山东省临沂市兰山区部分学校2020年5月中考数学模拟试卷(含答案)
山东省2020年临沂市中考数学模拟试题(含答案)
山东省2020年临沂市中考数学模拟试题含答案一、选择题(每小题3分,共36分)1、下列运算中,正确的是( )A 、B 、C 、D 、2、 如图,把一张长方形纸片沿EF 折叠后,点D ,C 分别落在D',C'的位置,若∠EFB=650,则∠AED'等于( )A 、500B 、550C 、600D 、6503、若代数式()231-+x x 有意义,则实数x 的取值应满足( ) A 、1-≥x B 、31≠-≥x x 且 C 、x>-1 D 、31≠->x x 且4、一个几何体的三视图如图所示:其中主视图和左视图都是腰长为4、底边长为2的等腰三角形,则这个几何体的侧面积展开图的面积为( )A 、π2B 、π21 C 、π4 D 、π85、若不等式⎩⎨⎧->-≥+2210x x a x 无解,则实数a 的取值范围是( )A 、1-≥aB 、1-<aC 、1≤aD 、1-≤a6、如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( )A 、34米B 、56米C 、512米D 、24米C D E C'主视图左视图俯视图 A B C DE7、下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时正面朝上;③任取两个正整数,其和大于1;④长为3cm ,5cm ,9cm 的三条线段能围成一个三角形。
其中确定的事件有( )A 、1个B 、2个C 、3个D 、4个8、方程()0622=++-m x m x 有两个相等的实数根,且满足2121x x x x =+,则m 的值是( )A 、—2或3B 、3C 、—2D 、—3或29、如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O 。
若∠DAC=280,则∠OBC 的度数为( )A 、280B 、520C 、620D 、7210、已知⊙O 的半径为2,点P 是⊙O 内一点,且OP=3,过P 作互相垂直的两条弦AC 、BD ,则四边形ABCD 的面积的最大值为( )A 、4B 、5C 、6D 、711、如图,一次函数y 1=x 与二次函数c bx ax y ++=22的图象相交于P 、Q 两点,则函数()c x b ax y +-+=12的图象可能为( )12、如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过A 点的切线xy o A x y o B x y o C o x y D交于点B ,且∠APB=600,设OP=x ,则ΔPAB 的面积y 关于x 的函数图象大致是( )二、填空题(每小题4分,共20分)13、用科学计数法表示0.000000645这个数为___________。
临沂市2020届数学中考模拟试卷
临沂市2020届数学中考模拟试卷一、选择题1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个2.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=70°,那么∠CDE的度数为()A.20°B.15°C.30°D.25°3.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为()A.40°B.50°C.80°D.90°4.计算:2-2的结果是( )A.4 B.1 C.0 D.-45.如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则DE的长为()A.13πB.23πC.76πD.43π6.某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出cos∠AOB的值是()A.34B.710C.45D.357.(2008•衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( ) A .289(1﹣x )2="256" B .256(1﹣x )2=289 C .289(1﹣2x )2="256"D .256(1﹣2x )2=2898.下列运算中,正确的是( ) A .(﹣12)﹣1=﹣2 B .a 3•a 6=a 18 C .6a 6÷3a 2=2a 3D .(﹣2ab 2)2=2a 2b 49.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点(13,0)A ,直线12y kx =+与O 交于B 、C 两点,则弦BC 长的最小值( )A .24B .10C .8D .2510.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.6B.5C.4D.711.如图,在锐角三角形ABC 中,BC =4,∠ABC =60°,BD 平分∠ABC ,交AC 于点D ,M ,N 分别是BD ,BC 上的动点,则CM+MN 的最小值是( )A .B .2C .2D .412.分式方程, 2133xx x +=-+-的解为( ). A .0x = B .6x =C .15x =-D .15x =二、填空题13.观察下列等式: 第1层1+2=3 第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2019在第_____层.14.如图,矩形ABCD 中,AB =6,AD =,点E 是BC 的中点,点F 在AB 上,FB =2,P 是矩形上一动点.若点P 从点F 出发,沿F→A→D→C 的路线运动,当∠FPE =30°时,FP 的长为_____.15.计算2的结果等于_____.16.若在实数范围内有意义,则x 的取值范围是______.17.如图所示,长方形ABCD 中,AB =1,AD =2,将长方形向上、下、左、右各扩大1得到长方形A 1B 1C 1D 1,…,依此类推,则长方形A n B n ∁n D n 的周长可以表示为_____.18.若x =2是关于x 的方程2x ﹣m+1=0的解,则m =_____. 三、解答题19.已知关于x 的方程x 2﹣2x+m ﹣2=0有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值. 20.(1)计算:()112cos3020192π-⎛⎫---- ⎪⎝⎭(2)解方程:4501x x -=-21﹣2019022.某校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下: 数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):⑴用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为_____;⑵如果该校现有学生400人,估计等级为“B”的学生有多少人?⑶假设平均阅读一本课外书的时间为320分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.如图,已知点A、B分别在反比例函数1yx=-(x>0),kyx=(k<0,x>0)的图象上.点B的横坐标为4,且点B在直线y=x﹣5上.(1)求k的值;(2)若OA⊥OB,求tan∠ABO的值.24.解方程组:235 45 x yx y+=-⎧⎨+=⎩25.为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.【参考答案】***一、选择题13.4414.4或8或415.516.x≥-217.8n+6.18.5三、解答题19.(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.20.(11;(2)5x =. 【解析】 【分析】(1)根据整数指数幂的运算以及特殊三角函数值计算即可; (2)根据解分式方程的步骤解即可,注意要验根. 【详解】(1)()112cos3020192π-⎛⎫---- ⎪⎝⎭=21+2-,1+; (2)4501x x-=- , 去分母得:4x-5(x-1)=0 去括号得,4x-5x+5=0 移项得,4x-5x=-5, 合并,得:-x=-5, 系数化为1,得:x=5.经检验,x=5是原分式方程的解. 【点睛】本题主要考查了实数的运算以及解分式方程,计算时一定要细心,分式方程要检验.21.【解析】 【分析】按顺序先分别代入特殊角的三角函数值,化简二次根式 ,进行0次幂运算,然后再按运算顺序进行计算即可. 【详解】20190=2×12+﹣1=. 【点睛】本题考查了实数的综合运算能力,涉及了特殊角的三角函数值,二次根式的化简,0次幂,熟练掌握各运算的运算法则是解题的关键.22.整理数据:5;4;分析数据:81;81;得出结论:(1)B ;(2)160人;(3)13本. 【解析】 【分析】整理数据:从表格中的数据直接找出40≤x<80有5人,120≤x<160有4人;中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;众数:是一组数据中出现次数最多的数据;据此求出即可.(1)根据分析数据统计显示,平均数是80 ,中位数与众数都是81,都是B 等级,据此可估计该校学生每周用于课外阅读时间的情况等级为B.(2)直接用400乘以B等级在样本中所占比列即得.(3)根据题意选择样本平均数来估计.【详解】解:整理数据:5;4.分析数据:81;81.得出结论:⑴B⑵等级为“B”的学生有820×400=160(人)⑶以平均数来估计:80320×52=13,∴假设平均阅读一本课外书的时间为320分钟,以样本的平均数来估计,该校学生每人一年(按52周计算)平均阅读13本课外书。
2020年山东省临沂市中考数学模拟试卷含答案(2套)
2020年山东省临沂市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1. I-3| =()A. —3B. —2C. 32. 如图,乙1 = 110。
,则匕2的度数是()A. 68°B. 70°C. 105°D. 110°3. 不等式2% + 9 > 3(%+ 2)的解集是()A. % < 3B. % < —3C. x >3D. % > —34. 如图,三棱柱ABC-A^B^是正三棱柱,其主视图是边长为2的正方形,则此三棱 柱的左视图的面积为()A. V3B. 2V3C. 2V2D. 45, 把a 3 - ab 2进行因式分解,结果正确的是()A. (a + ab)(a — ab)B. a(a 2 — b 2)C. a(a — byD. a(a — h)(a + h)6. 如图所示,在 4ABC 和△DEF 中,BC〃EF m BAC = ZD,且A B =DE = 4, BC = 5, AC = 6,则时的长为()7. A. 4 C. 6B. x 3 + x 4 = x 7D. 2a -1 ■ a 2 = 2a 8. B.5D.不能确定下列计算中,正确的是()A. (-5)° = 0C. (一。
2胪)2 = 一“服务社会,提升自我. ”尤溪县某中学积极开展志愿者服务活动,来自九年级的 4名同学(二男二女)成立了 “交通秩序维护”小分队,若从该小分队中任选两名同 学进行交通秩序维护,则恰是一男一女的概率是()A. |B. |C. |D・i 9.计算:岂一片+加结果为()A X A・右 B.—X D -嘉c.—X 10.某校调查了 20名同学某一周玩手机游戏的次数,调查结果如下表所示,那么这20名同学玩手机游戏次数的平均数为()次数2458人数2210611. A. 5B. 5.5C. 6D.如图,A,B, C,Q 是。
2020年临沂市中考模拟考试(一)初中数学
2020年临沂市中考模拟考试(一)初中数学本试卷分第I 卷〔选择题〕和第二卷〔非选择题〕两部分,第 I 卷1至3页,第二卷4至8页, 总分值120分,考试时刻120分钟。
第I 卷〔选择题 共42分〕本卷须知:1 •答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2 •每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮 擦洁净后,再选涂其它答案。
不能答在试卷上。
3 •考试、终止,将本试卷和答题卡一并交回。
一、选择题〔每题3分,在给出的四个选项中,只有一项为哪一项符合题目要求的〕 1 •以下运算中,正确的选项是22_4236A • a a 2aB . a a aC . a 6 a 3 a 2D . (ab 2)2 a 2b 42 •当我们从上面观看图1所示的两个物体时,看到的将是叵]回CD教练对他20次的训练成绩进行统计分析,判定他的成绩是否稳固,那么教练需要明白刘翔这 20次成绩的 A •众数 B •平均数 C .频数D .方差3.刘翔在出征北京奥运会前刻苦进行 110米跨栏训练4•如图2,给出了过直线外一点作直线的平行线的方法,其依据是xA .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等5•在边长为a 的正方形中挖去一个边长为b 的小正方形〔a b 〕〔如图3〕,把余下的部分拼成一个矩形〔如图 4〕,依照两个图形中阴影部分的面积相等,能够验证2 2 2 2 2 2A . (a b) a 2ab bB . (a b) a 2ab b2 2 2 2C . a b (a b)(a b)D . (a 2b)(a b) aab2b6.中央电视台2套”快乐辞典"栏目中,有一期的题目如图 三个球体的重量等于〔 丨个正方体的重量。
A . 2B . 3C . 4D . 57.李老师骑自行车内班,最初以某一速度匀速行进,中途由于自行车发生故障,停下来修车耽搁了 8分钟,为了按时到校,李老师加快了速度,但仍保持匀速,结果准时到校。
山东省临沂市2019-2020学年中考数学五模试卷含解析
山东省临沂市2019-2020学年中考数学五模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩2.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.﹣12<m<2 D.54<m<23.如图所示的几何体的主视图正确的是()A.B.C.D.4.下列实数中,为无理数的是()A.13B.2C.﹣5 D.0.31565.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm36.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.7.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0 C .x=﹣23 D .x=﹣18.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )A .B .C .D .9.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或1010.下表是某校合唱团成员的年龄分布,对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) 年龄/岁13 14 15 16 频数 5 15 x10- x A .平均数、中位数 B .众数、方差C .平均数、方差D .众数、中位数 11.下列安全标志图中,是中心对称图形的是( )A .B .C .D .12.如图,△ABC 中,AB>AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE=∠B B .∠EAC=∠C C .AE ∥BCD .∠DAE=∠EAC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =40°,则∠OAC =____度.14.如果23a b =,那么22242a b a ab--的结果是______. 15.如图,要使△ABC ∽△ACD ,需补充的条件是_____.(只要写出一种)16.在直角坐标系平面内,抛物线y=3x 2+2x 在对称轴的左侧部分是_____的(填“上升”或“下降”) 17.计算(2a )3的结果等于__.18.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,抛物线L :y=x 2+bx+c 与x 轴交于点A 和点B (-3,0),与y 轴交于点C (0,3). (1)求抛物线L 的顶点坐标和A 点坐标.(2)如何平移抛物线L 得到抛物线L 1,使得平移后的抛物线L 1的顶点与抛物线L 的顶点关于原点对称? (3)将抛物线L 平移,使其经过点C 得到抛物线L 2,点P (m ,n )(m >0)是抛物线L 2上的一点,是否存在点P ,使得△PAC 为等腰直角三角形,若存在,请直接写出抛物线L 2的表达式,若不存在,请说明理由.20.(6分)(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC=∠BOD ,求证:AO=OB ;(2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA=40°,求∠ABC 的度数.21.(6分)已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE=BF .求证:EA ⊥AF .22.(8分)如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE =CD .23.(8分)如图,在△ABC 中,AB=AC ,∠BAC=120°,EF 为AB 的垂直平分线,交BC 于点F ,交AB 于点E .求证:FC=2BF .24.(10分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1. 25.(10分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O .画出△AOB 平移后的三角形,其平移后的方向为射线AD 的方向,平移的距离为AD 的长.观察平移后的图形,除了矩形ABCD 外,还有一种特殊的平行四边形?请证明你的结论.26.(12分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)27.(12分)已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点.求一次函数和反比例函数的解析式;求△AOB 的面积;观察图象,直接写出不等式kx+b ﹣m x >0的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.2.D【解析】【分析】根据一元二次方程的根的判别式的意义得到m -2≠0且Δ=(2m -1)2-4(m -2)(m -2) >0,解得m >54且m≠﹣2,再利用根与系数的关系得到2m m -1-2, m ﹣2≠0,解得12<m <2,即可求出答案. 【详解】解:由题意可知:m -2≠0且Δ=(2m ﹣1)2﹣4(m ﹣2)2=12m ﹣15>0,∴m >54且m≠﹣2, ∵(m ﹣2)x 2+(2m ﹣1)x+m ﹣2=0有两个不相等的正实数根, ∴﹣2m m -1-2>0,m ﹣2≠0, ∴12<m <2,∵m>54,∴54<m<2,故选:D.【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.3.D【解析】【分析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.4.B【解析】【分析】根据无理数的定义解答即可.【详解】选项A、13是分数,是有理数;选项B是无理数;选项C、﹣5为有理数;选项D、0.3156是有理数;故选B.【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.5.A【解析】试题分析:0.001219=1.219×10﹣1.故选A.考点:科学记数法—表示较小的数.6.B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.7.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.8.A【解析】【分析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.9.B【解析】【分析】【详解】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.故选B10.D【解析】【分析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定. 【详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化. 故选D.11.B【解析】试题分析:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不合题意;故选B.考点:中心对称图形.12.D【解析】【分析】【详解】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50【解析】【分析】根据BC 是直径得出∠B =∠D =40°,∠BAC =90°,再根据半径相等所对应的角相等求出∠BAO ,在直角三角形BAC 中即可求出∠OAC【详解】∵BC 是直径,∠D =40°,∴∠B =∠D =40°,∠BAC =90°.∵OA =OB ,∴∠BAO =∠B =40°,∴∠OAC =∠BAC ﹣∠BAO =90°﹣40°=50°.故答案为:50【点睛】本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键14.1【解析】【分析】 令23a b ==k ,则a=2k ,b=3k ,代入到原式化简的结果计算即可. 【详解】 令23a b ==k ,则a=2k ,b=3k ,∴原式()()()222a b a b a a b +-=-2a b a +=262k k k +=82k k==1. 故答案为:1.【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.15.∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB【解析】试题分析:∵∠DAC=∠CAB∴当∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB 时,△ABC ∽△ACD .故答案为∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB .考点:1.相似三角形的判定;2.开放型.16.下降【解析】【分析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的,故答案为下降.【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.17.8 【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方18..【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==, ∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x 2-103x+3, 2239y x x =++,y=x 2-4x+3, 2833y x x =++. 【解析】【分析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【详解】{0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. Q 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1) Q 抛物线L 1的顶点与抛物线L 的顶点关于原点对称,1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆Q 是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒Q ,1CAO P AE ∴∠=,190PEA COA =∠=︒Q , ()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得2,1P -,3,4P -,3,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【点睛】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.20.(1)证明见解析;(2)25°. 【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒. 21.见解析【解析】【分析】根据条件可以得出AD=AB ,∠ABF=∠ADE=90°,从而可以得出△ABF ≌△ADE ,就可以得出∠FAB=∠EAD ,就可以得出结论.证明:∵四边形ABCD 是正方形,∴AB=AD ,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF 和△DAE 中,AB AD ABF ADE BF DE ⎧⎪∠∠⎨⎪⎩=== ,∴△BAF ≌△DAE (SAS ),∴∠FAB=∠EAD ,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA ⊥AF .22.证明见解析.【解析】【分析】由AD ∥BC 得∠ADB =∠DBC,根据已知证明△AED ≌△DCB (AAS ),即可解题.【详解】解:∵AD ∥BC∴∠ADB =∠DBC∵DC ⊥BC 于点C ,AE ⊥BD 于点E∴∠C =∠AED =90°又∵DB =DA∴△AED ≌△DCB (AAS )∴AE =CD【点睛】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.23.见解析【解析】【分析】连接AF ,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF ,可证得结论.证明:连接AF ,∵EF 为AB 的垂直平分线,∴AF=BF ,又AB=AC ,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC ,∴FC=2BF .【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.24.a 2+2a ,2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a 2+2a−2=2,即可解答本题.【详解】 解:242a a a a ⎛⎫--÷ ⎪⎝⎭ =2242a a a a -⋅- =2(2)(2)2a a a a a +-⋅- =a (a+2)=a 2+2a ,∵a 2+2a ﹣2=2,∴a 2+2a =2,∴原式=2.【点睛】【解析】【分析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.26.客车不能通过限高杆,理由见解析【解析】【分析】根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=DFDE,求出DF的值,即可判断.【详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=DF DE,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.27.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.。
山东省临沂市2020年九年级中考数学模拟试卷(含答案)
山东省临沂市2020年中考数学模拟试卷一.选择题(每题3分,满分42分)1.2020的相反数是()A.2020 B.﹣2020 C.D.2.据猫眼专业版显示,今年国庆档的献礼片《我和我的祖国》已经跻身中国电影票房榜前五名,自上映以来票房累计突破29.9亿元,将29.9亿用科学记数法可以表示为()A.0.299×1010B.2.99×109C.29.9×108D.2.99×10103.在下列几何体中,从正面看到为三角形的是()A.B.C.D.4.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是()A.B.C.D.6.下列运算正确的是()A.x2+x=x3B.(﹣2x2)3=8x6C.(x﹣y)(x+y)=x2﹣y2D.(x+1)(x﹣2)=x2﹣2x﹣27.数据2,4,8,5,3,5,5,4的众数、中位数分别为()A.4.5、5 B.5、4.5 C.5、4 D.5、58.不等式组的整数解的个数是()A.2 B.3 C.4 D.59.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A.B.C.D.10.如图,已知公路l上A、B两点之间的距离为50m,小明要测量点C与河对岸边公路l 的距离,测得∠ACB=∠CAB=30°.点C到公路l的距离为()A.25m B.m C.25m D.(25+25)m 11.下面列举的平行四边形的判定条件中,不正确的一个是()A.两组对边分别相等B.两组对角分别相等C.一组对边平行,一组对角相等D.一组对边平行,另一组对边相等12.如图,⊙O中,=,∠ACB=75°,BC=4,阴影部分的面积是()A.+8 B.4+C.8+D.4+13.关于x的二次函数y=x2+2kx+k﹣1,下列说法正确的是()A.对任意实数k,函数图象与x轴都没有交点B.对任意实数k,函数图象没有唯一的定点C.对任意实数k,函数图象的顶点在抛物线y=﹣x2﹣x﹣1上运动D.对任意实数k,当x≥﹣k﹣1时,函数y的值都随x的增大而增大14.如图,矩形ABCD中,AB=6,AD=2,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM的长度为()A.B.2 C.D.1二.填空题(满分15分,每小题3分)15.分解因式:6xy2﹣9x2y﹣y3=.16.一个多边形的内角和是1800°,这个多边形是边形.17.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(﹣3,0),B(0,6)分别在x轴,y轴上,反比例函数的图象经过点D,且与边BC交于点E,则点E的坐标为.18.某商店以定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销售,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.设该商店3月份这种商品的售价是x 元,则根据题意所列方程为 .19..将A (2,0)绕原点顺时针旋转40°,A 旋转后的对应点是A 1,再将A 1绕原点顺时针旋转40°,A 1旋转后的对应点是A 2,再将A 2绕原点顺时针旋转40°,A 2旋转后的对应点是A 3,再将A 3绕原点顺时针旋转40°,A 3旋转后的对应点是A 4…,按此规律继续下去,A 2019的坐标是 .三.解答题20.(7分)(1)计算:()﹣1+|1﹣|﹣2sin60°+(π﹣2016)0﹣. (2)先化简,再求值:(﹣x +1)÷,其中x =﹣2. 21.(7分)两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA 0≤n <3B 3≤n <6C 6≤n <9D 9≤n <12E 12≤n <15F15≤n <18 (1)求得样本容量为 ,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A 组发表提议的代表中恰有1为女士,E 组发表提议的代表中只有2位男士,现从A 组与E 组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.22.(7分)4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).23.(9分)已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.24.(9分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.25.(11分)某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为腰作等腰直角三角形DAF ,使∠DAF =90°,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①CF 与BC 的位置关系为 ;②CF ,DC ,BC 之间的数量关系为 (直接写出结论);(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点B 在线段BC 的延长线上时,将△DAF 沿线段DF 翻折,使点A 与点E 重合,连接CE ,若已知4CD =BC ,AC =2,请求出线段CE 的长.26.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的交点A,与x轴的另一个交点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为l,当t为何值时,l 的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.参考答案一.选择题1.解:2020的相反数是:﹣2020.故选:B.2.解:29.9亿=29 9000 0000=2.99×109,故选:B.3.解:A、圆柱的主视图是长方形,故本选项不合题意;B、三棱柱的主视图是长方形,故本选项不合题意;C、正方体的主视图是正方形,故本选项不合题意;D、圆锥的主视图是三角形,故本选项符合题意;故选:D.4.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.5.解:四个图形中是轴对称图形的只有A选项,故选:A.6.解:A、x2与x不是同类项,不能合并,故此选项不符合题意;B、(﹣2x2)3=﹣8x6,故此选项不符合题意;C、(x﹣y)(x+y)=x2﹣y2,故此选项符合题意;D、原式=x2﹣x﹣2,故此选项不符合题意,故选:C.7.解:数据中5出现的次数最多,所以众数为5,将数据重新排列为2、3、4、4、5、5、5、8,则中位数为=4.5,故选:B.8.解:解不等式x+5>3,得:x>﹣2,解不等式x+6>4x﹣3,得:x<3,则不等式组的解集为﹣2<x<3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C.9.解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.故选:A.10.解:如图,过点C作CD⊥直线l于点D,∵∠ACB=∠CAB=30°,AB=50m,∴AB=BC=50m,∠CBD=60°,在Rt△BCD中,∵sin∠CBD=,∴CD=BC sin∠CBD=50×=25(m),故选:C.11.解:A、有两组对边分别相等的四边形是平行四边形,故本选项不符合题意;B、有两组对角分别相等的四边形是平行四边形,故本选项不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠B=∠D,∴∠A+∠D=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故本选项不符合题意;D、有一组对边平行,另一组对边相等可能是等腰梯形,故本选项符合题意.故选:D.12.解:作OD⊥BC,则BD=CD,连接OA,OB,OC,∴OD是BC的垂直平分线,∵=,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=4,∵AD⊥BC,AB=AC,∴BD=CD,∴OD=OB==2,∴AD=4+2,∴S△ABC=BC•AD==8+4,S△BOC=BC•OD==4,∴S阴影=S△ABC+S扇形OBC﹣S△BOC=8+4+﹣4=8+;故选:A.13.解:A、△=4k2﹣4(k﹣1)=(2k﹣1)2+3>0,抛物线与x轴有两个交点,所以A选项错误;B、k(2x+1)=y+1﹣x2,k为任意实数,则2x+1=0,y+1﹣x2=0,所以抛物线经过定点(﹣,﹣),所以B选项错误;C、y=(x+k)2﹣k2+k﹣1,抛物线的顶点坐标为(﹣k,﹣k2+k﹣1),则抛物线的顶点在抛物线y=﹣x2﹣x﹣1上运动,所以C选项正确;D、抛物线的对称轴为直线x=﹣=﹣k,抛物线开口向上,则x>﹣k时,函数y的值都随x的增大而增大,所以D选项错误.故选:C.14.解:连接AC,交BE于O,∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=6,AD=2,∴tan∠CAB==,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=AB=3,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=2,∴HM=OH﹣OM=,故选:A.二.填空15.解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)216.解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.17.解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+6②,联立①②得:或(舍去),∴点E的坐标为:(﹣2,7).故答案为:(﹣2,7).18.解:设该商店3月份这种商品的售价是x元,由题意得:=﹣30,故答案为:=﹣30.19.解:由题意:9次一个循环,∵2019÷9=224余数为3,∴A2019的坐标与A3相同,∵A3(﹣1,﹣),∴A2019(﹣1,﹣),故答案为(﹣1,﹣).三.解答题20.解:(1)原式=3+﹣1﹣2×+1﹣2 =3+﹣1﹣+1﹣2=1;(2)原式=(﹣)÷=•=•=,当x=﹣2时,原式===2﹣1.21.解:(1)由统计图可得,本次调查的人数为:10÷20%=50,发言次数为C的人数为:50×30%=15,发言次数为F的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,故答案为:50,补全的直方图如右图所示,(2)1700×(8%+10%)=306,即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306;(3)由统计图可知,发言次数为A的人数有:50×6%=3,发言次数为E的人数有:50×8%=4,由题意可得,故所抽的两位代表恰好都是男士的概率是=,即所抽的两位代表恰好都是男士的概率是.22.解:如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40﹣x,AH=x+30﹣1.5=x+28.5,在Rt△AHE中,tan67°=,∴=,解得x=19.9m.∴AM=19.9+30=49.9m.∴风筝距地面的高度49.9m.23.(1)证明:连接AC,∵AB是⊙O的直径∴∠ACB=90°又∵OD⊥BC∴AC∥OE∴∠CAB=∠EOB由对的圆周角相等∴∠AEC=∠ABC又∵∠AEC=∠ODB∴∠ODB=∠OBC∴△DBF∽△OBD∴∠OBD=90°即BD⊥AB又∵AB是直径∴BD是⊙O的切线.(2)解:∵OD⊥弦BC于点F,且点O圆心,∴BF=FC∴BF=4由题意OB是半径即为5∴在直角三角形OBF中OF为3由以上(1)得到△DBF∽△OBD∴即得BD=.24.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.25.解:(1)①等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:垂直,BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由如下:∵等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示:∵∠BAC=90°,AB=AC=2,∴BC=AB=4,AH=BH=CH=BC=2,∴CD=BC=1,∴DH=CH+CD=3,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=3,DM=AH=2,∴CM=EM=3,∴CE==3.26.解:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,∴当t=时,l有最大值,l最大=;=×PM×(x D﹣x A)=PM,(3)∵S△PAD∴PM的值最大时,△PAD的面积中点,最大值=×=.∴t=时,△PAD的面积的最大值为.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△PAD是直角三角形,∴PK=AD,∴(t﹣)2+(﹣t2+2t+3﹣)2=×18,整理得t(t﹣3)(t2﹣t﹣1)=0,解得t=0或3或,∵点P在第一象限,∴t=.。
2020年山东省临沂市兰山区部分学校中考数学模拟试卷(5月份)
2020年山东省临沂市兰山区部分学校中考数学模拟试卷(5月份)一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下列各数中,比1大的是( )A .2B .0C .1-D .2-2.(3分)一种液体每升含有36 000 000个有害细菌,把36 000 000用科学记数法表示应该是( )A .73.610⨯B .63.610⨯C .63610⨯D .80.3610⨯3.(3分)如图所示,直线//a b ,22B ∠=︒,50C ∠=︒,则A ∠的度数为( )A .22︒B .28︒C .32︒D .38︒4.(3分)下列计算正确的是( )A .235a a a +=B .632a a a ÷=C .22431x x -=D .2363(2)8x y x y -=-5.(3分)如图,是某几何体的三视图及相关数据,则下面判断正确的是( )A .a c >B .b c >C .2224a b c +=D .222a b c +=6.(3分)为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表: 月用水量(吨)5 6 7 户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是4 7.(3分)计算21(2)1x x x x ---的结果是( ) A .11x + B .11x - C .21x - D .11x -- 8.(3分)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若3BC =,则折痕CE 的长为( )A .23B .332C .3D .69.(3分)若不等式组0122x a x x +⎧⎨->-⎩…有解,则a 的取值范围是( ) A .1a >- B .1a -… C .1a „ D .1a <10.(3分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A .14B .12C .34D .111.(3分)如图,在Rt ABC ∆ 中,90ACB ∠=︒,30A ∠=︒,2BC =.将ABC∆绕点C 按顺时针方向旋转n 度后得到EDC ∆,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2C .60,3D .60,312.(3分)二次函数2y ax bx c =++的图象如图所示,反比例函数a y x =与正比例函数y bx =在同一坐标系内的大致图象是( )A .B .C .D .13.(3分)如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若:2:3AB FG =,则下列结论正确的是( )A .23DE MN =B .32DE MN =C .32A F ∠=∠D .23A F ∠=∠14.(3分)如图,已知点A 是直线y x =与反比例函数(0,0)k y k x x=>>的交点,B 是k y x =图象上的另一点,//BC x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O A B C →→→(图中“→”所示路线)匀速运动,终点为C ,过点P 作PM x ⊥轴,PN y ⊥轴,垂足分别为M ,N .设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .。
2020年山东省临沂市兰山区部分学校中考数学模拟试卷
中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1.下列各数中,比1大的是()A. 2B. 0C. -1D. -22.一种液体每升含有36 000 000个有害细菌,把36 000 000用科学记数法表示应该是()A. 3.6×107B. 3.6×106C. 36×106D. 0.36×1083.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A. 22°B. 28°C. 32°D. 38°4.下列计算正确的是()A. a2+a3=a5B. a6÷a3=a2C. 4x2-3x2=1D. (-2x2y)3=-8x6y35.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A. a>cB. b>cC. a2+4b2=c2D. a2+b2=c26.月用水量(吨)567户数262则关于这户家庭的月用水量,下列说法错误的是()A. 众数是6B. 极差是2C. 平均数是6D. 方差是47.计算(-2)的结果是()A. B. C. D. -8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()9.若不等式组有解,则a的取值范围是()A. a>-1B. a≥-1C. a≤1D. a<110.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A. B. C. D. 111.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B. 60,2C. 60,D. 60,12.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.13.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A. 2DE=3MNB. 3DE=2MNC. 3∠A=2∠FD. 2∠A=3∠F14.如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A. B.C. D.二、填空题(本大题共5小题,共15.0分)15.分解因式:a3-4a2b+4ab2=______.16.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是______.17.有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC,用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r=______.18.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=______.19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1=-x2时,都有y1=y2,称该函数为偶函数,根据以上定义,可以判断下面所给的函数中,是偶函数的有______(填上所有正确答案的序号)①y=2x;②y =-x+1;③y =x2;④y =-;三、计算题(本大题共3小题,共25.0分)20.计算:()-2-(π-3.14)0+-|2-|.21.某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…()把上表中、的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?22.如图,已知△ABC内接于⊙O,过点B作直线EF∥AC,又知∠ACB=∠BDC=60°,AC=cm.(1)请探究EF与⊙O的位置关系,并说明理由;(2)求⊙O的周长.四、解答题(本大题共3小题,共31.0分)23.贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是______.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.25.如图,设抛物线y=ax2+bx+c与x轴交于两个不同的点A(-1,0),B(m,0),与(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,求点D和点E的坐标;(3)在x轴上是否存在点P,使以点P,B,D为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵2>1,∴选项A符合题意;∵0<1,∴选项B不符合题意;∵-1<1,∴选项C符合题意;∵-2<1,∴选项D不符合题意.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此类题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】A【解析】解:把36 000 000用科学记数法表示应该是3.6×107.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图,∵a∥b,∴∠1=∠C=50°,又180°-∠1=180°-∠A-∠B,∴∠A=∠1-∠B=50°-22°=28°,故选:B.如图,由平行线的性质可求得∠1=∠C,再根据领补角与三角形内角和可求得∠A.本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同们角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.4.【答案】D【解析】解:A、a2+a3=a5不是同类项,不能合并,故A选项错误;B、a6÷a3=a3,故B选项错误;C、4x2-3x2=x2,故C选项错误;故选D.根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.分别计算即可.本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质和法则是解题的关键.5.【答案】D【解析】解:根据勾股定理,a2+b2=c2.故选:D.由三视图知道这个几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形.本题由物体的三种视图推出原来几何体的形状,考查了圆锥的高,母线和底面半径的关系.6.【答案】D【解析】解:A、6出现的次数最多,出现了6次,则众数是6,故本选项正确;B、最大数是7,最小数是5,极差=7-5=2,故本选项正确;C、平均数是(5×2+6×6+7×2)÷10=6,故本选项正确;D、方差是:[2×(5-6)2+6×(6-6)2+2×(7-6)2]=0.25,故本选项错误;故选:D.根据众数、极差、平均数和方差的定义及公式分别进行解答,即可得出答案.此题考查了众数、极差、平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(x n-)2],众数是一组数据中出现次数最多的数,极差是最大数减去最小数.7.【答案】D【解析】解:(-2)===-,故选:D.根据分式的减法和乘法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.【答案】A【解析】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3-x,AE2=AO2+OE2,即(3-x)2=32+x2,解得x=,∴AE=EC=3-=2.故选:A.先根据图形翻折变换的性质求出AC的长,AE=CE,再由勾股定理即可得出结论.本题考查的是翻折变换,勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.9.【答案】A【解析】解:由(1)得x≥-a,由(2)得x<1,∴其解集为-a≤x<1,∴-a<1,即a>-1,∴a的取值范围是a>-1,故选:A.先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.10.【答案】B【解析】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.此题考查了概率公式和中心对称图形的定义,要弄清概率公式适用的条件方可解题:(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等.11.【答案】C【解析】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.故选:C.先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.12.【答案】B【解析】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,∴x=-<0,∴b<0,∴反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数与正比例函数y=bx在同一坐标系内的大致图象.此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;对称轴的位置即可确定b的值.13.【答案】B【解析】【分析】本题考查的是位似变换.位似变换的两个图形相似.位似是特殊的相似,相似图形对应边的比相等.根据相似多边形对应边成比例得DE:MN=2:3.【解答】解:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选B.14.【答案】B【解析】解:设点P的运动速度为v,故点P在OA上时,四边形OMPN为正方形,四边形OMPN的面积S=(vt)2,②点P在反比例函数图象AB时,由反比例函数系数几何意义,四边形OMPN的面积S=k;③点P在BC段时,设点P运动到点C的总路程为a,则四边形OMPN的面积=OC•(a-vt)=-OC•vt+OC•a,纵观各选项,只有B选项图形符合.故选:B.根据点P的位置,分①点P在OA上时,四边形OMPN为正方形;②点P在反比例函数图象AB段时,根据反比例函数系数的几何意义,四边形OMPN的面积不变;③点P 在BC段,设点P运动到点C的总路程为a,然后表示出四边形OMPN的面积,最后判断出函数图象即可得解.本题考查了动点问题函数图象,读懂题目信息,根据点P的运动位置的不同,分三段表示出函数解析式是解题的关键.15.【答案】a(a-2b)2【解析】解:原式=a(a2-4ab+4b2)=a(a-2b)2.故答案是:a(a-2b)2.首先提公因式a,然后利用完全平方公式即可分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.【答案】x3=-4,x4=-1【解析】解:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故答案为:x3=-4,x4=-1.把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.17.【答案】【解析】解:连接OA,作OD⊥AB于点D.则∠DAO=×60°=30°,OD=1,则AD=OD=,∴AB=2.则扇形的弧长是:=,根据题意得:2πr=,解得:r=.故答案是:.连接OA,作OD⊥AB于点D,利用含30°角的直角三角形的性质以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.本题考查了扇形的弧长公式,垂径定理,正确求得AB的长是关键.18.【答案】【解析】解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.19.【答案】③【解析】解:在①中,y1=2x1,y2=2x2=-2x1,此时y1≠y2,∴y=2x不是偶函数,在②中,y1=-x1+1,y2=-x2+1=x1+1,此时y1≠y2,∴y=-x+1不是偶函数,在③中,y1=x12,y2=x22=(-x1)2=x12,此时y1=y2,∴y=x2是偶函数,在④中,y1=-,y2=-=-=,此时y1≠y2,∴y=-不是偶函数,∴是偶函数的为③,故答案为:③.根据所给的定义,把x1和x2分别代入函数解析式进行判断即可.本题考查一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,理解题目中偶函数的定义是解题的关键.20.【答案】解:原式=4-1+2-+2=+5.【解析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,解得:,∴函数关系式是:y=-10x+800.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000,(20<x<80)当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)函数W=-10(x-50)2+9000的对称轴为x=50故当x≤45时,W的值随着x值的增大而增大,当x=45时利润最大,最大利润为8750元.∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750元.【解析】(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)利润=销售总价-成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数的取值范围内的增减性,可得出函数的最值.此题主要考查了二次函数的应用,根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.22.【答案】解:(1)EF与⊙O相切.理由如下:延长BO交AC于H,如图,∵∠BAC=∠BDC=60°,而∠ACB=60°,∴△ABC为等边三角形,∵点O为△ABC的外心,∴BH⊥AC,∵AC∥EF,∴BH⊥EF,∴EF为⊙O的切线;(2)连结OA,如图,∵△ABC为等边三角形,∴OA平分∠ABC,∴∠OAH=30°,∵OH⊥AC,∴AH=CH=AC=,在Rt△AOH中,∵cos∠OAH=,∴OA==1,∴⊙O的周长=2π×1=2π(cm).【解析】(1)延长BO交AC于H,如图,先证明△ABC为等边三角形,利用点O为△ABC 的外心得到BH⊥AC,由于AC∥EF,所以BH⊥EF,于是根据切线的判定定理即可得到EF为⊙O的切线;(2)连结OA,如图,根据等边三角形的性质得∠OAH=30°,AH=CH=AC=,再在Rt△AOH中,利用三角函数和计算出OA=1,然后根据圆的周长公式计算.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的判定与性质.23.【答案】(1)10%(2)200份;图见解析。
临沂2020中考数学综合模拟测验卷(含答案及解析)
2020临沂市初中学生学业模拟考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数-3,0,1,2,其中负数是( )A.-3B.0C.1D.22.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A.80°B.85°C.90°D.95°3.下列计算正确的是( )A.x3-x2=xB.x3·x2=x6C.x3÷x2=xD.(x3)2=x54.不等式组-的解集在数轴上表示正确的是( )5.如图是一个空心圆柱体,其主视图正确的是( )6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A. B. C. D.7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A.108°B.90°C.72°D.60°8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,所列方程组正确的是( )A. B.C. D.9.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( )A.4小时B.3小时C.2小时D.1小时10.如图,AB是☉O的切线,B为切点,AC经过点O,与☉O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是( )A. B.π C.-π D.-π11.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )A.2n+1B.n2-1C.n2+2nD.5n-212.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.313.二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:下列说法正确的是( )A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-14.如图,直线y=-x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点, △BOC的面积是.若将直线y=-x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有( )A.0个B.1个C.2个D.0个,或1个,或2个第Ⅱ卷(非选择题,共78分)二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:x3-2x2+x= .16.计算:-+-= .17.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.18.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.19.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin α·cos β+cos α·sin β;sin(α-β)=sin α·cos β-cos α·sin β.例如sin 90°=sin(60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=×+×=1.类似地,可以求得sin 15°的值是.三、解答题(本大题共7小题,共63分)20.(本小题满分7分)计算:|-3|+tan 30°--(2 016-π)0.21.(本小题满分7分)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表(1)填空:a= ,b= ;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165 cm的学生大约多少人.22.(本小题满分7分)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?23.(本小题满分9分)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.24.(本小题满分9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?25.(本小题满分11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其他条件不变.(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其他条件不变.(1)中结论是否仍然成立?请直接写出你的判断.26.(本小题满分13分)如图,在平面直角坐标系中,直线y=-2x+10与x轴、y轴相交于A、B两点.点C 的坐标是(8,4),连接AC,BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.答案全解全析:一、选择题1.A 小于0的数是负数,0既不是正数也不是负数,大于0的数是正数.2.B ∵AB∥CD ∴∠C=∠A=40°(两直线平行,内错角相等),∴∠1=∠D+∠C=45°+40°=85°.3.C x3与x2不是同类项,不能合并,故A选项错误;x3·x2=x3+2=x5 ,故B选项错误;x3÷x2=x3-2=x,故C选项正确;(x3)2=x6,故D选项错误.故选C.评析本题主要考查了合并同类项,同底数幂的乘除法法则,幂的乘方运算,熟练掌握运算法则是解题的关键.4.A 由3x<2x+4得x<4;由-≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A.评析本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”“≤”要用实心圆点表示,“<”“>”要用空心圆圈表示.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5.B 由主视图的定义可知选B.6.B 列表如下:则恰好抽到1班和2班的概率是.故选B.7.C 设这个正多边形的边数为n,则有(n-2)·180°=540°,解得n=5.因为多边形的外角和为360°,且正多边形的每一个外角都相等,所以这个正多边形的每一个外角为360°÷5=72°.故选C.8.D 根据学生总人数为30可列方程x+y=30,男生x人可植树3x棵,女生y人可植树2y棵,一共可植树(3x+2y)棵,则3x+2y=78,故选D.9.B 根据条形统计图可知,10名学生中学习1小时的有1人;学习2小时的有2人;学习3小时的有4人;学习4小时的有2人;学习5小时的有1人,则这10名学生周末学习的平均时间为==3小时.故选B.10.C 连接OB,∵AB是☉O的切线,B为切点,∴∠OBA=90°,又∠AOB=2∠ACB=60°,∴∠OAB=30°.在Rt△ABO中,设OB=x,则OA=2x,∵OB2+AB2=OA2,∴x2+()2=(2x)2,解得x=1(负值舍去),∴S阴影=S△OAB-S扇形BOD=·AB·OB-π=××1-π=-π.故选C.评析本题考查了切线的性质、扇形的面积公式.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.11.C 每个图形可分解成一个n×n的大正方形与上方n个及右方n个小正方形,即第1个图形中小正方形的个数为1×1+1+1=3;第2个图形中小正方形的个数为2×2+2+2=8;第3个图形中小正方形的个数为3×3+3+3=15;……第n个图形中小正方形的个数为n×n+n+n=n2+2n.故选C.12.D ∵等边△ABC绕点C顺时针旋转120°得到△EDC,∴AC=BC=CD=CE,∠BCD=120°,∵∠ACB=60°,∴∠ACD=60°,∴△ACD为等边三角形,∴AC=AD,∴①正确;∵AC=CE=DE=AD=CD,∴四边形ACED是菱形,∴③正确;由AB=BC,得B在AC的垂直平分线上,由AD=CD,得D在AC的垂直平分线上,∴BD垂直平分AC,∴②正确.13.D 由题表中数据可求得二次函数的解析式为y=x2+5x+4,即y=-,故抛物线的开口向上,对称轴是x=-,二次函数的最小值是-,当x>-时,y随x的增大而增大,当x<-时,y随x的增大而减小.故选D.14.B 由题意得C(5,0),设点B的坐标为(a,-a+5),a>0,∵△BOC的面积是,∴×5×(-a+5)=,解得a=4,则B(4,1),∴k=4,则y=(x>0),将直线y=-x+5向下平移1个单位得到直线y=-x+4,令=-x+4,整理得x2-4x+4=0,解得x=2,即直线y=-x+4与双曲线y=(x>0)只有一个交点,为(2,2),故选B.评析根据题意得出反比例函数的解析式是解答本题的关键.二、填空题15.答案x(x-1)2解析x3-2x2+x=x(x2-2x+1)=x(x-1)2.评析本题考查了提公因式法,公式法分解因式,注意分解要彻底.16.答案a+1解析-+-=---=--=--=a+1.17.答案解析由已知得AD=AB-BD=8-3=5.∵DE∥BC,EF∥AB,∴四边形BFED是平行四边形,则DE=BF=4,由DE∥BC得△ADE∽△ABC,则=,即=,解得BC=,∴FC=BC-BF=-4=.18.答案 6解析由折叠知AF=FC,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3.所以S△ABF=AB·BF=6.19.答案-解析sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=×-×=-.三、解答题20.解析|-3|+tan 30°--(2 016-π)0 =3+×-2-1(4分)=3+1-2-1(5分)=3-2.(7分)21.解析(1)10;28%.(2分)(2)(4分) (3)600×=240(人).故身高不低于165 cm的学生大约240人.(7分)22.解析过点P作PC⊥AB,交AB的延长线于点C.在Rt△ACP中,∠ACP=90°,∠APC=60°,PA=20,∵cos∠APC=,sin∠APC=,∴PC=PA·cos 60°=20×=10,(2分)AC=PA·sin 60°=20×=10.(4分)在Rt△BCP中,∠BCP=90°,∠BPC=45°.∴BC=PC=10.(5分)∴AB=AC-BC=10-10≈10×1.732-10≈7.3.答:轮船向东航行约7.3海里到达位于灯塔P南偏西45°方向上的B处.(7分)23.解析(1)证明:∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,(2分)∴∠ACB=60°,(3分)∴△ABC是等边三角形.(4分)(2)解法一:∵∠PAC=90°,∠APC=∠ACB=60°,∴∠D=∠DAB=∠PCB=30°,∴BD=AB=2.(6分)又∵∠PBD=∠PAC=90°,==4.(9分)∴PD=°解法二:∵∠PAC=90°,∠APC=∠ACB=60°,∴∠ACP=∠PCB=∠D=30°,∴PD=PC.(6分)由(1)知△ABC是等边三角形,∴AC=AB=2,==4.∴在Rt△PAC中,PC=°∴PD=4.(9分)24.解析(1)y甲=(2分)y乙=16x+3,x>0.(3分)(2)解法一:若0<x≤1,当y甲>y乙,即22x>16x+3时,x>; 当y甲=y乙,即22x=16x+3时,x=;当y甲<y乙,即22x<16x+3时,x<.(6分)若x>1,当y甲>y乙,即15x+7>16x+3时,x<4;当y甲=y乙,即15x+7=16x+3时,x=4;当y甲<y乙,即15x+7<16x+3时,x>4.因此,当快递物品少于千克或者多于4千克时,选择甲公司省钱;当快递物品等于千克或者4千克时,两家公司一样;当快递物品多于千克而少于4千克时,选择乙公司省钱.(9分)解法二:画出函数y甲=和y乙=16x+3,x>0的图象.(5分)分别解二元一次方程组得因此两图象的交点分别是,(4,67),(7分)由图象可以看出:当0<x<或x>4时,选择甲公司省钱;当x=或x=4时,两家公司一样;当<x<4时,选择乙公司省钱.(9分)25.解析(1)FG=CE(相等);FG∥CE(平行).(2分)(2)仍然成立.(3分)证明:证法一:设CF与DE相交于点M.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.∵BF=CE,∴△BCF≌△CDE,∴FC=ED,∠BFC=∠DEC.(5分)∵∠BFC+∠FCE=90°,∴∠DEC+∠FCE=90°,∴∠EMC=90°,即FC⊥DE,∵GE⊥DE,∴GE∥FC,又∵EG=DE,∴EG=FC.∴四边形GECF是平行四边形.(8分)∴FG=CE,FG∥CE.(9分)证法二:过点G作GN⊥BC,交CB的延长线于点N,则∠GNE=∠ECD=90°.∴∠NGE+∠NEG=90°.又GE⊥ED,∴∠GEN+∠DEC=90°. ∴∠NGE=∠CED.又∵EG=DE,∴△GNE≌△ECD.∴EN=CD,GN=CE.(5分)又∵CE=BF,∴BF=GN.又∵∠FBC=∠GNB=90°,∴BF∥GN.∴四边形GNBF是矩形,(7分)∴FG=BN,FG∥CN,即FG∥CE.又∵CD=BC,∴NB=CE,∴FG=CE.(9分)(3)成立.(11分)26.解析(1)由题意,知A(5,0),B(0,10),∵抛物线过坐标原点,∴设其解析式为y=ax2+bx.则解得-∴抛物线的解析式为y=x2-x.(3分)在△ABC中,∵AB2=52+102=125,BC2=82+(10-4)2=100,AC2=42+(8-5)2=25,∴AC2+BC2=AB2.∴△ABC为直角三角形.(5分)(2)解法一:设当P,Q运动t秒,即OP=2t,CQ=10-t时,PA=QA,由(1)知AC=OA,∠ACQ=∠AOP=90°,∴△AOP≌△ACQ.∴OP=CQ,(6分)∴2t=10-t,∴t=.故当运动时间为秒时,PA=QA.(8分)解法二:分别过C、Q作CD、QE垂直于y轴,垂足分别为D、E,则CD=8. ∵P、Q的运动时间为t秒,∴BQ=t,OP=2t,设点Q的坐标是(m,n),∴QE=m.∵CD⊥y轴,QE⊥y轴,∴CD∥QE,∴△BQE∽△BCD.∴=,即=,∴m=t.(6分)设直线BC的解析式为y=kx+b,则解得-∴直线BC的解析式为y=-x+10.∵点Q在BC上,∴n=-×t+10=-t+10,∴点Q的坐标是-,(7分)∴QA2=-+-=t2-20t+125.∵OP=2t,∴PA2=(2t)2+25=4t2+25,∵PA=QA,∴t2-20t+125=4t2+25,即3t2+20t-100=0,解得t1=,t2=-10(不合题意,舍去),因此,当运动时间为秒时,PA=QA.(8分)(3)存在.由(1)知抛物线的对称轴是直线x=,设点M的坐标为.①若BM=BA,则有+(m-10)2=125,解得m1=,m2=-,此时点M的坐标是M1,M2-.(10分) ②若AM=AB,则有+m2=125,解得m3=,m4=-. 此时点M的坐标是M3,M4-.(12分)③若MA=MB,则有-+m2=+(10-m)2,解得m=5,此时点M5的坐标为.因为点M5恰好是线段AB的中点,构不成三角形,所以不符合题意,应舍去. 综上所述,点M的坐标是:M1,M2-,M3,M4-.(13分)。
山东省临沂市2020年中考数学模拟试卷解析版
∴BD=AB•sinA=4× =3,
∴AD=
=
=,
∴▱ABCD 的面积=AD•BD=3 ; 故答案为:3 . 先由三角函数求出 BD,再根据勾股定理求出 AD,▱ABCD 的面积=AD•BD,即可得出 结果. 本题考查了平行四边形的性质、三角函数、勾股定理以及平行四边形面积的计算;熟练 掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
中考数学模拟试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 5 小题,共 25.0 分)
1. 多项式 mx2-m 与多项式 x2-2x+1 的公因式是( )
A. x-1
B. x+1
C. x2-1
2. 观察下列关于 x 的单项式,探究其规律: x,3x2,5x3,7x4,9x5,11x6,…
按照上述规律,第 2015 个单项式是( )
2.【答案】C
【解析】解:根据分析的规律,得 第 2015 个单项式是 4029x2015. 故选:C. 系数的规律:第 n 个对应的系数是 2n-1. 指数的规律:第 n 个对应的指数是 n. 此题考查单项式问题,分别找出单项式的系数和次数的规律是解决此类问题的关键.
3.【答案】A
【解析】解:由一元一次不等式组
10. 一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定 集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数 1,1,2,3,4 就可以构成一个集合,记为 A={1,2,3,4}.类比实数有加法运算 ,集合也可以“相加”.定义:集合 A 与集合 B 中的所有元素组成的集合称为集
第 4 页,共 7 页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省临沂市兰山区部分学校中考数学模拟试卷(5月份)一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下列各数中,比1大的是()A.2B.0C.﹣1D.﹣22.(3分)一种液体每升含有36 000 000个有害细菌,把36 000 000用科学记数法表示应该是()A.3.6×107 B.3.6×106C.36×106D.0.36×1083.(3分)如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°4.(3分)下列计算正确的是()A.a2+a3=a5B.a6÷a3=a2C.4x2﹣3x2=1D.(﹣2x2y)3=﹣8x6y35.(3分)如图,是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c26.(3分)为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)567户数262则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6B.极差是2C.平均数是6D.方差是47.(3分)计算(﹣2)的结果是()A.B.C.D.﹣8.(3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.69.(3分)若不等式组有解,则a的取值范围是()A.a>﹣1B.a≥﹣1C.a≤1D.a<110.(3分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.111.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2C.60,D.60,12.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.13.(3分)如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F14.(3分)如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)分解因式:a3﹣4a2b+4ab2=.16.(3分)关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.17.(3分)有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC,用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r=.18.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.19.(3分)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1=﹣x2时,都有y1=y2,称该函数为偶函数,根据以上定义,可以判断下面所给的函数中,是偶函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2;④y=﹣;三、解答题(本大题共6小题,共63分)20.(7分)计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.21.(7分)贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?22.(9分)某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.(9分)如图,已知△ABC内接于⊙O,过点B作直线EF∥AC,又知∠ACB=∠BDC=60°,AC=cm.(1)请探究EF与⊙O的位置关系,并说明理由;(2)求⊙O的周长.24.(11分)如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.25.(13分)如图,设抛物线y=ax2+bx+c与x轴交于两个不同的点A(﹣1,0),B(m,0),与y轴交于点C(0,﹣2),且∠ACB=90度.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,求点D和点E的坐标;(3)在x轴上是否存在点P,使以点P,B,D为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.2020年山东省临沂市兰山区部分学校中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.【解答】解:∵2>1,∴选项A符合题意;∵0<1,∴选项B不符合题意;∵﹣1<1,∴选项C符合题意;∵﹣2<1,∴选项D不符合题意.故选:A.2.【解答】解:把36 000 000用科学记数法表示应该是3.6×107.故选:A.3.【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.4.【解答】解:A、a2+a3=a5不是同类项,不能合并,故A选项错误;B、a6÷a3=a3,故B选项错误;C、4x2﹣3x2=x2,故C选项错误;D、(﹣2x2y)3=﹣8x6y3,故D选项正确.故选:D.5.【解答】解:根据勾股定理,a2+b2=c2.故选:D.6.【解答】解:A、6出现的次数最多,出现了6次,则众数是6,故本选项正确;B、最大数是7,最小数是5,极差=7﹣5=2,故本选项正确;C、平均数是(5×2+6×6+7×2)÷10=6,故本选项正确;D、方差是:[2×(5﹣6)2+6×(6﹣6)2+2×(7﹣6)2]=0.25,故本选项错误;故选:D.7.【解答】解:(﹣2)===﹣,故选:D.8.【解答】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.故选:A.9.【解答】解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选:A.10.【解答】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选:B.11.【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.故选:C.12.【解答】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,∴x=﹣<0,∴b<0,∴反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.13.【解答】解:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.14.【解答】解:设点P的运动速度为v,①由于点A在直线y=x上,故点P在OA上时,四边形OMPN为正方形,四边形OMPN的面积S=(vt)2,②点P在反比例函数图象AB时,由反比例函数系数几何意义,四边形OMPN的面积S=k;③点P在BC段时,设点P运动到点C的总路程为a,则四边形OMPN的面积=OC•(a﹣vt)=﹣OC•vt+OC•a,纵观各选项,只有B选项图形符合.故选:B.二、填空题(本大题共5小题,每小题3分,共15分)15.【解答】解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.16.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=﹣2或x+2=1,解得x=﹣4或x=﹣1.故答案为:x3=﹣4,x4=﹣1.17.【解答】解:连接OA,作OD⊥AB于点D.则∠DAO=×60°=30°,OD=1,则AD=OD=,∴AB=2.则扇形的弧长是:=,根据题意得:2πr=,解得:r=.故答案是:.18.【解答】解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.19.【解答】解:在①中,y1=2x1,y2=2x2=﹣2x1,此时y1≠y2,∴y=2x不是偶函数,在②中,y1=﹣x1+1,y2=﹣x2+1=x1+1,此时y1≠y2,∴y=﹣x+1不是偶函数,在③中,y1=x12,y2=x22=(﹣x1)2=x12,此时y1=y2,∴y=x2是偶函数,在④中,y1=﹣,y2=﹣=﹣=,此时y1≠y2,∴y=﹣不是偶函数,∴是偶函数的为③,故答案为:③.三、解答题(本大题共6小题,共63分)20.【解答】解:原式=4﹣1+2﹣+2=+5.21.【解答】解:(1)一等奖所占的百分比是:100%﹣46%﹣24%﹣20%=10%;(2)在此次比赛中,一共收到:20÷10%=200份;(3)一等奖有:20人,二等奖有:200×20%=40人,三等奖有:200×24%=48人,优秀奖有:200×46%=92人.22.【解答】解:(1)由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,解得:,∴函数关系式是:y=﹣10x+800.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000,(20<x<80)当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)函数W=﹣10(x﹣50)2+9000的对称轴为x=50故当x≤45时,W的值随着x值的增大而增大,当x=45时利润最大,最大利润为8750元.∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750元.23.【解答】解:(1)EF与⊙O相切.理由如下:延长BO交AC于H,如图,∵∠BAC=∠BDC=60°,而∠ACB=60°,∴△ABC为等边三角形,∵点O为△ABC的外心,∴BH⊥AC,∵AC∥EF,∴BH⊥EF,∴EF为⊙O的切线;(2)连结OA,如图,∵△ABC为等边三角形,∴OA平分∠ABC,∴∠OAH=30°,∵OH⊥AC,∴AH=CH=AC=,在Rt△AOH中,∵cos∠OAH=,∴OA==1,∴⊙O的周长=2π×1=2π(cm).24.【解答】(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE中,PN=ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,,∴△BPM≌△CPE,∴PM=PE,∴PM=ME,则Rt△MNE中,PN=ME∴PM=PN.(3)解:如图4,四边形BMNC是矩形,理由:∵MN∥BC,BM⊥AM,CN⊥MN,∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°,∴∠CBM=∠AMB=∠CNA=90°,∴四边形BMNC是矩形.∵BM=CN,∠PBM=∠PCN,BP=CP,∴△PBM≌△PCN(SAS)∴PM=PN.25.【解答】解:(1)在直角△ABC中,∵CO⊥AB∴OC2=OA.OB∴22=1×m即m=4∴B(4,0).把A(﹣1,0)B(4,0)分别代入y=ax2+bx﹣2,并解方程组得a=,b=﹣,∴y=x2﹣x﹣2;(2)把D(1,n)代入y=x2﹣x﹣2得n=﹣3,∴D(1,﹣3)解方程组,得,∴E(6,7).(3)作EH⊥x轴于点H,则EH=AH=7,∴∠EAB=45°由勾股定理得:BE=,AE=7,作DM⊥x轴于点M,则DM=BM=3,∴∠DBM=45°由勾股定理得BD=3.假设在x轴上存在点P满足条件,∵∠EAB=∠DBP=45°,∴或,即或,∴PB=或PB=,OP=4﹣=或OP=4﹣=﹣.∴在x轴上存在点P1(,0),P2(﹣,0)满足条件.。