g t t t t '==-+-=,当()1,x t ∈时,()0g x '<,此时函数()g x 单调递减, 当(),x t ∞∈+时,()0g x '>,此时函数()g x 单调递增, 所以,()()3333222min 111131ln 1322224224t t t t t t t t t g xg t t t t +-++++--+-====,3,22t ⎛⎫∈ ⎪⎝⎭, 设()2311422t t t t ϕ=+-,则()3233311324424t t t t t t ϕ-+'=-+=, 令()3324p t t t =-+,则()2920p t t '=->对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()p t 在3,22⎛⎫⎪⎝⎭上为增函数,则()302p t p ⎛⎫>> ⎪⎝⎭,即()0t ϕ'>对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()t ϕ在3,22⎛⎫⎪⎝⎭为增函数,故()()322t ϕϕϕ⎛⎫<< ⎪⎝⎭,即()8913728t ϕ<<,即()min 8913728g x <<, 因为a 为整数,所以整数a 的最小值为2. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.6.已知函数()321sin 1,,462f x x x x ππαα⎡⎤=-++∈-⎢⎥⎣⎦,(1)讨论函数()f x 的单调性;(2)证明:存在,62ππα⎡⎤∈-⎢⎥⎣⎦,使得不等式()e xf x > 有解(e 是自然对数的底).【答案】(1)讨论见解析 (2)证明见解析 【解析】 【分析】(1)对原函数求导后利用判别式对α 进行分类讨论即可;(2)理解“有解”的含义,构造函数将原不等式转化为求函数的最大值. (1)()f x 的定义域为R ,()232sin 14f x x x α'=-+, ()22332sin 44sin 44αα⎛⎫∆=--⨯=- ⎪⎝⎭ ,①当,32ππα⎛⎤∈ ⎥⎝⎦时,0∆> ,()0f x '=有两个不等实数根为:x =x ⎛∈-∞ ⎝⎭时,()0f x '>,()f x 单调递增,x ∈⎝⎭时, ()0f x '<,()f x 单调递减,x ⎫∈+∞⎪⎪⎝⎭时,()0f x '>,()f x 单调递增, ②当,63a ππ⎛⎤∈- ⎥⎝⎦时,0∆≤ ,()0f x '≥,所以()f x 在(),-∞+∞上单调递增; (2)不等式()e xf x > 等价于321sin 1e 14x x x x α-⎛⎫-++> ⎪⎝⎭,所以只需证321sin 1e 4xx x x α-⎛⎫-++ ⎪⎝⎭的最大值大于1,因为,62a ππ⎡⎤∈-⎢⎥⎣⎦,11sin 2α-≤-≤,又[)20,x ∈+∞,所以221sin 2x x α-≤,6πα=-时等号成立, 所以3232111sin 1e 1e 442x x x x x x x x α--⎛⎫⎛⎫-++≤+++ ⎪ ⎪⎝⎭⎝⎭, 设函数()32111e 42x g x x x x -⎛⎫=+++ ⎪⎝⎭ ,()()211e 4x g x x x -'=-- , (),1x ∈-∞,()0g x '≥,()g x 单调递增,()1,x ∈+∞,()0g x '<,()g x 单调递减,因为()1111 2.754211e eg +++==> ,所以存在,62a ππ⎡⎤∈-⎢⎥⎣⎦,使不等式()e x f x > 有解. 【点睛】对于第二问使用函数的缩放法是核心, 对原函数321sin 1e 4x x x x α-⎛⎫-++ ⎪⎝⎭由于α的不确定性使得求其最大值很困难, “化繁为简”,“化难为易”的数学思想就显得特别重要,通过本题的计算应该能够体会到这种数学思想,在以后的数学计算中遇到很复杂的计算应该首先考虑这种数学思想.7.已知函数()(1)e 1x f x x ax =---.(1)当0a >时,证明函数()f x 在区间(0,)+∞上只有一个零点;(2)若存在x ∈R ,使不等式()e 1f x <--成立,求a 的取值范围.【答案】(1)证明见解析(2){0|a a <或}e a >【解析】【分析】(1)首先求得导函数的解析式,然后讨论函数的单调性,结合函数的性质即可确定函数零点的个数;(2)首先讨论函数的单调性,然后结合函数的最小值构造新函数,结合构造函数的性质分类讨论即可确定a 的取值范围.(1)证明:当0a >时,()()e ,0,x f x x a x ∞'=-∈+,令()()()(),1e 0x g x f x g x x =+''=>,∴()e x f x x a '=-在(0,)+∞上为增函数,∵()()00,e 0a f a f a a a ''=-<=->,∴()00,x a ∃∈,使()000e 0x f x x a '=-=, ∴当()00,x x ∈时,()0f x '<;当0(,)x x ∈+∞时,0f x ,因此,()f x 在()00,x 上为减函数,()f x 在 0(,)x +∞上为增函数,当()00,x x ∈时,()()020f x f <=-<,当x >时,()()()211120f x x x ax x ax >-+--=-->, 故函数f(x)在(0,)+∞上只有一个零点.(2)解:当0a >时,()e ,x f x x a '=-,由(1)可知,()00f x '=,即00e x a x =, ∴当0x x <时,()0f x '<,()f x 在0(,)x -∞上为减函数,当0x x >时,0f x,()f x 在 0(,)x +∞上为增函数, ∴()()()()()0000220000000min 1e 11e e 11e 1x x x x f x f x x ax x x x x ==---=---=-+--, 由00e x a x =,知00x >, 设()()()21e 10x h x x x x =-+-->,则()()()2e 00x h x x x x '=--<>,∴()h x 在(0,)+∞上为减函数,又()1e 1h =--,∴当001x <<时,()0e 1f x >--,当01x >时,()0e 1f x <--,∴存在0x R ∈,使不等式()01f x e <--成立,此时00e e x a x =>;当0a =时,由(1)知,()f x 在(,0)∞-上为减函数,()f x 在(0,)∞+上为增函数,所以()()02e 1f x f ≥=->--,所以不存在x ∈R ,使不等式 ()e 1f x <--成立,当0a <时,取e 10x a+<<,即e 1ax -<--,所以()1e 1e 1x x ax ---<--, 所以存在x ∈R ,使不等式 ()1f x e <--成立,综上所述,a 的取值范围是{0|a a <或}e a >.【点睛】方法点睛:在解决能成立问题时一般是将不等式能成立问题转化为求函数的最值问题,利用()f x m >能成立max ()f x m ⇔>;()f x m <能成立min ()f x m ⇔<.8.已知函数()()e R x f x ax a =-∈,()ln x g x x=. (1)当1a =时,求函数()f x 的极值;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,求实数a 的取值范围.【答案】(1)函数()f x 在(),0∞-上递增,在()0,∞+上递减,极大值为1-,无极小值 (2)12ea ≤ 【解析】【分析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,问题转化为()2maxln ,0x a x x ⎛⎫≤> ⎪⎝⎭,令()2ln x h x x =,0x >,利用导数求出函数的最大值即可得出答案.(1)解:当1a =时,()e x f x x =-,则()'1e x f x =-,当0x <时,()0f x '>,当0x >时,()0f x '<,所以函数()f x 在(),0∞-上递增,在()0,∞+上递减,所以函数()f x 的极大值为()01f =-,无极小值;(2)解:若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立, 则()ln ,0x ax x x ≤>,即()2ln ,0x a x x≤>, 则问题转化为()2max ln ,0x a x x ⎛⎫≤>⎪⎝⎭,令()2ln x h x x =,0x >, ()432ln 12ln x x x x h x x x --'==,当0x <<()0h x '>,当x >()0h x '<,所以函数()h x 在(递增,在)+∞上递减, 所以()max 12e h x =, 所以12e a ≤.。
导数解决含参恒成立问题
(1)求 f (x) 的最大值;
(2)对 任 意 的 x1, x2 0, , 且 x2 x1 是 否 存 在 实 数 m , 使 得
mx
2 2
mx12
x1
ln
x1
x2
ln
x2
0
恒成立;若存在,求出 m
的取值范围;若不存在,说明
理由。
类型 3.不可分离变量:进行齐次化构造,通过换元后构造新元的新函数后处理。
取值范围。
(3)当 x y e 1时,求证: exy ln( x 1) 。 ln( y 1)
类型 2.可分离变量,但分离后两侧不同构:构造两个新函数,利用恒成立、能成立技巧处理;
例 2: 已 知 函 数 f (x) 1 x2 (1 x)ex (e 为 自 然 对 数 的 底 ) , 2
g(x) h(k) ,则等价于g(x)min h(k) 再解关于k的不等式即可。
主要分三种类型: 1.可分离变量,且分离后两侧同构:可构造新函数,利用新函数单调性处理; 2.可分离变量,但分离后两侧不同构:构造两个新函数,利用恒成立、能成立技巧处理; 3.不可分离变量:进行齐次化构造,通过换元后构造新元的新函数后处理。
g(x) x (1 a) ln x a , a 1. x
(1)求曲线 f (x) 在 x=1 处的切线方程;
(2)讨论函数 g(x) 的极小值;
(3)若对任意的 x1 1,0 ,总存在 x2 e,3,使得 f (x1) gx2 成立,求实数 a 的取
值范围。
练习:已知函数 f (x) 1 x ln x 。
练习:已知函数 f (x) 1 x2 a ln x (a 1)x, a R 。 2
利用导数求解参数问题(恒成立问题)经典题目
用导数解参数问题已知函数的单调性,求参变量的取值范围,实质上是含参不等式恒成立的一种重要题型。
本文将举例说明此类问题的求解策略。
结论一、 不等式()()f x g a ≥恒成立⇔[]min()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min()()f x g a ≤(即求解()f x 的最小值).一、(2008湖北卷)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 二、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。
解:设()()()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,()()()()()()2221210202021210x x f f x x ⎧----<-<⎧⎪⎪∴∴⎨⎨<---<⎪⎪⎩⎩解得:1122x -++<<三、(2009浙江)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析:(Ⅰ)略(Ⅱ))2()1(23)(2+--+='a a x a x x f函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a 四、(新课程卷 )若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.解:[])1()1()1()(2---=-+-='a x x a ax x x f令0)(='x f ,解得x=1或x=a-1,并且 a≠2,否则f (x)在整个定义域内单调。
人教版导数如何解决含参数不等式恒成立问题
如何解决含参数“不等式恒成立”问题(1)分离参数法分离参数法一定要搞清谁是变量,谁为参数,一般知道谁的范围谁就是变量。
求谁的范围,谁就是参数,利用分离参数法,常用到函数的单调性,基本不等式求最值。
例如:设2)1ln()(ax x x x f --+=,当a 满足什么条件时,)(x f 在⎥⎦⎤⎢⎣⎡--31,21单调递减?解:由题意)(x f 的定义域为),1(+∞-得x x a ax ax x x f ++--=--+=1)12(22111)(2'⇔0)12(22≤+--x a ax ,∈x ⎥⎦⎤⎢⎣⎡--31,21恒成立⇔0122≤++a ax 法一:(分离参数法)0122≤++a ax x a x a +-≤⇒-≤+⇒1121)1(2,又因为11+-=x y 在⎥⎦⎤⎢⎣⎡--31,21单调递增。
2max -=y ,1-≤a 。
(2)分类讨论法有的不等式恒成立问题,参数与变量不是那么容易分离或分离后根本求不出最值(或极限值)那么就需分类讨论法。
上面的习题也可以用分类讨论法:法二(分类讨论法)令122)(++=a ax x g ,∈x ⎥⎦⎤⎢⎣⎡--31,21由题意得00)21({<≤-⇒a g 或00)31({>≤-a g 或1)(0{==x g a 1-≤⇒a 。
例2函数ax x a x x f +-=22ln )(,若函数)(x f 在),1(+∞为单调递减,求实数a 的取值范围。
分析:要求a 的范围,我们就把a 作为参数,优先考虑分离参数法,但是对于这题a 参数没有办法分离,我们只能选择分类讨论法。
解:)(x f 的定义域为),0(+∞xax ax a x a x x f )1)(12(21)(2'-+-=+-=(因式分解是关键)0)1)(12()(≥-+=ax ax x g当0=a 时,1)(-=x g ,不合题意当0>a 时,)(x g y =是开口向上的抛物线,由图象分析可得,若0)(≥x g 在1>x 恒成立,则111≥⇒≤a a当0<a 时,同理分析可得21121-≤⇒≤-a a 。
利用导数解决恒成立问题
分析:已知版心的面
x
积,你能否设计出版心的
高,求出版心的宽,从而
列出海报四周的面积来?
图3.4-1
解 : 设 版 心 的 高 为 x d m , 则 版 心 的 宽 为 1 2 8 d m , 此 时 四 周 空 白 面 积 为
S(x)(x4)(1282)128 x x
2x5128,x0 x
令 求 : 导 S数 '(x,)得 S 2'(因是1面x56x)1此最积d22m, 小 最2,x值小0=宽点。5 1x为1 6。22 是8所d函以m数解 ,时S得 当,(x: )版能的心使x 极 高四小1 为周值6 , 空,白x 也 1 ( 6舍 )
延伸学习
已知 f(x函 )a 数 xlnx(a0)g ,(x)x22x2. 若 对 x1 (0,) 均 , 存 x2 [0 在 ,1]使 , f(得 x1)g(x2) 成立 a的 ,取 求 .值范围
已知函数 f (x) (1 x) ex 1. .
(I)求函数 f (x) 的最大值; (Ⅱ)设 g(x) f (x) , x 1,且x 0 ,
202X
利用导数 研究“恒成立”的 问题
单击此处添加副标题
【问题展示】
不等式恒成立问题是近年高考的热点问题, 常以压轴题形式出现,交汇函数、方程、不 等式和数列等知识,有效地甄别考生的数学 思维能力.由于不等式恒成立问题往往都可以 转化为函数的最值问题,而导数,以其本身 所具备的一般性和有效性,在求解函数最值 中,起到无可替代的作用,
x 证明: g(x) <1.
(Ⅰ)f (x)=-xex. 当 x∈(-∞,0)时,f (x)>0,f (x)单调递增; 当 x∈(0,+∞)时,f (x)<0,f (x)单调递减. 所以 f (x)的最大值为 f (0)=0. (Ⅱ)由(Ⅰ)知,当 x>0 时,f (x)<0,g (x)<0<1. 当-1<x<0 时,g (x)<1 等价于设 f (x)>x. 设 h (x)=f (x)-x,则 h (x)=-xex-1. 当 x∈(-1,-0)时,0<-x<1,0<ex<1,则 0<-xex<1, 从而当 x∈(-1,0)时,h (x)<0,h (x)在(-1,0]单调递减. 当-1<x<0 时,h (x)>h (0)=0,即 g (x)<1.
导数中含参数问题与恒成立问题的解题技巧
函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结:1、分类讨论思想2、判别法3、别离参数法4、构造新函数法一、别离讨论思想:例题1: 讨论以下函数单调性:1、()x f =();1,0,≠>-a a a a x2、()x f =)0,11(12≠<<--b x x bx二、判别法例2:不等式04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,那么只须满足: 〔1〕⎩⎨⎧<-+-<-0)2(16)2(4022a a a 或 〔2〕⎪⎩⎪⎨⎧<-=-=-040)2(202a a 解〔1〕得⎩⎨⎧<<-<222a a ,解〔2〕a =2 ∴参数a 的取值范围是-2<a ≤2.练习1. 函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。
三、别离法参数:别离参数法是求参数的取值范围的一种常用方法,通过别离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以防止分类讨论的麻烦,从而使问题得以顺利解决.别离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是别离出参数之后将原问题转化为求函数的最值或值域问题.即:〔1〕对任意x 都成立()min x f m ≤ 〔2〕对任意x 都成立。
例3.函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立,令x x x x g 24)(-=,那么min )(x g a <由144)(2-=-=xx x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞。
利用导数解决含参的问题(word版含答案和详细解析)
利用导数解决含参的问题(word版含答案和详细解析)高考理科复专题练利用导数解决含参的问题考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
命题规律:利用导数探求参数的范围问题每年必考,有时出现在大题,有时出现在小题中,变化比较多。
不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理。
这也是2018年考试的热点问题。
高考题讲解及变式:利用单调性求参数的范围例1.【2016全国1卷(文)】若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()。
A。
[-1,1]B。
(-1,1)C。
(-∞,-1]∪[1,+∞)D。
(-∞,-1)∪(1,+∞)答案】C解析】因为f(x)在(-∞,+∞)上单调递增,所以f'(x)>0.将f(x)代入f'(x)得f'(x)=1-2sinx+acosx。
要使f'(x)>0,即要使1-2sinx+acosx>0.因为-1≤sinx≤1,所以1-2sinx≥-1.所以acosx>-1,即a>-1/cosx。
因为cosx=1时,a不等于-1;cosx=-1时,a不等于1.所以a∈(-∞,-1]∪[1,+∞),选C。
变式1.【2018XXX高三实验班第一次月考(理)】若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是_______。
答案】k≥1或k≤-1解析】在区间(1,+∞)上,f'(x)=k-1/x。
利用导数解决恒成立能成立问题
利用导数解决恒成立能成立问题一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)(1)恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <1.若在x ∈[1,+∞)上恒成立,则a 的取值范围是 ______ .2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围 _________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e ],都有f (x 1)≥g (x 2)成立,则a 的取值范围为 _________ .4.若不等式|ax 3﹣lnx|≥1对任意x ∈(0,1]都成立,则实数a 取值范围是 _________ . 15.设函数f (x )的定义域为D ,令M={k|f (x )≤k 恒成立,x ∈D},N={k|f (x )≥k 恒成立,x ∈D},已知,其中x ∈[0,2],若4∈M ,2∈N ,则a 的范围是 _________ .6.f (x )=ax 3﹣3x (a >0)对于x ∈[0,1]总有f (x )≥﹣1成立,则a 的范围为 _________ . 7.三次函数f (x )=x 3﹣3bx+3b 在[1,2]内恒为正值,则b 的取值范围是 _________ . 8.不等式x 3﹣3x 2+2﹣a <0在区间x ∈[﹣1,1]上恒成立,则实数a 的取值范围是 __ .9.当x ∈(0,+∞)时,函数f (x )=e x的图象始终在直线y=kx+1的上方,则实数k 的取值范围是 _________ .10.设函数f (x )=ax 3﹣3x+1(x ∈R ),若对于任意的x ∈[﹣1,1]都有f (x )≥0成立,则实数a 的值为 _________ .11.若关于x 的不等式x 2+1≥kx 在[1,2]上恒成立,则实数k 的取值范围是 _________ . 12.已知f (x )=ln (x 2+1),g (x )=()x﹣m ,若∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是( )13.已知,,若对任意的x 1∈[﹣1,2],总存在x 2∈[﹣1,2],使得g (x 1)=f (x 2),则m 的取值范围是( )二利用导数解决能成立问题等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如14.已知集合A={x ∈R|≤2},集合B={a ∈R|已知函数f (x )=﹣1+lnx ,∃x 0>0,使f (x 0)≤0成立},则A ∩B=( )15.设函数,(p是实数,e为自然对数的底数)(1)若f(x)在其定义域内为单调函数,求p的取值范围;(2)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.16.若函数y=f(x),x∈D同时满足下列条件:(1)在D内的单调函数;(2)存在实数m,n,当定义域为[m,n]时,值域为[m,n].则称此函数为D内可等射函数,设(a>0且a≠1),则当f (x)为可等射函数时,a的取值范围是.17.存在x<0使得不等式x2<2﹣|x﹣t|成立,则实数t的取值范围是_________.18.存在实数x,使得x2﹣4bx+3b<0成立,则b的取值范围是_________.19.已知存在实数x使得不等式|x﹣3|﹣|x+2|≥|3a﹣1|成立,则实数a的取值范围是_.20.存在实数a使不等式a≤2﹣x+1在[﹣1,2]成立,则a的范围为_________.21.若存在x∈,使成立,则实数a的取值范围为______.22.设存在实数,使不等式成立,则实数t的取值范围为_________.23.若存在实数p∈[﹣1,1],使得不等式px2+(p﹣3)x﹣3>0成立,则实数x的取值范围为_________.24.若存在实数x使成立,求常数a的取值范围.25.等差数列{a n}的首项为a1,公差d=﹣1,前n项和为S n,其中a1∈{﹣1,1,2}(I )若存在n∈N,使S n=﹣5成立,求a1的值;.(II)是否存在a1,使S n<a n对任意大于1的正整数n均成立?若存在,求出a1的值;否则,说明理由.参考答案1若在x∈[1,+∞)上恒成立,则a的取值范围是(﹣∞,].等价转化为y=x+lnx+∵在在∵)时,在y=x+=,a]思想等知识点的灵活运用,解题时要关键是2.若不等式x4﹣4x3>2﹣a对任意实数x都成立,则实数a的取值范围(29,+∞).3.设a>0,函数,若对任意的x1,x2∈[1,e],都有f (x1)≥g(x2)成立,则a的取值范围为[e﹣2,+∞).,±][)=e+4.若不等式|ax3﹣lnx|≥1对任意x∈(0,1]都成立,则实数a取值范围是.,,,∴)上单调递减,在(的最小值为,解得:.5.设函数f(x)的定义域为D,令M={k|f(x)≤k恒成立,x∈D},N={k|f(x)≥k恒成立,x∈D},已知,其中x∈[0,2],若4∈M,2∈N,则a的范围是.时,,确定,∴令==且≥∴故答案为:6.f(x)=ax3﹣3x(a>0)对于x∈[0,1]总有f(x)≥﹣1成立,则a的范围为[4,+∞].即有:上恒成立,令>得,,[,7.三次函数f(x)=x3﹣3bx+3b在[1,2]内恒为正值,则b的取值范围是.8.不等式x3﹣3x2+2﹣a<0在区间x∈[﹣1,1]上恒成立,则实数a的取值范围(2,+∞).9.当x∈(0,+∞)时,函数f(x)=e x的图象始终在直线y=kx+1的上方,则实数k的取值范围是(﹣∞,1].10.设函数f(x)=ax3﹣3x+1(x∈R),若对于任意的x∈[﹣1,1]都有f(x)≥0成立,则实数a的值为4.±<﹣当﹣<>)﹣•11.若关于x的不等式x2+1≥kx在[1,2]上恒成立,则实数k的取值范围是(﹣∞,2].,根据对构函数在所给的区间上的值域,得,∵12.已知f(x)=ln(x2+1),g(x)=()x﹣m,若∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()[,,[,][≥.13.已知,,若对任意的x1∈[﹣1,2],总存在x2∈[﹣1,2],使得g(x1)=f(x2),则m的取值范围是(),,,∴﹣,2m+﹣且[2m+ ]≥﹣且﹣[,]14.已知集合A={x∈R|≤2},集合B={a∈R|已知函数f(x)=﹣1+lnx,∃x0>0,使f (x0)≤0成立},则A∩B=()R|2}={x|}={x|,不等式<15.设函数,(p是实数,e为自然对数的底数)(1)若f(x)在其定义域内为单调函数,求p的取值范围;(2)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.=≤≥恒成立,又=在﹣﹣)﹣)﹣﹣,16.若函数y=f(x),x∈D同时满足下列条件:(1)在D内的单调函数;(2)存在实数m,n,当定义域为[m,n]时,值域为[m,n].则称此函数为D内可等射函数,设(a>0且a≠1),则当f (x)为可等射函数时,a的取值范围是(0,1)∪(1,2).的两个根,构建函数g(x)=,则函数g(x)==,∴17.存在x<0使得不等式x2<2﹣|x﹣t|成立,则实数t的取值范围是(﹣,2).﹣﹣所以﹣综上,实数t的取值范围是:﹣<t<2;故答案为:(﹣,2).18.存在实数x,使得x2﹣4bx+3b<0成立,则b的取值范围是b>或b<0.>.19.已知存在实数x使得不等式|x﹣3|﹣|x+2|≥|3a﹣1|成立则实数a的取值范围是.,即﹣故答案为20.存在实数a使不等式a≤2﹣x+1在[﹣1,2]成立,则a的范围为(﹣∞,4].,∴21.若存在x∈,使成立,则实数a的取值范围为.≤和∈进而可知要使只需≤要使成立,则需<故答案为:22.设存在实数,使不等式成立,则实数t的取值范围为t.,≥>,时,﹣>﹣+x+=x,此时.时,>>t.23.若存在实数p∈[﹣1,1],使得不等式px2+(p﹣3)x﹣3>0成立,则实数x的取值范围为(﹣3,﹣1).24.若存在实数x使成立,求常数a的取值范围.所以25.等差数列{a n}的首项为a1,公差d=﹣1,前n项和为S n,其中a1∈{﹣1,1,2}(I )若存在n∈N,使S n=﹣5成立,求a1的值;.(II)是否存在a1,使S n<a n对任意大于1的正整数n均成立?若存在,求出a1的值;否则,说明理由.由条件得,,代入得,代入得∴,∴,。
导数中恒成立问题(最值问题)
导数中恒成立问题〔最值问题〕恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。
知识储备〔我个人喜欢将参数放左边,函数放右边〕先来简单的〔也是最本质的〕如别离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ 〔假设是存在性问题,那么最大变最小,最小变最大〕 1.对于单变量的恒成立问题如:化简后我们分析得到,对[],x a b ∀∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ∃∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题如:化简后我们分析得到,对[]12,,x x a b ∀∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ∀∈,[]2,x c d ∃∈使12()()f x g x ≥,那么只需min min ()()f x g x ≥如:化简后我们分析得到,[]1,x a b ∃∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话〔双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量〕3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题〔2014.03苏锡常镇一模那题特别典型〕今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,〔甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是11,,e e之类〕,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。
利用导数研究恒成立问题的常见策略及其优化
利用导数研究恒成立问题的常见策略及其优化展㊀佳(江苏省沙溪高级中学ꎬ江苏太仓215400)摘㊀要:恒成立问题一直是高考的重点和难点.文章从一道模拟题出发ꎬ对学生的解题情况做了分析与整理ꎬ并对其中的一些解法提出了优化建议.关键词:恒成立ꎻ分类讨论ꎻ含参讨论中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0028-03收稿日期:2023-07-05作者简介:展佳(1994.11-)ꎬ女ꎬ江苏省太仓人ꎬ本科ꎬ中学二级教师ꎬ从事高中数学教学研究.㊀㊀利用导数研究恒成立问题一直是高考的重点和难点.这类问题综合性非常强ꎬ往往涉及函数与方程(组)㊁不等式与等式㊁三角函数等多种知识ꎬ因此对于学生的思维要求非常高ꎬ运算强度大ꎬ解法也是多种多样.本文从学生最熟悉的参变量分离和含参讨论这两种方法出发ꎬ根据不同学生的思维情况提出了不同的解题建议ꎬ根据不同学生作业中反馈出的知识盲点与思路的断档处ꎬ提出一定的优化意见ꎬ促使学生学有所得㊁得有所想㊁反思内化ꎬ帮助学生提升数学学科素养ꎬ在考试中获得更好的表现.1典例赏析题目㊀已知函数f(x)=xlnxꎬ当xȡ1时ꎬf(x)ɤax2-a恒成立ꎬ求a的取值范围.1.1参变量分离法解析㊀①当x=1ꎬ即0ɤ0ꎬ此时aɪR.②当x>1ꎬ原式等价于aȡxlnxx2-1恒成立.令g(x)=xlnxx2-1(x>1)ꎬgᶄ(x)=-x2lnx-lnx+x2-1(x2-1)2.令h(x)=-x2lnx-lnx+x2-1ꎬ则hᶄ(x)=-2xlnx+x-1xꎬhᵡ(x)=-2lnx-1+1x2.因为x>1ꎬ所以1x2<1.即hᵡ(x)=-2lnx-1+1x2<0.所以hᶄ(x)在(1ꎬ+ɕ)单调递减.所以hᶄ(x)<hᶄ(1)=0.即h(x)在(1ꎬ+ɕ)单调递减.所以h(x)<h(1)=0.即gᶄ(x)<0.所以g(x)在(1ꎬ+ɕ)单调递减.所以g(x)<limxң1g(x).而limxң1g(x)=(xlnx)ᶄ(x2-1)ᶄx=1=lnx+12xx=1=12ꎬ82所以当原式等价于当x>1ꎬaȡxlnxx2-1恒成立ꎬ则有aȡ12.综上所述ꎬa的取值范围是[12ꎬ+ɕ).反思㊀此题参变量易分离ꎬ但分离后构造的新函数的导数相当复杂ꎬ需要多次求导方可达 彼岸 .这对于中等及偏下的学生是很不利的ꎬ经过1~2次导数运算ꎬ这些学生就丧失了解决此题的信心.那么ꎬ此题导数运算为何如此复杂?追根溯源ꎬ是因为x2lnx的存在.为了简化运算ꎬ可以考虑将lnx前的多项式全部除掉ꎬ对此笔者做了下面的优化.优化1㊀gᶄ(x)=-x2lnx-lnx+x2-1(x2-1)2=-(x2+1)lnx+x2-1(x2-1)2=-lnx+(x2-1)/(x2+1)(x2-1)2ꎬ令Φ(x)=-lnx+x2-1x2+1=-lnx-2x2+1+1ꎬ则Φᶄ(x)=-1x+4x(x2+1)2=-(x2-1)2x(x2+1)2<0.即gᶄ(x)<0.所以g(x)=xlnxx2-1在(1ꎬ+ɕ)单调递减.下面求解过程同上ꎬ略.分离参数是解决恒成立问题的一种重要解题方法ꎬ往往也是学生解题时优先考虑的方法ꎬ这个方法思维含量要求比较低ꎬ更具普适性.通过参数与主元的分离ꎬ达到以简驭繁的目的.但在使用的时候往往存在两个难点:一是参数与变量能否顺利分离ꎬ二是分离后得到的新函数的单调性以及最值能否顺利解决[1].1.2含参讨论法解析㊀原式等价于当xȡ1时ꎬxlnx-a(x2-1)ɤ0恒成立ꎬ求a的取值范围.令g(x)=xlnx-a(x2-1)ꎬ得g(1)=0ꎬgᶄ(x)=lnx+1-2ax.令h(x)=lnx+1-2axꎬ则hᶄ(x)=1x-2a=1-2axx.①若aɤ0时ꎬ得hᶄ(x)>0.则gᶄ(x)在[1ꎬ+ɕ)上单调递增.所以gᶄ(x)ȡgᶄ(1)=1-2aȡ0.所以g(x)在[1ꎬ+ɕ)上单调递增.所以g(x)ȡg(1)=0.从而xlnx-a(x2-1)ȡ0ꎬ不符合题意ꎬ舍.②若a>0ꎬ令hᶄ(x)=0ꎬ得x=12a.(ⅰ)若0<a<12ꎬ则12a>1ꎬ当xɪ(1ꎬ12a)时ꎬhᶄ(x)>0ꎬ则gᶄ(x)在(1ꎬ12a)上单调递增ꎬ此时g(x)ȡg(1)=0ꎬ不符合题意ꎬ舍ꎻ(ⅱ)若aȡ12ꎬ则0<12aɤ1ꎬhᶄ(x)ɤ0在[1ꎬ+ɕ)上恒成立ꎬ所以g(x)ɤg(1)=0.即xlnx-a(x2-1)ɤ0恒成立.综上所述ꎬa的取值范围是[12ꎬ+ɕ).反思㊀对大部分高中生而言ꎬ分类讨论是难点ꎬ尤其是分类点的选择ꎬ此时可以通过抓住一些特殊点ꎬ比如利用端点值来缩小参数的取值范围ꎬ减少不必要的分类讨论情况.优化2㊀当xȡ1时ꎬg(x)=xlnx-a(x2-1)ɤ0恒成立ꎬ则g(e)ɤ0ꎬ得aȡee2-1.下证当aȡee2-1时ꎬg(x)ɤ0恒成立.gᶄ(x)=lnx+1-2axꎬ令h(x)=lnx+1-2axꎬ则hᶄ(x)=1x-2a=1-2axx.92(ⅰ)若ee2-1<a<12ꎬ则12a>1ꎬ当xɪ(1ꎬ12a)时ꎬhᶄ(x)>0ꎬ则gᶄ(x)在(1ꎬ12a)上单调递增ꎬ此时g(x)ȡg(1)=0ꎬ不符合题意ꎬ舍ꎻ(ⅱ)若aȡ12ꎬ则0<12aɤ1ꎬhᶄ(x)ɤ0在[1ꎬ+ɕ)上恒成立ꎬ所以g(x)ɤg(1)=0.即xlnx-a(x2-1)ɤ0恒成立综上所述ꎬa的取值范围是[12ꎬ+ɕ).优化3㊀由于g(1)=0ꎬ则gᶄ(1)ɤ0.令g(x)=xlnx-a(x2-1)ꎬ得gᶄ(x)=lnx+1-2axꎬgᶄ(1)=1-2aɤ0.所以aȡ12.下证当aȡ12时ꎬg(x)ɤ0恒成立.gᵡ(x)=1x-2aꎬ因为aȡ12ꎬ则-2aɤ-1.又因为xȡ1ꎬ则0<1xɤ1ꎬ所以gᵡ(x)=1x-2a<0ꎬ即gᶄ(x)=lnx+1-2ax在[1ꎬ+ɕ)上单调递减ꎬ从而g(x)ɤg(1)=0.综上所述ꎬa的取值范围是[12ꎬ+ɕ).在含参讨论中运用端点效应常常起到事半功倍的效果.通过取函数定义域内的某个特殊的值或某几个特殊的值ꎬ先初步获得参数的一个较小范围即必要条件ꎬ再在该范围内讨论ꎬ或去验证其充分条件ꎬ进而解决问题ꎬ用该方法解决恒成立问题可以减少分类讨论的类别ꎬ但并不是所有恒成立问题均能通过端点效应解答[2]ꎬ这只是一种优化手段.1.3数形结合法解析㊀显然a>0.因为fᶄ(x)=1+lnxꎬ当xȡ1时ꎬfᶄ(x)>0ꎬ所以y=f(x)在[1ꎬ+ɕ)单调递增且f(1)=0.令g(x)=a(x2-1)ꎬ函数g(x)图象开口向上ꎬ在[1ꎬ+ɕ)单调递增且g(1)=0.根据不同函数的增长变化情况可知ꎬy=x在某个范围内增长速度是远大于y=lnx的ꎬ即g(x)=a(x2-1)在某个范围内增长速度是远大于f(x)=xlnx的ꎬ因此只要考虑x=1附近的变化情况.满足fᶄ(1)ɤgᶄ(1)ꎬ解得aȡ12.运用数形结合法解决大题中的恒成立问题ꎬ由于对图象部分描述缺乏严格意义上的代数证明ꎬ或者说理不够清楚ꎬ在考试中存在扣分的现象ꎬ但对考生而言是能够降低思维成本㊁缩短思考时间㊁提高得分效率的ꎬ此方法更适合小题目.2教学反思恒成立问题的解题策略除了上述所介绍的ꎬ还有同构㊁放缩等ꎬ这些方法对于学生能力要求更高ꎬ题目的局限更大ꎬ考虑到所带班级情况ꎬ笔者在这里就不再一一展示.解决恒成立问题策略多样ꎬ这就要求教师在教学过程中一方面要关注学生的思维发展情况ꎬ真正做到因材施教ꎬ有针对性地进行教学点评ꎬ提出优化的建议ꎬ继而发展数学核心素养ꎻ另一方面要帮助学生认识到不同方法之间的差异在于对条件结论的认知区别ꎬ方法的选择依赖对条件结论和自身能力的判断.只有平时做好基础知识的储备和整理ꎬ方能在考试中大展拳脚.参考文献:[1]谢锦辉.恒成立问题中参数范围的求解策略[J].中学数学研究(华南师范大学版)ꎬ2023(07):31-33.[2]唐雯佳.导数恒成立问题中 端点效应 解法的辨析及思考[J].数学之友ꎬ2022ꎬ36(24):73-76.[责任编辑:李㊀璟]03。
运用导数解含参问题高考常见题型透视论文
运用导数解含参问题高考常见题型透视【摘要】含参数问题既是高中教学的重点和难点,又是历年高考的热点。
本文从四个常见题型对含参函数问题进行了分析与研究,着重介绍常见题型利用导数解决这些问题的基本策略。
【关键词】导数解决含参题型方法运用导数解决含参数问题既是高中教学的重点和难点,又是历年高考的热点。
这类问题既能全面地考查学生对导数及其运算的运用能力,又能综合地考查学生对函数与方程思想、分类与化归思想、数形结合思想、等价变换思想等以及综合运用知识解决新情境、新问题的能力。
既体现了新的课程理念,又强调了数学的实际应用,有利于考查学生的实践能力。
由于含参函数问题本身具有复杂性,涉及到不等式、导数、函数等章节的多个知识点,大多数学生在解决这类问题时往往感到很棘手。
本文结合近几年高考试题中出现的含参数问题进行分析与研究,探讨用导数求参数范围的几种常见题型及求解策略。
题型一:已知恒成立,求参数问题高中数学含参数恒成立问题是一类非常常见的问题,在高中的各类考试中经常出现,在历年的高考中,颇受高考命题专家的“青睐”。
对这一类问题的求解,往往借助导数知识,巧妙求解,体现了导数较高的思维价值和应用价值。
(一)单调性最值法案例1.(2012高考湖南卷)已知函数f(x)=eax-x,其中a≠0.若对一切x∈r,f(x)≥1恒成立,求a的取值集合.【解析】:(1)若a0,f(x)=eax-x0. 而f’(x)=aeax-1,令f’(x)=0,得x=1a1n1a当x1a1n1a时,f’(x)>0,f(x)单调递增,故当x=1a1n1a 时,f(x)取最小值f(1a1n1a)=1a-1a1n1a由题意f(x)1恒成立,当且仅当1a-1a1n1a1. 令g(t)=t-t1nt,则g’(t)=-1nt当00,g(t)单调递增;当t>1时,g’(t)0(ⅰ)求f(x)的单调区间;(ⅱ)求所有实数a,使e-1f(x)e2对x∈[1,e]恒成立.【解析】:(ⅰ)f’(x)=a2x-2x+a=(x-a)(2x+a)x(x>0)由于a>0,所以f(x)的增区间为(0,a),减区间为(a,+∞)(ⅱ)由题意得,f(1)=a-1e-1ae,由(ⅰ)知f(x)在[1,e]内单调递增,要使e-1f(x)e2对x∈[1,e]恒成立,只要f(1)=a-1e-1f(e)=a2-e2+aee2a=e含参数的函数恒成立问题是高考热点题型之一,这类问题往往涉及面广,题目难度大,综合性强,解决此类问题所需的数学思想、方法较多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1:已知函数 f ( x) ( x 1) 2 a ln x 。 (1)讨论函数的单调性; (2)若 函 数 f ( x) 在 区 间 (0,) 内 任 取 两 个 不 等 的 实 数 x1 , x2 , 不 等 式
f ( x1 1) f ( x2 1) 1 恒成立,求 a 的取值范围。 x1 x2
x y
ln(x 1) 。 ln( y 1)
类型 2.可分离变量, 但分离后两侧不同构: 构造两个新函数, 利用恒成立、 能成立技巧处理; 例 2: 已 知 函 数
1 2 f ( x) x (1 x)e x (e 为 自 然 对 数 的 底 ) , 2
a g ( x) x (1 a ) ln x , a 1. x (1)求曲线 f ( x) 在 x=1 处的切线方程; (2)讨论函数 g ( x) 的极小值; (3)若对任意的 x1 1,0 ,总存在 x2 e,3,使得 f ( x1 ) g x2 成立,求实数 a 的取
理由。
类型 3.不可分离变量:进行齐次化构造,通过换元后构造新元的新函数后处理。
x 1 例 3:已知函数 f ( x ) x (e 为自然对数的底) 。 e (1)求 f ( x) 的单调区间; 1 (2)设函数 ( x) xf ( x) tf x x , 存在实数 x1 , x2 0,1 , 使得 2 ( x1 ) ( x2 ) 成立, e
1 2 练习:已知函数 f ( x) x a ln x (a 1) x, a R 。 2 (1)当 a=1 时,求函数 f ( x) 图像在点 (1, f (1)) 处的切线方程; (2)当 a<0 时,讨论函数 f ( x) 的单调性; f ( x2 ) f ( x1 ) a 恒成立?若存在, (3)是否存在实数 a,对任意的 x1 , x2 (0,)且x1 x2有 x2 x1
求实数 t 的取值范围。
值范围。
练习:已知函数 f ( x) 1 x ln x 。 (1)求 f ( x) 的最大值;
(2)对 任 意 的 x1 , x2 0, , 且 x2 x1 是 否 存 在 实 数 m , 使 得
2 2 mx2 mx 1 x1 ln x1 x2 ln x2 0 恒成立;若存在,求出 m 的取值范围;若不存在,说明
从而转化为最值问题的求解(其他类型同理); 而“含参恒成立”问题,例如
f ( x, k ) c, x [a, b]恒成立(c为常数, k为参数)
也可等价转化为 f ( x, k ) min c, x [a, b] ,但参数k的“掺和”往往使函数的最值 变得不确定,不可避免地要经分类讨论,进一步使整个解题过程显得繁琐不堪。
f ( x, k ) c 其实,“含参恒成立”问题也可用“参变量分离”的方法处理:将 g ( x) h(k ) ,则等价于 g ( x) min h(k ) 再解关Fra bibliotekk的不等式即可。
等价变形为
主要分三种类型: 1.可分离变量,且分离后两侧同构:可构造新函数,利用新函数单调性处理; 2.可分离变量,但分离后两侧不同构:构造两个新函数,利用恒成立、能成立技巧处理; 3.不可分离变量:进行齐次化构造,通过换元后构造新元的新函数后处理。
求出 a 的取值范围;若不存在,说明理由。
练习:已知函数 f ( x) ax 1 ln x(a R) 。 (1)讨论函数 f ( x) 在定义域内的极值点的个数; (2)若函数 f ( x) 在 x 1 处取得极值,对 x 0,, f ( x) bx 2 恒成立,求实数 b 的 取值范围。 (3)当 x y e 1 时,求证: e
一、导数解决含参恒成立问题(多变量问题) 恒成立问题是高中数学的重要题型,在高考中常常与函数、导数、不等式结合以 压轴题的身份出现,是整个高中教学的重点,也是难点。恒成立问题主要分为“含参 恒成立”和“不含参恒成立”两类,后者相对容易处理,例如:
f ( x) c, x [a, b]恒成立 f ( x)min c, x [a, b]