向量的概念及其表示

合集下载

向量知识

向量知识

Jlin Institute of Chemical Technology
上页
下页
返回
退出
•向量的相等 如果向量a和b的大小相等, 且方向相同, 则说向量a和b是 相等的, 记为a=b. •向量的模 向量的大小叫做向量的模.
向量 a、 a 、 AB 的模分别记为|a|、 | a | 、 |AB | . •单位向量 模等于1的向量叫做单位向量. •零向量
r = OM = xi + yj + zk . •上式称为向量r的坐标分解式. • xi、yj、zk称为向量r沿三个坐标轴方向的分向量.
点M、向量r与三个有序x、y、z 之间有一一对应的关系

M ↔ r = OM = xi + yj + zk ↔ (x, y, z) .
•有序数x、y、z称为向量r的坐标, 记作r=(x, y, z); •有序数x、y、z也称为点M的坐标, 记为M(x, y, z).
Jlin Institute of Chemical Technology
上页
下页
返回
退出
二、向量的线性运算
1.向量的加法
设有两个向量a与b, 平移向量, 使b的起点与a的终点重合, 则从a的起点到b的终点的向量c称为向量a与b的和, 记作a+b, 即c=a+b. 三角形法则 平行四边形法则
c=a+b
Jlin Institute of Chemical Technology
上页 下页 返回 退出
2.向量与数的乘法 向量a与实数λ的乘积记作λa, 规定λa是一个向量, 它的模 |λa|=|λ||a|, 它的方向当λ>0时与a相同, 当λ<0时与a相反. 当λ=0时, |λa|=0, 即λa为零向量. 当λ=1时, 有1a=a; 当λ=−1时, 有(−1)a =−a.

7.1向量的基本概念及其运算

7.1向量的基本概念及其运算

ab
ab
[核心思想方法] 1、定义法 2、数形结合
3、化归与转化
[典型例题]
例1、计算 (1) 2(2a b) 7(3a b)
2 3(a 3b 3c) 5(2a 2b c)
解:(1)原式 4a 2b 21a 7b 25a 5b
(2)原式 3a 9b 9c 10a 10b 5c
证明: BD CD CB (3 e1-e2)-(-2e1-8e2)=5e1+5e2
=5(e1+e2)=5AB BD / / AB .
B点为公共点, A、B、D三点共线。
点评:根据向量平行的充要条件证明三点共线。
例5、已知a、b是两个非零向量 ,若a+3b与7a-5b垂直,a-4b与7a-2b垂直, 求a、b的夹角。
例5、已知a、b是两个非零向量 ,若a+3b与7a-5b垂直,a-4b与7a-2b垂直,
求a、b的夹角。
解:由题意得 ( (aa+-43bb))((77aa--52bb))=00
7a2 +16a
7a
2
30a
b
2
15b
=0
b
2
8b
=0
(1) (2)
由(1)
(2)得46a b
2
23b
0,
即b2 =2a
3)平行向量:
如果两个向量 a, b 的方向相同或相反, 则把这一对向量叫做平行向量。 记作 a / /b. 平行向量也叫共线向量。 规定零向量平行于任意向量。
4)共面向量: 如果把几个向量的始点移到某个平面,它们的终点也都在这个平面内,
把这些向量叫做共面向量。
如果两个向量 a, b 不共线,则向量 c与向量 a, b 共面的充要条件是:

向量

向量

平面向量1、向量的物理背景与概念了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.3、向量的几何表示带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度. 向量AB 的大小,也就是向量AB 的长度(或称模),记作AB ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.4、方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.5、长度相等且方向相同的向量叫做相等向量.6、向量加法运算及其几何意义 三角形法则和平行四边形法则. b a +≤b a +.7、向量数乘运算及其几何意义规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:⑴a a λλ=,⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反.8、 平面向量共线定理:向量()0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ=.9、平面向量基本定理 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量a ,有且只有一对实数21,λλ,使2211e e a λλ+=.10、平面向量的正交分解及坐标表示()y x j y i x a ,=+=. 11、平面向量的坐标运算设()()2211,,,y x b y x a ==,则:⑴()2121,y y x x b a ++=+, ⑵()2121,y y x x b a --=-,⑶()11,y x a λλλ=,12、平面向量共线的坐标表示 设()()()332211,,,,,y x C y x B y x A ,则 ⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y yy x x x ++++. 13、平面向量数量积的物理背景及其含义 θcos b a b a =⋅.a 在b 方向上的投影为:θcos a . 22a a =. 2a a =. 0=⋅⇔⊥b a b a .设()()2211,,,y x B y x A ,则: ()1212,y y x x AB --=14、平面向量数量积的坐标表示、模、夹角 设()()2211,,,y x b y x a ==,则: ⑴2121y y x x b a +=⋅ ⑵2121y x a += ⑶02121=+⇔⊥y y x x b a 1221//y x y x b a =⇔ 设()()2211,,,y x B y x A ,则: ()()212212y y x x AB -+-=.提炼: 1 θcos b a b a =⋅ b a ba ⋅=θcos2设()()2211,,,y x b y x a ==,则: ⑴2121y y x x b a +=⋅ ⑵2121y x a += 212122y x a a +== 22)(b a b a +=+ ⑶02121=+⇔⊥y y x x b a 1221//y x y x b a =⇔ 练习。

1向量的概念及运算

1向量的概念及运算

A a1
a 1a 2
C
B
a2
A
B
C
u
推论:
定理4: 实数与向量 的乘积在轴u上的投影,
等于乘以向量 在该a轴上的投影。
即 P j u (a r ) P j u a r
二. 空间直角坐标系与空间向量的坐标表示
(一) 空间直角坐标系 1. 空间直角坐标系的建立
z
y
o
y
o
x
x
z
x轴(横轴)、 y轴(纵轴)、z轴(竖轴)组成了一个 空间直角坐标系, 又称笛卡尔(Descarstes)坐标系, 点O叫做坐标原点.
3. 自由向量 当a 向 与 b ,大量 小相等且方向相同,
a
b
称 a 与 b 相 .记 等 a b 作
自由向量: 只有大小、方向, 而无特定起点的向
量. 具有在空间中可以任意平移的性质.
( 二 ) 向量的加减法
1. 向量加法.
(1) 平行四边形法则 可平设移有至a 重、 合b ()若. 作起以点a 不、 重b 合为,
2. 向量在轴上的投影.
定义 设有向线段AB的起点A和终点B在轴u
上的投影分别为点A 和B . 称有向线段A B 为
向量AB在轴u上的投影向量或射影向量.
B A
A'
B'
u
如果向量e为与轴u
B
A
的正方向的单位向量,
e
则向量 AB 的投影向量
A'
B'
u
A'B' 有:
ABxe
则称 x 为向量 AB 在轴u上的投影,记作 PrjuAB
2. 向量的几何表示法: 用以一线条段有的方长向度的表线示段向来量表的示大向小量,.

向量的概念与性质

向量的概念与性质

向量的概念与性质向量,作为研究物理、数学等学科中的基本概念之一,具有广泛的应用价值。

在本文中,我们将讨论向量的概念以及其所具有的一些重要性质。

一、向量的概念向量可以被理解为带有方向和大小的量,常用以描述位移、速度、力等物理量。

向量通常用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

例如,位移向量可以表示一个物体从初始位置到最终位置的位移情况,速度向量可以表示运动物体在某一时刻的速度大小和方向。

二、向量的性质1. 向量的加法和乘法运算向量的加法定义为两个向量相加得到的结果,其几何意义为将一个向量平移至另一个向量的尾部,连接两个向量的首尾即可得到结果向量。

向量的乘法通常有数量积和向量积两种形式,数量积的结果为一个标量,表示两个向量之间的夹角关系;向量积的结果为一个向量,垂直于原向量所在的平面。

2. 向量的共线性若两个向量的方向相同或相反,称它们共线;若两个向量的大小和方向都相同,称它们相等;若一个向量的大小为零,称它为零向量。

共线向量有以下性质:共线向量的数量积为零,零向量与任何向量的数量积为零。

3. 向量的投影向量的投影是指一个向量在另一个向量上的投影长度,用于衡量一个向量在某个方向上的分量。

投影的大小等于向量的模长与两向量之间夹角的余弦值的乘积。

4. 向量的线性运算向量具有线性运算的性质,即向量与标量的乘法和向量的加法满足以下规则:若a是一个实数,u、v、w是任意向量,则有:(a*u) + (a*v) = a*(u+v);a*(u+v) = (a*u) + (a*v) = a*u + a*v。

5. 向量的单位化向量的单位化是将一个向量的大小调整为1,其方向不变。

通过将向量除以其模长即可得到单位向量,单位向量用帽子 (^) 表示。

单位向量在物理中有着重要的应用,例如在力学中,单位向量常用于表示力的方向。

总结向量作为一种重要的数学概念,具有广泛的应用。

通过向量的加法和乘法运算,我们可以对向量进行各种运算操作。

向量总结归纳

向量总结归纳

向量总结归纳向量是数学中的重要概念之一,广泛应用于各个学科领域。

本文将对向量进行总结归纳,介绍向量的定义、性质、表示方法以及相关的运算规则,并结合实际例子进行说明。

一、向量的定义向量是带有方向和大小的量,用于表示空间中的位移、速度、力等物理量。

常用一个有向线段来表示向量,线段的长度表示向量的大小,箭头表示向量的方向。

二、向量的性质1. 等向量:具有相同大小和方向的向量称为等向量。

2. 零向量:大小为0的向量称为零向量,用0表示,方向可以是任意方向。

3. 负向量:与原向量大小相等,方向相反的向量称为原向量的负向量。

三、向量的表示方法1. 坐标表示法:在直角坐标系中,向量可以用坐标表示,例如向量a可以表示为(a₁, a₂, a₃)。

2. 分量表示法:将向量沿坐标轴投影得到的三个数值称为向量的分量,例如向量a可以表示为a = a₁i + a₂j + a₃k,其中i、j、k分别是x、y、z轴方向上的单位向量。

四、向量的运算规则1. 向量的加法:向量的加法是指将两个向量的相应分量相加,得到一个新的向量。

例如:向量a = (a₁, a₂, a₃)和向量b = (b₁, b₂, b₃),它们的和为a + b = (a₁+b₁, a₂+b₂, a₃+b₃)。

2. 向量的减法:向量的减法是指将两个向量的相应分量相减,得到一个新的向量。

例如:向量a = (a₁, a₂, a₃)和向量b = (b₁, b₂, b₃),它们的差为a - b = (a₁-b₁, a₂-b₂, a₃-b₃)。

3. 向量的数量乘法:向量的数量乘法是指将一个向量的每个分量乘以一个标量,得到一个新的向量。

例如:向量a = (a₁, a₂, a₃),标量k,它们的数量乘积为ka = (ka₁, ka₂, ka₃)。

4. 向量的点积:向量的点积是指将两个向量的对应分量相乘,然后相加得到一个标量。

例如:向量a = (a₁, a₂, a₃)和向量b = (b₁, b₂,b₃),它们的点积为a·b = a₁b₁ + a₂b₂ + a₃b₃。

初中数学知识归纳向量的概念与向量的运算

初中数学知识归纳向量的概念与向量的运算

初中数学知识归纳向量的概念与向量的运算初中数学知识归纳:向量的概念与向量的运算向量是数学中重要的概念之一,它在几何、物理和计算机科学等领域发挥着重要的作用。

了解向量的概念及其运算规则对于初中数学学习来说至关重要。

本文将对初中数学中的向量概念和向量的运算进行归纳总结。

一、向量的概念向量是有大小和方向的量,常用有向线段表示。

向量通常用大写字母表示,如A、B。

向量的大小称为向量的模,用|AB|表示。

向量的方向可以用箭头表示,指向向量的方向。

一个向量可以由起点和终点表示,如向量AB。

向量的起点称为原点,向量的终点称为终点。

二、向量的运算1. 向量的相加向量的相加是指两个向量相互叠加的运算。

设有向量AB和向量CD,则向量AB+CD的结果是从向量A的起点到向量D的终点所得的新向量。

2. 向量的相减向量的相减是指两个向量相互抵消的运算。

设有向量AB和向量CD,向量AB-CD的结果是从向量A的起点向向量D的相反方向延长所得的新向量。

3. 数乘数乘是指将一个向量与一个实数相乘的运算。

设有向量AB和实数k,则k*AB的结果是长度为k倍的向量,其方向与向量AB相同(当k>0时)或相反(当k<0时)。

4. 向量的数量积向量的数量积也称为向量的点乘,记作AB·CD。

向量的数量积满足以下运算规则:- AB·CD = |AB| |CD| cosθ,其中θ为向量AB和向量CD之间的夹角。

- 如果两个向量的数量积为0,即AB·CD=0,则向量AB与向量CD垂直。

5. 向量的向量积向量的向量积也称为向量的叉乘,记作AB×CD。

向量的向量积满足以下运算规则:- |AB×CD| = |AB| |CD| sinθ,其中θ为向量AB和向量CD之间的夹角。

- 向量AB与向量CD的向量积垂直于向量AB和向量CD所在的平面,并且其方向满足右手定则。

三、向量的应用向量的概念与运算在几何、物理和计算机科学等领域有着广泛的应用。

初中向量知识点总结

初中向量知识点总结

初中向量知识点总结一、向量的基本概念1.1 向量的定义在数学上,向量通常用有向线段来表示。

有向线段是由一个起点和一个终点确定的,它具有方向和大小。

向量的表示通常用字母加上一个有方向的箭头来表示,比如a→。

1.2 向量的分量向量可以通过分解为横坐标和纵坐标的形式来表示,这两个分量分别称为水平分量和垂直分量。

比如向量a→可以表示为a→=(a1,a2),其中a1为水平分量,a2为垂直分量。

1.3 向量的模长向量的大小用模长来表示,模长的计算公式为|a→|=√(a12+a22)。

向量的大小也可以理解为向量的长度。

1.4 向量的方向角向量的方向可以用方向角来表示,方向角通常用与x轴的夹角来表示,比如θ。

方向角的计算一般通过反三角函数来得到。

1.5 零向量零向量是指模长为0的向量,它的起点和终点重合,没有方向。

1.6 平行向量如果两个向量的方向相同或相反,那么它们是平行向量。

平行向量具有相同的方向角,不一定有相同的大小。

1.7 共线向量如果一个向量可以表示为另一个向量的倍数,那么它们是共线向量。

即存在实数k,使得a→=k* b→。

二、向量的运算2.1 向量的加法向量的加法满足三角形法则,即两个向量相加的结果是一个新的向量,它的起点与第一个向量的起点重合,终点与另一个向量的终点重合。

2.2 向量的减法向量的减法可以通过加上被减向量的相反向量来实现。

2.3 向量与实数的乘法向量与实数相乘,实际上是将向量等比例放大或缩小。

当实数大于0时,向量的方向不变,大小变化;当实数小于0时,向量的方向相反,大小也变化。

2.4 向量的数量积向量的数量积又称为点积,是两个向量的数乘之和,计算公式为a→· b→=|a→|* |b→|* cosθ。

其中θ为两个向量夹角。

2.5 向量的数量积的性质向量的数量积具有分配律、交换律和结合律,但不满足交换律。

2.6 向量的数量积的几何意义数量积的结果是一个标量,它表示两个向量的夹角和它们的大小的乘积。

向量及其加减法,向量与数的乘法

向量及其加减法,向量与数的乘法
一、向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以M1为起点,M2 为终点的有向线段.
向量的模: 向量的大小.| a| 或 | M1M2 |
单位向量:模长为1的向量. a0

M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
证 AM MC BM MD
D b
A
a
C
M
B
AD AM MD MC BM BC
AD 与 BC 平行且相等, 结论得证.
四、小结
向量的概念(注意与标量的区别) 向量的加减法(平行四边形法则) 向量与数的乘法(注意数乘后的方向)
思考题
已知平行四边形ABCD的对角线
AC a,
BD b
10、把平行于某一直线的一切单位向量归结到共同的
11、始 要使点,a则b终点a构 b成成__立__,__向__量_a__,_b_应__满__足_____;_____
12、_要__使__a___b___a____b_成_;立,向量a,
b 应满足_______
___________ .
二、用向量方法证明:对角线互相平分的四边形是平 行四边形 .
a
b
负向量:大小相等但方向相反的向量. a
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
二、向量的加减法
[1]
加法:a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若 a‖
a b

向量及其坐标表示法

向量及其坐标表示法

3 2 a y a cos 6 4 , 3 2 az a cos 6 4. 3
例6 已知作用于一质点的三 个力为F1 i 2k , F2 2i 3 j 4k , F3 j k , 求其合力F的大小及方向角。
单位向量:模为1的向量.
0
0 2
1
不考虑起点位置的向量.即只考虑向量 自由向量: 的大小和方向,而不论它的起点在何处. 相等向量: 大小相等且方向相同的向量.
a
:
: b
负向量: 大小相等但方向相反的向量. a
: a
a:
向量的加减法
[1] 加法: a b c
{a x bx , a y by , a z bz }; a ( a x )i ( a y ) j ( a z )k
a x , a y , az .
例3 已知a {3,5,1}, b {2,2,2}, c {4,1,3} 求(1)a b ( 2)2a 3b 2c
2 2
2
y
cos
az a x a cos 2 cos 2 cos 2 1
特殊地:单位向量可表示为
0 a a |a |
{cos , cos , cos }.
例4 已知M 1 1,2,3, M 2 4,2,1,求 M 1 M 2的模 及方向余弦。
a AB OB OA
3. 向量运算的坐标表达式 设 a {a x , a y , az }, b {bx , b y , bz },
则 a b (a x bx )i (a y by ) j (az bz )k

向量知识点总结及讲解

向量知识点总结及讲解

向量知识点总结及讲解一、向量的基本概念1. 向量的定义在数学中,向量是有大小和方向的量。

在几何学中,向量通常表示为有向线段。

在向量中,大小通常表示为向量的长度,方向表示为向量的箭头指向。

2. 向量的表示向量可以用坐标、分量或者表示向量的起点和终点等方式来表示。

在二维空间中,可以使用(x, y)来表示向量,在三维空间中,可以使用(x, y, z)来表示。

3. 向量的相等当两个向量的大小和方向都相同时,这两个向量称之为相等向量,可以表示为AB=CD。

4. 零向量零向量是指大小为0,方向任意的向量,可以表示为0。

5. 单位向量单位向量是指大小为1的向量,可以将任意非零向量除以其大小得到单位向量。

6. 平行向量两个向量的方向相同或者相反,则这两个向量称之为平行向量,可以表示为AB∥CD。

7. 垂直向量当两个向量的夹角为90°时,这两个向量称之为垂直向量,可以表示为AB⊥CD。

8. 自由向量自由向量是指一个向量沿着平行的方向平移以后仍然保持原有性质的向量。

9. 定位向量定位向量是指起点固定在坐标原点上的向量,可以用终点的坐标表示。

二、向量的运算1. 向量加法向量加法是指将两个向量的对应分量相加,得到一个新的向量。

2. 向量减法向量减法是指将被减向量取反后与减向量进行向量加法,得到一个新的向量。

3. 向量的数量积向量的数量积,也称为点积或者内积,是指将两个向量的对应分量相乘后相加得到一个数,可以表示为a·b。

4. 向量的数量积性质(1)交换律:a·b = b·a(2)结合律:a·(b+c) = a·b + a·c(3)分配律:a·(b+c) = a·b + a·c5. 向量的数量积应用向量的数量积有很多应用,例如计算向量的模、判定向量的垂直性、计算夹角等。

6. 向量的向量积向量的向量积,也称为叉积或者外积,是指将两个向量的对应分量相乘后得到一个新的向量。

10.1 向量及其运算

10.1 向量及其运算




负向量 (1) a 称为 a 的负向量,记为 a .




差运算 a 与 b 的和称为 a 与 b 的差,

记为 a b.
C

b

b
A

a

a b
B
C

b

D
a b

a b
A

a
B
三角形法则
平行四边形法则
向量满足下列运 算规律:
(1)
交换律

a b b a
a
b
(3)
Prj b a


a b



e
a

b
|a|
Prj a b


a b


e
b

a
|b|
例 1.设
a, b, c
是三个任意向量,若分别以OA, OB 和OC表示,
点P,Q, R, S 分别是线段 OA, AB, BC,CO 的中点.试分别
求出OP
,OQ ,OR,OS与a,
b,
c的关系式,从而推证
PQ

SR.

显然,OP

1 2
OA

1 2
a
,OS

1 2
OC

1 2
c

b
)


时, 则称

a


b
垂 直(正 交 ) ,记

a b.
2

定义

给定向量 a

1向量的概念及其表示

1向量的概念及其表示

c
任意一组平行向量都可以平移到同一直线上
思考:
对于下列各种情况,各向量的终点的集合 分别是什么图形?
(1) 把平行于直线l 的所有单位向量的 起点平移到直线 l上的点P;
是直线 l上与点P的距离为1的两个点;
(2) 把平行于直线 l 的所有向量的起点 平移到直线 l上的点P; 是直线
l
• 问题4
变式三:与向量OA长度相等的共线向量有哪些? CB、DO、FE
与 a长度相等,方向相反的向量 叫 做 的相反向量 .记为 a
a
a
a
( a) a
a
c
c = -a
a = -c
例3:在4 5方格纸中有一个向量 AB, 以图中的格点为 起点和终点作向量,其中与 AB相等的向量有多少个? 与 AB长度相等的共线向量有多少个? (AB 除外)
(3)如果两个向量是单位向量,那么它们相等; (4)两个相等向量的模相等。 正确的有:(4)
练习3:
1.设O为正△ABC的中心,则向量AO,BO,CO是 ( B ) A.相等向量 B.模相等的向量
C.共线向量
C
D.共起点的向量
书后习题
A
O
B
练习4:如图,EF是△ABC的中位线,AD是BC 边上的
重性, 不能比较大小。
二:表示方法:
①几何表示法:有向线段.
B A
有向线段——具有一定方向的线段. 有向线段的三要素:起点、方向、长度 以A为起点、B为终点的有向线段记作AB
②字母表示法:
用 a、b 、c 等小写字母表示;或用表示有
向线段的起点和终点字母表示,如 AB . 思考: 向量AB与向量BA是不是同一向量?为什 么? (3)模的概念:

向量及其运算

向量及其运算

数量的定义数学中,把只有大小但没有方向的量叫做数量(或纯量),物理中常称为标量。

向量的定义既有大小又有方向的量叫做向量(亦称矢量)。

注:在线性代数中的向量是指n个实数组成的有序数组,称为n 维向量。

α=(a1,a2,…,an)称为n维向量.其中ai称为向量α的第i个分量。

("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。

向量的表示1、代数表示:一般印刷用黑体小写字母α、β、γ…或a、b、c …等来表示,手写用在a、b、c…等字母上加一箭头表示。

2、几何表示:向量可以用有向线段来表示。

有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。

这种具有方向和长度的线段叫做有向线段。

)3、坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底。

a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。

由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。

这就是向量a的坐标表示。

其中(x,y)就是点P的坐标。

向量OP称为点P的位置向量。

向量的模和向量的数量向量的大小,也就是向量的长度(或称模)。

向量a的模记作|a|。

注:1、向量的模是非负实数,是可以比较大小的。

2、因为方向不能比较大小,所以向量也就不能比较大小。

对于向量来说“大于”和“小于”的概念是没有意义的。

例如,“向量AB>向量CD”是没有意义的。

特殊的向量单位向量长度为单位1的向量,叫做单位向量.与向量a同向且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。

零向量长度为0的向量叫做零向量,记作0.零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

课件:向量及其运算(15)

课件:向量及其运算(15)

∴a(bc)0 ,故a,
b, c
共面。
B b
a
.a b 0
A
24
运算规律
1. a b b a;
反交换律
2.( a) b a ( b) (a b); 与数乘向量的结合律
3. (a b) c a c b c
分配律
c(a b) c a c b
例3 已知 a 2, b 3, 且a b 3, 则a b _____3______.
22
3)两个向量的向量积
(由两个向量造一个新的特殊的向量)
在 并b,且许需要多要求方找面c另的,一模对个有于同某给时种定与特的a性两,.个b不垂共直线的l 的非非零零向向量量
a
,
c
,
如图, 由直观, 同时与 a ,
c B b
b 垂直的非零向量 c 在
O
直线 l 上,有无限多个,但 方向可指向方上或下方.
三角形法则可推广到多个向量相加 .
4
s a1 a2 a3 a4 a5
a4
a5
a3 s
a2 a1
5
2. 向量的减法 三角不等式
b
a
6
3. 向量与数的乘法
是一个数 , 与 a 的乘积是一个新向量, 记作 a .
规定 :
总之:
a
a
运算律 : 结合律 ( a) ( a) a
若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .
3
二、向量的线性运算
1. 向量的加法 平行四边形法则:
b ab
(a b) c
c
bc
a (bc)
a
三角形法则:
ab b

向量的概念及其运算

向量的概念及其运算
O 为在坐标原点,终点A 坐标为 x, y ,则 x, y 称为 OA 的
坐标,记为 OA = x, y .
注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.
3.相等向量:长度相等且方向相同的向量. 向量可以自由平移,平移前后的向量相等.两向量
a 与 b 相等,记为 a b .
课堂练习:
4.正方形 PQRS 对角线交点为 M,坐标原点 O 不在正方形内部,
A 且

OP
=(0,3),

OS
=(4,0),则

RM
=(
)
(A)( 7 , 1 ) (B)( 7 , 1 ) (C)(7,4) (D)( 7 , 7 )
22
22
22



5.已 知 a (1,2),b x,1 ,且 a 2b 与 2a b 平 行,则 x 等 于
OA AB OB
实数与 向量的 乘积
三角形法则
两个向 量的数 量积


AB =λ a
λ ∈R

记 a =(x,y)

则 a =(λ x,λ y)
ab a b cos a,b 记 a (x1, y1),b (x2, y2)

则 a · b =x1x2+y1y2
向量的加减法,实数与向量的乘积,两个向量 的数量积运算.
当基底 i, j 是两个互相垂直的单位向量时,
就建立了平面直角坐标系.如图
a xi y j 一一对应(x, y)
⑴当向量起点在原点时,定义向量坐标
为终点坐标,即若 A(x,y),则 OA =(x,y);
⑵当向量起点不在原点时,向量 AB 坐标为终点坐标减

向量的坐标表示及其运算

向量的坐标表示及其运算

1向量的坐标表示及其运算一、知识点(一)向量及其表示:1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示.对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使OA a =.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)i j ===.(3)模:向量的长度叫向量的模,记作|a|或|AB|.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.(5)单位向量:长度为1个长度单位的向量叫做单位向量.(6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.(7)相等的向量:长度相等且方向相同的向量叫相等的向量.2向量坐标的有关概念(1)基本单位向量(2)位置向量(3)向量的正交分解我们称在平面直角坐标系中,方向与x轴和y轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j,如图,称以原点O为起点的向量为位置向量,如下图左,OA即为一个位置向量.如上图右,设如果点A的坐标为(),x y,它在小x轴,y轴上的投影分别为M,N,那么向量OA能用向量OM与ON来表示吗?(依向量加法的平行四边形法则可得OA OM ON=+),OM与ON 能用基本单位向量,i j来表示吗?(依向量与实数相乘的几何意义可得,OM xi ON y j==),于是可得:OA OM ON xi y j=+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA都能表示成两个相互垂直的基本单位向量,i j的线性组合,这种向量的表示方法我们称为向量的正交分解.向量的坐标运算:设),(),(),(),,(1121212211yxayyxxbayxbyxaλλλλ=±±=±ℜ∈==,,3.向量的摸:22yxa+=(二)向量平行的充要条件:1向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,即b∥a⇔b=λa(a≠0).2设a=(x1,y1),b=(x2,y2)则b∥a⇔1221yxyx=练习2:1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________;2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( ) ① 存在一个实数λ,使a =λb 或b =λa ; ②2121y yx x =;③(a +b )//(a -b ) A 、0个 B 、1个 C 、2个 D 、3个3.设0a 为单位向量,有以下三个命题:(1)若a 为平面内的某个向量,则0a a a =⋅;(2)若a 与0a 平行,则0a a a =⋅;(3)若a 与0a 平行且1a =,则0a a =.上述命题中,其中假命题的序号为 ;问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ [说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线.*法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线. 问题二:定比分点公式:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式.例、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.例、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP P P= 32 ,所以λ=-32 .3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+ 所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j =+±+()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±± ()()11111111(,),a x y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积. 例.如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标; (2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=- ()()()13,322,1BC =----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB = 设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---= 又 ()()32,215,1AB =---=- 故 ()()1,35,1D D x y ---=- 由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;DC(-1,3)A(2,1)B(-3,2)yxO若其起点坐标是(2,1),则其终点的坐标是 . 3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-二、典型例题例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少?例2 下列哪些是向量?哪些是标量?(1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ∆ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ∆重心,求GA 的坐标例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()反向的单位向量求与AB 1 ()()的坐标,求点,若E BE 522-= ()3若a BD AC a 求,-=()三点不共线,,求证:C B A 4 ()CD BD AD AC AB ++来表示,以5()()坐标三点共线,求点,,且若P P B A x P 3,6()如图7所示,若点M 分BA 的比λ为3:1,点N 在线段BC 上,且ABC AMNC S S ∆=32,求点N 点的坐标例5若ABCD 为正方形,E 是CD 的中点,且AB =a ,AD =b ,则BE 等于 A.b +21a B.b -21a C.a +21b D.a -21b 例6.e 1、e 2是不共线的向量,a =e 1+k e 2,b =k e 1+e 2,则a 与b 共线的充要条件是实数k 等于 A.0 B.-1 C.-2 D.±1例7.若a =“向东走8 km ”,b =“向北走8 km ”,则|a +b |=_______,a +b 的方向是_______.例8 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于 A.1B.2C.5D.6. 例11若a 、b 是两个不共线的非零向量(t ∈R ).(1)若a 与b 起点相同,t 为何值时,a 、t b 、31(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小?例12.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有A.a ∥b 且a 、b 方向相同B.a =bC.a =-bD.以上都不对例13.设四边形ABCD 中,有DC =21AB 且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形例15.设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围..例16已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?例17.如图所示,D 、E 是△ABC 中AB 、AC 边的中点,M 、N 分别是DE 、BC 的中点,已知BC =a ,BD =b ,试用a 、b 分别表示DE 、CE 和MN .AB CDMN E例18在△ABC 中,AM ∶AB =1∶3,AN ∶AC =1∶4,BN 与CM 交于点E ,AB =a ,AC =b ,用a 、b 表示AE .A BCMNE1.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 A.(-3,6) B.(3,-6)C.(6,-3)D.(-6,3) 2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于A.43 B.-43 C.34D.-343已知平面向量a =(3,1),b =(x ,-3)且a ⊥b ,则x 等于 A.3 B.1 C.-1 D.-31.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH AG +D .GH BG +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 4 4.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( ) A .c b a =+ B .d b a =-C .d a b =-D .b a c =- 6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R o b a b a ∈=+μλμλ不共线则( )A .o b o a ==,B .o o a ==μ,C .o b o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量.其中正确的是 ( )A .①②B .②③C .①③D .①②③ 11.若2121,,PP P P b OP a OP λ===,则OP 等于 ( )A .b a λ+B .b a +λC .b a )1(λλ-+D .b a λλλ+++111 12.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||4||||22AB BD AC =+ 2其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共16分,答案填在横线上)13.21,e e 不共线,当k= 时,2121,e k e b e e k a +=+=共线. 14.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 15.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .16.已知c b a ,,的模分别为1、2、3,则||c b a ++的最大值为 .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、 B 、D 三点共线,求k 的值.19.已知向量,,32,32212121e e e e b e e a 与其中+=-=不共线向量,9221e e c -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线?20.如图,在△ABC 中,P 是BC 边上的任一点,求证:存在,1)1,0(,2121=+∈λλλλ且使AC AB AP 21λλ+=.1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( ) (A)(3,3),(3,-3) (B)(3,3),(1,-3) (C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( ) (A)(-2,-7) (B)(2,7) (C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是.5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a m n b mn =+=,且.a b =求,.m n 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的概念及其表示
教学目标:了解向量的实际背景,会用字母表示向量,理解向量的几何表示。

理解零向量、单位向量、平行向量、共线向量、相等向量、相反向
量等概念。

教学重点:向量的概念,相等向量的概念,向量的几何表示
教学难点:向量概念的理解
教学过程:
一、问题情境:
问题:老鼠由A 向西北方向逃窜,如果猫由B 向正东方向追赶,那么猫能否抓到老鼠?为什么?
二、学生活动:
共同探讨上述问题,分析原因
三、知识建构:
1.向量定义:
2.向量的表示方法:(1)用有向线段表示:
(2)用字母表示:
3、模:
4、单位向量:
5、零向量:
6、平行向量:
规定:
7、相等向量:
8、共线向量:
说明:
9、相反向量:
规定: A B →

四、知识运用:
例1 、已知O 是正六边形ABCDEF 的中心,在图中所标出的向量中:
(1)试找出与FE u u r 共线的向量;
(2)确定与FE u u r 相等的向量;
(3)OA u u u r 与BC uuu r 相等吗?
小结: 例2、在图中的4×5方格纸中有一个向量AB u u u r ,分别以图中的格点为起点和终
点作向量,其中与AB u u u r 相等的向量有多少个?与AB u u u r 长度相等的共线向量有多
少个?(AB u u u r 除外)
小结:
练习:书P59 练习 1、2、3、4 习题2.1 2
五、回顾反思:
知识: 思想方法:
六、作业布置:
书P59-60 1、3、4。

相关文档
最新文档