环境工程原理及实验作业
《环境工程原理实验指导书》-环境工程专业
环境工程原理实验指导书目录前言----------------------------------------------------------------------------------------------------2实验守则-------------------------------------------------------------------------------------------------3对学生基本要求----------------------------------------------------------------------------------------3实验一化工流体过程综合实验-------------------------------------------------------------------4实验二恒压过滤常数测定实验-------------------------------------------------------------------12实验三传热综合实验-------------------------------------------------------------------------------16实验四填料吸收塔实验----------------------------------------------------------------------------23、前言21世纪人类将进入知识经济的时代,人们正将其视为继农业经济、工业经济之后人类社会所面临的又一次生产方式、生活方式乃至思维方式的历史性变革。
面对知识经济的到来,我国高等教育改革势在必行,以培养出知识面宽广且具有较强创新能力的人才。
化工原理实验作为化工类创新人才培养过程中重要的实践环节,在化工教育中起着重要的作用,它具有直观性、实践性、综合性和创新性,而且还能培养学生具有一丝不苟、严谨的工作作风和实事求是的工作态度。
环境工程原理大型作业重力沉降室的设计
环境工程原理大型作业重力沉降室的设计重力沉降室是环境工程中常用的一种处理废水悬浮物的设备,具有结构简单、操作方便、运行稳定等特点。
下面将从设计原理、结构和工作原理三个方面进行具体介绍。
1.设计原理:重力沉降室利用重力对废水中的固体颗粒进行沉降分离。
当废水经过沉降室时,由于废水流速的减慢,使得固体颗粒由于自身重力的作用而向下沉降,最终沉积在重力沉降室底部,而清水则从沉降室上部流出。
2.结构设计:重力沉降室的结构应尽量简单,通常分为进水段、沉降段和出水段三部分。
进水段是废水进入沉降室的入口,通常设置在沉降室的一侧,进水段具有一定的宽度,以确保废水能够均匀地进入沉降室。
沉降段即为沉降室的主体部分,其宽度一般为进水段的2倍,以便让废水在沉降室内形成较大的沉降区域。
出水段通常设置在沉降室的另一侧,出水段的宽度与进水段相似,以保持废水流经重力沉降室时的稳定流速。
3.工作原理:当废水进入重力沉降室时,由于重力的作用,其中的固体颗粒会向下沉降,沿着沉降室的底部积累。
同时,为了保持较高的沉降效率,应适当增加沉降室的长度。
较轻的悬浮物则会随着上层水流一同流出沉降室,从出水段排出。
为了进一步提高沉降效果,可以在进水段和出水段之间设置泄流口,以控制进出水的流速,避免流速过快而影响沉降。
为了实现重力沉降室的设计,需要进行一定的工程计算和水力学分析。
首先需要确定废水的流量和水质特点,计算进水段、沉降段和出水段的尺寸和形状。
同时需要考虑沉降室的底部清污装置,以便定期清理沉积的悬浮物。
此外,还需要进行模拟或现场试验,验证设计的合理性,并对工程效果进行评估。
综上所述,重力沉降室的设计是环境工程中的一项重要内容,通过合理选择结构和参数,可以有效地去除废水中的悬浮物,提高水质的处理效果。
通过深入的设计和研究,我们可以进一步完善重力沉降室的性能和工作效率,提升其在环境工程领域的应用价值。
环境工程原理实验指导书带封面
本实验计算填料解吸塔的体积传质系数 Kxa ( kmol /(m3 ⋅ h) )的公式如下:
Kxa
=N V Δxm
=
L(x1 − x2 ) ZF Δxm
= L/F
Z
/
ln(
x1 x2
− −
x* x*
)
式中: N ——传质速率, kmol / h ;
x1 , x2 ——进、出设备的水中氧的摩尔分数;
V ——传质体积, m3 ;
(注:本实验由清华大学化工系供稿)
-4-
实验二 吸收(解吸)系数的测定
1、实验目的
(1) 了解吸收(解吸)操作的基本流程和操作方法。 (2) 了解传质系数的测定方法。 (3) 测定空塔气速与液体流量对传质系数的影响。
2、实验原理
吸收式工业上常用的操作,常用于气体混合物的分离。在吸收操作中,气体混合物和吸 收剂分别从塔底和塔顶进入塔内,气、液两相在塔内实现逆流接触是气体混合物中的溶质较 完全地溶解在吸收剂中,于是塔顶获得较纯的惰性组分,从塔底得到溶质和吸收剂组成的溶 液(通称富液)。当溶质有回收价值或吸收剂价格较高时,把富液送入再生装置进行解析, 得到溶质或再生的吸收剂(通称贫液),吸收即返回吸收塔循环使用。
x , xi ——液相主体和液相界面处的溶质摩尔分数; x* , y* ——与 y 和 x 呈平衡的液相和气相摩尔分数; kx , Kx ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; ky , K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积, m2 。
1- 水高位槽;2-氧解吸塔;3-氧吸收塔;4-氧气瓶;5-罗茨鼓风机 图 1 氧解吸实验 -7-
4、实验步骤及注意事项
4000立方米每小时 重力沉降室 环境工程原理大型作业 课程设计
《环境工程原理》大型作业题目:4000重力降尘室的初步设计学院:环境科学与工程学院专业名称:学号:学生姓名:指导教师:目录一、前言 3二、设计条件 4三、设计任务 4四、设计说明 41、重力沉降的说明42、重力沉降的原理53、重力沉降室的结构 54、沉降时间和(最小粒径时的)沉降速度65、沉降室的尺寸66实际性能和测试6五、工艺计算71、降尘室尺寸的设计72、沉降原理73、沉降流型的判断和最小颗粒直径的计算84、颗粒回收的百分率85、降尘室隔板数的设置9六、主要符号说明10七、总结10八、参考文献10一、前言大型作业是《环境工程原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。
在整个教学计划中,它也起着培养学生独立工作能力的重要作用。
大型作业不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。
所以,大型作业是培养学生独立工作能力的有益实践。
通过大型作业,学生应该注重以下几个能力的训练和培养:1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;3. 迅速准确的进行工程计算的能力;4. 用简洁的文字,清晰的图表来表达自己设计思想的能力。
二、设计条件、含尘气体成分:炉气和矿石;2、气体密度:3、矿石密度:;4、粘度:;5、气体流量:三、设计任务1、设计方案确定(长宽高);2、矿尘颗粒沉降流型判断;3、理论上能完全捕集的最小颗粒直径。
4、降尘室的隔板数。
5、重力沉降室的工艺尺寸计算。
四、设计说明1.重力沉降的说明一种使悬浮在流体中的固体颗粒下沉而与流体分离的过程。
西南交通大学环境工程原理上-课后作业详细讲评
• 转化率为xA时的总摩尔数为
• 转化率为xA时A的总摩尔数为 nA n0 p A 0(1 x A ) • 故:组分A的分压为
PA0哪来的
n A p A0(1 x A ) pA p0 (p A 0 p B 0 p P 0 p M 0 ) n 1 Az A0 x A
• 教材425页,题11.11 • 对于表11.3.1所示的恒温恒容反应,试推导出以 转化率xA为变量的反应速率方程及其积分形式。
解: (1)零级反应, rA k ,kt=cA0xA
c A c A0 (1 x A )
c B c B0 (1 x B )
(2)一级反应,rA kcA0 (1 xA ) ,kt=-ln(1-xA)
mol/(m · s) 5
物质的量通量
• • •
解:原料液含盐摩尔浓度 渗透液含盐摩尔浓度 所以渗透压差
C AP
9 C AF 0.154mol / L 58.5 0.45 0.00769mol / 105 m3/(m2· s)
溶剂渗透系数
11.3 气态NH3在常温高压条件下的催化分解反应2NH3=N2+3H2可用于处理 含NH3废气。 现有一NH3和CH4含量分别为95% 和5%的气体,通过NH3 催化分解反应器后气体中NH3的含量减少为3%,试计算NH3的转化率和反 应器出口处N2、H2和CH4的摩尔分数。(CH4为惰性组分,不参与反应)
5 4.5 4
10.13 用微滤膜处理某悬浮液,0.1MPa下,滤膜的清水通量为150L/(m2h), 已知悬浮颗粒为0.1μm的球形微粒,当滤饼层的厚度为6μm,空隙率为0.2 时,滤膜的通量为40 L/(m2h),求此时的过滤压差。
《环境工程学》课程作业及答案解析
第一次作业1。
根据我国的《环境空气质量标准》的二级标准,求出SO 2、NO 2、CO 三种污染物日平均浓度限值的体积分数.解:由我国《环境空气质量标准》二级标准查得三种污染物日平均浓度限值如下:SO2:0。
15mg/m 3,NO2:0。
12mg/m 3,CO:4。
00mg/m 3。
按标准状态下1m 3干空气计算,其摩尔数为mol 643.444.221013=⨯.故三种污染物体积百分数分别为:SO 2:ppm 052.0643.44641015.03=⨯⨯-,NO 2:ppm 058.0643.44461012.03=⨯⨯- CO :ppm 20.3643.44281000.43=⨯⨯-。
2。
CCl 4气体与空气混合成体积分数为1。
50×10-4的混合气体,在管道中流动的流量为10m 3N 、/s ,试确定:1)CCl 4在混合气体中的质量浓度ρ(g/m 3N )和摩尔浓度c (mol/m 3N );2)每天流经管道的CCl 4质量是多少千克? 解:1)ρ(g/m 3N)334/031.1104.221541050.1N m g =⨯⨯⨯=-- c (mol/m 3N)3334/1070.6104.221050.1N m mol ---⨯=⨯⨯=。
2)每天流经管道的CCl 4质量为1。
031×10×3600×24×10-3kg=891kg3。
已知重油元素分析结果如下:C:85。
5% H :11.3% O:2。
0% N :0。
2% S :1。
0%,试计算:1)燃油1kg 所需理论空气量和产生的理论烟气量; 2)干烟气中SO 2的浓度和CO 2的最大浓度;3)当空气的过剩量为10%时,所需的空气量及产生的烟气量。
解:1kg 燃油含:重量(g ) 摩尔数(g ) 需氧数(g )C 855 71。
25 71。
25H113-2。
5 55。
25 27。
环工原理作业+答案-(1)
2.1 某室内空气中O3的浓度是0.08×10-6〔体积分数〕,求:〔1〕在1.013×105Pa、25℃下,用μg/m3表示该浓度;〔2〕在大气压力为0.83×105Pa和15℃下,O3的物质的量浓度为多少?解:理想气体的体积分数与摩尔分数值相等由题,在所给条件下,1mol空气混合物的体积为V1=V0·P0T1/ P1T0=22.4L×298K/273K=24.45L所以O3浓度可以表示为0.08×10-6mol×48g/mol×〔24.45L〕-1=157.05μg/m3〔2〕由题,在所给条件下,1mol空气的体积为V1=V0·P0T1/ P1T0=22.4L×1.013×105Pa×288K/<0.83×105Pa×273K〕=28.82L所以O3的物质的量浓度为0.08×10-6mol/28.82L=2.78×10-9mol/L2.3 试将下列物理量换算为SI制单位:质量:1.5kgf·s2/m= kg密度:13.6g/cm3= kg/ m3压力:35kgf/cm2= Pa4.7atm= Pa670mmHg= Pa功率:10马力=kW比热容:2Btu/<lb·℉>= J/〔kg·K〕3kcal/〔kg·℃〕= J/〔kg·K〕流量:2.5L/s= m3/h表面X力:70dyn/cm= N/m5 kgf/m= N/m解:质量:1.5kgf·s 2/m=14.709975kg密度:13.6g/cm 3=13.6×103kg/ m 3压力:35kg/cm 2=3.43245×106Pa4.7atm=4.762275×105Pa670mmHg=8.93244×104Pa功率:10马力=7.4569kW比热容:2Btu/<lb·℉>= 8.3736×103J/〔kg·K 〕3kcal/〔kg·℃〕=1.25604×104J/〔kg·K 〕流量:2.5L/s=9m 3/h表面X 力:70dyn/cm=0.07N/m5 kgf/m=49.03325N/m2.7某一湖泊的容积为10×106m 3,上游有一未被污染的河流流入该湖泊,流量为50m 3/s.一工厂以5 m 3/s 的流量向湖泊排放污水,其中含有可降解污染物,浓度为100mg/L.污染物降解反应速率常数为0.25d -1.假设污染物在湖中充分混合.求稳态时湖中污染物的浓度.解:设稳态时湖中污染物浓度为m ρ,则输出的浓度也为m ρ则由质量衡算,得即5×100mg/L -〔5+50〕m ρm 3/s -10×106×0.25×m ρm 3/s =0解之得m ρ=5.96mg/L2.11有一装满水的储槽,直径1m 、高3m.现由槽底部的小孔向外排水.小孔的直径为4cm,测得水流过小孔时的流速u 0与槽内水面高度z 的关系u 0=0.62〔2gz 〕0.5试求放出1m 3水所需的时间.解:设储槽横截面积为A 1,小孔的面积为A 2由题得A 2u 0=-dV/dt,即u 0=-dz/dt×A 1/A 2所以有-dz/dt ×〔100/4〕2=0.62〔2gz 〕0.5即有-226.55×z -0.5dz =dtz 0=3mz 1=z 0-1m 3×〔π×0.25m 2〕-1=1.73m积分计算得t =189.8s2.13 有一个4×3m 2的太阳能取暖器,太阳光的强度为3000kJ/〔m 2·h 〕,有50%的太阳能被吸收用来加热流过取暖器的水流.水的流量为0.8L/min.求流过取暖器的水升高的温度.解:以取暖器为衡算系统,衡算基准取为1h.输入取暖器的热量为3000×12×50% kJ/h =18000 kJ/h设取暖器的水升高的温度为〔△T 〕,水流热量变化率为m p q c T根据热量衡算方程,有18000 kJ/h =0.8×60×1×4.183×△TkJ/h.K解之得△T =89.65K3.4 如图所示,有一水平通风管道,某处直径由400mm减缩至200mm.为了粗略估计管道中的空气流量,在锥形接头两端各装一个U管压差计,现测得粗管端的表压为100mm水柱,细管端的表压为40mm水柱,空气流过锥形管的能量损失可以忽略,管道中空气的密度为1.2kg/m3,试求管道中的空气流量.图3-2 习题3.4图示解:在截面1-1′和2-2′之间列伯努利方程:u12/2+p1/ρ=u22/2+p2/ρ由题有u2=4u1所以有u12/2+p1/ρ=16u12/2+p2/ρ即15 u12=2×<p1- p2>/ρ=2×<ρ0-ρ>g<R1-R2>/ρ=2×〔1000-1.2〕kg/m3×9.81m/s2×〔0.1m-0.04m〕/〔1.2kg/m3〕解之得u1=8.09m/s所以有u2=32.35m/sq v=u1A=8.09m/s×π×〔200mm〕2=1.02m3/s3.7 水在20℃下层流流过内径为13mm、长为3m的管道.若流经该管段的压降为21N/m2.求距管中心5mm处的流速为多少?又当管中心速度为0.1m/s时,压降为多少?解:设水的黏度μ=1.0×10-3Pa.s,管道中水流平均流速为u m根据平均流速的定义得:所以代入数值得21N/m2=8×1.0×10-3Pa·s×u m×3m/〔13mm/2〕2解之得u m =3.7×10-2m/s又有u max =2 u m所以u =2u m [1-〔r/r 0〕2]〔1〕当r =5mm,且r 0=6.5mm,代入上式得u =0.03m/s〔2〕u max =2 u mΔp f ’= u max ’/ u max ·Δp f=0.1/0.074×21N/m=28.38N/m3.8 温度为20℃的水,以2kg/h 的质量流量流过内径为10mm 的水平圆管,试求算流动充分发展以后:〔1〕流体在管截面中心处的流速和剪应力;〔2〕流体在壁面距中心一半距离处的流速和剪应力〔3〕壁面处的剪应力解:〔1〕由题有u m =q m /ρA=2/3600kg/s/〔1×103kg/m 3×π×0.012m 2/4〕=7.07×10-3m/s4m e u d R ρμ==282.8<2000 管内流动为层流,故管截面中心处的流速u max =2 u m =1.415×10-2m/s管截面中心处的剪应力为0〔2〕流体在壁面距中心一半距离处的流速:u =u max 〔1-r 2/r 02〕u 1/2=1.415×10-2m/s×3/4=1.06×10-2m/s由剪应力的定义得流体在壁面距中心一半距离处的剪应力:τ1/2=2μu m /r 0=2.83×10-3N/m 2〔3〕壁面处的剪应力:τ0=2τ1/2=5.66×10-3N/m 24.3 某燃烧炉的炉壁由500mm 厚的耐火砖、380mm 厚的绝热砖与250mm 厚的普通砖砌成.其λ值依次为1.40 W/<m·K>,0.10 W/<m·K>与0.92 W/<m·K>.传热面积A 为1m 2.已知耐火砖内壁温度为1000℃,普通砖外壁温度为50℃.〔1〕单位面积热通量与层与层之间温度;〔2〕若耐火砖与绝热砖之间有一2cm 的空气层,其热传导系数为0.0459 W/<m·℃>.内外壁温度仍不变,问此时单位面积热损失为多少?解:设耐火砖、绝热砖、普通砖的热阻分别为r 1、r 2、r 3.〔1〕由题易得r 1=b λ=110.51.4m Wm K--=0.357 m 2·K/W r 2=3.8 m 2·K/Wr 3=0.272·m 2 K/W所以有q =123T r r r ∆++=214.5W/m 2 由题T 1=1000℃T 2=T 1-QR 1=923.4℃T 3=T 1-Q 〔R 1+R 2〕=108.3℃T 4=50℃〔2〕由题,增加的热阻为r’=0.436 m 2·K/Wq =ΔT/〔r 1+r 2+r 3+r’〕=195.3W/m 24.4某一Φ60 mm×3mm 的铝复合管,其导热系数为45 W/<m·K>,外包一层厚30mm 的石棉后,又包一层厚为30mm 的软木.石棉和软木的导热系数分别为0.15W/<m·K>和0.04 W/<m·K>.试求〔1〕如已知管内壁温度为-105℃,软木外侧温度为5℃,则每米管长的冷损失量为多少?〔2〕若将两层保温材料互换,互换后假设石棉外侧温度仍为5℃,则此时每米管长的冷损失量为多少?解:设铝复合管、石棉、软木的对数平均半径分别为r m1、r m2、r m3.由题有r m1=330ln 27mm =28.47mm r m2=3060ln 30mm =43.28mm r m3=3090ln 60mm =73.99mm 〔1〕R/L =123112233222m m m b b b r r r πλπλπλ++ =33030K m/W K m/W K m/W 24528.4720.1543.2820.0473.99πππ⋅+⋅+⋅⨯⨯⨯⨯⨯⨯ =3.73×10-4K·m/W +0.735K·m/W +1.613K·m/W=2.348K·m/WQ/L =/T R L∆=46.84W/m 〔2〕R/L =123112233222m m m b b b r r r πλπλπλ++ =33030W m/K W m/K W m/K 24528.4720.0443.2820.1573.99πππ⋅+⋅+⋅⨯⨯⨯⨯⨯⨯=3.73×10-4K·m /W +2.758K·m /W +0.430K·m /W=3.189K·m /WQ/L =/T R L=34.50W/m 4.7用内径为27mm 的管子,将空气从10℃加热到100℃,空气流量为250kg/h,管外侧用120℃的饱和水蒸气加热<未液化>.求所需要的管长.解:以平均温度55℃查空气的物性常数,得λ=0.0287W/〔m·K 〕,μ=1.99×10-5Pa·s,c p =1.005kJ/〔kg·K 〕,ρ=1.077kg/m 3由题意,得u =Q/〔ρA 〕=112.62m/sRe =duρ/μ=0.027×112.62×1.077/〔1.99×10-5〕=1.65×105所以流动为湍流.Pr =μc p /λ=〔1.99×10-5〕×1.005/0.0287=0.697α=0.023·λ/d·Re 0.8·Pr 0.4=315.88W/〔m 2·K 〕ΔT 2=110K,ΔT 1=20KΔT m =〔ΔT 2-ΔT 1〕/ln 〔ΔT 2/ΔT 1〕=〔110K -20K 〕/ln 〔110/20〕=52.79K由热量守恒可得απdL ΔT m =q mh c ph ΔT hL =q m c ph ΔT h /〔απd ΔT m 〕=250kg/h×1.005kJ/〔kg·K 〕×90K/[315.88W/〔m 2·K 〕·π·0.027m·52.79K ]=4.44m4.8某流体通过内径为50mm 的圆管时,雷诺数Re 为1×105,对流传热系数为100 W /〔m 2·K 〕.若改用周长与圆管相同、高与宽之比等于1:3的矩形扁管,流体的流速保持不变.问对流传热系数变为多少?解:由题,该流动为湍流.因为为同种流体,且流速不变,所以有由Reduρμ=可得矩形管的高为19.635mm,宽为58.905mm,计算当量直径,得d2=29.452mm4.10在套管换热器中用冷水将100℃的热水冷却到50℃,热水的质量流量为3500kg/h.冷却水在直径为φ180×10mm的管内流动,温度从20℃升至30℃.已知基于管外表面的总传热系数为2320 W/〔m2·K〕.若忽略热损失,且近似认为冷水和热水的比热相等,均为4.18 kJ/〔kg·K〕.试求〔1〕冷却水的用量;〔2〕两流体分别为并流和逆流流动时所需要的管长,并加以比较.解:〔1〕由热量守恒可得q mc c pcΔT c=q mh c phΔT hq mc=3500kg/h×50℃/10℃=17500kg/h〔2〕并流时有ΔT2=80K,ΔT1=20K由热量守恒可得KAΔT m=q mh c phΔT h即KπdLΔT m=q mh c phΔT h逆流时有ΔT2=70K,ΔT1=30K同上得比较得逆流所需的管路短,故逆流得传热效率较高.4.12火星向外辐射能量的最大单色辐射波长为13.2μm.若将火星看作一个黑体,试求火星的温度为多少?解:由λm T=2.9×10-3得3362.910 2.910219.7013.210mT K λ---⨯⨯===⨯5.5 一填料塔在大气压和295K 下,用清水吸收氨-空气混合物中的氨.传质阻力可以认为集中在1mm 厚的静止气膜中.在塔内某一点上,氨的分压为6.6×103N/m 2.水面上氨的平衡分压可以忽略不计.已知氨在空气中的扩散系数为0.236×10-4m 2/s.试求该点上氨的传质速率.解:设p B,1,p B,2分别为氨在相界面和气相主体的分压,p B,m 为相界面和气相主体间的对数平均分压由题意得:5.6 一直径为2m 的贮槽中装有质量分数为0.1的氨水,因疏忽没有加盖,则氨以分子扩散形式挥发.假定扩散通过一层厚度为5mm 的静止空气层.在1.01×105Pa 、293K 下,氨的分子扩散系数为1.8×10-5m 2/s,计算12h 中氨的挥发损失量.计算中不考虑氨水浓度的变化,氨在20℃时的相平衡关系为P=2.69×105x<Pa>,x 为摩尔分数.解:由题,设溶液质量为a g氨的物质的量为0.1a/17mol总物质的量为<0.9a/18+0.1a/17>mol 所以有氨的摩尔分数为0.1a 17x 0.10530.9a 180.1a 17==+ 故有氨的平衡分压为p =0.1053×2.69×105Pa =0.2832×105Pa即有p A,i =0.2832×105Pa,P A0=0所以6.6 落球黏度计是由一个钢球和一个玻璃筒组成,将被测液体装入玻璃筒,然后记录下钢球落下一定距离所需要的时间,即可以计算出液体黏度.现在已知钢球直径为10mm,密度为7900 kg/m 3,待测某液体的密度为1300 kg/m 3,钢球在液体中下落200mm,所用的时间为9.02s,试求该液体的黏度.解:钢球在液体中的沉降速度为3/20010/9.020.022t u L s -==⨯=m/s假设钢球的沉降符合斯托克斯公式,则()()()232790013009.81101016.3518180.022p pt gd u ρρμ--⨯⨯⨯-===⨯Pa·s检验:30.022********Re0.017216.35t ppu dρμ-⨯⨯⨯===<,假设正确.6.7 降尘室是从气体中除去固体颗粒的重力沉降设备,气体通过降尘室具有一定的停留时间,若在这个时间内颗粒沉到室底,就可以从气体中去除,如下图所示.现用降尘室分离气体中的粉尘〔密度为4500kg/m3〕,操作条件是:气体体积流量为6m3/s,密度为0.6kg/m3,黏度为3.0×10-5Pa·s,降尘室高2m,宽2m,长5m.求能被完全去除的最小尘粒的直径./tt h u=沉,当t t≥沉停时,,t t=沉停对应的是能够去除的最小颗粒,即//i tl u h u=因为Viquhb=,所以60.652i V Vthu hq qul lhb lb=====⨯m/s假设沉降在层流区,应用斯托克斯公式,得5min8.5710pd-===⨯m85.7=μm 检验雷诺数558.57100.60.6Re 1.032310p tpd uρμ--⨯⨯⨯===<⨯,在层流区.所以可以去除的最小颗粒直径为85.7μm7.1 用板框压滤机恒压过滤某种悬浮液,过滤方程为式中:t的单位为s〔1〕如果30min内获得5m3滤液,需要面积为0.4m2的滤框多少个?〔2〕求过滤常数K,qe,te.解:〔1〕板框压滤机总的过滤方程为252610V V A t-+=⨯在s18006030=⨯=t内,3m5=V,则根据过滤方程求得,需要的过滤总面积为2m67.16=A所以需要的板框数42675.414.067.16≈==n 〔2〕恒压过滤的基本方程为t KA VV V e 222=+ 与板框压滤机的过滤方程比较,可得/s m 10625-⨯=K3m 5.0=e V ,23/m m 03.067.165.0===A V q e e e t 为过滤常数,与e q 相对应,可以称为过滤介质的比当量过滤时间,Kqt e e 2=7.2 如例中的悬浮液,颗粒直径为0.1mm,颗粒的体积分数为0.1,在9.81×103Pa 的恒定压差下过滤,过滤时形成不可压缩的滤饼,空隙率为0.6,过滤介质的阻力可以忽略,滤液黏度为1×10-3 Pa·s.试求:〔1〕每平方米过滤面积上获得1.5m 3滤液所需的过滤时间; 〔2〕若将此过滤时间延长一倍,可再得多少滤液? 解:〔1〕颗粒的比表面积为4610a =⨯m2/m3 滤饼层比阻为()()()222421033561010.651 1.33100.6a r εε⨯⨯⨯--===⨯m -2过滤得到1m 3滤液产生的滤饼体积0.10.1/0.90.61/310.610.6f ⎛⎫⎛⎫=-⨯= ⎪ ⎪--⎝⎭⎝⎭过滤常数33102298104.4310110 1.33101/3p K rf μ--∆⨯===⨯⨯⨯⨯⨯m 2/s 所以过滤方程为2q Kt =当q=1.5时,231.55084.4310t -==⨯s〔2〕时间延长一倍,获得滤液量为 2.1q ==m 3 所以可再得0.6m 3的滤液.7.4 有两种悬浮液,过滤形成的滤饼比阻都是r0=6.75×1013m -2Pa -1,其中一种滤饼不可压缩,另一种滤饼的压缩系数为0.5,假设相对于滤液量滤饼层的体积分数都是0.07,滤液的黏度都是1×10-3 Pa·s,过滤介质的比当量滤液量为qe 为0.005m 3/m 2.如果悬浮液都以1×10-4 m 3/〔m 2·s 〕的速率等速过滤,求过滤压差随时间的变化规律.解:由题意可知,两种滤饼0.07f =由过滤方程()10se dq p dt rf q q μ-∆=+,得()10s e dq p r f q q dt μ-∆=+ 恒速过滤()12000s e e p r f ut q u r fu t r fuq μμμ-∆=+=+ 对不可压缩滤饼,由s=0,r 0=6.75×1013m -2Pa -1,μ=1×10-3Pa·s,f=0.07,q e =0.005m 3/m 2,u =1×10-4 m 3/m 2·s()21334133436.75101100.07110 6.75101100.071100.00547.25 2.3610p t p t ----∆=⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯∆=+⨯对可压缩滤饼,由s=0.5,r 0=6.75×1013m -2Pa -1,μ=1×10-3Pa·s,f=0.07,q e =0.005m 3/m 2,u =1×10-4 m 3/m 2·s()()210.513341334236.75101100.07110 6.75101100.071100.00547.25 2.3610p t p t -----∆=⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯∆=+⨯7.10 用板框过滤机恒压过滤料液,过滤时间为1800s 时,得到的总滤液量为8m 3,当过滤时间为3600s 时,过滤结束,得到的总滤液量为11m 3,然后用3m 3的清水进行洗涤,试计算洗涤时间〔介质阻力忽略不计〕.解:由〔7.2.11〕得22dV KA dt V= 依题意,过滤结束时22113600K A=⨯所以过滤结束时()22311/36001.53102211dV KA dt V -===⨯⨯m 3/s 洗涤速度与过滤结束时过滤速度相同 所以洗涤时间为3319601.5310t -==⨯s7.13.温度为38℃的空气流过直径为12.7mm 的球形颗粒组成的固定床,已知床层的空隙率为0.38,床层直径0.61m,高 2.44m,空气进入床层时的绝对压力为111.4kPa,质量流量为0.358kg/s,求空气通过床层的阻力.解:颗粒比表面积查38℃下空气密度为1.135 kg/m 3,黏度为1.9×10-5Pa·s. 空床流速为空气通过床层的阻力为()()()22222533510.38 4.72101 1.08 1.910 2.44390.71Pa0.38l K ap u L εμε-⨯-⨯⨯-∆==⨯⨯⨯⨯=8.2吸收塔内某截面处气相组成为0.05y =,液相组成为0.01x =,两相的平衡关系为2y x*=,如果两相的传质系数分别为51.2510y k -=⨯kmol/<m 2·s>,51.2510x k -=⨯kmol/<m 2·s>,试求该截面上传质总推动力、总阻力、气液两相的阻力和传质速率.解:与气相组成平衡的液相摩尔分数为220.010.02y x *==⨯=所以,以气相摩尔分数差表示的总传质推动力为*0.050.020.03y y y ∆=-=-=同理,与液相组成平衡的气相摩尔分数差为*0.05/20.025x ==所以,以液相摩尔分数差表示的总传质推动力为*0.0250.010.015x x x ∆=-=-=以液相摩尔分数差为推动力的总传质系数为()()555110.83101/1/1/1.25101/2 1.2510x x y K k mk ---===⨯+⨯+⨯⨯kmol/<m 2·s>以气相摩尔分数差为推动力的总传质系数为 55/0.8310/20.4210y x K K m --==⨯=⨯ kmol/<m 2·s> 传质速率570.83100.015 1.2510A x N K x --=∆=⨯⨯=⨯ kmol/<m 2·s>或者570.42100.03 1.2610A y N K y --=∆=⨯⨯=⨯ kmol/<m 2·s> 以液相摩尔分数差为推动力的总传质系数分析传质阻力 总传质阻力()551/1/0.8310 1.2010x K -=⨯=⨯ <m 2·s>/kmol 其中液相传质阻力为()551/1/1.25100.810x k -=⨯=⨯<m 2·s>/kmol 占总阻力的66.7%气膜传质阻力为()551/1/2 1.25100.410y mk -=⨯⨯=⨯<m 2·s>/kmol 占总阻力的33.3%8.3用吸收塔吸收废气中的SO 2,条件为常压,30℃,相平衡常数为26.7m =,在塔内某一截面上,气相中SO 2分压为4.1kPa,液相中SO 2浓度为0.05kmol/m 3,气相传质系数为2105.1-⨯=Gk kmol/<m 2·h·kPa>,液相传质系数为0.39L k =m/h,吸收液密度近似水的密度.试求:〔1〕截面上气液相界面上的浓度和分压; 〔2〕总传质系数、传质推动力和传质速率. 解:〔1〕设气液相界面上的压力为i p ,浓度为i c忽略SO 2的溶解,吸收液的摩尔浓度为01000/1855.6c ==kmol/m 3 溶解度系数0206.0325.1017.266.5500=⨯==mp c H kmol/<kPa·m 3> 在相界面上,气液两相平衡,所以i i p c 0206.0=又因为稳态传质过程,气液两相传质速率相等,所以()()G i L i k p p k c c -=- 所以()()05.039.01.4105.12-⨯=-⨯⨯-i i c p由以上两个方程,可以求得52.3=i p kPa,0724.0=i c kmol/m 3 〔2〕总气相传质系数()00523.039.00206.0/1015.0/11/1/11=⨯+=+=L G G Hk k K kmol/<m 2·h·kPa>总液相传质系数254.00206.0/00523.0/===H K K G L m/h与水溶液平衡的气相平衡分压为43.20206.0/05.0/*===H c p kPa 所以用分压差表示的总传质推动力为67.143.21.4*=-=-=∆p p p kPa 与气相组成平衡的溶液平衡浓度为084.01.40206.0*=⨯==Hp c kmol/m 3 用浓度差表示的总传质推动力为034.005.0084.0*=-=-=∆c c c kmol/m 3 传质速率0087.067.100523.0=⨯=∆=p K N G A kmol/<m 2·h> 或者0086.0034.0254.0=⨯=∆=c K N L A kmol/<m 2·h>8.5 利用吸收分离两组分气体混合物,操作总压为310kPa,气、液相分传质系数分别为33.7710y k -=⨯kmol/<m 2·s>、43.0610x k -=⨯kmol/<m 2·s>,气、液两相平衡符合亨利定律,关系式为41.06710p x *=⨯〔p*的单位为kPa 〕,计算:〔1〕总传质系数; 〔2〕传质过程的阻力分析;〔3〕根据传质阻力分析,判断是否适合采取化学吸收,如果发生瞬时不可逆化学反应,传质速率会提高多少倍?解:〔1〕相平衡系数4.3431010067.14=⨯==p E m 所以,以液相摩尔分数差为推动力的总传质系数为()()4341005.31077.34.34/11006.3/11/1/11---⨯=⨯⨯+⨯=+=y x x mk k K kmol/<m 2·s>以气相摩尔分数差为推动力的总传质系数为541089.04.34/1005.3/--⨯=⨯==m K K x y kmol/<m 2·s> 〔2〕以液相摩尔分数差为推动力的总传质阻力为其中液膜传质阻力为()341027.31006.3/1/1⨯=⨯=-x k ,占总传质阻力的99.7%气膜传质阻力为()71.71077.34.34/1/13=⨯⨯=-y mk ,占传质阻力的0.3% 所以整个传质过程为液膜控制的传质过程.〔3〕因为传质过程为液膜控制,所以适合采用化学吸收.如题设条件,在化学吸收过程中,假如发生的是快速不可逆化学反应,并且假设扩散速率足够快,在相界面上即可完全反应,在这种情况下,可等同于忽略液膜阻力的物理吸收过程,此时13.01077.34.343=⨯⨯==-y x mk K kmol/<m 2·s> 与原来相比增大了426倍8.7 在两个吸收塔a 、b 中用清水吸收某种气态污染物,气-液相平衡符合亨利定律.如下图所示,采用不同的流程,试定性地绘出各个流程相应的操作线和平衡线位置,并在图上标出流程图中各个浓度符号的位置.图8-1 习题8.7图示解:<a><b><c>图8-2 习题8.7图中各流程的操作线和平衡线8.9 在吸收塔中,用清水自上而下并流吸收混合废气中的氨气.已知气体流量为1000m 3/h 〔标准状态〕,氨气的摩尔分数为0.01,塔内为常温常压,此条件下氨的相平衡关系为*0.93Y X ,求:〔1〕用5 m 3/h 的清水吸收,氨气的最高吸收率; 〔2〕用10 m 3/h 的清水吸收,氨气的最高吸收率;〔3〕用5 m 3/h 的含氨0.5%〔质量分数〕的水吸收,氨气的最高吸收率.解:〔1〕气体的流量为()3100010/22.412.43600⨯=mol/s液体的流量为()3351010/1877.23600⨯⨯=mol/s假设吸收在塔底达到平衡则()()**77.2/0.9312.40.01-Y Y ⨯=⨯,所以*0.0013Y = 所以最大吸收率为0.010.00130.870.01ϕ-==〔2〕气体的流量为()3100010/22.412.43600⨯=mol/s液体的流量为()33101010/18154.43600⨯⨯=mol/s假设吸收在塔底达到平衡则()()**154.4/0.9312.40.01-Y Y ⨯=⨯,所以*0.0007Y = 所以最大吸收率为0.010.00070.930.01ϕ-==〔3〕吸收剂中氨的摩尔分数为 假设吸收在塔底达到平衡则()()**77.2/0.930.005312.40.01-Y Y ⨯-=⨯,所以*0.0056Y = 所以最大吸收率为0.010.00560.440.01ϕ-==8.10 用一个吸收塔吸收混合气体中的气态污染物A,已知A 在气液两相中的平衡关系为*yx =,气体入口浓度为10.1y =,液体入口浓度为20.01x =,〔1〕如果要求吸收率达到80%,求最小气液比;〔2〕溶质的最大吸收率可以达到多少,此时液体出口的最大浓度为多少? 解:〔1〕气相入口摩尔比1110.10.1110.9y Y y ===-, 液相入口摩尔比2220.010.01110.01x X x ===--吸收率12210.110.80.11Y Y Y Y ϕ--===,所以,20.022Y = 所以,最小液气比1212min0.10.0220.87/0.1/10.01nL nG q Y Y q Y m X ⎛⎫--=== ⎪--⎝⎭〔2〕假设吸收塔高度为无穷大,求A 的最大吸收率①当液气比(/)nL nG q q m =,操作线与平衡线重合,气液两相在塔顶和塔底都处于平衡状态. 吸收率*12max10.1110.010.910.11Y Y Y ϕ--⨯===此时液相出口浓度110.110.111Y X m === ②当液气比(/)nL nG q q m >,操作线与平衡线在塔顶点相交,即液相进口浓度与气相出口浓度平衡.吸收率*12max10.1110.010.910.11Y Y Y ϕ--⨯===此时液相出口浓度()111220.11nG nL q YX Y mX X q m=-+<= 与①相比,吸收率达到同样大小,但是液相出口浓度要低.③当液气比(/)nL nG q q m <,操作线与平衡线在塔底点相交,即液相出口浓度与气相进口浓度平衡.此时液相出口浓度110.110.111Y X m === 吸收率*1212max110.1110.010.910.11Y Y Y Y Y Y ϕ---⨯=<==与①相比,液相出口浓度达到同样大小,但是吸收率要低.8.11 在逆流操作的吸收塔中,用清水吸收混合废气中的组分A,入塔气体溶质体积分数为0.01,已知操作条件下的相平衡关系为*y x =,吸收剂用量为最小用量的1.5倍,气相总传质单元高度为1.2m,要求吸收率为80%,求填料层的高度.解:已知传质单元高度,求得传质单元数,即可得到填料层高度..21 / 21 塔底:01.01=y 塔顶:()002.08.0101.02=-⨯=y ,02=x 操作过程的液气比为 吸收因子 1.2nL nG q S mq == 所以,传质单元数为 ()()05.383.0002.001.083.01ln 83.011/1/11ln /1112221=⎥⎦⎤⎢⎣⎡+⨯--=⎥⎦⎤⎢⎣⎡+----=S mx y mx y S S N OG 所以填料层高度为66.305.32.1=⨯==OG OG N H h m。
环境工程微生物学实验
实验器材
(1)活材料:培养18h的大肠杆菌(E. coli)培养液。 (2)培养基和试剂:牛肉膏蛋白胨液体培养基14支 (每支10ml),浓缩5倍的牛肉膏蛋白胨培养基。无菌 酸溶液(甲酸:乙酸:乳酸=3:1:1)。 (3)器材:1ml无菌吸管、摇床、冰箱、光电比色计、 标签等。
实验方法
1、接种:按无菌操作法用吸管向每管准确加入0.2 ml 的大肠杆菌培养液。 2、培养:将接种后的培养管置于摇床上,在37℃下 振荡培养。其中9支培养管分别于培养的0、1.5、3、5、 7、9、12、24和36h后取出,放冰箱中贮存,待测定。 3、比浊:以未接种的牛肉膏蛋白胨液体培养基调零 点,在光电比色计上,选用520~560nm波长进行比浊, 从最稀浓度的菌悬液开始,依次测定。
实验步骤
1.将肉膏胨淀粉琼脂培养基加热融化,待冷至45℃左右倒入无 菌培养皿内(每皿约10~
15毫升),共倒3个,静置待冷凝即成平板。
2.在无菌操作条件下,用接种环分别挑取大肠杆菌和活性污泥 各一环分别在4个平板上各点种4个点。倒置于37℃恒温箱内培 养24~48h。
3.观察结果,取出平板,分别在2个平板内菌落周围滴加碘液, 观察菌落周围颜色的变化。若在菌落周围有一个无色的透明圈, 说明该细菌产生淀粉酶并扩散到基质中去。若菌落周围仍为蓝 色,说明该细菌不产生淀粉酶。
实验器材
1.培养基:牛肉膏蛋白胨琼脂培养基。 2.仪器:电炉、恒温水浴锅.恒温培养箱.放大 镜。 3.试剂:硫代硫酸钠溶液。 4.其他用品:无菌采样瓶,9ml无菌水试管,无菌 培养皿(直径9cm),无菌移液管等。
实验步骤
1.水样采取 2.细菌总数测定 (1) 水样稀释:根据水样受有机物或粪便污染的程度,可用无
3.高倍镜观察
实验报告环境工程原理
板框压滤机一、实验目的1.熟悉板框压滤机的构造和操作方法; 2.通过恒压过滤实验,验证过滤基本原理; 3.学会测定过滤常数的方法; 4.了解操作压力对过滤速率的影响。
二、实验原理过滤是利用能让液体通过而截留固体颗粒的多孔介质(滤布和滤渣),使悬浮液中的固体、液体得到分离的单元操作。
过滤速率计算式为:AdtdVu =式中:dt---微分过滤时间,s ;dV---dt 时间内通过过滤介质的滤液量,m 3; A ---过滤面积,m 2。
由此可以导出过滤基本方程式:()e V Vf r pA Adt dV +∆==μu (1) ()e sV V f r p A Adt V +∆=-μ01d (2)一般情况下,s=0~1,对于不可压缩滤饼,s=0。
在恒压过滤时对(2)积分得()()e e t t K q q +=+2(3)对上式微分得:()Kdt dq q e =+q 2e q Kq K dq t 21d += 该式表明以dt/dq 为纵坐标,以q 为横坐标作图可得一直线,直线斜率为1/K ,截距为2q e /K 。
在实验测定中,为便于计算,可用增量Δ替代,把上式改写成:e q q K K21q t +=∆∆在恒压条件下,用秒表和量筒分别测定一系列时间间隔及对应的滤液体积,由此算出一系列在直角坐标系中绘制的函数关系,得一直线。
由直线的斜率和截距便可求出K 和q e ,再以q=0,t=0,如式(3),求出τe 。
三、实验步骤及注意事项1.配料:配置含4%CaCO 3悬浮液,并检查电源是否连接正常,之后开启机器。
2.料液搅拌:使CaCO3悬浮液搅拌均匀,避免沉淀。
3.安装过滤系统:正确装好滤板、滤框及滤膜。
滤膜使用前先用水浸湿。
滤膜要绷紧,平整紧贴,避免有气泡产生,滤膜不能有破损。
贴好滤膜后,先慢慢转动手轮使板框合上,然后再压紧。
4.灌入清水检验:先在进料槽中注入清水,检测实验装置是否连接正确,是否有泄漏,若发现有泄漏,应重新连接实验装置。
环境工程原理大型作业重力沉降室的设计doc
环境工程原理大型作业--重力沉降室的设计.doc标题:环境工程原理大型作业——重力沉降室设计一、设计背景和目的随着工业化和城市化的发展,环境污染问题日益严重。
废水、废气、废渣等污染物的排放和处理已成为环境保护的重要内容。
在这其中,重力沉降室是一种常见的物理处理方法,用于分离和去除废水中的悬浮物和固体颗粒。
本设计作业旨在根据所给条件,完成一个重力沉降室的设计。
二、设计要求1.已知废水流量:Q=100 m3/h2.已知废水悬浮物浓度:C0=500 mg/L3.已知要求的悬浮物去除率:R=90%4.已知废水水力停留时间:t=1 hour5.已知重力沉降室的底面积与高相等,为长方形,且废水深度为2m6.要求设计一个处理效率高、结构简单、操作方便的重力沉降室。
三、设计步骤1.沉降室尺寸计算根据重力沉降的原理,沉降室尺寸需满足以下条件:沉降室长度 L = (Q/2)1/2 = (100/2)1/2 = 7.07 m沉降室宽度 W = 沉降室长度 L = 7.07 m沉降室高度 H = 废水深度 = 2 m考虑到沉降室的容积及结构,建议将沉降室设计为8mx5mx2m。
2.悬浮物去除率计算根据悬浮物去除率的定义,可得到以下公式:R = (C0-C)/C0x100%其中,C为经过重力沉降室后的废水悬浮物浓度。
根据此公式,可计算出所需的悬浮物去除率:C = (1-R)x C0 = (1-90%)x500 = 50 mg/L因此,经过重力沉降室后,废水中的悬浮物浓度应为50 mg/L。
3.水力停留时间计算根据水力停留时间的定义,可得到以下公式:t = V/Q其中,V为重力沉降室的容积,Q为废水的流量。
根据此公式,可计算出所需的水力停留时间:t = 8x5x2/100 = 0.8 hour因此,废水在水力停留时间内应充分混合和沉淀。
4.操作方式设计重力沉降室的操作主要包括废水流入、静置沉淀和废水流出三个阶段。
根据以上计算结果,可以制定以下操作方式:(1)将废水均匀地引入重力沉降室;(2)废水在沉降室内静置0.8小时;(3)静置后,将废水从沉降室底部排出。
环境工程原理实验指导书修改版
实验1 板框过滤实验--------------------------------------------------------------------------- 实验2 传热系数及其准则关联式常数的测定---------------------------------------------- 实验3 填料吸收塔实验--实验1 板框过滤实验本实验设备由过滤板、过滤框、旋涡泵等组成,是一种小型的工业用板框过滤机。
本套装置可进行设计型、研究型、综合型实验。
由于设备接近工业生产状况,通过实验可培养学生的工程观念、实验研究能力、设计能力以及解决生产实际问题的能力。
一、实验任务根据实验指导教师要求,从下列实验任务中选择其中一项实验。
1.板框压滤机选型:工业用过滤机选型的依据是物料的性能、分离任务和要求。
为使过滤机的选型最为恰当,通常是用同一悬浮液在小型过滤实验设备中进行实验,以取得必要的过滤数据作为主要依据,然后从技术和经济两方面进行综合分析,确定过滤机的种类和型号。
现有某一工厂需过滤含CaCO3 5.0~5.5 % 的水悬浮液,过滤温度为25℃,固体CaCO3的密度为2930kg/m3。
工业过滤机在0.28MPa的压强差下进行过滤,规定每一操作循环处理悬浮液10m3,过滤时间为30min,滤饼不洗涤,过滤至框内全部充满滤渣时为止,卸饼、清洗、重装等辅助时间为20min。
请你利用实验室的小型板框压滤机(详见设备流程部分,该过滤机的最高过滤推动力(表压力)为0.24Mpa)进行实验,测定有关的过滤参数,根据表1所提供的过滤机型号与规格,从中选择一种合适型号的压滤机,并确定滤框的数目,求出该过滤机的生产能力,为工厂提供选型的技术依据。
表1 过滤机的型号与规格型号过滤面积m2框内尺寸mm框数框内总容积[l]工作压强[kg/cm2]BAS20/635-25 20 635×635×2526 260 8 BAS30/635-25 30 635×635×2538 380 8 BAS40/635-25 40 635×635×2550 500 8 BAY20/635-25 20 635×635×2526 ——BAY30/635-25 30 635×635×2538 ——BAY40/635-25 40 635×635×2550 ——BMS20/635-25 20 635×635×2526 260 8 BMS30/635-25 30 635×635×2538 380 8 BMS40/635-25 40 635×635×2550 500 8表1中板框压滤机型号如BMS20/635-25的意义为:B 表示板框压滤机,M 表示明流式(若为A ,则表示暗流式),S 表示手动压紧(若为Y ,则表示液压压紧),20表示过滤面积为20m 2,635表示滤框边长为635mm 的正方形,25表示滤框的厚度为25mm 。
环境工程原理实验
实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题1、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?2、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?3、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 流体流型的观察与测定一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
环境工程作业
第一次:
1、水质指标COD和BOD各表示什么?分别叙述它们的定义和意义?
2、什么是活性污泥法?简述活性污泥法净化污水的基本原理和基本流程。
通常采用的曝气方法有哪些?
3、可持续发展的概念及实施的基本方法。
4、试述城市污水处理厂工艺流程。
第二次作业:
1、生物脱氮和生物除磷的基本原理是什么?其各自工艺分几段?各段必须满足哪些条件?
2、有机物的厌氧分解途径(图示和说明)
3、简述生物膜净化废水的基本原理。
生物膜处理系统主要有哪些种?各自什么特点?
4、简述A2/O法脱氮除磷工艺系统的基本原理。
第三次作业:
1、什么是大气二次污染物?主要包括哪些?
2、双碱法烟气脱硫(FGD)的反应机理。
3、催化还原法脱硝的工艺有哪些类型?
4、什么是污染物的大气扩散?污染物的大气扩散过程与哪些因素有关?
5、什么是气温垂直递减率?实际大气圈层中气温垂直递减率有哪些表现形式?
6、什么是环境影响及环境影响评价?环境影响评价的内容包括哪些?。
环境工程原理实验报告
环境工程原理实验报告专业班级:姓名:学号:课程名称:环境工程原理指导教师:环境与资源学院2015年12 月26日1.板框压滤机过滤实验1.1实验目的(1)熟悉板框过滤机的结构和操作方法; (2)测定在恒压过滤操作时的过滤常数; (3)掌握过滤问题的简化工程处理方法。
1.2实验原理1.2.1过滤原理过滤是利用能让液体通过而截留固体颗粒的多孔介质(滤布和滤渣),使悬浮液中的固、液得到分离的单元操作。
过滤操作本质上是流体通过固体颗粒床层的流动,所不同的是,该固体颗粒床层的厚度随着过滤过程的进行不断增加。
过滤操作可分为恒压过滤和恒速过滤。
当恒压操作时,过滤介质两侧的压差维持不变,则单位时间通过过滤介质的滤液量会不断下降。
过滤速率基本方程的一般形式为:()Ve V v r P A d dV s+∆=-'12μτ 恒压过滤时,对上式积分可得:()()e e K q q ττ+=+2对上式微分可得:Kq K q dq d e22+=τ 该式表明dτ/dq ~q 为直线,其斜率为2/K ,截距为2q e /K ,为便于测定数据计算速率常数,可用Δτ/Δq 替代dτ/dq ,则上式可写成:Kq K q q e22+=∆∆τ 将Δτ/Δq 对q 标绘(q 取各时间间隔内的平均值),在正常情况下,各点均应在同一直线上,直线的斜率为2/K=a/b ,截距为2q e /K=c ,由此可求出K 和q e 。
1.2.2板框压滤机结构及运作板框压滤机主要结构(见图1-1)组成:(1)机架:机架是压滤机的基础部件,两端是止推板和压紧头,两侧的大梁将二者连执着起来,大梁用以支撑滤板、滤框和压紧板。
a 、止推板:它与支座连接将压滤机的一端坐落在地基上,厢式压滤机的止推板中间是进料孔,四个角还有四个孔,上两角的孔是洗涤液或压榨气体进口,下两角为出口(暗流结构还是滤液出口)b、压紧板:用以压紧滤板滤框,两侧的滚轮用以支撑压紧板在大梁的轨道上滚动。
环境工程实验报告
环境工程实验报告水污染控制工程试验报告姓名:年级:10环境工程学号:任课教师:安徽农业大学资源与环境学院环境工程教研室制实验一自由沉淀一、实验目的1.观察沉淀过程,加深对自由沉淀特点、基本概念及沉淀规律的理解;2.掌握颗粒自由沉淀实验的方法,求出沉速分布曲线。
二、实验原理浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes公式。
由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得,而是要通过静沉实验确定。
由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使D≥100mm以免颗粒沉图1 自由沉淀实验装置图1、沉淀柱2、水泵3、水箱4、支架5、气体流量计6、气体入口7、排水口8、取样口三、步骤及记录(1)将定量滤纸编号后放入称量瓶中(滤纸粗燥面朝外),编号、烘干(100~105℃,烘2~3小时)至恒重,置于干燥器中冷却,称量滤纸加称量瓶重,并记录数据。
(2)将滤纸放入漏斗中,用蒸馏水润湿,待用。
(3)准备实验用水(原水SS为 50毫克每升左右)。
先将一定量的高岭土和自来水投入到配水箱中,启动搅拌装置使其分散均匀。
水样也可采用洗涤污水、轧钢废水、天然河水等。
(4)配水箱中水质均匀后,启动水泵,同时打开进水管及沉淀柱底部的放空阀门,适当冲洗管路中的沉淀物。
稍后,关闭放空阀门,进水至160cm刻度线处,关闭所有阀门,同时启动秒表记录时间,沉淀时间开始。
并取样测定原水悬浮物浓度。
(5)隔5min、10min、15min、20min、30min、40min、60min、120min时,用量筒在其中一个固定的取样口取样100ml(注意:取水样时,需先放掉一些水,以便冲洗取样口处的沉淀物),并在每次取样前记录沉淀柱内液面高度H。
(6)用定量滤纸分别过滤9个水样(把量筒里的水倒入小烧杯中,再把小烧杯里面的水缓缓倒入垫有滤纸的漏斗中)。
环境工程原理大型作业--重力沉降室的设计方案
《环境工程原理》大型作业题目:3000m3/h重力降尘室的设计学院:环境科学与工程学院专业名称:环境监测与治理技术学号:************学生姓名:指导教师:***2013年 12 月 15 日目录一、前言 (3)二、设计条件 (4)三、设计要求 (4)四、设计说明 (4)1、重力降尘室的工作原理 (4)2、重力降尘室的类型 (5)3、实际性能和测试 (5)五、工艺计算 (5)1、设计降尘室尺寸 (5)2、沉降时间和沉降速度 (5)3、颗粒回收百分率 (6)4、降尘室的隔板数 (7)六、总结 (7)七、参考文献 (7)一、前言大型作业是《环境工程原理》课程的一个总结性教案环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。
在整个教案计划中,它也起着培养学生独立工作能力的重要作用。
大型作业不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。
所以,大型作业是培养学生独立工作能力的有益实践。
通过大型作业,学生应该注重以下几个能力的训练和培养:1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;3. 迅速准确的进行工程计算的能力;4. 用简洁的文字,清晰的图表来表达自己设计思想的能力。
二、设计条件1、含尘气体成分:炉气和矿石;2、气体密度:0.6kg/m³;3、矿石密度:4500kg/m³;4、黏度:3×10﹣5N·s/㎡;5、气体流量:3000m³/h三、设计要求1、设计方案确定(长宽高);2、矿尘颗粒沉降流型判断;3、理论上能完全捕集的最小颗粒直径;4、降尘室的隔板数;5、重力降尘室的工艺尺寸计算。
最新环境工程实验报告
最新环境工程实验报告实验目的:本次实验旨在评估城市污水处理厂的处理效率,通过对比处理前后水质参数的变化,验证污水处理工艺的有效性,并提出可能的改进措施。
实验方法:1. 采样:在污水处理厂的入口和出口分别采集水样。
2. 检测指标:测定水样中的化学需氧量(COD)、生化需氧量(BOD)、悬浮固体(SS)、氨氮(NH3-N)和总磷(TP)。
3. 实验设备:使用分光光度计、浊度计、氨氮分析仪和磷分析仪进行水质参数的测定。
4. 数据分析:对比处理前后的水质参数,计算污水处理效率,并分析各处理单元的贡献。
实验结果:1. 入口水样检测结果:- COD: 450 mg/L- BOD: 150 mg/L- SS: 250 mg/L- NH3-N: 40 mg/L- TP: 5.5 mg/L2. 出口水样检测结果:- COD: 30 mg/L- BOD: 5 mg/L- SS: 10 mg/L- NH3-N: 0.5 mg/L- TP: 0.3 mg/L实验分析:根据实验结果,污水处理厂在去除有机物和营养盐方面表现出较高的效率。
COD和BOD的去除率分别达到了93.3%和96.7%,SS的去除率为95.8%,氨氮和总磷的去除率均超过了98%。
这表明当前的污水处理工艺能够有效地净化城市污水。
建议措施:尽管污水处理效果显著,但仍有一些改进空间。
建议增加高级处理工艺,如膜生物反应器或人工湿地,以进一步提高对难降解有机物和微量污染物的去除效率。
同时,应定期对污水处理设施进行维护和升级,确保其长期稳定运行。
结论:本次实验报告显示,城市污水处理厂在处理城市污水方面具有较高的效率,但仍需不断优化和改进处理工艺,以应对日益严格的环保要求和不断变化的环境挑战。
环境工程学作业习题
环境工程学作业一:(14题)1、名词解释:水环境容量水环境容量:是指某水体在特定的环境目标下所能容纳污染物的量。
2、环境工程学的主要内容有哪些(1)水质净化与水污染控制工程;(2)大气污染控制工程;(3)固体废弃物控制及噪音、振动与其他公害防治工程;(4)清洁生产、污染预防与全过程污染控制工程;(5)环境规划、管理和环境系统工程;(6)环境监测与环境质量评价。
3、名词解释:COD、BOD化学需氧量(COD) :是指在高温、有催化剂以及强酸环境等条件下,强氧化剂氧化有机物所消耗的氧的量,结果用氧的mg/L数来表示。
生化需氧量(BOD) :是指在好气条件下,微生物分解水体中有机物质的生物化学过程中所需溶解氧的量,结果用氧的mg/L数来表示。
4、高锰酸钾耗氧量、化学需氧量有何区别高锰酸钾耗氧量,习惯上称为耗氧量,测定快速,但不代表水中有机物质的全部总量。
一般来说,在测定条件下水中不含氮的有机物质易被高锰酸钾氧化,而含氮的有机物就较难分解。
因此,耗氧量适用于测定天然水或含容易被氧化的有机物的一般废水,而成分复杂的有机工业废水则常测定化学需氧量。
重铬酸钾耗氧量,习惯上称为化学需氧量,是水样在强酸性条件下,加热回流2h(有时还加入催化剂),使有机物质与重铬酸钾充分作用被氧化的情况下测定的。
它能将水中绝大多数的有机物氧化,但对于苯、甲苯等芳烃类化合物则较难氧化。
严格说来,化学需氧量也包括了水中存在的无机性还原物质。
通常因废水中有机物的数量大大多于无机还原物质的量,一般用化学需氧量代表废水中有机物质的总量。
5、名词解释:水体自净水体自净:是指水体在一定程度下能自身调节和降低污染的能力。
6、自由沉淀、絮凝沉淀、拥挤沉淀与压缩沉淀各有什么特点自由沉淀:颗粒在沉降过程中呈离散状态,其形状、尺寸、质量均不改变,下沉速度不受干扰。
絮凝沉淀:沉降过程中各颗粒之间相互粘结,其尺寸、质量会随深度增加而逐渐增大,沉速亦随深度而增加。
环境工程原理实验
2.局部阻力系数ξ 的测定
局部阻力损失通常有两种表示方法, 即当量长度法和阻力系数法。 本实验采用阻力系 数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某 一倍数,局部阻力的这种计算方法,称为阻力系数法。即:
h ′f =
故
∆p ′f
ρg
=ξ
u2 2
(7)
ξ=
2∆p ′f
N = N电 × k
3.效率 η 的计算
(W)
(1-2)
其中,N 电为电功率表显示值,k 代表电机传动效率,可取 k=0.95 。
泵的效率 η 是泵的有效功率 Ne 与轴功率 N 的比值。有效功率 Ne 是单位时间内流体经 过泵时所获得的实际功率,轴功率 N 是单位时间内泵轴从电机得到的功,两者差异反映了 水力损失、容积损失和机械损失的大小。 泵的有效功率 Ne 可用下式计算:
3
离心泵特性测定实验
二、实验目的
1)进行离心泵特性曲线测定实验,测出扬程、功率和效率与流量的关系曲线图; 2)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解玻璃转子流 量计、压力表、倒 U 型差压计以及相关仪表的原理和操作;
三、基本原理
离心泵的特性曲线是选择和使用离心泵的重要依据之一, 其特性曲线是在恒定转速下泵 的扬程 H、轴功率 N 及效率 η 与泵的流量 Q 之间的关系曲线,它是流体在泵内流动规律的 宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能 依靠实验测定。 1.扬程 H 的测定与计算 取离心泵进口真空表和出口压力表处为 1、2 两截面,列机械能衡算方程,最终得:
u=
V 900πd 2
(5)
∆p f 可采用倒置 U 型管液柱压差计时