第二章随机变量及其分布练习题

合集下载

(必考题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)

(必考题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)

一、选择题1.现有一条零件生产线,每个零件达到优等品的概率都为p .某检验员从该生产线上随机抽检50个零件,设其中优等品零件的个数为X .若()8D X =,(20)P X =(30)P X <=,则p =( ) A .0.16B .0.2C .0.8D .0.842.已知随机变量X 的分布列则对于任意01a b c <<<<,()E X 的取值范围是( )A .10,3⎛⎫ ⎪⎝⎭B .1,13⎛⎫ ⎪⎝⎭C .()0,1D .1,3⎛+∞⎫ ⎪⎝⎭3.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( ) A .12B .13C .14D .164.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .75.设01p <<,随机变量ξ的分布列是则当p 在()0,1内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ增大,()D ξ增大6.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( ) A .38B .1340C .1345D .347.已知随机变量~X N ()22,σ,(0)0.84P X=,则(04)P X <<=( )A .0.16B .0.32C .0.66D .0.688.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件A ,“摸得的两球不同色”为事件B ,则概率()|P B A 为( ) A .14B .23C .13D .129.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( )A .3+B .6+C .3+D .6+10.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .5911.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A .313B .413C .14D .1512.10张奖券中有3张是有奖的,某人从中依次抽取两张.则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率是( ) A .27B .29C .310D .15二、填空题13.游乐场某游戏设备是一个圆盘,圆盘被分成红色和绿色两个区域,圆盘上有一个可以绕中心旋转的指针,且指针受电子程序控制,前后两次停在相同区域的概率为14,停在不同区域的概率为34,某游客连续转动指针三次,记指针停在绿色区域的次数为X ,若开始时指针停在红色区域,则()E X =______.14.由“0,1,2”组成的三位数密码中,若用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,则(|)P A B =__________.15.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________. 16.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2K 是用来判断两个分类变量是否相关的随机变量,当2K 的值很小时可以推断两个变量不相关;④某项测量结果ξ服从正态分布()21,N a,则(5)0.81P ξ≤=,则(3)0.19P ξ≤-=.17.已知某随机变量X 的分布列如下(,p q R ∈):且X 的数学期望()12E X =,那么X 的方差()D X =__________. 18.(1)10件产品,其中3件是次品,任取2件,若ξ表示取到次品的个数,则()E ξ=_______;(2)设随机变量ξ的分布列为()P k ξ==21C ()()33k k n kn -,k =0,1,2,…,n ,且()24E ξ=,则()D ξ= _______;(3)设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回地抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,X 表示三次中红球被摸中的次数(每个小球被抽取的概率相同,每次抽取相互独立),则方差()D X =______.三、解答题19.已知某射手射中固定靶的概率为34,射中移动靶的概率为23,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.(1)求“该射手射中固定靶且恰好射中移动靶1次”的概率; (2)求该射手的总得分X 的分布列和数学期望.20.某校拟举办“成语大赛”,高一(1)班的甲、乙两名同学在本班参加“成语大赛”选拔测试,在相同的测试条件下,两人5次测试的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更好?并说明理由;(2)若从甲、乙两人5次的成绩中各随机抽取1次进行分析,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望()E X .21.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩ξ近似服从正态分布()70,100N .已知成绩在90分以上(含90分)的学生有12名.(1)此次参赛的学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,则设奖的分数线约为多少分? 说明:对任何一个正态分布()2~,X Nμσ来说,通过1X Z μσ-=转化为标准正态分布()~0,1Z N ,从而查标准正态分布表得到()()1P X X Z <=Φ. 参考数据:可供查阅的(部分)标准正态分布表()Z Φ Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.2 0.8849 0.869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.10.98210.98260.98300.98340.98380.98420.98460.98500.98540.985722.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数; (2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 23.为检测某种抗病毒疫苗的免疫效果,某药物研究所科研人员随机选取100只小白鼠,并将该疫苗首次注射到这些小白鼠体内.独立环境下试验一段时间后检测这些小白鼠的某项医学指标值并制成如下的频率分布直方图(以小白鼠医学指标值在各个区间上的频率代替其概率):(1)根据频率分布直方图,估计100只小白鼠该项医学指标平均值x (同一组数据用该组数据区间的中点值表示);(2)若认为小白鼠的该项医学指标值X 服从正态分布()2,N μσ,且首次注射疫苗的小白鼠该项医学指标值不低于14.77时,则认定其体内已经产生抗体;进一步研究还发现,对第一次注射疫苗的100只小白鼠中没有产生抗体的那一部分群体进行第二次注射疫苗,约有10只小白鼠又产生了抗体.这里μ近似为小白鼠医学指标平均值x ,2σ近似为样本方差2s .经计算得2 6.92s =,假设两次注射疫苗相互独立,求一只小白鼠注射疫苗后产生抗体的概率p (精确到0.01). 附:参考数据与公式6.92 2.63≈,若()2~,X N μσ,则①()0.6827P X μσμσ-<≤+=;②()220.9545P X μσμσ-<≤+=;③()330.9973P X μσμσ-<≤+=. 24.甲、乙两人进行乒乓球比赛,规定比赛进行到有一人比对方多赢2局或打满6局时比赛结束.设甲、乙在每局比赛中获胜的概率均为12,各局比赛相互独立,用X 表示比赛结束时的比赛局数(1)求比赛结束时甲只获胜一局的概率; (2)求X 的分布列和数学期望.25.现有编号为1,2,3的三只小球和编号为1,2,3的三个盒子,将三只小球逐个随机地放入三个盒子中,每只球的放置相互独立. (1)求恰有一个空盒的概率;(2)求三只小球在三个不同盒子中,且每只球编号与所在盒子编号不同的概率; (3)记录所有至少有一只球的盒子,以X 表示这些盒子编号的最小值,求()E X . 26.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由(20)(30)p X P X =<=求出的范围,再由方差公式求出值.【详解】∵(20)(30)p X P X =<=,∴2020303030205050(1)(1)C p p C p p -<-,化简得1p p -<,即12p >,又()850(1)D X p p ==-,解得0.2p =或0.8p =,∴0.8p =,故选C . 【点睛】 本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.2.B解析:B 【分析】由题易得222()E X a b c =++,结合题中条件再由基本不等式可得2222()133a b c a b c ++++>=,即1()3E X >;再由2222()2()12()1a b c a b c ab bc ca ab bc ca ++=++-++=-++<,即()1E X <,最后得出()E X 的取值范围. 【详解】由随机变量的期望定义可得出222()E X a b c =++, 因为01a b c <<<<,且1a b c ++=,所以222222222a b aba c acbc bc ⎧+>⎪+>⎨⎪+>⎩,三式相加并化简可得222a b c ab bc ac ++>++,故2222222222()2222()3()a b c a b c ac bc ab a b c ac bc ab a b c ++=+++++=+++++<++,即2222()133a b c a b c ++++>=,所以2()1()33a b c E X ++>=,又因为2()()2()12()1E X a b c ab bc ca ab bc ca =++-++=-++<,所以1()13E X <<. 故选:B . 【点睛】本题考查随机变量的期望,考查基本不等式的应用,考查逻辑思维能力和运算求解能力,属于常考题.3.B解析:B 【分析】记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,分别求出A 、B 的结果个数,问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式求解即可. 【详解】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,则{A =(男,女),(女,男),(女,女)},{B =(男,女),(女,男),(女,女)},{AB =(女,女)}.于是可知3()4P A =,1()4P AB =. 问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式,得()114334P B A ==.故选:B . 【点睛】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:()()()P AB P B A P A =,等可能事件的概率的求解公式:()mP M n=(其中n 为试验的所有结果,m 为基本事件的结果).4.B解析:B 【分析】 由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.故选:B. 【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.5.B解析:B 【分析】根据题意计算随机变量ξ的分布列和方差,再判断p 在(0,1)内增大时,()E ξ、()D ξ的单调性即可. 【详解】解:设01p <<,随机变量ξ的分布列是1131()01222222p p E p ξ-=⨯+⨯+⨯=-, 方差是22231311311()(0)(1)(2)222222222p p D p p p ξ-=-+⨯+-+⨯+-+⨯ 21144p p =-++ 215(2)44p =--+,当p 在(0,1)内增大时,()E ξ减小,()D ξ增大.故选:B . 【点睛】本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力.6.B【分析】由条件概率的定义()(|)()P A B P B A P A =,分别计算(),()P A B P A 即得解.【详解】 由题意5()9P A = 事件AB 为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有223313⨯+⨯=个事件1313()9872P A B ==⨯由条件概率的定义:()13(|)()40P A B P B A P A ==故选:B 【点睛】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.7.D解析:D 【分析】先由对称性求出(X 4)P ≥,再利用(04)12(4)P X P X <<=-≥即得解. 【详解】由于随机变量~X N ()22,σ,关于2X =对称,故(4)(0)1(0)10.840.16P X P X P X ≥=≤=-≥=-= (04)12(4)10.320.68P X P X ∴<<=-≥=-=故选:D 【点睛】本题考查了正态分布在给定区间的概率,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.8.B解析:B 【分析】根据题目可知,求出事件A 的概率,事件AB 同时发生的概率,利用条件概率公式求得()|P B A ,即可求解出答案.【详解】依题意,()1214C 1C 2P A ==,()11221143C C 1C C 3P AB ==,则条件概率()()()123|132P AB P B A P A ===.故答案选B . 【点睛】本题主要考查了利用条件概率的公式计算事件的概率,解题时要理清思路,注意()P AB 的求解.9.D解析:D 【分析】利用正态密度曲线的对称性得出12m n +=,再将代数式22m n +与12m n +相乘,展开后可利用基本不等式求出12m n+的最小值. 【详解】 由于()210,XN σ,由正态密度曲线的对称性可知,()()128P X P X m >=<=,所以,()()188102P X P X <+≤≤=,即12m n +=,221m n ∴+=, 由基本不等式可得()1212422266m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭6=, 当且仅当()420,0m n m n n m=>>,即当n =时,等号成立, 因此,12m n +的最小值为6+,故选D. 【点睛】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.10.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.11.A解析:A 【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果. 【详解】设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件B 为“学生丙第一个出场”则()41134333555578A C C A P A A A +==,()1333555518C A P AB A A == 则()()()1837813P AB P B A P A === 本题正确选项:A 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.12.B解析:B 【分析】根据第一次抽完的情况下重新计算总共样本数和满足条件样本数,再由古典概型求得概率. 【详解】在第一次抽中奖后,剩下9张奖券,且只有2张是有奖的,所以根据古典概型可知,第二次中奖的概率为29P =.选B. 【点睛】事件A 发生的条件下,事件B 发生的概率称为“事件A 发生的条件下,事件B 发生的条件概率”,记为(|)P B A ;条件概率常有两种处理方法: (1)条件概率公式:()(|)()P AB P B A P A =. (2)缩小样本空间,即在事件A 发生后的己知事实情况下,用新的样本空间的样本总数和满足特征的样本总数来计算事件B 发生的概率.二、填空题13.【分析】依题意画出数形图即可求出的分布列即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则的分布列如下:0 1 2 3 故故答案为:【点睛】本题考查概率的计算随机解析:27 16【分析】依题意画出数形图,即可求出X的分布列,即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则X的分布列如下:X0123P 16421643964364故()01236464646416 E X=⨯+⨯+⨯+⨯=.故答案为:27 16【点睛】本题考查概率的计算,随机变量的分布列和数学期望,解答的关键是画出树形图. 14.【分析】利用古典摡型的概率计算公式分别求得结合条件概率的计算公式即可求解【详解】由012组成的三位数密码共有个基本事件又由用A表示第二位数字是2的事件用B表示第一位数字是2的事件可得所以故答案为:【解析:1 3【分析】利用古典摡型的概率计算公式,分别求得(),()P B P A B,结合条件概率的计算公式,即【详解】由“0,1,2”组成的三位数密码,共有33327⨯⨯=个基本事件,又由用A表示“第二位数字是2”的事件,用B表示“第一位数字是2”的事件,可得33131 (),()273279P B P A B⨯====,所以1()19 (|)1()33P A BP A BP B===.故答案为:1 3 .【点睛】本题主要考查了条件概率的计算与求解,其中解答中熟记条件概率的计算公式,准确运算时解答得关键,属于基础题.15.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:1 3【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n=3,这时另一个也是女孩包含的基本事件个数m=1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率.【详解】一个家庭有两个小孩,假设生男生女是等可能的,基本事件有: {男,男},{男,女},{女,男},{女,女},已知这个家庭有一个女孩的条件下,基本事件总数n=3 ,这时另一个也是女孩包含的基本事件个数m=1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13mpn==,故答案为:1 3【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.16.②④【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④【详解】回归直线恒过点但不一定要过样本点故①错误;由得有99的把握认为两个分类变量有关系故②正确;的值很小解析:②④ 【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④. 【详解】回归直线ˆˆˆybx a =+恒过点(),x y ,但不一定要过样本点,故①错误; 由2 6.635K ≥,得有99%的把握认为两个分类变量有关系,故②正确;2K 的值很小时,只能说两个变量的相关程度低,不能说明两个变量不相关,故③错误;(5)0.81P ξ≤=,(5)(3)10.810.19P P ξξ∴>=<-=-=,故④正确;故答案为:②④ 【点睛】本题主要考查了正态分布求指定区间的概率等,属于中等题.17.【解析】根据题意可得解得故的方差解析:34【解析】根据题意可得112p q p q +=⎧⎪⎨-=⎪⎩,解得34p =,14q =,故X 的方差()22131131124244D X ⎛⎫⎛⎫=-⨯+--⨯= ⎪ ⎪⎝⎭⎝⎭.18.8【解析】(1)由题意得随机变量的可能取值为012所以(2)由题意可知所以解得所以(3)每次取球时取到红球的概率为黑球的概率为所以服从二项分布即所以解析:358 23 【解析】(1)由题意得,随机变量ξ的可能取值为0,1,2,()27210C 70C 15P ξ===,()1P ξ=1173210C C 7C 15==, ()23210C 12C 15P ξ===,所以()77130121515155E ξ=⨯+⨯+⨯=. (2)由题意可知2,3B n ξ⎛⎫ ⎪⎝⎭~,所以()2243n E ξ==,解得36n =,所以()D ξ= 22361833⎛⎫⨯⨯-= ⎪⎝⎭.(3)每次取球时,取到红球的概率为23、黑球的概率为13,所以X 服从二项分布,即23,3X B ⎛⎫~ ⎪⎝⎭,所以()22231333D X ⎛⎫=⨯⨯-= ⎪⎝⎭.三、解答题19.(1)13;(2)分布列答案见解析,数学期望:4112. 【分析】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D ,得到D ABC BC A =+,结合互斥事件和相互独立事件的概率计算公式,即可求解;(2)随机变量X 的可能取值为0,1,2,3,4,5,根据互斥事件和相互独立事件的概率计算公式,求得相应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D , 则()34P A =,()()23P B P C ==, D ABC BC A =+,其中ABC C AB +互斥,,,,,A B C B C 相互独立,从而()()()()322114336P ABC P A P B P C ⎛⎫==⨯-= ⎪⎝⎭, 则()()()()13P D P ABC ABC P ABC P ABC =+=+=, 所以该射手射中固定靶且恰好射中移动靶1次的概率为13. (2)随机变量X 的可能取值为0,1,2,3,4,5, 则()()()()()3221011143336P X P ABC P A P B P C ⎛⎫⎛⎫⎛⎫====---=⎪⎪⎪⎝⎭⎝⎭⎝⎭, ()()()()()3111143312P X P ABC P A P B P C ====⨯⨯=,1211121(2)()()()()()()()4334339P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=,()()()()()()()()321312134334333P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=()()()()()122144339P X P ABC P A P B P C ====⨯⨯=,3221(5)()()()()4333P X P ABC P A P B P C ====⨯⨯=,该射手的总得分X 的分布列为随机变量X 的数学期望()012345.3612939312E X =⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解.20.(1)选派乙参赛更好,理由见解析;(2)分布列见解析,()25E X =. 【分析】(1)计算出甲、乙两人5次测试的成绩的平均分与方差,由此可得出结论;(2)由题意可知,随机变量X 的取值有0、1、2,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可计算得出()E X . 【详解】(1)甲5次测试成绩的平均分为555876889236955x ++++==甲,方差为22222213693693693693695704555876889255555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲,乙5次测试成绩的平均分为658287859541455x ++++==乙,方差为22222214144144144144142444658285879555555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙,所以,x x <甲乙,22s s >甲乙,因此,选派乙参赛更好;(2)由题意可知,随机变量X 的可能取值有0、1、2,()24160525P X ⎛⎫=== ⎪⎝⎭,()148125525P X ==⨯⨯=,()2112525P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:因此,()0122525255E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(1)526(人);(2)83分. 【分析】(1)由题意知9070(90)(2)10P ξ-⎛⎫<=Φ=Φ ⎪⎝⎭,则(90)1(90)P P ξξ=-<可求,结合对应人数可得总人数;(2)假定设奖的分数线为x 分,由题意知7050()10.095110526x P x ξ-⎛⎫=-Φ== ⎪⎝⎭,查表得x 值.【详解】 (1)由题意知9070(90)1(90)11(2)10.97720.022810P P ξξ-⎛⎫=-<=-Φ=-Φ=-= ⎪⎝⎭,故此次参赛的学生总数约为125260.0228≈(人).(2)假定设奖的分数线为x 分,由题意知7050()1()10.095110526x P x P x ξξ-⎛⎫=-<=-Φ== ⎪⎝⎭, 即700.904910x -⎛⎫Φ=⎪⎝⎭,查表得70 1.3110x -=, 解得83.1x =,故设奖的分数线约为83分.【点睛】本题关键在于正确理解正态分布概率计算公式及运用. 22.(1)240人;(2)分布列见解析,2;(3)2212s s >. 【分析】(1)由折线图分析可得20名学生中有12名学生每天学习不足4小时,把频率当概率可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4;利用组合知识,由古典概型公式计算可得X =0,1,2,3,4的概率,进而可得随机变量X 的分布列;(3)根据折线图,看出男生、女生的学习时间的集中与分散程度,根据方差的实际意义可得答案. 【详解】(1)由折线图可得共抽取了20人,其中男生中学习时间不足4小时的有8人,女生中学习时间不足4小时的有4人.故可估计全校学生中每天学习时间不足4小时的人数为400×1220=240. (2)学习时间不少于4小时的学生共8人,其中男生人数为4, 故X 的所有可能取值为0,1,2,3,4. 由题意可得P (X=0)=4448170C C =,P (X=1)=1344481687035C C C ==, P (X=2)=22444836187035C C C ==, P (X=3)=3144481687035C C C ==, P (X=4)=4448170C C =.∴均值E (X )=0×170+1×835+2×1835+3×835+4×170=2.(3)由折线图可得2212s s >. 【点睛】方法点睛:本题考查了折线统计图和超几何分布,考查了离散型随机变量分布列和数学期望的计算,求解离散型随机变量分布列的步骤是: 首先确定随机变量X 的所有可能取值;计算X 取得每一个值的概率,可通过所有概率和为1来检验是否正确; 进行列表,画出分布列的表格;最后扣题,根据题意求数学期望或者其它. 23.(1)17.4;(2)0.94. 【分析】(1)利用每一个小矩形的面积乘以对应的底边中点的横坐标之和即为x ;(2)先计算第一次注射疫苗后产生抗体的概率()()14.77P x P x μσ≥=≥-,即可计算第一次注射疫苗后100只小白鼠中产生抗体的数量,加上第二次注射疫苗10只小白鼠又产生了抗体,可以得出两次注射疫苗产生抗体的总数,即可求概率. 【详解】(1)0.021220.061420.141620.181820.05202x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.032220.0224217.4+⨯⨯+⨯⨯= (2)17.40 2.6314.77μσ-=-=∴()10.68270.68270.84142P x μσ-≥-=+= 记事件A 表示首先注射疫苗后产生抗体,则()()()14.770.8414P A P x P x μσ=≥=≥-=,因此100只小鼠首先注射疫苗后有1000.841484⨯≈只产生抗体,有1008416-=只没有产生抗体.故注射疫苗后产生抗体的概率84100.94100P +==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1; ②直方图中每组样本的频数为频率乘以总数; ③最高的小矩形底边中点横坐标即是众数; ④中位数的左边和右边小长方形面积之和相等;⑤平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 24.(1)18;(2)分布列见解析,()72E X =.【分析】(1)先分析出甲只获胜一局的所有情况,然后根据对应的情况去计算概率;(2)先分析X 的可能取值,然后根据取值列出对应的比赛获胜情况,由此计算出对应的概率,可得X 的分布列,根据分布列可计算出数学期望.【详解】(1)因为比赛结束时甲只获胜一局,所以一共比赛了4局,且甲在第1局或第2局赢了,当甲在第1局赢了,则乙在后面3局都赢了,此事件的概率为:31112216⎛⎫⋅= ⎪⎝⎭,当甲在第2局赢了,则乙在第1,3,4局赢了,此事件的概率为:2111122216⎛⎫⋅⋅= ⎪⎝⎭,记“比赛结束时甲只获胜一局”为事件A ,则()112168P A =⨯=; (2)根据条件可知:X 可取2,4,6,当2X =时,包含甲或乙前2局连胜,此时2种情况:{甲,甲},{乙,乙};当4X =时,包含甲或乙前2局赢了1局,后2局都没赢,此时4种情况:{甲,乙,乙,乙},{乙,甲,乙,乙},{乙,甲,甲,甲},{甲,乙,甲,甲}(大括号中,按顺序为各局的获胜者);()2112222P X ⎛⎫==⋅= ⎪⎝⎭,()4114424P X ⎛⎫==⋅= ⎪⎝⎭,()()()161244P X P X P X ==-=-==, 所以X 的分布列为:所以()2462442E X =⨯+⨯+⨯=. 【点睛】思路点睛:求离散型随机变量X 的数学期望的一般步骤: (1)先分析X 的可取值,根据可取值求解出对应的概率; (2)根据(1)中概率值,得到X 的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X 的数学期望. 25.(1)23;(2)227;(3)43. 【分析】(1)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率; 方法二:用排列组合数表示;(2)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;(3)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;【详解】解:方法一:记三个球分别为①,②,③,试验的全部基本事件如下表:共27种.根据古典概型公式()182 273P A==.(2)记“三只小球在三个不同盒子中,且每只球的编号与所在盒子编号不同”为事件B,事件B包含的基本事件数有2种.根据古典概型公式2 ()27 P B=.(3)X的可能取值为1,2,3.。

第二章《随机变量及其分布》作业

第二章《随机变量及其分布》作业

第二章 《随机变量及其分布》作业班级 学号 姓名一、单项选择题1. 设连续随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其它,;,020,2)(x x x f 则P {-3≤X ≤1}= ( ) (A). 0(B). 0.25(C). 0.5(D). 12.设随机变量X 服从参数为λ的泊松分布,且{}{}21===X P X P , 则λ=( )(A) 1 ; (B) 2 ; (C) 3; (D) 4. 3.设随机变量),(~2σμN X ,则=≤≤)(b X a P ( )).(A )()(b a Φ-Φ; ).(B )()(b a Φ+Φ; ).(C )()(σμσμ-Φ--Φb a ; ).(D )()(σμσμ-Φ--Φa b .4. 若4重伯努利试验中,事件A 至少发生一次的概率为8165,则在一次 试验中,事件A 发生的概率为( )).(A 1; ).(B 32; ).(C 41; ).(D 43.5. 设随机变量,且,则c=( ).0 ; ; ; .二 .填空题1.已知随机变量只能取-1,0,1,2四个数值,其相应的概率依次是,则2.则X 的分布函数为=)(x F .),(~2σμN X )()(c X p c X p >=≤)(A )(B μ)(C μ-)(D σX c c c c 161,81,41,21=c3.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它021)2(10)(x x k x kx x f ,则k= ; ⎭⎬⎫⎩⎨⎧≤≤2321X P = .4.某高速公路一天的事故数X 服从参数3=λ的泊松分布,则一天内没有发生事故的概率是5.设离散型随机变量X 的分布列为则 随机变量函数 Y =()21+X 的分布列是6.设随机变量ξ在(1,6)上服从均匀分布,求方程012=++x x ξ有实根的概率 .7.已知ξ服从)4,150(2N ,则140(P <=≤)160ξ ,=≤)150(ξP 。

第二章 随机变量及其分布及第2章补充练习参考答案

第二章  随机变量及其分布及第2章补充练习参考答案

第二章 随机变量及其分布1. 从一个装有4个红球和2个白球的口袋中不放回地任取5个球,以X 表示取出的红球个数.(1) 求X 的分布律;(2) 求X 的分布函数; (3) 求)40(<<X P .2. 设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥+<≤-<≤--<=2,21,3211,10)(x b a x a x a x x F ,, 且21)2(==X P ,求b a ,和X 的分布律. 3. 设随机变量X 具有分布律X -1 0 1 2 3k p 0.16 10a 2a 5a 0.3 确定常数a .4. 设在时间t(min)内,通过某十字路口的汽车数X 服从参数与t 成正比的泊松分布.已知在1min 内没有汽车通过的概率为0.2,求在2min 内有多于1辆汽车通过的概率.5. 有一决策系统,其中每一成员作出决策互不影响,且每一成员作出正确决策的概率均为)10(<<p p ,当半数以上成员作出正确决策时,系统作出正确决策,问p 多大时,5个成员的决策系统比3个成员的决策系统更为可靠?6. 某商店出售某种商品,根据历史记录分析,月销售量服从参数5=λ的泊松分布.问在月初进货时要库存多少件该种商品,才能以0.999的概率满足顾客的需求?7. 设随机变量X ~),2(2σN ,且3.0)42(=<<X P ,求)0(<X P .8. 设随机变量X ~),0(2σN ,问当σ取何值时, 概率)31(<<X P 取到最大?9. 设随机变量X 的密度函数为⎩⎨⎧<≥=-0,00,4)(2x x xe x f x求: (1) X 的分布函数;(2) )121(<≤-X P ; (3) )23(=X P . 10. 设随机变量X ~)1,0(U ,求X Y 32-=的密度函数.11. 设随机变量X 的密度函数为+∞<<-∞=-x Aex f x ,)(,求:(1) 确定常数A ;(2) )10(<<X P ;(3) X 的分布函数.12. 设随机变量X 的密度函数为 ⎪⎩⎪⎨⎧<<<<= 其他  ,032,21,)(x B x Ax x f 且))3,2(())2,1((∈=∈X P X P ,求:(1) 常数A,B;(2) X 的分布函数.13. 设随机变量X 的绝对值不大于1, 81)1(=-=X P ,41)1(==X P ,在事件)11(<<-X 出现的条件下, X 在)1,1(-内的任一子区间上的取值的条件概率与该子区间的长度成正比,求X 的分布函数)()(x X P x F ≤=.14.设离散型随机变量X 具有分布律 ,2,1,21)(===k k X P k ,求随机变量X Y 2sin π=的分布律.15. 设一电路装有三个同种电器元件,其工作状态相互独立,且无故障工作时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作时间T 的概率分布.16. 设随机变量X ~)1,0(N ,求:(1) 122+=X Y 的密度函数; (2) X Z =的密度函数.第2章补充练习参考答案1. (1) X 3 4 k p32 31 (2) ⎪⎩⎪⎨⎧≥<≤<=  4,143,323,0)(x x x x F (3) 32)3()40(===<<X P x P 2. 65,61==b a 3. =a 0.6 4. 255ln 224-(提示:X ~)(at π,t=1时,由)0(=X P =0.2可确定常数a ) 5. 21>p (提示:设5个成员与3个成员的决策系统中作出正确决策的人数分别为X 和Y ,则X ~),5(p B ,Y ~),3(p B ,要求)2()3(≥>≥Y P X P ) 6. 至少13件7. 0.2 8. 3ln 22=σ 9.(1)⎩⎨⎧<≥--=--0,00,21)(22x x e xe x F x x (2)231--e (3) 0 10. ⎪⎩⎪⎨⎧<<-=其他,021,31)(x y f Y 11. (1)21=A (2) 211--e (3)⎪⎩⎪⎨⎧≥-<=-0,2110,21)(x e x e x F x x 12. (1),31,21==B A (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-≤<-≤=32),1(2121),1(611,0)(2x x x x x x F 13. ⎪⎩⎪⎨⎧≥<≤-+-<=1,111,1671651,0)(x x x x x F 14.Y -1 0 1k p 152 31 158 15. T 服从参数为λ3的指数分布.即T 的密度为⎩⎨⎧≤>=-0,00,3)(3t t e t f t T λλ(提示:T 的分布函数)(1)()(t T P t T P t F T >-=≤=)=),,(1321t X t X t X P >>>-)16. ⎪⎩⎪⎨⎧≤>-=--1,01,)1(21)(41 y e y y f y Y π,⎪⎩⎪⎨⎧<≥=-0,00,2)(22z z e z f z z π第二章补充练习参考答案1. (1) X 3 4k p 32 31(2) ⎪⎩⎪⎨⎧≥<≤<=  4,143,323,0)(x x x x F (3) 32)3()40(===<<X P x P 2. 65,61==b a 3. =a 0.6 4. 255ln 224-(提示:X ~)(at π,t=1时,由)0(=X P =0.2可确定常数a ) 5. 21>p (提示:设5个成员与3个成员的决策系统中作出正确决策的人数分别为X 和Y ,则X ~),5(p B ,Y ~),3(p B ,要求)2()3(≥>≥Y P X P ) 6. 至少13件7. 0.2 8. 3ln 22=σ 9.(1)⎩⎨⎧<≥--=--0,00,21)(22x x e xe x F x x (2)231--e (3) 0 10. ⎪⎩⎪⎨⎧<<-=其他,021,31)(x y f Y 11. (1)21=A (2) 211--e (3)⎪⎩⎪⎨⎧≥-<=-0,2110,21)(x e x e x F x x 12. (1),31,21==B A (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-≤<-≤=32),1(2121),1(611,0)(2x x x x x x F 13. ⎪⎩⎪⎨⎧≥<≤-+-<=1,111,1671651,0)(x x x x x F 14.Y -1 0 1k p 152 31 158 15. T 服从参数为λ3的指数分布.即T 的密度为⎩⎨⎧≤>=-0,00,3)(3t t e t f t T λλ(提示:T 的分布函数)(1)()(t T P t T P t F T >-=≤=)=),,(1321t X t X t X P >>>-)16. ⎪⎩⎪⎨⎧≤>-=--1,01,)1(21)(41 y e y y f y Y π,⎪⎩⎪⎨⎧<≥=-0,00,2)(22z z e z f z z π。

第二章随机变量及其分布习题

第二章随机变量及其分布习题

第二章随机变量及其分布习题(1)随机变量及其分布1.一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律2.分析下列函数是否是分布函数.若是分布函数,判断是哪类随机变量的分布函数.(1)⎪⎩⎪⎨⎧≥<≤--<=.0,1,02,21,2,0)(x x x x F (2)⎪⎩⎪⎨⎧≥<≤<=.,1,0,sin ,0,0)(ππx x x x x F (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<=.21,1,210,21,0,0)(x x x x x F 3.盒中装有大小相等的球10个,编号分别为0、1、2、…、9.从中任取1个,观察号码是“小于5”、“等于5”、“大于5”的情况.试定义一个随机变量,求其分布律和分布函数.4.已知随机变量X 的概率密度为||1()2x f x e -=,x -∞<<+∞.求X 的分布函数.5.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<-=其它,01,1)(2x x c x f ,试求:(1)常数c ;(2)}210{≤≤X P ;(3)X 的分布函数.6.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.,1,1,ln ,1,0)(e x e x x x x F X ,求(1)P (X<2),P {0<X ≤3},P (2<X<25);(2)求概率密度f X (x ).7.设随机变量X 的概率密度)(x f 为(1)⎪⎩⎪⎨⎧≤≤--=其它01112)(2x x x f π,(2)⎪⎩⎪⎨⎧≤≤-<≤=其他021210)(x x x x x f 求X 的分布函数F (x ),并作出(2)中的f (x )与F (x )的图形。

8.设随机变量X 的分布律为(0>α为参数)2,1,1)(===k ak X P k 求(1)(5)P X ≥;(2)(3)P X 为的倍数。

概率论与数理统计第二章测习题

概率论与数理统计第二章测习题

第 2 章一维随机变量及其分布一、选择题1.设 F(x)是随机变量X的分布函数,则以下结论不正确的选项是(A)若 F(a)=0 ,则对任意 x≤a 有 F(x)=0(B)若 F(a)=1 ,则对任意 x≥a 有 F(x)=1(C)若 F(a)=1/2 ,则 P( x≤a)=1/2(D)若 F(a)=1/2 ,则 P( x≥a)=1/22.设随机变量 X 的概率密度 f(x) 是偶函数,分布函数为 F(x) ,则(A)F(x)是偶函数(B)F(x) 是奇函数(C)F(x)+F(-x)=1(D)2F(x)-F(-x)=1 3.设随机变量 X1, X 2的分布函数、概率密度分别为 F1 (x) 、F2 (x) ,f 1 (x)、f 2 (x) ,若 a>0, b>0, c>0,则以下结论中不正确的选项是(A)aF (x)+bF2(x)是某一随机变量分布函数的充要条件是a+b=11(B)cF1(x) F 2(x)是某一随机变量分布函数的充要条件是c=1(C)af 1(x)+bf2(x)是某一随机变量概率密度的充要条件是a+b=1(D)cf 1(x) f 2(x)是某一随机变量分布函数的充要条件是c=14.设随机变量 X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为 f 1 (x)和 f 2 (x) ,分布函数分别为 F1 (x) 和 F2 (x) ,则(A)f 1 (x) +f 2 (x)必为某一随机变量的概率密度(B)f 1(x) f 2(x)必为某一随机变量的概率密度(C)F1(x)+F 2(x)必为某一随机变量的分布函数(D)F1(x)F 2 (x)必为某一随机变量的分布函数5.设随机变量 X 遵从正态分布N (1,12),Y遵从正态分布N (2,22) ,且P(|X1| 1) P(|Y 2| 1) ,则必有(A)1 2(B)1 2(C)1 2(D)1 26.设随机变量 X 遵从正态分布N ( ,2 ) ,则随σ的增大,概率P(|X|)(A)单调增大(B)单调减小(C)保持不变(D)增减不定7.设随机变量 X1,X2的分布函数分别为 F1 (x) 、F2(x) ,为使 aF1 (x) -bF2 (x)是某一随机变量分布函数,在以下给定的各组数值中应取(A)a3 , b2(B)a2 , b2(C)a1 , b3(D)a1 , b3 553322228.设 f(x)是连续型随机变量 X 的概率密度,则 f(x)必然是(A)可积函数(B)单调函数(C)连续函数(D)可导函数9.以下陈述正确的命题是(A)若P(X1) P(X 1), 则 P(X 1)12(B)若 X~b(n, p),则 P(X=k)=P(X=n-k), k=0,1,2,,n(C)若 X 遵从正态分布 , 则 F(x)=1-F(-x)(D)lim [ F (x) F ( x)]1x10.假设随机变量X遵从指数分布,则随机变量Y=min{X,2} 的分布函数(A)是连续函数(B)最少有两其中止点(C)是阶梯函数(D)恰好有一其中止点二、填空题1.一实习生用同一台机器连接独立的制造了 3 个同种零件,第i个零件不合格的概率为 p i1个零件中合格品的个数,则 P X2i 1,2,3 ,以 X 表示3i12.设随机变量X的概率密度函数为 f x2x0 x 1以 Y 表示对 X 的三次重复观察中0其他事件 X 1出现的次数,则 P Y2 23.设连续型随机变量X的分布密度为 f x axe 3x x 0,则 a,X的分布0x0函数为4.设随机变量的分布函数b , x0, 则 a =, b =,cF ( x)ax) 2(1c,x 0,=。

概率习题及答案第二章第二章习题

概率习题及答案第二章第二章习题

第二章 随机变量及其分布练习题1. 设X 为随机变量,且kk X P 21)(==( ,2,1=k ), 则 (1)判断上面的式子是否为X 的概率分布; (2)若是,试求)为偶数X P (和)5(≥X P .2.设随机变量X 的概率分布为λλ-==e k C k X P k!)(( ,2,1=k ), 且0>λ,求常数C .3. 设一次试验成功的概率为)10(<<p p ,不断进行重复试验,直到首次成功为止。

用随机变量X 表示试验的次数,求X 的概率分布。

4. 设自动生产线在调整以后出现废品的概率为p =0.1,当生产过程中出现废品时立即进行调整,X 代表在两次调整之间生产的合格品数,试求(1)X 的概率分布; (2))5(≥X P 。

5. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的。

求某学生靠猜测能答对至少4道题的概率是多少?6. 为了保证设备正常工作,需要配备适当数量的维修人员。

根据经验每台设备发生故障的概率为0.01,各台设备工作情况相互独立。

(1)若由1人负责维修20台设备,求设备发生故障后不能及时维修的概率;(2)设有设备100台,1台发生故障由1人处理,问至少需配备多少维修人员,才能保证设备发生故障而不能及时维修的概率不超过0.01?7. 设随机变量X 服从参数为λ的Poisson(泊松)分布,且21)0(==X P ,求(1)λ; (2))1(>X P .8. 设书籍上每页的印刷错误的个数X 服从Poisson(泊松)分布。

经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率。

9. 在长度为的时间间隔内,某急救中心收到紧急呼救的次数服从参数为的Poisson 分布,而与时间间隔的起点无关(时间以小时计),求(1)某一天从中午12时至下午3时没有收到紧急呼救的概率; (2)某一天从中午12时至下午5时收到1次紧急呼救的概率; 10. 已知X 的概率分布为:X-2 -10 1 2 3 P2a101 3aaa2a试求(1)a ; (2)12-=X Y 的概率分布。

数学:第二章《随机变量及其分布》测试(1)(新人教A版选修2-3)

数学:第二章《随机变量及其分布》测试(1)(新人教A版选修2-3)

高中新课标选修(2-3)第二章随机变量及其分布测试题一、选择题1.将一枚均匀骰子掷两次,下列选项可作为此次试验的随机变量的是()A.第一次出现的点数B.第二次出现的点数C.两次出现点数之和D.两次出现相同点的种数答案:C2.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310为()A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:BX表示击中目标的次数,则(2)P X≥等于()A.81125B.54125C.36125D.27125答案:A4.采用简单随机抽样从个体为6的总体中抽取一个容量为3的样本,则对于总体中指定的个体a,前两次没被抽到,第三次恰好被抽到的概率为()A.12B.13C.15D.16答案:D5.设~(100.8)X B,,则(21)D X+等于()答案:C6.在一次反恐)答案:D7.设1~24X N⎛⎫-⎪⎝⎭,,则X落在(][)3.50.5---+,,∞∞内的概率是()A.95.4%B.99.7%C.4.6%D.0.3%答案:D8.设随机变量X0 1 2 30.1 0.10.2-0.4-答案:C9.任意确定四个日期,设X表示取到四个日期中星期天的个数,则DX等于()A.67B.2449C.3649D.4849答案:B10.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX 的值为( )A.4 D.5 答案:B11.袋子里装有大小相同的黑白两色的手套,黑色手套15支,白色手套10只,现从中随机地取出2只手套,如果2只是同色手套则甲获胜,2只手套颜色不同则乙获胜.试问:甲、乙获胜的机会是( )A.甲多 B.乙多 C.一样多 D.不确定 答案:C,节日期间这种鲜花的需求量X 服从如下表所示的分布:200 300 400 5000.200.350.30 0.15若进这种鲜花500束,则利润的均值为( )A.706元 B.690元 C.754元 D.720元答案:A 二、填空题13.事件A B C ,,相互独立,若111()()()688P A B P B C P A B C ===,,····,则()P B = .答案:1214.设随机变量X 等可能地取1,2,3,…,n ,若(4)0.3P X <=,则EX 等于 . 15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .答案:215⎡⎤⎢⎥⎣⎦, 16.某公司有5万元资金用于投资开发项目.如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果. 则该公司一年后估计可获收益的均值是 元. 答案:4760 三、解答题17.掷3枚均匀硬币一次,求正面个数与反面个数之差X 的分布列,并求其均值和方差.解:3X =-,1-,1,3,且1111(3)2228P X =-=⨯⨯=;213113(1)228P X C ⎛⎫=-=⨯⨯= ⎪⎝⎭,213113(1)228P X C ⎛⎫==⨯⨯= ⎪⎝⎭;1111(3)222P X ==⨯⨯=,1303EX DX ==,∴18.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为13和14,求(1)恰有1人译出密码的概率;(2)若达到译出密码的概率为99100,至少需要多少乙这样的人. 解:设“甲译出密码”为事件A ;“乙译出密码”为事件B , 则11()()34P A P B ==,.(1)13215()()343412P P A B P A B =+=⨯+⨯=··.(2)n 个乙这样的人都译不出密码的概率为114n⎛⎫- ⎪⎝⎭.199114100n⎛⎫-- ⎪⎝⎭∴≥.解得17n ≥.达到译出密码的概率为99100,至少需要17人. 19.生产工艺工程中产品的尺寸偏差2(mm)~(02)X N ,,如果产品的尺寸与现实的尺寸偏差的绝对值不超过4mm 的为合格品,求生产5件产品的合格率不小于80%的概率. 解:由题意2~(02)X N ,,求得(4)(44)0.9544P X P X =-=≤≤≤. 设Y 表示5件产品中合格品个数,则~(50.9544)Y B ,.0.18920.79190.981≈+≈.20.甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示(01)p <<:选手甲乙丙概率若三人各射击一次,恰有k 名选手击中目标的概率记为()0123k P P X k k ===,,,,. (1) 求X 的分布列;(2)若击中目标人数的均值是2,求P 的值.解:(1)201(1)2P p =-;2211111(1)2(1)2222P P p p p =-+-=-+·, 2221112(1)222P p p p p p =-+=-+··,2312P p =, X ∴的分布列为 0123(2)22221111110(1)1232222222EX p p p p p p ⎛⎫⎛⎫=⨯-+⨯-++⨯-++⨯=+ ⎪ ⎪⎝⎭⎝⎭,1222p +=∴,34p =∴.21.张华同学上学途中必须经过A B C D ,,,四个交通岗,其中在A B ,岗遇到红灯的概率均为12,在C D ,岗遇到红灯的概率均为13.假设他在4个交通岗遇到红灯的事件是相互独立的,X 表示他遇到红灯的次数.(1)若3x ≥,就会迟到,求张华不迟到的概率;(2)求EX . 解:(1)2221122111121(3)232336P X C C ⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭·····; 22111(4)2336P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭·.故张华不迟到的概率为29(2)1(3)(4)36P X P X P X =-=-==≤. (2)X 的分布列为123411131150123493366363EX =⨯+⨯+⨯+⨯+⨯=∴.22.某种项目的射击比赛,开始时在距目标100m 处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m 处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m 处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m 处击中目标的概率为12,他的命中率与目标的距离的平方成反比,且各次射击都是独立的. (1)求这位射手在三次射击中命中目标的概率; (2)求这位射手在这次射击比赛中得分的均值. 解:记第一、二、三次射击命中目标分别为事件A B C ,,,三次都未击中目标为事件D ,依题意1()2P A =,设在x m 处击中目标的概率为()P x ,则2()k P x x =,且212100k=, 5000k =∴,即25000()P x x =, 250002()1509P B ==∴,250001()2008P C ==,17749()298144P D =⨯⨯=. (1) 由于各次射击都是相互独立的,∴该射手在三次射击中击中目标的概率()()()P P A P AB P A B C =++ (11212195)111229298144⎛⎫⎛⎫⎛⎫=+-+--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···. (2)依题意,设射手甲得分为X ,则1(3)2P X ==, 121(2)299P X ==⨯=,1717(1)298144P X ==⨯⨯=,49(0)144P X ==, 117492558532102914414414448EX =⨯+⨯+⨯+⨯==∴.。

第二章 《随机变量及其分布》练习题

第二章 《随机变量及其分布》练习题

第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .142.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .343.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.284.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( ) A .0.4 B .1.2 C .0.43D .0.66.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.1257.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( ) A.14 B .-14 C.54 D .-549.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6 10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.411.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m )12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:D .无法确定 13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.614.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.556415.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2 D .1.117.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.4.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.4.某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A、B、C、D顺序作答,直至答题结束.假设甲同学对问题A、B、C、D回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E(ξ).第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .14[解析] 抛一枚硬币,正面朝上的概率为12,则抛三枚硬币,恰有2枚朝上的概率为P =C 23⎝⎛⎭⎫122×12=38. 2.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .34[解析] 事件A 在一次试验中发生的概率为p ,由题意得1-C 04p 0(1-p )4=6581,所以1-p =23,p =13, 3.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.28[解析] ∵X ~B (10,0.8),∴P (X =k )=C k 100.8k (1-0.8)10-k ,∴P (X =8)=C 8100.88·0.22,故选A . 4.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )[解析] 只要认识到E (X )是一个常数,则可直接运用均值的性质求解.∵E (aX +b )=aE (X )+b ,而E (X )为常数,∴E (X -E (X ))=E (X )-E (X )=0. [答案] B5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( )A .0.4B .1.2C .0.43D .0.6[解析] ∵途中遇红灯的次数X 服从二项分布,即X ~B (3,0.4),∴E (X )=3×0.4=1.2. [答案] B 6.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.125解析:E (ξ)=0×715+1×715+2×115=35,E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.答案:C7.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化解析:∵0.2+0.5+m =1,∴m =0.3,∴E (ξ)=1×0.2+2×0.5+3×0.3=2.1.答案:B8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( )A.14 B .-14 C.54 D .-54 解析:∵E (ξ)=5×14=54,∴E (-ξ)=-E (ξ)=-54,故选D.9.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6解析:X 的取值为6,9,12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.E (X )=6×715+9×715+12×115=7.8.答案:A10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.4解析:根据题意,⎩⎪⎨⎪⎧ 0.1+a +b +0.1=1,0×0.1+a +2×b +3×0.1=1.6,解得⎩⎪⎨⎪⎧a =0.3b =0.5.所以a -b =-0.2.答案C11.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:依题意ξ服从两点分布,∴D (ξ)=m (1-m ),故选D.12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:A .甲B .乙C .甲、乙均可D .无法确定解析:E (ξ1)=E (ξ2)=1.1,D (ξ1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D (ξ2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D (ξ1)<D (ξ2),即甲比乙得分稳定,选甲参加较好,故选A.13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4 B .2和2.4 C .2和5.6D .6和5.6解析:由已知E (ξ)=10×0.6=6,D (ξ)=10×0.6×0.4=2.4.∵ξ+η=8,∴η=8-ξ.∴E (η)=-E (ξ)+8=2,D (ξ)=(-1)2D (ξ)=2.4.答案:B 14.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.5564解析:由⎩⎪⎨⎪⎧1×0.5+2x +3y =158,0.5+x +y =1,得⎩⎨⎧x =18,y =38.所以D (X )=⎝⎛⎭⎫1-1582×12+⎝⎛⎭⎫2-1582×18+⎝⎛⎭⎫3-1582×38=5564. 答案:D15.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算解析:由于分布列中,概率和为1,则a +13=1,a =23. ∵E (ξ)=2,∴m 3+2n3=2.∴m =6-2n .∴D (ξ)=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (ξ)取最小值0.答案:A16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2D .1.1[解析] X 的取值为0、1、2,P (X =0)=(1-0.4)(1-0.5)=0.3, P (X =1)=0.4×(1-0.5)+(1-0.4)×0.5=0.5, P (X =2)=0.4×0.5=0.2,∴E (X )=0×0.3+1×0.5+2×0.2=0.9. [答案] A17.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6[解析] X 的取值为6、9、12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115. E (X )=6×715+9×715+12×115=7.8. [答案] A二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24;P (X =1)=0.42×0.6=0.096;P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096+0×0.064=2.376.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.解析:每一次摸得红球的概率为610=35,由X ~B ⎝⎛⎭⎫4,35,则E (X )=4×35=125. 3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:由题意设P (ξ=1)=p ,则ξ的分布列如下由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25. 答案:254.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.解析:节日期间这种鲜花需求量的均值为E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450, 所以E (η)=3.4E (ξ)-450=3.4×340-450=706(元). 三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 解:(Ⅰ)3A 设“选出的名同学来自互不相同的系”为事件,1203373731049()60C C C C P A C346310()(0,1,2,3)k k c c p xk k c (Ⅱ)随机变量X 的所有可能值为0,1,2,3.随机变量X 的分布列为数学期望113161236210305E X .2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.[解析] (1)设“该射手通过测试”为事件A ,“向甲靶射击两次都命中”为事件B ,“向甲靶射击两次中只命中一次,则再向乙靶射击一次,命中”为事件C .事件B ,C 互斥,且A =B +C .所以该射手通过测试的概率P (A )=P (B )+P (C )=⎝⎛⎭⎫342+C 12·34·⎝⎛⎭⎫1-34·23=1316. (2)由题意知,X =0,1,2. P (X =0)=⎝⎛⎭⎫1-342=116;P (X =1)=C 12·34·⎝⎛⎭⎫1-34·⎝⎛⎭⎫1-23=18;P (X =2)=P (A )=1316. 所以该射手在这次测试中命中的次数X 的分布列为该射手在这次测试中命中的次数X 的数学期望为E (X )=0×116+1×18+2×1316=74.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X 表示3号歌手得到媒体甲、乙、丙的票数之和,求X 的分布列及数学期望.[分析] (1)设A 表示事件:“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”,由等可能事件概率公式求出P (A ),P (B ),由此利用相互独立事件的概率乘法公式和对立事件的概率公式能求出媒体甲选中3号歌手且媒体乙未选中3号歌手的概率.(2)先由等可能事件概率计算公式求出P (C ),由已知得X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列及数学期望.[解析] (1)设A 表示事件“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”, P (A )=C 14C 25=25,P (B )=C 24C 35=35,媒体甲选中3号且媒体乙未选中3号歌手的概率为P (A B )=P (A )(1-P (B ))=25×(1-35)=425.(2)P (C )=C 25C 36=12,由已知得X 的可能取值为0,1,2,3,P (X =0)=P (A B C )=(1-25)(1-35)(1-12)=325,P (X =1)=P (A B C )+P (A B C )+P (A B C )=25(1-35)(1-12)+(1-25)×35×(1-12)+(1-25)(1-35)×12=1950, P (X =2)=P (AB C )+P (A B C )+P (A BC )=25×35×(1-12)+25(1-35)×12+(1-25)×35×12=1950,P (X =3)=P (ABC )=25×35×12=325,∴X 的分布列为E (X )=0×325+1×1950+2×1950+3×325=32.114.某学校举行知识竞赛,第一轮选拔共设有A 、B 、C 、D 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A 、B 、C 、D 分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A 、B 、C 、D 顺序作答,直至答题结束.假设甲同学对问题A 、B 、C 、D 回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E (ξ).[解析] 设A 、B 、C 、D 分别表示甲同学能正确回答第一、二、三、四个问题的事件,A -、B -、C -、D-分别为A 、B 、C 、D 的对立事件(例如A -表示甲同学第一题回答错误).由题设条件知,P (A )=34,P (B )=12,P (C )=13,P (D )=14,P (A -)=14,P (B -)=12,P (C -)=23,P (D -)=34. (1)记“甲同学能进入下一轮”为事件W ,则由题设条件知W =ABC +AB C -D +A B -CD +A -BCD +A-B C -D ,∵A 、B 、C 、D 各事件相互独立,∴P (W )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C -)·P (D )+P (A )·P (B -)·P (C )·P (D )+P (A -)·P (B )·P (C )·P (D )+P (A -)·P (B )·P (C -)·P (D )=34×12×13+34×12×23×14+34×12×13×14+14×12×13×14+14×12×23×14=14. (2)由题意知,ξ的可能取值为2、3、4,则P (ξ=2)=P (A -B -)=P (A -)·P (B -)=14×12=18, P (ξ=3)=P (ABC +A B -C -)=P (A )P (B )P (C )+P (A )P (B -)P (C -)=34×12×13+34×12×23=38. P (ξ=4)=1-P (ξ=2)-P (ξ=3)=1-18-38=12, ∴ξ的分布列为∴E (ξ)=2×18+3×38+4×12=278.。

第二章 随机变量及其分布 习题

第二章  随机变量及其分布 习题

第二章 随机变量及其分布第一节 随机变量、离散型随机变量及其分布规律一、判断题 随机变量X 的分布规律1. 表 是变量X 有{}3,2,1,0,652=−==k k k X P ,则它2.若对随机是随机变量X 的分布规律3.若对随机变量X 有{},5,4,3,2,1,251=+==k k k X P 则它是随机变量X 的分布律 二、填空题1.设随机变量X 的分布律为{}N k Nak X P ⋯⋯===,4,3,2,1,,则=a 2.设随机变量X 的分布律为{}⋯⋯===−,2,1,!3k e k k X P kλ,则=λ3.设离散型随机变量X 服从两点分布,且()()()=====1,041X P X P X P 则4.设随机变量(),,~p n b X 且已知()()(),3221=====X P X P X P 则n = p =5.某试验的成功概率为43,失败概率为41,若以X 表示试验者首次成功所进行的试验次数,则X 的分布律为6.设随机变量X 服从二项分布(),,2p b 随机变量Y 服从二项分布若()p b ,3。

若(),951=≥X P 则()=≥1Y P三、在15件同类型的零件中有2件次品,从中取3次,每次任取1件,作不放回抽取。

以X 表示取出的次品的个数。

1.求X 的分布律 2.画出分布律的图形四、一大楼装有5个同类型的供水设备。

调查表明在任一时刻t 每个设备被使用的概率为0.1,问在同一时刻, 1.恰有2个设备被使用的概率是多少?2.至少有3个设备被同时使用的概率是多少?3.至多有3个设备被同时使用的概率是多少?五、设某城市在一周内发生交通事故的次数服从参数为0.3的泊松分布,试问: 1.在一周内恰好发生2次交通事故的概率是多少? 2.在一周内至少发生1次交通事故的概率是多少?六、某商店过去的销售记录表明,某种商品每月的销售数可用参数10=λ的泊松分布描述,为了以99%以上的把握该种商品不脱销,每月该种产品的库存量为多少件?七、设X 服从泊松分布,其分布律为{}⋯===−,1,0,!k k e k X P k λλ ,当k 为何值,()k X P =最大?第二节 随机变量分布函数、连续型随机变量及其概率密度一、判断题:1.(),.102,212,0⎪⎩⎪⎨⎧≥<≤−−<=x x x x F 是某个随机变量的分布函数。

(完整版)概率论第二章随机变量及其分布答案

(完整版)概率论第二章随机变量及其分布答案

概率论与数理统计练习题系 专业 班 姓名 学号第二章 随机变量及其分布(一)一.选择题:1.设X 是离散型随机变量,以下可以作为X 的概率分布是 [ B ](A )1234111124816Xx x x x p (B ) 123411112488X x x x x p (C )1234111123412Xx x x x p(D ) 1234111123412X x x x x p -2.设随机变量ξ的分布列为 01230.10.30.40.2X p )(x F 为其分布函数,则)2(F =[ C ](A )0.2 (B )0.4 (C )0.8 (D )1 二、填空题:1.设随机变量X 的概率分布为0120.20.5X p a ,则a = 0.32.某产品15件,其中有次品2件。

现从中任取3件,则抽得次品数X 的概率分布为 P{X=0}=22/35;P{X=1}=12/35; P{X=2}=1/353.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X 的概率分布为 P{X=k}=k kkC -⨯10103.07.0,10,,0Λ=k 或X~B(10,0.7)三、计算题:1.同时掷两颗骰子,设随机变量X 为“两颗骰子点数之和”求: (1)X 的概率分布; (2)(3)P X ≤; (3)(12)P X >(1) P{X=2}= P{X=12}=1/36; P{X=3}= P{X=11}=1/18;P{X=4}= P{X=10}=1/12; P{X=5}= P{X=9}=1/9;P{X=6}= P{X=8}=5/36;P{X=7}=1/6(2) P{X=2}=1/36; P{X=3}=1/18 (3) P{X>12}=02.产品有一、二、三等品及废品四种,其中一、二、三等品及废品率分别为60%,10%,20%及10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。

2第二章随机变量及其分布

2第二章随机变量及其分布

。 。 。
7、随机变量 X 的密度函数为 X ~ N (1,4), 则 Y 2 X 1 ~ 8、若 P( X x2 ) 1 , P( X x1 ) , x1 x2 ,则 P( x1 X x2 ) 9、设离散型随机变量 X 的分布函数为
0 a F ( x) 2 3 a a b 且 P( X 2) 1 ,则 a 2
第二章 一、填空题
随机变量及其分布
1、设随机变量 X 的分布律为 P( X
k) a
k
k!
(k 0,1,2), 0 ,则 a

2 、 设 随 机 变 量 X 服 从 参 数 为 1/3 的 0—1 分 布 , 则 X 的 分 布 函 数 为 = 。 3、设随机变量 X ~ N (1,4), P( X a) 12 ,则 a 4、设随机变量 X 的分布律为 P( X
求 p。 6、对某一目标射击,直到击中时为止。如果每次射击的命中率为 p ,求射击次数 X 的分布律。 7、已知离散型随机变量 X 的分布律为 P( X
求 Y Sin
X 的分布律。 2
k)
1 2k
,其中 k 1,2, ,
8、
设连续型随机变量 X 的分布函数为: F ( x) A B arctan x
1 6 e
( x 2 4 x 4 ) 2
, f ( x)dx f ( x)dx ,则 c
c

c
17、设 F1 ( x), F2 ( x) 为分布函数, a1 0, a2 0 , a1 F1 ( x) a2 F2 ( x) 为分布函数,则
a1 a2
二、选择题 1、若函数 f ( x) 是一随机变量 X 的密度函数,则( ① f ( x) 的定义域为[0,1] 2、如果 F ( x) 是( ①非负函数 ② f ( x) 值域为[0,1] ③ f ( x) 非负 ) ④ f ( x) 在 R1 连续

第二章随机变量及其分布练习题

第二章随机变量及其分布练习题

第二章随机变量及其分布练习题1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则两人都击中目标的概率是〔 〕A.1.4 B.0.9C.0.6 D.0.48 2.设随机变量1~62X B ⎛⎫ ⎪⎝⎭,,则(3)P X =等于〔 〕 A.516 B.316 C.58 D.7163.设随机变量X 的概率分布列为X1 2 3 P 16 13 12则E (X +2)的值为 ( ).A.113 B .9 C.133 D.734.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为〔 〕A.abB.a b + C.1ab - D.1a b --5.某一般高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能到达合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( )A .0.015B .0.005 6.设随机变量~()X B n p ,,则22()()DX EX 等于〔 〕 A.2p B.2(1)p - C.np D.2(1)p p -7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是().A.35 B.25 C.110 D.598.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数〞,事件B=“取到的2个数均为偶数〞,则P(B|A)=().A.18 B.14 C.25 D.129.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于().A.12p B.1-p C.1-2p D.12-p10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.假设μ=4,σ=1,则P(5<X<6)=( ) A.0.135 9 B.0.135 8C.0.271 8 D.0.271 611.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜〞,即以先赢2局者为胜.依据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是().A.0.216 B.0.36 C.0.432 D.0.648 12.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:处字迹模糊,但能断定这两个“?〞处的数值相同.据此,小牛给出了正确答案E(ξ)=________.13.如图,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内〞,B表示事件“豆子落在扇形OHE(阴影局部)内〞,则(1)P(A)=________;(2)P(B|A)=________.14.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X的均值为个,方差为.15.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠,假设该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1 3,用X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.16.在口袋中有不同编号的3个白球和2个黑球.如果不放回地依次取两个球,求在第1次取到白球的条件下,第2次也取到白球的概率.17.某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到奖券一张,每张奖券的中奖概率为12,假设中奖,商场返回忆客现金100元.某顾客现购置价格为2 300元的台式电脑一台,得到奖券4张.(1)设该顾客中奖的奖券张数为X,求X的分布列;(2)设该顾客购置台式电脑的实际支出为Y元,用X表示Y,并求Y的数学期望.18.某公司“咨询热线〞共有8路外线,经长期统计发觉,在8点到10点这段时间内,外线同时打入情况如下表所示:同时0 1 2 3 4 5 6 7 8打入个数x概率p 0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0〔1〕假设这段时间内,公司只安排了2位接线员〔一个接线员一次只能接一个〕①求至少一路不能一次接通的概率;②在一周五个工作日中,如果有三个工作日的这段时间〔8点至10点〕内至少一路不能一次接通,那么公司的形象将受到损害,现用至少一路不能一次接通的概率表示公司形象的“损害度〞,求上述情况下公司形象的“损害度〞.〔2〕求一周五个工作日的这段时间〔8点至10点〕内,同时打入数X的均值.19.某仪表厂从供给商处购置元器件20件,双方协商的验货规则是:从中任取3件进行质量检测,假设3件中无不合格品,则这批元器件被接受,否则就要重新对这批元器件逐个检查.(1)假设该批元器件的不合格率为10%,求需对这批元器件逐个检查的概率;(2)假设该批元器件的不合格率为20%,求3件中不合格元器件个数的分布列与期望.20.某商店试销某种商品20天,获得如下数据:日销售量(件)012 3频数159 5该商品3件,当天营业结束后检查存货.假设发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数.求X的分布列和数学期望.21.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.。

概率论与数理统计第二章习题与答案

概率论与数理统计第二章习题与答案

概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。

第2章 随机变量及其分布课后习题答案(高教出版社,浙江大学)

第2章  随机变量及其分布课后习题答案(高教出版社,浙江大学)

第2章 随机变量及其分布1,设在某一人群中有40%的人血型是A 型,现在在人群中随机地选人来验血,直至发现血型是A 型的人为止,以Y 记进行验血的次数,求Y 的分布律。

解:显然,Y 是一个离散型的随机变量,Y 取k 表明第k 个人是A 型血而前1-k 个人都不是A 型血,因此有116.04.0)4.01(4.0}{--⨯=-⨯==k k k Y P , ( ,3,2,1=k )上式就是随机变量Y 的分布律(这是一个几何分布)。

2,水自A 处流至B 处有3个阀门1,2,3,阀门联接方式如图所示。

当信号发出时各阀门以0.8的概率打开,以X 表示当信号发出时水自A 流至B 的通路条数,求X 的分布律。

设各阀门的工作相互独立。

解:X 只能取值0,1,2。

设以)3,2,1(=i A i记第i个阀门没有打开这一事件。

则)}(){()}({}0{3121321A A A A P A A A P X P ⋃=⋃==)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P XP ,416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为3,据信有20%的美国人没有任何健康保险,现任意抽查15个美国人,以X 表示15个人中无任何健康保险的人数(设各人是否有健康保险相互独立)。

问X 服从什么分布?写出分布律。

并求下列情况下无任何健康保险的概率:(1)恰有3人;(2)至少有2人;(3)不少于1人且不多于3人;(4)多于5人。

解:根据题意,随机变量X 服从二项分布B(15, 0.2),分布律为15,2,1,0,8.02.0)(1515 =⨯⨯==-k C k X P k k k。

概率论与数理统计练习册-第二章答案

概率论与数理统计练习册-第二章答案

第二章 随机变量及其分布基础训练Ⅰ一、选择题1、下列表中( A )可以作为离散型随机变量的分布律。

A) X 1 -1 0 1 B) X 2 0 1 2P 1/4 1/2 1/4 P -1/4 3/4 1/2C) X 3 0 1 2 D) X 4 1 2 1P 1/5 2/5 3/5 P 1/4 1/4 1/2 2、常数b =( B )时,),2,1()1( =+=k k k bp k 为离散型随机变量的概率分布。

A )2B )1C )1/2D )33、设⎪⎩⎪⎨⎧≥<<≤=1,110,2/0,0)(x x x x x F ,则( D )A )是随机变量的密度函数 B) 不是随机变量的分布函数 C )是离散型随机变量的分布函数 D )是连续型随机变量的分布函数4、设)(1x F 和)(2x F 分别为随机变量21,X X 的分布函数,为使)()()(21x bF x aF x F -=是某一随机变量的分布函数,在下列给定的各组数值中应取( A )A )a =3/5,b =-2/5 B) a =2/3,b =2/3 C )a =-1/2,b =3/2 D )a =1/2,b =-3/25、设随机变量),(~2σμN X ,且}{}{c X P c X P >=≤,则=c ( B )A) 0 B)μ C) μ- D) σ二、填空题1、连续型随机变量取任何给定值的概率为 0 。

2、设离散型随机变量X 分布律为⎪⎪⎭⎫⎝⎛5.03.02.0210,则P (X ≤1.5) = 0.5 。

3、设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F ,则A = 1 ,X 落在(-1,1/2)内的概率为 1 / 4 。

4、设K 在(0, 5)上服从均匀分布,则方程02442=+++K Kx x 有实根的概率为0.6 。

5、随机变量X 的分布函数)(x F 是事件}{x X ≤的概率。

概率论与数理统计+第二章+随机变量及其分布+练习题

概率论与数理统计+第二章+随机变量及其分布+练习题

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题1.假设X 是在区间(0,1)内取值的连续型随机变量,而X Y -=1,已知{}75.029.0=≤X P ,则满足{}25.0=≤K Y P 的常数k= .2.设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p= .3.设10件产品中恰好有2件不合格品,从中一件一件地抽出产品直到抽到合格品为止,则最后抽出产品件数X 的分布函数为 .4.设随机变量X 的分布函数为()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=,,若;,若;,若;,若3 131 210 20 0x x x x x x F ,则P {}25.0<≤X = .5.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 .6.设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .7.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 8 .设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .9.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 10.已知离散型随机变量X 的可能取值为5202,,,-,相应的概率依次为a 1,a 23,a45,a87,求)0|2|(|≥≤X X P = . 11.设随机变量X 的概率密度函数为⎩⎨⎧<<=其它0102)(x x x f ,Y 表示对X 的3次独立重复观察中事件}21{≤X 出现的次数,则)2(=Y P = . 12.已知随机变量X 服从正态分布)4,2(N ,则2/X e Y =的概率密度)(y f Y = .二、选择题1.设随机变量X 和Y 相互独立,其分布函数相应为)(1x F 和)(2y F ,则随机变量{}Y X U ,max =的分布函数为=)(u F ( ). (A) {})(),(max 21u F u F ; (B) {})(1),(1min 21u F u F --; (C) )()(21u F u F ; (D) ()[]()[]u F u F 211 11---.2.设随机变量),(~2σμN X ,则随σ的增大,概率{}σμ≤-X P ( ). (A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定.3.假设X 是只有两个可能值的离散型随机变量,Y 是连续型随机变量,且X 和Y 相互独立,则随机变量Y X +的分布函数( ).(A) 是阶梯函数; (B) 恰好有一个间断点;(C) 是连续函数; (D) 恰好有两个间断点. 4.下列函数中,可以做随机变量的分布函数的是( ). (A)211)(x x F +=; (B)x x F arctan 2143)(π+=;(C)⎪⎩⎪⎨⎧>+≤=0,10,0)(x x x x x F ; (D) x x F arctan 21)(π+=.5.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数 ; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数;(D )是连续型随机变量的分布函数 .6.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .7.设21,X X 是任意两个连续型随机变量,它们的概率密度函数分别为)(),(21x f x f ,分布函数分别为)(),(21x F x F ,则( ).(A ))(32)(3121x f x f +必为某一随机变量的概率密度; (B ))()(21x f x f 必为某一随机变量的概率密度; (C ))()(21x F x F +必为某一随机变量的分布函数; (D ))()(21x F x F -必为某一随机变量的分布函数.8.设随机变量Y X ,相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则( ).(A)1,2==b a ; (B) 2,1==b a ; (C) 1,2=-=b a ; (D) 2,1-==b a .⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数9.设X 为随机变量, 若矩阵的概率为0.5, 则( ).(A) X 服从区间[0,2]上的均匀分布; (B) X 服从二项分布B(2, 0.5); (C) X 服从参数为1的指数分布; (D) X 服从标准正态分布.10.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数; (D )是连续型随机变量的分布函数 .11.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .12.设随机变量X 服从参数为0>λ的泊松分布, 设8.0)11(=≤=X X P ,则λ等于( ).(A ) 0.8; (B ) 2 ; (C ) 4 ; (D ) 0.25.13.已知)7,1(~23N X ,则)21(<<X P 等于( ).(A ))1()2(Φ-Φ; (B ))1()2(3Φ-Φ; (C )21)1(-Φ; (D ))2()3(33Φ-Φ.14.设随机变量X 的任一线性函数0,≠+=a b aX Y 则下面命题不成立的是( ). (A) 如果X 是连续型随机变量, 则Y 也是连续型随机变量; (B) 如果X 是泊松分布, 则Y 也是泊松分布; (C) 如果X 是均匀分布, 则Y 也是均匀分布;(D) 如果X 是正态分布, 则Y 也是正态分布. 三、解答题1.一个正立方体容器盛有3/4的液体, 假设在其6个侧面(含上、下两个底面)的随机部位出现了一个小孔,液体经此小孔流出.求剩余液体液面的高度X 的分布函数)(x F .2.假设一装置启动后无故障工作的时间X (小时)服从指数分布,平均无故障工作的时间为2百小时;每次启动(在无故障的情形下)只需工作10小时便自行关机.试求该装置每次启动无故障工作的时间Y 的分布函数.3.设试验E 是一伯努利试验,其成功的概率为p, 而失败的概率为q=1-p .现在将E 独立地一次接一次地进行直到成功或完成n 次试验为止,其中n ≥2是给定的自然数.试求所作试验次数X 的概率分布.4.假设某自动生产线上产品的不合格品率为0.02,试求随意抽取的30件中, (1) 不合格品不少于两件的概率α;(2) 在已经发现一件不合格品的条件下,不合格品不少于两件的概率β.5.假设有10台设备,每台的可靠性(无故障工作的概率)为0.92,每台出现故障时需要由一人进行调整.问为保证在95%的情况下当设备出现故障时都能及时得到调整,至少需要安排几个人值班?6.假设一部机器在一个工作日因故停用的概率为0.2.一周使用5个工作日可创利润10万元;使用4个工作日可创利润7万元;使用3个工作日只创利润2万元;停用3天及多于3天亏损2万元.求所创利润的概率分布.7.某生产线平均每三分钟生产一件产品,假设不合格品率为0.01.问为使至少出现一件不合格品的概率超过95%最少需要多长时间?8.假设一日内到过某商店的顾客数服从参数为λ的泊松分布,而每个顾客实际购货的概率为p .分别以X 和Y 表示一日内到过该商店的顾客中购货和未购货的人数,分别求X 和Y 的概率分布.9.假设一商店每周(7天)平均售出56台电冰箱,其中因为质量问题要求返修的占5‰ .试求一个季度(90天)售出的电冰箱中返修件数X 的概率分布.10.假设随机变量X 服从正态分布)9 108(,N ,求满足{}01.0 =≥-a a X P 的常数a . 11.假设随机测量的误差()210,0~N X ,求在100次独立重复测量中,至少三次测量的绝对误差大于19.6的概率α的近似值.12.设)(1x F 和)(2x F 都是随机变量的分布函数,a 和b 是非负常数且1=+b a ,证明)()()(21x bF x aF x F +=具有随机变量的分布函数的基本性质.13.假设随机变量X 服从参数为λ的指数分布,)(x F 是其分布函数,证明随机变量Y =)(X F 在区间(0,1)上服从均匀分布.14.设随机变量X 的概率密度函数为xx e e Cx f -+=)(试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率. 15.连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.16.设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3)))(1(2)|(|a F a X P -=>17.一袋中装有4个球,球上分别记有号码1,2,3,4.从中任意取2个球,以X 记取出的球中小的号码.求X 的分布列与分布函数.18.使用了t 小时的计算机,在以后t ∆小时内损坏的概率等于)(t o t ∆+λ,其中λ为不依赖于t 的常数,假设在不相重叠的时间内,计算机损坏与否相互独立,求计算机在T 小时内损坏的概率.19.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.20.设离散型随机变量X 的概率分布为 ,2,1,0,)(===n ap n X P n ,而且X 取奇数值的概率为73,试求常数a, p 的值. 21.设随机变量t 服从数学期望为21的指数分布,求方程042=++tx x 有实根的概率. 22.设随机变量X 的概率密度为∞<<∞-=-+-x e x f x x,1)(122π试求:(1)2X Y =的概率密度;(2))211(+<<X P 23. 设随机变量X 的概率密度为+∞<<∞-=-x e x f x ,21)(||, 求(1)||X Y =的分布函数)(y F Y ; (2)证明对任意的实数0,0>>b a ,均有 )()|(b Y P a Y b a Y P ≥=≥+≥. 24.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=其他08131)(32x x x f()x F 是X 的分布函数,求随机变量()x F Y =的分布函数.25.假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间为5小时, 设备定时开机, 出现故障时自动关机, 而无故障的情况下工作2小时便关机, (1)试求该设备每次开机无故障工作的时间Y 的分布函数)(y F Y ,(2) 求Ye Z =的分布函数,并判断Z 是否为连续型随机变量.26.设随机变量X 的可能取值为 ,,,2,1k ,且 ,2,1,21)(===k k X P k ,令 ⎩⎨⎧-=是奇数如果是偶数如果X 1X 1Y试求二次方程022=++Y t t 无实根的概率.27. 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x , 试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度. 28.设随机变量X 的概率密度函数为xx ee Cx f -+=)( 试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率;(3)求)0(>X P .29.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.30. 设X X 1n ,, 为i.i.d. ~ 0-1分布(即贝努利分布),参数为p. 试对固定正整数k ≤ n ,求(1)P X k i i n ()==∑1;(2)P X k X i n i n(,)===∑11;(3)P( min{n: )},2,1,0k n X n ==≠. 31.设X 为只取正整数值的随机变量,则下列命题等价: (1)X 服从几何分布.(2) ,1,0,)()|(=>=>+>n m m X P n X n m X P . (3) ,1,0,,2,1)()|(====>+=n m m X P n X n m X P .。

第二章 随机变量及其分布习题

第二章 随机变量及其分布习题

第二章 随机变量及其分布习题一 、填空题1. 设随机变量ξ的分布律为NaK P ==)(ξ(K=1,2, N ),则常数=a 。

2. 盒内有5个零件,其中2件次品,从中任取3件,用ξ表示取出的次品数,则ξ的概率分布为 。

3.设)(x F 是离散型随机变量的分布函数,若______)(==b P ξ,则)()()(a F b F b a P -=<<ξ成立。

4.设离散型随机变量ξ的分布函数为 ⎝⎛≥+<≤-<≤--<=221321110)(x b a x a x ax x F ,且21)2(==ξP ,则___________________,______,的分布律为ξ==b a 5. 设连续型随机变量ξ的概率密度为⎪⎩⎪⎨⎧≤>=-00)(2x x kex f x则 ____)2(____,)2(____,)21(___,=<===≤<=ξξξP P P k6. 设5个晶体管中有2个次品,3个正品,如果每次从中任取1个进行测试,测试后的产品不放回,直到把2个次品都找到为止,则需要进行的测试次数ξ是一个随机变量,则________)2(______,)5(=≤==ξξP P7. 设随机变量ξ的概率密度为8)1(2)(--=x kex f (+∞<<∞-x ),则=k 。

8. 两个随机变量ηξ,相互独立的充要条件是______9. 设连续型随机变量ξ的概率密度为⎩⎨⎧<≥=-0)(x x e x f x,则ξ的函数ξη=的概率密度________)(=y ηϕ 10. 设随机变量ξ的概率密度为⎩⎨⎧>><<=其他)0,0(,10)(k b x kx x f b,且________________,,75.0)21(===>b k P 则ξ 二 、选择题1 .kk p x P 2)(==ξ)2,1( =k 为一随机变量ξ的分布律的必要条件是( ) (A )k x 非负 (B )k x 为整数(C )20≤≤k p (D )2≥k p 2 . 若函数)(x f y =是一随机变量ξ的概率密度,则( )一定成立(A ))(x f 的定义域为[0,1] (B ))(x f 的值域为[0,1] (C) )(x f 非负(D) )(x f 在),(∞∞-内连续3.如果)(x F 是( ),则)(x F 一定不可以是连续型随机变量的分布函数( ) (A )非负函数 (B )连续函数(C )有界函数 (D )单调减少函数 4.下列函数中,( )可以作为连续型随机变量的分布函数(A))(x F = ⎩⎨⎧≥<010x x e x(B )G(x)= ⎩⎨⎧≥<-01x x e x(C)=Φ)(x ⎩⎨⎧≥-<010x ex x(D) H(x)= ⎩⎨⎧≥+<-0100x ex x 5 . 设)(ηξ, 的联合概率密度为⎪⎩⎪⎨⎧≤+=其他11),(22y x y x f π则ηξ与为( )的随机变量(A )独立同分布 (B )独立不同分布(C )不独立同分布 (D )不独立也不同分布三、计算题1. 掷两颗骰子,用ξ表示点数之和,求ξ的概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章随机变量及其分布练习题
1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率
是0.6,则两人都击中目标的概率是( )
A.1.4 B.0.9 C.0.6 D.0.48
2.设随机变量1~62X B ⎛⎫ ⎪⎝⎭,,则(3)P X =等于( ) A.516 B.316 C.5
8 D.716
3.设随机变量X 的概率分布列为
X
1 2 3 P 1
6 1
3 1
2
则E (X +2) ( ).
A.113 B .9 C.133 D.73
4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑
台数的均值为( )
A.ab B.a b + C.1ab - D.1a b --
5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生
独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有
一人达标的概率为( )
A .0.015
B .0.005
6.设随机变量~()X B n p ,,则22
()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p -
7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出
2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是 ( ).
A.35
B.25
C.110
D.59
8.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶
数”,事件B =“取到的2个数均为偶数”,则P (B |A )=
( ).
A.18
B.14
C.25
D.12
9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于().
A.1
2p B.1-p C.1-2p D.
1
2-p
10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,则P(5<X<6)=( ) A.0.135 9 B.0.135 8
C.0.271 8 D.0.271 6
11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是().A.0.216 B.0.36 C.0.432 D.0.648 12.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:
x 12 3
P(ξ=x)?!?
请小牛同学计算ξ的数学期望,尽管“!”处完全无法看清,且两个“?”
处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.
13.如图,EFGH是以O为圆心、半径为1的圆的内接正
方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆
子落在正方形EFGH内”,B表示事件“豆子落在扇形
OHE(阴影部分)内”,则
(1)P(A)=________;
(2)P(B|A)=________.
14.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X的均值为个,方差为.
15.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠,若该电梯在
底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1
3,用
X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.
16.在口袋中有不同编号的3个白球和2个黑球.如果不放回地依次取两个球,求在第1次取到白球的条件下,第2次也取到白球的概率.
17.某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到奖券
一张,每张奖券的中奖概率为1
2,若中奖,商场返回顾客现金100元.某顾客
现购买价格为2 300元的台式电脑一台,得到奖券4张.
(1)设该顾客中奖的奖券张数为X,求X的分布列;
(2)设该顾客购买台式电脑的实际支出为Y元,用X表示Y,并求Y的数学期
望.
18.某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:
电话
同时
打入个
数x
0 1 2 3 4 5 6 7 8
概率p 0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0
话)
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话不能一次接通的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.(2)求一周五个工作日的这段时间(8点至10点)内,电话同时打入数X的均值.
19.某仪表厂从供应商处购置元器件20件,双方协商的验货规则是:从中任取3件进行质量检测,若3件中无不合格品,则这批元器件被接受,否则就要重新对这批元器件逐个检查.
(1)若该批元器件的不合格率为10%,求需对这批元器件逐个检查的概率;
(2)若该批元器件的不合格率为20%,求3件中不合格元器件个数的分布列
与期望.
20.某商店试销某种商品20天,获得如下数据:
日销售量(件)012 3
频数159 5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货.若发现存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.
(1)求当天商店不进货的概率;
(2)记X为第二天开始营业时该商品的件数.求X的分布列和数学期望.21.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)X表示同一工作日需使用设备的人数,求X的数学期望.。

相关文档
最新文档