八年级上册数学分式方程应用题及答案

合集下载

(完整版)分式方程及其应用(习题及答案)

(完整版)分式方程及其应用(习题及答案)

八年级数学上册 分式方程及其应用(习题)班级 姓名➢ 例题示范例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h ,由题意得,1201200.51.2x x =-解得,x =40 经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h .➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a b a x a ++=B .x a b x b a +=-11C .b x a a x 1-=+D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( ) A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程: 2(1)3(1)6x x -++=C .解这个整式方程,得1x =D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________. 5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是________.6. 解分式方程: (1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7.某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍.A,B 两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】附加题:1. 解分式方程:(1)2115225x x x ++=--;(2)100602020x x=+-;(3)3201(1)x x x x +-=--;(4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2) (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装 8. 商厦共盈利90 260元附加题;1. (1)(2)(3)无解 (4)无解 (5)无解 (6)x =143x =43x =5x =。

初二数学分式方程精华题(含答案)

初二数学分式方程精华题(含答案)

初二数学分式方程精华题(含答案)1.分式方程解:本题考查分式方程的解法,根据题意可列出方程:frac{x}{x+12}=\frac{1}{2}$$化简后得到:2x=x+12$$解得$x=6$,因此选项C正确。

2.若分式方程 $\frac{x}{a}=\frac{2}{x-4}$ 有增根,则a的值为()解:根据题意,可列出方程:frac{x}{a}=\frac{2}{x-4}$$移项化简得到:x^2-4ax-8=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:4a)^2-4\times 1\times (-8)<0$$化简得到 $a^2+2>0$,因此 $a$ 可以取任意实数,选项中没有正确答案。

3.解关于x的方程 $\frac{x-3m}{x-1}=\frac{1}{x-1}$ 产生增根,则常数m的值等于()解:根据题意,可列出方程:frac{x-3m}{x-1}=\frac{1}{x-1}$$移项化简得到:x^2-4mx+3m=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:16m^2-12m<0$$化简得到 $0<m<\frac{3}{4}$,因此选项C正确。

4.求 $\frac{1-x}{2-xx}=3$,去分母后的结果,其中正确的是()解:根据题意,可列出方程:frac{1-x}{2-xx}=3$$移项化简得到:x^2+3x-5=0$$解得$x=1$或$x=-5$,代入原式可知$x=-5$不合法,因此$x=1$是方程的唯一解。

将$x=1$代入原式得到:frac{1-x}{2-xx}=\frac{0}{1}=0$$因此选项A正确。

5.计算:$\frac{b^2+2b+2a}{2b^3-7a^2b}=?$解:根据题意,可将分子分母同时除以$b$,得到:frac{b^2+2b+2a}{2b^3-7a^2b}=\frac{\frac{b^2}{b}+\frac{2b}{b}+\frac{2a}{b}}{\frac{2 b^3}{b}-\frac{7a^2b}{b}}=\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$$因此答案为$\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。

分式方程应用题专题训练2024-2025学年人教版数学八年级上册+附答案

分式方程应用题专题训练2024-2025学年人教版数学八年级上册+附答案

2023-2024学年人教版数学八年级上册分式方程应用题专题训练1.甲、乙两人加工同一种零件,乙每天加工的数量比甲每天加工数量多50%,两人各加工600个这种零件,甲比乙多用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)现有3000个这种零件的加工任务,由甲单独加工m天后剩余任务由乙单独完成,试用含m的代数式表示乙单独完成剩余任务的天数(结果要求化简);(3)已知甲、乙两人加工这种零件每天的加工费分别是120元和150元,在(2)的情况下,如果总加工费不超过7800元,那么甲最多加工多少天?2.“走,去永州,品道州脐橙”,道州脐橙果大形正,橙红鲜艳,肉质脆嫩化渣,风味浓甜芳香.2023年11月29日在“道州脐橙”品牌推介活动上,某水果批发商用40000元购进一批道州脐橙后,供不应求,该水果批发商又用90000元购进第二批这种道州脐橙,所购数量是第一批数量的2倍,但每箱贵了10元(1)有水果批发商购进的第一批道州脐橙每箱多少元?(2)若两次购进的道州脐橙按同一价格售出,两批脐橙全部销售完后,获利不低于17000元,则销售单价至少是多少元?3.元宵节是中国的传统节日之一,元宵节主要有赏花灯、吃汤圆、猜灯谜等习俗,某超市节前购进了甲、乙两种畅销口味的汤圆.已知购进甲种汤圆的金额是1200元,购进乙种汤圆的金额是800元,购进的甲种汤圆比乙种汤圆多20袋.甲种汤圆的单价是乙种汤圆单价的1.2倍.(1)求甲、乙两种汤圆的单价分别是多少元;(2)为满足消费者需求,该超市准备再次购进甲、乙两种汤圆共120袋,若总金额不超过1300元,最多购进______袋甲种汤圆.4.甲、乙两人分别从距目的地8km和12km的两地同时出发,甲、乙的速度比是4:5,结果甲比乙提前2h5到达目的地,求甲、乙的速度.5.某工程队承接了45万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前了15天完成了这一任务.(1)用含x的代数式填表(结果不需要化简);工作效率(万平方米/天)工作时间(天)总任务量(万平方米)原计划x______45实际____________45(2)求(1)的表格中的x的值.6.“阅读陪伴成长,书香润泽人生”.万年县某学校为了开展学生阅读活动,计划网购甲、乙两种图书.已知甲种图书每本的价格比乙种图书每本的价格多5元,且用1600元购买甲种图书比用900元购买乙种图书可多买20本.(1)甲种图书和乙种图书的价格各是多少?(2)根据学校实际情况,需一次性网购甲、乙两种图书共300本,购买时得知:一次性购买甲乙两种图书超过100本时,甲种图书可按九折优惠,乙种图书可按八折优惠.若该校此次用于购买甲、乙两种图书的总费用不超过4800元,那么学校最多可购进甲种图书多少本?7.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.长沙某汽车销售决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少20辆.(1)A型和B型汽车的进价分别为每辆多少万元;(2)该公司决定用不多于1220万元购进A型和B型汽车共100辆,最多可以购买多少辆A 型汽车?8.为开展特色体育,致远中学上学期购买了甲、乙两种不同足球,购买甲种足球用了3000元,购买乙种足球用了2100元,购买甲种足球数量恰好是购买乙种足球数量的2倍,且购买一个甲种足球比购买一个乙种足球少花20元.(1)求购买一个甲种足球和一个乙种足球各需多少元;(2)为了加大开展力度,学校决定本学期再次购买甲、乙两种足球共50个,恰逢商场对两种足球售价进行调整,甲种足球售价比上学期购买时提高了10%,乙种足球售价比上学期购买时降低了10%,如果本学期购买甲、乙两种足球的总费用不超过2800元,并且乙种足球至少要购买5个,那么该校本学期有几种不同购买足球的方案?9.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.某茶店1月份第一周绿茶的销售总额为1500元,红茶的销售总额为900元,且红茶每克售价是绿茶每克售价的1.2倍,红茶的销售量比绿茶的销售量少3000克,设绿茶每克销售价格为x 元.(1)请用含x的代数式填表:售价(元/克)销售量(克)销售总额(元)绿茶x______1500红茶____________900(2)请列出方程,并求出绿茶、红茶每克的售价分别是多少元?10.期末考试在即,某学校准备购进A、B两种奖品对进步学生进行奖励,已知一盒A 种奖品的单价比一盒B种奖品的单价多1元,且花600元购买A种奖品和花500元购买B种奖品的盒数相同.(1)求A,B两种奖品一盒的单价各是多少元?(2)若计划用不超过1100元的资金购进A、B两种奖品共200盒,求A种奖品最多能购进多少盒?11.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用12万元购买A型充电桩与用18万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A,B型充电桩,购买总费用不超过15万元,且A型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?12.长寿重百商场用50000元从外地购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回是第一次进货件数3倍的T恤衫,但第二次比第一次进价每件贵12元,商场在出售时统一按每件80元的标价出售,为了缩短库存时间,最后的400件按6.5折处理并很快售完.求:(1)商场第一次购买了多少件T恤衫?(2)商场在这两次生意中共盈利多少元?13.某商店购进篮球、足球两种商品,已知每个篮球的价格比每个足球的价格贵16元,用2400元购买篮球的个数恰好与用2000元购买足球的个数相同.求篮球,足球每个的价格各是多少元?14.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?(3)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?15.列方程(组)解应用题:綦江区某校为举行六十周年校庆活动,特定制了系列文创产品,其中花费了312000元购进纪念画册和保温杯若干.已知纪念画册总费用占保温杯总费用的3 10.(1)求纪念画册和保温杯的总费用各是多少元?(2)若每本纪念画册的进价比每个保温杯的进价多20%,而保温杯数量比纪念画册数量的3倍多1200个.求每本纪念画册和每个保温杯的进价各是多少元?。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400)5分 解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x -=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400)5分 解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x -=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。

(完整版)八年级上册数学分式方程应用题及答案

(完整版)八年级上册数学分式方程应用题及答案

八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。

进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

人教版八年级数学上册《15.3 分式方程》应用题综合检测卷-附带参考答案

人教版八年级数学上册《15.3 分式方程》应用题综合检测卷-附带参考答案

人教版八年级数学上册《15.3 分式方程》应用题综合检测卷-附带参考答案学校:___________班级:___________姓名:___________考号:___________1.甲、乙两个工程队合作完成一项工程,两队合做2天后由乙队单独做1天就完成了全部工程,已知乙队单独做所需的天数是甲队单独做所需天数的1.5倍,求甲、乙两队单独做各需多少天完成该项工程?2.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,求第一次捐款的人数.3.某学校开展了社会实践活动,活动地点距离学校15km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.5倍,结果甲比乙早到15min,求乙同学骑自行车的速度.4.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.5.新春佳节来临之际,某商铺用1600元购进一款畅销礼盒,由于面市后供不应求,决定再用6000元购进同款礼盒,已知第二次购进的数量是第一次的3倍,但是第二次的单价比第一次贵2元.求第一次与第二次各购进礼盒多少个?6.一位沙漠吉普爱好者驾车从甲站到乙站与大部队汇合,出发2小时后车子出了点故障,修车用去半小时时间,为了弥补耽搁的时间,他将车速增加到原来的1.6倍,结果按时到达,已知甲、乙两站相距100千米,求他原来的行驶速度.7.绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树800棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前5天完成任务,则原计划每天种树多少棵?8.甲、乙两个工程队都参与某筑路工程,先由甲队筑路60千米,再由乙队完成剩下的筑路工程,已知乙倍,甲队比乙队多筑路20天.如果甲、乙两队平均每天筑路千队筑路总千米数是甲队筑路总千米数的43米数之比为5∶8,求乙队平均每天筑路多少千米?9.目前,我区正在实施的“同城一体化”工程进展顺利区招投标中心在对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,区招投标中心根据甲、乙两队的投标书测算,应有三种施工方案:⑴甲队单独做这项工程刚好如期完成;⑵乙队单独做这项工程,要比规定日期多5天;⑶若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.10.某超市用4000元购进某种菌菇销售,由于销售状况良好,超市又调拨10000元资金购进该种菌菇,但这次每千克的进价比第一次的进价提高了5元,购进菌菇数量是第一次的2倍.(1)该种菌菇的第一次进价是每千克多少元?(2)如果这两批菌菇每千克售价相同,且全部售完后总利润不低于20%,那么每千克菌菇的售价至少是多少元?11.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?12.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,甲品牌消毒剂每箱的价格比乙品牌消毒剂每箱价格的2倍少20元,已知用300元购买甲品牌消毒剂的数量与用200元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每箱的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40箱,且总费用为2000元,求购买了多少箱乙品牌消毒剂?13.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?14.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?15.一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地.(1)原计划的行驶速度是多少?(2)这辆汽车实际花费多长时间到达了目的地.16.为了让学生重温红色经典,传承革命精神,学校组织193名学生乘车去参观距学校6km的红色基地.现已预备了大客车和小客车共8辆,其中大客车每辆可坐51人,小客车每辆可坐8人,刚好都坐满. (1)学校预备了几辆大客车,几辆小客车?(2)为磨练自己意志,一部分学生改为步行前往红色基地,其余学生乘大客车出发,已知大客车速度是步行速度的6倍,他们同时出发,步行的学生晚50分钟到达基地,求步行的速度.17.兴义万峰林机场改扩建工程供油及辅助生产生活设施工程招标时,有甲、乙两个工程队投标,经测算甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天.需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱.还是由甲、乙两队合作完成该工程省钱.18.某超市用3000元购进“红富士苹果”销售,由于销售状况良好,超市又调拨9000元资金购进该种苹果,但这次的进价比第一次的进价提高了20%,购进苹果的数量是第一次的2倍还多300千克. (1)该超市购进苹果的第一次进价是每千克多少元?(2)如果超市按每千克9元的价格出售,当大部分苹果售出后,余下的600千克苹果打折销售,全部苹果销售完后总利润不低于5820元,则余下的苹果至少打几折出售?19.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,求安排甲、乙两个工程队同时开工,并一起完成这项城区道路改造的总费用?答案1.解:设甲队单独做需 x 天完成该项工程,则乙队单独做需 1.5x 天完成该项工程由题意得 2x +2+11.5x =1解得: x =4经检验 x =4 是原分式方程的解答:甲队单独做需4天完成该项工程,乙队单独做需6天完成该项工程2.解:设第一次捐款的人数为x 人,由题意得:4800x =5000x+20 解得:x=480经检验:x=480是原分式方程的解答:第一次捐款的人数为480人3.解:设乙的速度为xkm/min ,则甲的速度为1.5xkm/min根据题意,得:151.5x +15=15x 解得:x=13经检验,x=13是分式方程的解,且当x=13时,1.5x=12都符合题意。

人教版八年级数学上册《分式方程应用题》期末专题训练-附带有答案

人教版八年级数学上册《分式方程应用题》期末专题训练-附带有答案

人教版八年级数学上册《分式方程应用题》期末专题训练-附带有答案学校:班级:姓名:考号:1.为了美化市区,市园林处对中山公园再次进行了绿化.施工队在种植花草800平方米后,采用机械化施工,这样每天绿化的面积是原来的2倍,最后共用了5天完成3200平方米的绿化面积,请问该施工队原来每天绿化的面积是多少?2.某商店购进了一批甲、乙两种不同品牌的雪糕,其中甲种雪糕花费了200元,乙种雪糕花费了240元,已知甲种雪糕比乙种雪糕多了20个,乙种雪糕的单价是甲种雪糕单价的1.5倍.(1)求购进的甲、乙两种雪糕的单价;(2)若甲雪糕每个售价是3.5元,该商店保证卖出这批雪糕的利润不低于230元,那么乙种雪糕每个售价至少是多少元?3.奥达玩具商店根据市场调查,用5000元购进一批悠悠球,很受中小学生欢迎,悠悠球很快脱销,接着又用9000元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批悠悠球每套的进价是多少元?(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球售价至少是多少元?4.为加快公共领域充电基础设施建设,某停车场计划购买A、B两种型号的充电桩.已知A型充电桩比B 型充电桩的单价少0.2万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等,求A、B两种型号充电桩的单价各是多少万元?5.某市把学位建设和消除义务教育阶段“大班额”工作作为全市民生工程.某校现有学生1200人,化解“大班额”后,每班平均学生人数是50人,班级数量比原来多了9个,求化解“大班额”前平均每班有多少学生?6.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.(1)设乙队单独施工1个月能完成总工程的1x,两队半个月完成总工程的____________(用含x的式子表示).(2)哪个队的施工速度快?7.某中学为落实《教育部办公厅关于进一步加强中小学生体质健康管理工作的通知》文件要求,决定增设篮球,足球两门选修课程,需要购进一批篮球和足球.若购买篮球的数量是足球的2倍,购买篮球用了6000元,购买足球用了2000元,篮球单价比足球单价贵30元.(1)求篮球和足球的单价分别是多少元:(2)学校计划采购篮球、足球共60个,并要求篮球多于40个,且总费用低于4900元.那么有哪几种购买方案8.2023年5月30日上午9点31分,神州十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学观看现场直播,学校准备为同学们购进A、B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款文化衫和用400元购进B款文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元购进两种文化衫,应至少购进B款文化衫多少件.9.某公司计划共花费2800元为所有员工网购工作服,恰逢双11购物狂欢节,商家将服装原价上涨40%后再打五折,该公司实际比原计划可多买3件.(1)求每件服装的原价;(2)若该公司按原计划数量购买服装,将剩余的钱用来购买围巾和袜子.一条围巾的售价比一双袜子的售价的12倍还多2元.该公司给每位员工购买了2条围巾和5双袜子,恰好用完剩余的钱,求一条围巾和一双袜子的售价.10.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.求A,B两种学习用品的单价各是多少元?11.岳阳市第十九中八年级举行数学思维导图比赛,学校购买A,B两种学习用品作奖品,A发给一等奖,B发给二等奖,已知A种学习用品的单价比B贵10元,且用180元购买A种学习用品的数量与用120元购买B种学习用品的数量相同.(1)求A,B两种学习用品的单价各是多少元?(2)学校准备购买A,B两种学习用品共28件,且两种学习用品的购买经费不少于680元,问A学习用品最少要购买多少件?12.某公司积极响应节能减排号召,决定采购新能源A 型和B 型两款汽车,已知每辆A 型汽车的进价是每辆B 型汽车的进价的1.5倍,若用3000万元购进A 型汽车的数量比2400万元购进B 型汽车的数量少20辆.(1)A 型和B 型汽车的进价分别为每辆多少万元?(2)该公司决定用不多于3600万元购进A 型和B 型汽车共150辆,最多可以购买多少辆A 型汽车?13.某市计划采购A ,B 两种花卉对某广场进行美化.(1)该市第一批花费2000元采购A ,B 两种花卉共1500盆,此时A ,B 两种花卉的价格分别为1元/盆,2元/盆,求采购A ,B 两种花卉各多少盆?(2)由于花卉价格有所调整,该市第二批分别花费450元,900元购买A ,B 两种花卉,已知购买的B 种花卉每盆比A 种花卉多1元,且B 种花卉比A 种花卉的盆数多20%,求购买A 种花卉多少盆?14.2023年8月开始,溆浦县城开始创建全国文明县城活动,在警予路的绿化工程中,甲、乙两个施工队承担了这路段的绿化工程任务,甲队单独做要40天完成.若乙队先做30天后,甲、乙两队合作再做20天恰好完成任务(1)乙队单独做需要多少天能完成任务?(2)因工期需要,将此项工程分成两部分,甲做x 天,乙做y 天完成,其中x y ,均为正整数,且19x <和60y <问甲、乙两队各做了多少天?15.小南从北关中学返回天津前,用300元购入青莲紫笔记本和铁艺胸针两种纪念品若干,其中青莲紫笔记本总费用比铁艺胸针总费用的2倍少60元.(1)求购买青莲紫笔记本和铁艺胸针的总费用各为多少元?(2)小南发现,两种纪念品的单价和为10元,青莲紫笔记本和铁艺胸针的数量相同,请帮助他算出纪念品的总个数.16.三~四月的哈尔滨,冰雪消融,大地回春,正是植树好季节,市政有甲、乙两个植树工程队,甲工程队每天比乙工程队多植树20棵,甲工程队植树480棵和乙工程队植树360棵所用的时间相等.(1)求甲、乙两工程队每天各植树多少棵?(2)甲、乙两个工程队工作热情高涨,甲工程队每天比原来多植树10%,乙工程队每天比原来多植树20%,现有植树任务不少于1160棵,且乙工程队植树天数是甲工程队植树天数的2倍,则甲工程队至少植树多少天可以完成任务?17.甜酒是长乐美食一张名片,某超市推出两款经典甜酒,一款是色香味俱全的“富硒甜酒”,另一款是清香四溢的“糯米甜酒”.已知2坛“富硒甜酒”和1坛“糯米甜酒”需68元;1坛“富硒甜酒”和2坛“糯米甜酒”需61元.(1)求“富硒甜酒”和“糯米甜酒”的单价;(2)糯米是两款美食必不可少的材料,该超市老板发现本月的每千克糯米价格比上个月涨了25%,同样花24元买到的糯米数量比上个月少了1千克,求本月糯米的价格.18.某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了840元,购买围棋用了1176元,已知每副围棋比每副象棋贵8元.(1)求每副象棋和围棋的价格各多少元?(2)若该校决定再次购买同种象棋和围棋共40副,但费用不能超过1000元,则最多可再次购买多少副围棋?19.某商厦进货员预测有一种衬衫能畅销市场,就用4万元购进这种衬衫,投放市场后供不应求,商厦又用8.8万元购进了第二批同样的衬衫,所购数量是第一次的2倍,但单价每件贵了4元.(1)商厦第二次购进的衬衫每件多少元?(2)商厦对两次购进的衬衫都按60元的售价进行销售,最后剩下的500件按五折全部售空.在这笔生意中,商场盈利多少元?20.在国庆节期间,学校举行了诗歌朗诵等系列活动,嘉嘉和淇淇负责为班级参赛学生购置纪念品.他们发现,一个笔记本比一支钢笔贵3元,用225元购买的笔记本数量与用180元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给参赛的30名学生每人发放一个笔记本或一支钢笔作为活动纪念品,要使购买纪念品的总费用不超过380元,最多可以购买多少个笔记本?参考答案:1.该施工队原来每天绿化的面积为400平方米.2.(1)甲的单价为2元,乙的单价为3元(2)乙种雪糕的售价至少是4元3.(1)50元(2)70元4.A型充电桩的单价为0.6万元,B型充电桩的单价为0.8万元.5.80个学生6.(1)11 62x(2)乙队的施工速度快7.(1)篮球的单价为90元,足球的单价为60元(2)共有三种购买方案,方案一:采购篮球41个,采购足球19个;方案二:采购篮球42个,采购足球18个;方案三:采购篮球43个,采购足球17个.8.(1)每件B款文化衫为40元,每件A款文化衫为50元(2)20件9.(1)每件服装原价为400元;(2)一条围巾售价为50元,一双袜子售价为4元.10.A、B两种学习用品的单价分别为20元和30元11.(1)一个A种学习用品需要30元,购买一个B种学习用品需要20元;(2)A学习用品最少要购买12件.12.(1)A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元(2)最多可以购买60辆A型汽车13.(1)采购A种花卉1000盆,B种花卉500盆(2)购买A种花卉300盆14.(1)乙队单独做需要100天能完成任务(2)甲队做了18天,乙两队做了55天15.(1)购买青莲紫笔记本的总费用是180元,购买铁艺胸针的总费用是120元(2)纪念品的总个数为60个16.(1)甲工程队每天植树80棵,乙工程队每天植树60棵(2)甲工程队至少植树5天可以完成任务17.(1)“富硒甜酒”的单价为25元,“糯米甜酒”的单价为18元(2)本月糯米的价格为6元/千克18.(1)象棋每副20元,围棋每副28元(2)围棋最多可买25副19.(1)第二次购进的衬衫每件44元(2)在这笔生意中商场盈利37000元20.(1)笔记本和钢笔的单价各15元,12元(2)最多可以购买6个笔记本。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:92天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400)5分解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、20。

分式方程应用题 及答案

分式方程应用题  及答案

分式应用题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。

试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。

8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。

初二分式方程练习题及答案

初二分式方程练习题及答案

初二分式方程练习题及答案分式方程是代数学中的重要概念之一,它是由分数组成的等式或不等式。

初二是学习代数的关键年级,通过练习分式方程,学生们能够加深对于代数的理解,并提高解决实际问题的能力。

本文将为初二学生们提供一些分式方程的练习题及其答案,供大家参考和练习。

练习题一:求下列分式方程的解:1. (x+1)/3 + (2x-1)/4 = 1/22. (3x-4)/5 - (2x-1)/2 = 2/33. (3x+2)/4 + (5x-1)/6 = (2x+5)/3解答一:1. 将等式两边的分式通分,得到:4(x+1) + 3(2x-1) = 6/2化简得:4x + 4 + 6x - 3 = 3整理得:10x + 1 = 3再整理得:10x = 2解得:x = 2/10 = 1/52. 将等式两边的分式通分,得到:2(3x-4) - 5(2x-1) = 2/3 * 10化简得:6x - 8 - 10x + 5 = 20/3整理得:-4x - 3 = 20/3再整理得:-4x = 20/3 + 3解得:x = (20/3 + 3) / -43. 将等式两边的分式通分,得到:3(3x+2) + 2(5x-1) = 4(2x+5)化简得:9x + 6 + 10x - 2 = 8x + 20整理得:9x + 10x - 8x = 20 - 6 + 2解得:x = 16/11练习题二:解下列分式方程组:1. { (x+1)/3 = (2y-1)/4, (x-y)/2 = (3x+2y)/10 }2. { (3x-1)/2 + (2y+1)/3 = 1, (4x-2)/5 - (y-3)/4 = 2 }解答二:1. 针对第一个方程:将等式两边的分式通分,得到:4(x+1) = 3(2y-1)化简得:4x + 4 = 6y - 3针对第二个方程:将等式两边的分式通分,得到:5(x-y) = 2(3x+2y)化简得:5x - 5y = 6x + 4y将两个方程整合:4x + 4 = 6y - 35x - 5y = 6x + 4y接下来,通过解方程组得到变量的值,再代入检验:解出:x = -19/21, y = 5/21将x、y代入原方程组,检验是否成立。

(完整版)八年级上册数学分式方程应用题及答案

(完整版)八年级上册数学分式方程应用题及答案

八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要 40 分完工;若甲、乙共同整理 20 分钟后, 乙需要再单独整理 20 分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需 x 分钟完工,则 解,得 x = 802、有两块面积相同的试验田,分别收获蔬菜 900千克和 1500 千克,已知第一块试验田每亩收获蔬菜比第二块少 300 千克,求第一块试验田每亩收获蔬菜多少千克? 解:设第一块试验田每亩收获蔬菜 x 千克,则900 1500解,得 x = 450 xx 300经检验: x = 450 是原方程的解。

答:第一块试验田每亩收获蔬菜 450 千克。

3、甲、乙两地相距 19千米,某人从甲地去乙地,先步行 7千米,然后改骑自行车,共用了 2 小时到达乙 地。

已知这个人骑自行车的速度是步行速度的 4 倍。

求步行的速度和骑自行车的速度。

解:设步行速度是 x 千米/时,则4、小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这 里要比供销大厦每瓶便宜 0.2 元,因此,当第二次买酸奶时,便到百货商场去买,结果用去 18.40 元钱, 买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶? 解:⑴设她第一次在供销大厦买了 x 瓶酸奶,则12.5 18.400.2 解,得 x = 5 x1 3 x 0.2 解,得 x = 55经检x = 5 是原方程的答:她第一次在供销大厦买了 5 瓶酸奶。

5、某商店经销一种纪念品, 4 月份的营业额为 2000 元,为扩大销售, 5 月份该商店对这种纪念品打九折 销售,结果销售量增加 20 件,营业额增加 700 元。

⑴ 求这种纪念品 4 月份的销售价格。

⑵ 若 4 月份销售这种纪念品获利 800 元,问: 5 月份销售这种纪念品获利多少元? 解:⑴设 4月份销售价为每件 x 元,则经检x =50 是原方程的⑵4 月份销售件数: 2000÷50=40(件) 每件进价: (2000- 800)÷ 40=30(元)5 月份销售这种纪念品获利: (2000+700)-30×(40+20) = 900(元)经检x =80 是原方程的经检x = 5 是原方程的解。

新版8年级分式方程应用题含答案

新版8年级分式方程应用题含答案

分式方程应用题分类解析分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.一、营销类应用性问题例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg 少3元,比乙种原料0.5kg 多1元,问混合后的单价0.5kg 是多少元?是多少元?分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.建立它们之间的关系式.二、工程类应用性问题例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.天,可列出分式方程组.三、行程中的应用性问题例3 甲、乙两地相距甲、乙两地相距828km 828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h 2h,比普通快车早,比普通快车早4h 到达乙地,求两车的平均速度.到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= = 速度×时间,应根速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.四、轮船顺逆水应用问题例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度求船在静水中的速度分析:此题的等量关系很明显:顺水航行30千米的时间千米的时间= = = 逆水中航行逆水中航行20千米的时间,即顺水航行速度千米30=逆水航行速度千米20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.航行速度可用未知数表示,问题可解决.五、浓度应用性问题例5 要在15%15%的盐水的盐水40千克中加入多少盐才能使盐水的浓度变为20%20%..分析:浓度问题的基本关系是:溶液溶质=浓度.此问题中变化前后三个基本量的关系如下表:浓度.此问题中变化前后三个基本量的关系如下表: 设加入盐x 千克.千克.溶液溶液 溶质溶质 浓度浓度 加盐前加盐前 40 4040××15% 15% 加盐后加盐后4040++x4040××15%15%++x20%根据基本关系即可列方程.根据基本关系即可列方程. 六、货物运输应用性问题例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t 180t;若乙、丙两车合运相同次数运完这批货物时,乙车共运了;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t 270t..问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算元计算) )分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n 倍,列出分式方程.分式方程.分式方程分式方程 应用题专题应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.小时.已知福州至温州的高速公路长已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,元购进一批盒装粽子,节日期间每盒按进价增加节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是(中正确的是( )A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程(题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话: 9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为,则得方程为 . 11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=´利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.小时完成任务.求原计划每小时修路的长求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,试问该老板这两次售书总体上是赔钱了,还是赚钱了还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?赔多少?若赚钱,赚多少?你们是用9天完成4800米长的大坝加固任务的? 我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍. 通过这段对话,请你求出该地驻军原来每天加固的米数. 15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设已知甲工程队每周比乙工程队少铺设1公里,公里,甲工程队提前甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米,则轮船在静水中的速度是 千米/时.、 1、解:设通车后火车从福州直达温州所用的时间为x 小时.小时. 1分依题意,得29833122xx =´+. 5分解这个方程,得14991x =. 8分经检验14991x =是原方程的解.是原方程的解. 9分148 1.6491x =».2、解:设每盒粽子的进价为x 元,由题意得元,由题意得1分20%x ×50-(x2400-50)×5=350 4分化简得x 2-10x -1200=0 5分 解方程得x 1=40,x 2=-30(不合题意舍去)(不合题意舍去) 6分 经检验,x 1=40,x 2=-30都是原方程的解,都是原方程的解,但x 2=-30不合题意,舍去.不合题意,舍去.7分 3、解:(1)设2006年平均每天的污水排放量为x 万吨,万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得:1分341040%1.05x x-= 4分解得56x » 5分 经检验,56x »是原方程的解是原方程的解 6分 1.0559x \»(2)解:59(120%)70.8´+= 8分70.870%49.56´= 9分 49.563415.56-= 4、D5、D 6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,本,依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.7、C 8、解:设原来每天加固x 米,根据题意,得米,根据题意,得1分926004800600=-+xx . 3分 去分母,得去分母,得 1200+4200=18x (或18x =5400) 5分解得解得 300x=. 6分 检验:当300x =时,20x ¹(或分母不等于0). ∴300x =是原方程的解.是原方程的解. 7分9、解:设甲施工队单独完成此项工程需x 天,天,则乙施工队单独完成此项工程需45x 天,天,……………………1分根据题意,得根据题意,得 10x +1245x=1 ………………………………… 4分解这个方程,得x =25 ………………………………………6分 经检验,x =25是所列方程的根是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分10、22402240220x x-=-11、解:设这种计算器原来每个的进价为x 元,元, 1分根据题意,得4848(14)1005100(14)x x x x---´+=´-%%%%%.5分解这个方程,得40x =. 8分 经检验,40x =是原方程的根.是原方程的根. 9分 12、240024008(120)x x-=+%13、 解:设第五次提速后的平均速度是x 公里/时,时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:时.根据题意,得:x1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分 经检验,x 1=160,x 2=-200都是原方程的解,都是原方程的解, 但x2=-200<0,不合题意,舍去.,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2xx+=解得:5x=经检验5x =是原方程的解是原方程的解 6分所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)(本)第一次赚钱为240(75)480´-=(元)(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40´-´+´´-´=(元)(元) 所以两次共赚钱48040520+=(元)(元)8分15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=.11818=+-x x。

分式方程应用题(及答案)

分式方程应用题(及答案)

分式方程应用题1、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.解:设每盒粽子的进价为x 元,由题意得20%x ×50-(x2400-50)×5=350化简得x 2-10x -1200=0 解方程得x 1=40,x 2=-30(不合题意舍去) 经检验,x 1=40,x 2=-30都是原方程的解, 但x 2=-30不合题意,舍去. 答: 每盒粽子的进价为40元.2、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量. 解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,依题意,得20030010xx =+.解得x=20. 经检验x=20是原方程的解. 答:张明平均每分钟清点图书20本.3、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x =1解这个方程,得x =25 经检验,x =25是所列方程的根 当x =25时,45x =20答:甲、乙两个施工队单独完成此项工程分别需25天和20天.4、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)解:设这种计算器原来每个的进价为x 元,根据题意,得4848(14)1005100(14)x x x x ---⨯+=⨯-%%%%%.解这个方程,得x=40.经检验,x=40是原方程的根.答:这种计算器原来每个的进价是40元.5、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0, 解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解, 但x 2=-200<0,不合题意,舍去. ∴x =160,x +40=200.答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.6、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元. 根据题意得:1200150010 1.2x x+=解得:5x =经检验5x =是原方程的解 所以第一次购书为12002405=(本).第二次购书为24010250+=(本) 第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元) 所以两次共赚钱48040520+=(元) 答:该老板两次售书总体上是赚钱了,共赚了520元.7、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11 小时,求列车提速后的速度.解:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据12801280113.2x x-=.解这个方程,得80x =. 经检验,80x =是所列方程的根.80 3.2256∴⨯=(千米/时).所以,列车提速后的速度为256千米/时.8、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元? 解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得111220x x +=, 解得x=30.经检验x=30是原方程的解,且x=30,2x=60都符合题意. ∴应付甲队30100030000⨯=(元). 应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.9、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道? 解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 根据题意, 得311818=+-x x 解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根 但32-=x 不符合题意,舍去 ∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.10、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .240024008(120)x x-=+%11、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .22402240220x x-=-12、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千 米,则轮船在静水中的速度是 20 千米/时.。

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案 类型一、销售利润问题例1.某公司推出一款桔子味饮料和一款荔枝味饮料 桔子味饮料每瓶售价是荔枝味饮料每瓶售价的54倍.4月份桔子味饮料和荔枝味饮料总销售60000瓶 桔子味饮科销售额为250000元 荔枝味饮料销售额为280000元.(1)求每瓶桔子味饮料和每瓶荔枝味饮料的售价?(2)五一期间 该公司提供这两款饮料12000瓶促销活动 考虑荔枝味饮料比较受欢迎 因此要求荔枝味饮料的销量不少于桔子味饮料销量的32;不多于枯子味饮料的2倍.桔子味饮料每瓶7折销售 荔枝味饮料每瓶降价2元销售 问:该公司销售多少瓶荔枝味饮料使得总销售额最大?最大销售额是多少元?【答案】(1)每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元;(2)当m =7200时 销售额最大 w 最大值是76800元【解析】(1)解:设每瓶荔枝味饮料的售价为x 元 则每瓶桔子味饮料的售价为54x 元 依题意 得:2500002800006000054x x += 解得:x =8 经检验 x =8是原方程的解 且符合题意 ∴54x =10(元) 答:每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元.(2)解:设销售荔枝味饮料m 瓶则销售桔子味饮料(12000﹣m )瓶 依题意 得:3(12000)22(1200)m m m m ⎧≥-⎪⎨⎪≤-⎩ 解得:7200≤m ≤8000 设总销售额w 元 则100.7(12000)684000w m m m ⨯⨯-+-+== ∴w 是m 的一次函数 且k =﹣1<0 ∴当m =7200时 销售额最大 w 最大值是76800元【变式训练1】某超市销售A 、B 两款保温杯 已知B 款保温杯的销售单价比A 款保温杯多10元 用600元购买B 款保温杯的数量与用480元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯销售单价各是多少元?(2)由于需求量大 A B 两款保温杯很快售完 该超市计划再次购进这两款保温杯共120个 且A 款保温杯的数量不少于B 款保温杯数量的一半 若两款保温杯的销售单价均不变 进价均为30元/个 应如何进货才使这批保温杯的销售利润最大 最大利润是多少元?【答案】(1)A 款保温杯销售单价为40元 B 款保温杯销售单价为50元(2)购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【解析】(1)解:设A 款销售单价为x 元 则B 款销售单价为(10x +)元 根据题意得:60048010x x=+ 解得40x = 经检验 40x =是原方程的解且符合题意 ∴10401050x +=+=答:A 款保温杯销售单价为40元 B 款保温杯销售单价为50元;(2)解:设购进A 款保温杯m 个 则购进B 款保温杯(120-m )个 总利润为W 元 ∴1201202m m -≤≤ ∴40120m ≤≤ 根据题意得:()()()40305030120102400W m m m =-+--=-+∴100-<∴W 随m 的增大而减小∴40m =时 W 最大 且2000W =最大值 此时1201204080m -=-=答:购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【变式训练2】国家推行“节能减排 低碳经济”政策后 低排量的汽车比较畅销 某汽车经销商购进A B 两种型号的低排量汽车 其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.(1)求A B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台 设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润 求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时 每周销售这两种汽车的总利润最大?最大利润是多少万元?【答案】(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元(2)①B 型汽车的最低售价为414万元/台 ②A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元【解析】(1)解:设B 型汽车的进货单价为x 万元 根据题意 得:502x +=40x 解得x =8 经检验x =8是原分式方程的根 8+2=10(万元)答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元;(2)设B 型号的汽车售价为t 万元/台 则A 型汽车的售价为(t +1)万元/台①根据题意 得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14) 解得:t ≥414 ∴t 的最小值为414 即B 型汽车的最低售价为414万元/台 答:B 型汽车的最低售价为414万元/台; ②根据题意 得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14)=﹣2t 2+48t ﹣265=﹣2(t ﹣12)2+23∴﹣2<0 当t =12时 w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元.【变式训练3】某家电销售商城电冰箱的销售价为每台2100元 空调的销售价为每台1750元 每台电冰箱的进价比每台空调的进价多400元 商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台 设购进电冰箱x 台 这100台家电的销售总利润y 元 要求购进空调数量不超过电冰箱数量的2倍 且购进电冰箱不多于40台 请确定获利最大的方案以及最大利润.(3)实际进货时 厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变 请你根据以上信息及(2)中条件 设计出使这100台家电销售总利润最大的进货方案.【答案】(1)每台空调的进价为1600元 则每台电冰箱的进价为2000元;(2)当购进电冰箱34台 空调66台获利最大 最大利润为13300元;(3)当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大【解析】解:()1设每台空调的进价为x 元 则每台电冰箱的进价为()400x +元 根据题意得:8000064000400x x=+ 解得:1600x = 经检验 1600x =是原方程的解 且符合题意 40016004002000x +=+=答:每台空调的进价为1600元 则每台电冰箱的进价为2000元.()2设购进电冰箱x 台 这100台家电的销售总利润为y 元则()()()21002000175016001005015000y x x x =-+--=-+根据题意得:100240x x x -≤⎧⎨≤⎩ 解得:133403x ≤≤ x 为正整数 34x ∴= 35 36 37 38 39 40 ∴合理的方案共有7种即①电冰箱34台 空调66台;②电冰箱35台 空调65台;③电冰箱36台 空调64台; ④电冰箱37台 空调63台;⑤电冰箱38台 空调62台;⑥电冰箱39台 空调61台;⑦电冰箱40台 空调60台;5015000y x =-+ 500k =-< y ∴随x 的增大而减小∴当34x =时 y 有最大值 最大值为:50341500013300(-⨯+=元)答:当购进电冰箱34台 空调66台获利最大 最大利润为13300元.()3当厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变则利润()()()()21002000175016001005015000y k x x k x =-++--=-+当500k -> 即50100k <<时 y 随x 的增大而增大 133403x ≤≤ ∴当40x =时 这100台家电销售总利润最大 即购进电冰箱40台 空调60台; 当50k =时 15000y = 各种方案利润相同;当500k -< 即050k <<时 y 随x 的增大而减小 133403x ≤≤ ∴当34x =时 这100台家电销售总利润最大 即购进电冰箱34台 空调66台; 答:当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大.【变式训练4】为迎接“五一”小长假购物高潮 某品牌专卖店准备购进甲、乙两种衬衫 其中甲、乙两种衬衫的进价和售价如下表:若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元 且不超过34700元 问该专卖店有几种进货方案;(3)在(2)的条件下 专卖店准备对甲种衬衫进行优惠促销活动 决定对甲种衬衫每件优惠a 元(6080)a <<出售 乙种衬衫售价不变 那么该专卖店要获得最大利润应如何进货?【答案】(1)甲种衬衫每件进价100元 乙种衬衫每件进价90元;(2)共有11种进货方案;(3)当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.【详解】解:(1)依题意得:3000270010m m =- 整理 得:3000(10)2700m m -= 解得:100m = 经检验 100m =是原方程的根 答:甲种衬衫每件进价100元 乙种衬衫每件进价90元; (2)设购进甲种衬衫x 件 乙种衬衫(300)x -件根据题意得:(260100)(18090)(300)34000(260100)(18090)(300)34700x x x x -+--⎧⎨-+--⎩ 解得:100110x x 为整数 110100111-+= 答:共有11种进货方案;(3)设总利润为w 则(260100)(18090)(300)(70)27000(100110)w a x x a x x =--+--=-+①当6070a <<时 700a -> w 随x 的增大而增大 ∴当110x =时 w 最大此时应购进甲种衬衫110件 乙种衬衫190件;②当70a =时 700a -= 27000w =(2)中所有方案获利都一样;③当7080a <<时 700a -< w 随x 的增大而减小 ∴当100x =时 w 最大此时应购进甲种衬衫100件 乙种衬衫200件.综上:当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 (2)中所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.类型二、方案问题例.某商店决定购进A 、B 两种纪念品.已知每件A 种纪念品的价格比每件B 种纪念品的价格多5元 用800元购进A 种纪念品的数量与用400元购进B 种纪念品的数量相同.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件 考虑市场需求和资金周转 用于购买这100件纪念品的资金不少于800元 且不超过850元 那么该商店共有几种进货方案?(3)已知商家出售一件A 种纪念品可获利m 元 出售一件B 种纪念品可获利(6﹣m )元 试问在(2)的条件下 商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)【答案】(1)购进A 种纪念品每件需要10元 B 种纪念品每件需要5元;(2)共有11种进货方案;(3)当3m ≥;A 种70件 B 种30件时可获利最多;当03m << A 种60件 B 种40件时可获利最多【详解】解:(1)设购进A 种纪念品每件价格为m 元 B 种纪念币每件价格为5m -元 根据题意可知: 8004005m m =- 解得:10m = 55m -=. 答:购进A 种纪念品每件需要10元 B 种纪念品每件需要5元.(2)设购进A 种纪念品x 件 则购进B 种纪念品100x -件 根据题意可得:800105(100)850x x ≤+⨯-≤ 解得:6070≤≤x x 只能取正整数 60,61,,70x ∴=⋅⋅⋅ 共有11种情况故该商店共有11种进货方案分别为:A 种70件 B 种30件;A 种69件 B 种31件;A 种68件 B 种32件;A 种67件 B 种33件;A 种66件 B 种34件;A 种65件 B 种35件;A 种64件 B 种36件;A 种63件 B 种37件;A 种62件 B 种38件;A 种61件 B 种39件;A 种60件 B 种40件. (3)销售总利润为(100)(6)(26)600100W mx x m m x m =+--=-+-商家出售的纪念品均不低于成本价 0m ∴>根据一次函数的性质 当260m -≥时 即3m ≥W 随着x 增大而增大当70x =时 W 取到最大值;即方案为:A 种70件 B 种30件时可获利最多;当260m -<时 即03m << W 随着x 增大而减小当60x =时 W 取到最大值;即方案为:A 种60件 B 种40件时可获利最多.【变式训练1】为切实做好疫情防控工作 开学前夕 我县某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只 每盒水银体温计有10支 每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计 且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数) 则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后 超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买 共支付总费用w 元;①当总费用不超过1800元时 求m 的取值范围;并求w 关于m 的函数关系式.②若该校有900名学生 按(2)中的配套方案购买 求所需总费用为多少元?【答案】(1)每盒口罩和每盒水银体温计的价格各是200元、50元;(2)购买水银体温计5m 盒能和口罩刚好配套;(3)①w =450(4)360360(4)m m m m ≤⎧⎨+>⎩;②购买口罩和水银体温计各18盒、90盒 所需总费用为6840元【解析】解:(1)设每盒口罩和每盒水银体温计的价格分别是x 元 (150)x -元根据题意 得1200300150x x =- 解得200x = 经检验 200x =是原方程的解15050x ∴-= 答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y 盒能和口罩刚好配套根据题意 得100210m y =⨯ 则5y m =答:购买水银体温计5m 盒能和口罩刚好配套;(3)①由题意得:2005051800m m +⨯4501800m ∴ 4m ∴ 此时 450w m =;若4m > 则1800(4501800)0.8360360w m m =+-⨯=+ 综上所述:450(4)360360(4)m m w m m ⎧=⎨+>⎩; ②若该校九年级有900名学生 需要购买口罩:90021800⨯=(支)水银体温计:9001900⨯=(支)此时180010018m =÷=(盒) 51890y =⨯=(盒) 则360183606840w =⨯+=(元).答:购买口罩和水银体温计各18盒、90盒 所需总费用为6840元.【变式训练2】某超市准备购进甲、乙两种牛奶进行销售 若甲种牛奶的进价比乙种牛奶的进价每件少5元 其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件 两种牛奶的总数不超过95件 该商场甲种牛奶的销售价格为49元 乙种牛奶的销售价格为每件55元 则购进的甲、乙两种牛奶全部售出后 可使销售的总利润(利润=售价﹣进价)超过371元 请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【答案】(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件;【详解】(1)设甲种牛奶进价为x 元 则乙种牛奶进价为:()5+x 元根据题意 得:901005x x =+ ∴45x = 当45x =时 0x ≠ 且50x +≠∴45x =是方程901005x x =+的解 ∴550x += ∴甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)设该商场购进乙种牛奶数量为m 件 则该商场购进甲种牛奶数量为()35m -件∴两种牛奶的总数不超过95件 ∴3595m m -+≤ ∴25m ≤∴销售的总利润(利润=售价﹣进价)超过371元 ∴()()()3549455550371m m --+-≥∴17391m ≥ ∴23m ≥ ∴2325m ≤≤∴商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件.【变式训练3】某公司经销甲种产品 受国际经济形势的影响 价格不断下降.预计今年的售价比去年同期每件降价1000元 如果售出相同数量的产品 去年销售额为10万元 今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入 公司决定再经销另一种类似产品乙 已知产品甲每件进价为3500元;产品乙每件进价为3000元 售价3600元 公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件 分别列出具体方案 并说明哪种方案获利更高.【答案】(1)今年这种产品每件售价为4000元;(2)有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件;方案①的利润更高.【详解】解:()1设今年这种产品每件售价为x 元 依题意得:10000080000x 1000x=+ 解得:x 4000=. 经检验:x 4000=是原分式方程的解.答:今年这种产品每件售价为4000元.()2设甲产品进货a 件 则乙产品进货()15a -件.依题意得:()()3500a 300015a 500003500a 300015a 49000⎧+-≤⎪⎨+-≥⎪⎩解得:8a 10≤≤因此有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件.方案①利润:()()4000350083600300078200-⨯+-⨯=方案②利润:()()4000350093600300068100-⨯+-⨯=方案③利润:()()40003500103600300058000-⨯+-⨯=820081008000>>∴方案①的利润更高.类型三、工程问题例.为稳步推进5G 网络建设 深化共建共享 现有甲、乙两个工程队参与5G 基站建设工程.(1)已知乙队的工作效率是甲队的1.5倍 如果两队单独施工完成该项工程 甲队比乙队多用20天 求乙队单独施工 需要多少天才能完成该项工程?(2)当甲队施工20天完成5G 基站建设工程的13时 乙队加入该工程 结果比甲队单独施工提前25天完成了剩余的工程.①求乙队单独施工 需要多少天才能完成该项工程?②若乙队参与该项工程施工的时间不超过12天 求甲队从开始施工到完成该工程至少需要多少天?【答案】(1)乙队单独施工 需要40天才能完成该项工程.(2)①36天 ②至少40天【详解】解:(1)设乙队单独施工 需要x 天才能完成该项工程 题意 得1.5120x x=+ 解方程 得40x = 经检验 40x =是原分式方程的解 且符合题意.答:乙队单独施工 需要40天才能完成该项工程.(2)①由题意得 甲队单独施工20天完成该项工程的13 所以甲队单独施工60天完成该项工程. 甲队单独施工完成剩余23的工程的时间为602040-=(天) 于是甲、乙两队共同施工的时间为402515-=(天).设乙队单独施工需要y 天才能完成该项工程则11215603y ⎛⎫+⨯= ⎪⎝⎭解方程 得36y . 经检验 36y 是原分式方程的解 且符合题意.答:若乙队单独施工 需要36天才能完成该项工程.②设甲队从开始施工到完成该工程需要z 天依题意列不等式 得1216036z -≤ 解得:40.z ≥【变式训练1】某工程公司承包了修筑一段塌方道路的工程 并派旗下第五、六两个施工队前去修筑 要求在规定时间内完成.(1)已知第五施工队单独完成这项工程所需时间比规定时间多32天 第六施工队单独完成这项工程所需时间比规定时间多12天 如果第五、六施工队先合作20天 剩下的由第五施工队单独施工 则要误期2天完成那么规定时间是多少天?(2)实际上 在第五、六施工队合作完成这项工程的56时 公司又承包了更大的工程 需要调走一个施工队.你认为留下哪个施工队继续施工能按时完成剩下的工程?【答案】(1)规定的时间是28天;(2)留下第六施工队继续施工能在规定的时间内完成剩下的工程 见解析.【详解】解:(1)设规定的时间是x 天 根据题意 得22013212x x x ++=++ 解得28x = 经检验 28x =是原分式方程的解且符合实际意义.答:规定的时间是28天;(2)设第五、六施工队合作完成这项工程的56用了y 天 根据题意 得115283228126y ⎛⎫+= ⎪++⎝⎭ 解得20y = 由第五、六施工队单独完成剩下的工程 所需的时间分别为:5111062832⎛⎫-÷= ⎪+⎝⎭(天) 51216628123⎛⎫-÷= ⎪+⎝⎭(天) 因为2220103028,206262833+=>+=< 所以留下第六施工队继续施工能在规定的时间内完成剩下的工程.答:留下第六施工队继续施工能在规定的时间内完成剩下的工程.【变式训练1】某校利用暑假进行田径场的改造维修 项目承包单位派遣一号施工队进场施工 计划用30天时间完成整个工程.当一号施工队工作10天后 承包单位接到通知 有一大型活动要在该田径场举行 要求比原计划提前8天完成整个工程 于是承包单位派遣二号与一号施工队共同完成剩余工程 结果按通知要求如期完成整个工程.(1)若二号施工队单独施工 完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工 完成整个工程需要多少天?【答案】(1)若由二号施工队单独施工 完成整个工期需要45天;(2)若由一、二号施工队同时进场施工 完成整个工程需要18天【详解】(1)设二号施工队单独施工需要x 天 根据题意得:30830810130x---+= 解得:45x = 经检验 45x =是原分式方程的解∴若由二号施工队单独施工 完成整个工期需要45天;(2)一号、二号施工队同时进场施工需要的天数为x 天 根据题意得:1113045x ⎛⎫+= ⎪⎝⎭∴18x =∴若由一、二号施工队同时进场施工 完成整个工程需要18天.【变式训练2】2019年 在新泰市美丽乡村建设中 甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.已知道路硬化和道路拓宽改造工程的总里程数是8.6千米 其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工 甲工程队比乙工程队平均每天多施工10米.由于工期需要 甲工程队在完成所承担的13施工任务后 通过技术改进使工作效率比原来提高了15.设乙工程队平均每天施工a 米 若甲、乙两队同时完成施工任务 求乙工程队平均每天施工的米数a 和施工的天数.【答案】(1)道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米;(2)乙工程队平均每天施工20米 施工的天数为160天【详解】解:(1)设道路拓宽里程数为x 千米 则道路硬化里程数为(21)x -千米依题意 得:(21)8.6x x +-= 解得: 3.2x =21 5.4x -=∴.答:道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米.(2)设乙工程队平均每天施工a 米 则甲工程队技术改进前每天施工(10)a +米 技术改进后每天施工点6(10)5a +米 依题意 得:乙工程队施工天数为3200a 天 甲工程队技术改造前施工天数为:15400180031010a a ⨯=++天 技术改造后施工天数为:15400(1)30003610(10)5a a ⨯-=++天. 依题意 得:3200180030001010a a a =+++ 解得:20a = 经检验 20a =是原方程的解 且符合题意3200a∴160=. 答:乙工程队平均每天施工20米 施工的天数为160天.【变式训练3】某市为了做好“全国文明城市”验收工作 计划对市区S 米长的道路进行改造 现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米 求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路 乙工程队每天可以改造b 米道路 (其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造 后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造 后一半时间由乙工程队改造.根据上述描述 请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)方案二所用的时间少【详解】(1)设乙工程队每天道路的长度为x 米 则甲工程队每天道路的长度为()30x +米根据题意 得:36030030x x=+ 解得:150x = 检验 当150x =时 ()300x x +≠ ∴原分式方程的解为:150x = 30180x +=答:甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+= 方案二所用时间为2t 则221122t a t b s += 22s t a b =+ ∴22()22()a b a b S S S ab a b ab a b +--=++ ∴a b 00a b >>,∴()20a b -> ∴202a b S S ab a b+->+ 即:12t t > ∴方案二所用的时间少.【变式训练4】2008年5月12日 四川省发生8.0级地震 某市派出两个抢险救灾工程队赶到汶川支援 甲工程队承担了2400米道路抢修任务 乙工程队比甲工程队多承担了600米的道路抢修任务 甲工程队施工速度比乙工程队每小时少修40米 结果两工程队同时完成任务.问甲、乙两工程队每小时各抢修道路多少米.(1)设乙工程队每小时抢修道路x 米 则用含x 的式子表示:甲工程队每小时抢修道路 米 甲工程队完成承担的抢修任务所需时间为 小时 乙工程队完成承担的抢修任务所需时间为 小时. (2)列出方程 完成本题解答.【答案】(1)(x ﹣40);240040x -;3000x ;(2)甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米【详解】(1)设乙工程队每小时抢修道路x 米 则甲工程队每小时抢修道路(x ﹣40)米 甲工程队完成承担的抢修任务所需时间为240040x -小时 乙工程队完成承担的抢修任务所需时间为2400600x =3000x 小时. 故答案为:(x ﹣40);240040x -;3000x . (2)依题意 得:240040x -=3000x 解得:x =200经检验 x =200是原方程的解 且符合题意∴x ﹣40=160.答:甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米.。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?【答案】原计划每天种树60棵.【解析】设原计划每天种树x棵,则实际每天种树为x棵,根据实际比原计划提前4天完成任务,列方程求解.试题解析:设原计划每天种树x棵,则实际每天种树为x棵,由题意得,,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:原计划每天种树60棵.【考点】分式方程的应用.3.若关于的分式方程无解,则.【答案】a=1或a=-2【解析】该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.试题解析:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.【考点】解分式方程.4.一项工程要在限期内完成,若第一组单独做,则恰好在规定日期完成,若第二组单独做,则超过规定日期4天才能完成,若两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成,问规定日期是多少天?【答案】12天【解析】设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,根据“两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成”即可列方程求解.解:设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,由题意得解得:经检验:是原方程的解答:规定日期为12天。

初二分式方程应用题及答案

初二分式方程应用题及答案

初二分式方程应用题及答案
题目:某工厂生产一批零件,甲车间单独完成需要15天,乙车间单
独完成需要20天。

现在甲乙两个车间合作,共同完成这批零件的生产,问需要多少天?
解答:
设甲车间每天完成这批零件的\( \frac{1}{15} \),乙车间每天完成
这批零件的\( \frac{1}{20} \)。

设甲乙两个车间合作完成这批零件
需要\( x \)天。

根据题意,甲乙两个车间合作\( x \)天完成的零件数等于这批零件的
总数,即:
\[ \frac{1}{15}x + \frac{1}{20}x = 1 \]
为了解这个方程,我们首先找到两个分数的最小公倍数,即60,然后
将方程两边同时乘以60,得到:
\[ 4x + 3x = 60 \]
合并同类项,得到:
\[ 7x = 60 \]
解得:
\[ x = \frac{60}{7} \]
所以,甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

答案:甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

人教版八年级上册数学 15.3分式方程(应用题) 同步练习(含解析)

人教版八年级上册数学 15.3分式方程(应用题) 同步练习(含解析)

15.3分式方程(应用题) 同步练习一.选择题1.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.2.成都西站至成飞工业园之间在建的9号地铁,现有甲、乙两个工程队从两头开始施工,已知,每天甲队比乙队多修8米,甲施工150米所用的时间与乙施工120米所用的时间相等,设甲每天施工x米,下列方程正确的是()A.=B.=C.=D.=3.某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资1万个,原计划采购该物资200万个.实际采购中,在当地又招募到10名志愿者,结果比原计划推迟一天结束采购任务并实际购得300万个.设原有采购志愿者x名.则据题意可列方程为()A.=1B.=1C.=1D.=14.在2018年太原国际马拉松赛中,小张参加了迷你马拉松(全程约4.2km)项目,已知小张全程匀速前进,若将速度每小时加快2km,则正好比实际提前10min到达终点.设小张的速度为xkm/h,那么可列方程为()A.B.C.D.5.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同,求甲、乙两种兰花每株成本分别为多少元?若设乙种兰花的成本是x元.则下列方程正确的是()A.=B.=C.=D.=6.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多20元.李老师购买篮球花费900元,购买足球花费400元,结果购得的篮球数量是足球数量的1.5倍.设购买的足球数量是x个,则下列选项中所列方程正确的是()A.=+20B.=+20C.=+20D.=+207.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为()A.B.C.D.8.圣湖路全长为600米,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,设原计划每天整改x米,则下列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=59.疫情期间嘉祥外国语学校用4200元钱到商场去购买“84”消毒液,经过协商议价,每瓶便宜1元,结果比用原价多买了140瓶,求原价每瓶多少元?若设原价每瓶x元,则可列出方程为()A.﹣=140B.﹣=140C.﹣=1D.﹣=110.“绿水青山就是金山银山”.为改造太湖水质,某工程队对2400平方公里的水域进行水质净化,实际工作时每天的工作效率比原计划提高了20%,结果提前了40天完成任务.设实际每天净化的水域面积为x平方公里,则下列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40二.填空题11.甲、乙两组学生去距学校4千米的敬老院开展慰问活动,甲组学生步行出发20分钟后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知骑自行车速度是步行速度的3倍,设步行速度为x千米/时,则根据题意可以列出方程.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.甲和乙同时从A地出发,匀速行走到B地.甲走完一半路程时,乙才走了4千米,乙走完一半路程时,甲已走了9千米.当甲走完全程时,乙未走完的路程还有千米.14.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲队单独做,则延误两天完成,那么规定时间是天.15.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟,若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程.三.解答题16.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?17.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?参考答案一.选择题1.解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,依题意,得:=.故选:C.2.解:根据题意得,=,故选:C.3.解:设原有采购志愿者x名.根据题意,得=1.故选:B.4.解:设小张的速度为xkm/h,则加快后的速度是(x+2)km/h,根据题意,得.故选:C.5.解:设乙种兰花的成本是x元,则甲种兰花的成本为(x+100)元,根据题意可得:=.故选:B.6.解:设购买的足球数量是x个,则购买篮球数量是1.5x个,根据题意,得=+20.故选:C.7.解:设乙车间每天生产x个,则=.故选:C.8.解:设原计划每天铺设x米管道,则实际施工每天铺设(1+20%)x米管道,根据题意列得:﹣=5.故选:C.9.解:设原价每瓶x元,根据题意,得﹣=140.故选:B.10.解:设实际每天净化的水域面积为x平方公里,根据题意可得:﹣=40.故选:A.二.填空题11.解:设步行速度为x千米/时,则骑自行车速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.12.解:设原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据题意,列方程为:﹣=4.故答案是:﹣=4.13.解:设A,B两地之间的路程为x千米,依题意,得:=,化简,得:x2=144,解得:x1=12,x2=﹣12,经检验,x1=12,x2=﹣12均为原方程的解,x1=12符合题意,x2=﹣12不符合题意,舍去,∴x﹣4×2=4.故答案为:4.14.解:设规定的时间是x天,则甲队单独完成需要(x+32)天,乙队单独完成需要(x+12天),由题意,得20×+=1,解得:x=28.经检验,x=28是元方程的解.答:规定的时间是28天.故答案是:28.15.解:设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为(1+60%)x 千米/小时,依题意,得:﹣=.故答案为:﹣=.三.解答题16.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.17.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。

进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

⑵ 若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x 元,则xx 9.07002000202000+=+ 解,得x =50 经检验:x =50是原方程的解。

⑵4月份销售件数:2000÷50=40(件)每件进价:(2000-800)÷40=30(元)5月份销售这种纪念品获利:(2000+700)-30×(40+20) =900(元)答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。

6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?解:设李刚每小时加工x 个,则列方程为:xx 155.0115=++ (注:此方程去分母后化为一元二次方程)7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。

试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。

解:设规定时间为x 天,则154=++x x x 解,得x =20 经检验:x =20是原方程的解。

方案一付款:1.5×20=30(万元)方案二:耽误工期不预考虑。

方案三付款:1.5×4+1.1×20=28(万元)答:方案三节省工程款。

8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。

解:设原分数为x ,则xx x x 74717+=-++ 解,得x =3 经检验:x =3是原方程的解。

原分数为:1037=+x x 答:原分数为103。

9、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。

某校师生也行动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?解:设第一天有x 人,则5060004800+=x x 解,得x =200 经检验:x =200是原方程的解。

x +x +50=450(人)答:两天共参加捐款的人数是450人。

10、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。

⑴ 试销时该品种苹果的进价是每千克多少元?⑵ 如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元? 解:⑴设试销时进价为每千克x 元,则5.01100050002+=⨯x x 解,得x =5 经检验:x =5是原方程的解。

⑵ 1100050004007.074005.0511000550007--⨯⨯+⎪⎭⎫ ⎝⎛-++⨯=4160(元) 答:试销时进价为每千克5元,超市在这两次苹果销售中共盈利4160元。

11、某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导。

⑴ 甲、乙两个工厂每天各能加工多少件产品?⑵ 该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?解:⑴设甲每天加工件产x 品,乙每天加工(x +8)件,则87248+=x x 解,得x =16 经检验:x =16是原方程的解。

x +8=24(件)⑵设乙工厂向公司报加工费每天最多为y 元,则249605024960169605016960800⨯+≥⨯+⨯y 解,得y ≤1225 答:甲每天加工16件产品,乙每天加工24件;乙工厂向公司报加工费每天最多为1225元。

12、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价。

解:设新涂料每千克x 元,则xx x 24010012403100+=-++ 解,得x =17 经检验:x =17是原方程的解。

答:这种新涂料每千克的售价是17元。

13、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。

如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。

问原来规定修好这条公路需多长时间?解:设原来规定修好这条公路需要x 个月才能如期完成,则甲单独修好这条公路需要x 个月才能完成,乙单独修好这条公路需要(x+6)个月才能完成,由题意得:4x + x x+6= 1 解之得: x =12 经经验:x=12是原方程的根且符合题意∴ 原方程的根是x=12答:原来规定修好这条公路需要12个月的时间才能如期完成。

14、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度是大队的1.2倍,以便提前21 小时到达目的地做准备工作,求先遣队与大队的速度各是多少?解:设大队的速度是x 千米/时,则先遣队的速度是1.2x 千米/时,由题意得: 15x - 151.2x = 12 解之得:x=5经检验:x=5是原方程的根且符合题意∴原方程的根是x=5∴ 1.2x=1.2×5=6(千米/时)答:先遣队的速度是6千米/时,大队的速度是5千米/时15、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?(本题5分)解:设规定日期是x 天,则甲队独完成需要x 天,乙队独完成需要(x+3)天, 由题意得:2x + x x+3 = 1 解之得:x=6经检验:x=6是原方程的根且符合题意∴原方程的根是x=6答:规定日期是6天16、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.解:设该市去年居民用水的价格为x 元/m3,则今年用水价格为(1+25%)x 元/m3根据题意得: 36186(125%)x x-=+………………………………………4分 解得:x=1.8经检验:x=1.8是原方程的解答:该市今年居民用水的价格为2.25元/m3 (7)分17.小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。

已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时?解:设王老师的步行速度为x 千米/时,则骑自行车速度为3x 千米/时。

(1分)依题意得:315.035.033=-++x x (4分) 20分钟=31小时 解得:x=5 (5分)经检验:x=5是所列方程的解∴3x=3×5=15 (6分)答:王老师的步行速度及骑自行车速度各为5千米/时 和15千米/时 (7分)18、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?解:设“青年突击队”原计划每小时清运x 吨垃圾,由题意得:100x ―4 = 1002x解之得:x= 1212经检验x= 1212是原方程的根,且符合题意 ∴原方程的根是:x= 1212答:“青年突击队”原计划每小时清运 1212吨垃圾。

19、(2007福建宁德课改,10分)我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 解这个方程,得14991x =. 8分 经检验14991x =是原方程的解. 9分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分20、(2007广东河池非课改,8分)某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x2-10x -1200=0 5分解方程得x1=40,x2=-30(不合题意舍去) 6分经检验,x1=40,x2=-30都是原方程的解,但x2=-30不合题意,舍去. 7分答: 每盒粽子的进价为40元. 8分22、(2007广西玉林课改,3分)甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D ) A.6天 B.4天 C.3天 D.2天23、(2007河北课改,2分)炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( D )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 24、(2007吉林长春课改,5分)张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量. 解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,依题意,得20030010x x=+.3分解得20x=.经检验20x=是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x-=⨯或其变式,同样得分.25、(2007江苏南通课改,3分)有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg,根据题意,可得方程( C )A.9001500300x x=+B.9001500300x x=-C.9001500300x x=+D.9001500300x x=-27、(2007辽宁沈阳课改,10分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需45x天,……………………1分根据题意,得10x+1245x=1 ………………………………… 4分解这个方程,得x=25 ………………………………………6分经检验,x=25是所列方程的根……………………………7分当x =25时,45x =20 …………………………………………9分 答:甲、乙两个施工队单独完成此项工程分别需25天和20天. ……………10分30、(2007山东青岛课改,3分)某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 240024008(120)x x-=+% . 31、(2007山东日照课改,7分)今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x+40)公里/时.根据题意,得: x 1500-401500+x =815,……………………………………2分 去分母,整理得:x2+40x -32000=0,解之,得:x1=160,x2=-200, ……………………………… 4分经检验,x1=160,x2=-200都是原方程的解,但x2=-200<0,不合题意,舍去.∴x=160,x+40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.……………………… 7分32、(2007山东泰安课改,9分)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x元,则第二次购书的进价为(1)x+元.根据题意得:12001500101.2x x+= 4分解得:5x=经检验5x=是原方程的解 6分所以第一次购书为12002405=(本).第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元) 8分答:该老板两次售书总体上是赚钱了,共赚了520元.9分33、(2007山东威海课改,7分)甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x千米/时,则提速后的速度为3.2x千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分 经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.34、(2007四川德阳课改,8分)某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 3分解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分 ∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分35、(2007广东深圳课改,8分)A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 ………………………1分 根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x ………………………6分 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ………………………7分 ∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.………………………8分。

相关文档
最新文档