六年级数学行程问题应用题练习2013004
小学六年级行程类应用题及答案
小学六年级行程类应用题及答案小学六年级行程类应用题及答案1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B 地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
小学六年级路程应用题100道附答案(完整版)
小学六年级路程应用题100道附答案(完整版)1. 一辆汽车从A 地开往B 地,速度是60 千米/时,行驶了3 小时到达B 地,A、B 两地相距多少千米?答案:速度×时间= 路程,60×3 = 180(千米),A、B 两地相距180 千米。
2. 小明骑自行车的速度是15 千米/时,他骑了2 小时,一共骑了多少千米?答案:15×2 = 30(千米),一共骑了30 千米。
3. 一辆摩托车以40 千米/时的速度行驶了5 小时,行驶的路程是多少?答案:40×5 = 200(千米),行驶的路程是200 千米。
4. 甲乙两地相距240 千米,一辆汽车从甲地开往乙地,平均每小时行80 千米,需要几小时到达?答案:路程÷速度= 时间,240÷80 = 3(小时),需要 3 小时到达。
5. 小红步行去学校,速度是4 千米/时,走了0.75 小时,她家到学校有多远?答案:4×0.75 = 3(千米),她家到学校3 千米。
6. 一辆汽车5 小时行驶了350 千米,照这样的速度,8 小时能行驶多少千米?答案:先求速度,350÷5 = 70(千米/时),70×8 = 560(千米),8 小时能行驶560 千米。
7. 小明家离学校1200 米,他每天上学步行需要15 分钟,他的步行速度是多少?答案:1200÷15 = 80(米/分钟),他的步行速度是80 米/分钟。
8. 一列火车3 小时行驶了360 千米,照这样计算,5 小时行驶多少千米?答案:先算速度360÷3 = 120(千米/时),120×5 = 600(千米),5 小时行驶600 千米。
9. 一艘轮船从甲港开往乙港,速度是45 千米/时,8 小时到达,返回时用了9 小时,返回时的速度是多少?答案:去时的路程45×8 = 360(千米),返回速度360÷9 = 40(千米/时),返回时的速度是40 千米/时。
六年级数学行程问题专项练习题
六年级数学行程问题专项练习题(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、相遇行程问题相遇问题的基本关系式如下:总路程=速度和×相遇时间相遇时间=总路程÷速度和另一个速度=速度和-已知的一个速度1、两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?2、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?3、两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?4、甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。
二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。
从开始走到第二次相遇,共用了6小时。
A、B两地相距多少千米?5、、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时,两车出发后多少小时相遇?6、、王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去,遇到王欣再向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?7、、甲乙两队学生从相距18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时15千米的速度在两队间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?8、两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
小学六年级行程问题练习题
小学六年级行程问题练习题本文将为小学六年级学生提供行程问题的练习题,旨在提高学生的思维能力、计划能力和解决问题的能力。
以下是几个行程问题,请你仔细阅读并回答。
问题一:小明家离学校有5公里,他通常骑自行车上学,以每小时10公里的速度行驶。
请问他上学需要多长时间?解答一:根据速度等于路程除以时间的公式,可得时间等于路程除以速度:时间 = 路程 / 速度小明上学的路程为5公里,速度为每小时10公里,所以他上学需要的时间为:5公里 / 10公里/小时 = 0.5小时 = 30分钟问题二:小华和小明一起去超市购物。
他们乘坐地铁到达超市,然后步行回家。
地铁从小华家到超市的时间是20分钟,步行回家的时间是40分钟。
请问他们从出门到回家一共需要多长时间?解答二:他们从小华家到超市的时间是20分钟,步行回家的时间是40分钟,所以一共需要的时间为:20分钟 + 40分钟 = 60分钟 = 1小时问题三:小红和小刚一起参加了一个运动会比赛。
他们各自从自己家出发,相向而行,相距8公里。
小红的速度是每小时6公里,小刚的速度是每小时8公里。
请问他们相遇需要多长时间?解答三:相向而行的两个物体相遇的时间可以根据他们的总路程除以他们的速度之和得出。
小红和小刚的总路程为8公里,他们的速度之和为6公里/小时+ 8公里/小时= 14公里/小时。
所以他们相遇需要的时间为:8公里 / 14公里/小时 = 0.57小时 = 34分钟问题四:小明和小华一起骑自行车去公园游玩,来回的路程一共是24公里。
小明的速度是每小时10公里,小华的速度是每小时12公里。
请问他们一共需要多长时间?解答四:小明和小华的总路程为24公里,他们的速度之和为10公里/小时 + 12公里/小时 = 22公里/小时。
所以他们一共需要的时间为:24公里 / 22公里/小时 = 1.09小时 = 65分钟以上是小学六年级行程问题的练习题及其解答。
希望通过这些问题的练习,能够帮助同学们提高解决问题的能力和计划能力。
行程问题应用题及答案
行程问题应用题及答案行程问题应用题及答案 11、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。
问:羊再跑多远,马可以追上它?2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
8、 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9、甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B地的距离是AB全程的1/5。
已知甲车在第一次相遇时行了120千米。
AB两地相距多少千米?10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。
(完整版)六年级行程问题练习及答案
行程问题(1)一、填空题1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了 公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的 倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用 秒.5.A 、B 两城相距56千米.有甲、乙、丙三人.甲、乙从A 城,丙从B 城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经 小时,乙在甲丙之间的中点?6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了 步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走 米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有 公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.二、解答题11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.B C他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C 时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D 与第三个人相遇,然后两人同乘自行车前往B ;第二个人在C 处下车后继续步行前往B 地.结果三个人同时到达B 地.那么,C 距A 处多少千米?D 距A 处多少千米?13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3.6公里,骑车人速度为每小时10.8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A 、C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.———————————————答 案——————————————————————1. 1224乙每小时比甲多行54-48=6(千米),而乙相遇时比甲多行36⨯2=72(千米),故相遇时的时间为72÷6=12(小时),从而甲乙两地相距12⨯(48+54)=1224(千米).2. 36设甲、乙两地相距x 公里,则596=+x x ,故x =18,于是小明共行了18⨯2=36(公里)3. 3这个人步行每小时5公里,故每12分钟1公里,故他骑车每12-8=4(分钟)1公里,即每小时15公里,故他骑车速度是步行速度的15÷5=3(倍).4. 12.5顺风时速度为90÷10=9(米/秒),逆风时速度为70÷10=7(米/秒).故在无风时该选手的速度为(9+7)÷2=8(米/秒),他跑100米要100÷8=12.5(秒).5. 7设经过x 小时后,乙在甲、丙之间的中点,依题意得6x -5x =5x +4x -56,解得x =7.6. 30设狗跑3步的时间为单位时间,则狗的速度为每单位时间3步,主人的速度为每单位时间2⨯2=4(步),主人追上狗需要10÷(4-3)=10(单位时间),从而主人追上狗时,狗跑了3⨯10=30(步).7. 6第一次相遇的时间为:30÷(1.3+1.2)=12(秒);兄妹第十次相遇时走的距离为1.2⨯12⨯10=144(米);因144÷30=4…24(米),故妹妹离出发点的距离为30-24=6(米).8. 15.5不考虑停车时间,电车追上骑车人所用时间为2100÷(500-300)=10.5(分),这期间,电车需要经过两站,停车2分钟.骑车人在2分钟内所走的距离为300⨯2=600(米).这样,考虑停车时间,电车追上骑车人所用时间为:(2100+600) ÷(500-300)+2=15.5(分).9. 450这个选手去时休息的地点与甲地距离依次为:90公里,180公里,270公里,360公里,450公里,540公里,630公里,720公里,810公里和900公里,而他返回休息地点时距甲的距离为850公里,750公里,650公里,450公里,350公里,250公里,150公里和50公里.故这个相同的休息地点距甲地450公里.10. DA乙追上甲时所用的时间是(90⨯3)÷(72-65)=7270(分);乙追上甲时所走的距离为907216727072⨯=⨯(米);这时乙走过了763090907216=÷⨯(条)边,因762747630=⨯-,故乙追了7圈后,还需走762条边便可追上甲,显然乙在DA 边上.11. 设大猴爬2米和小猴爬1.5米都用时1秒.当大猴爬上树稍时,小猴爬的距离为8÷2⨯1.5=6(米);两猴相遇的时间为(8-6)÷[1.5+2⨯(2+1)]=154(秒).两猴相遇时,距地面高度为4.61545.16=⨯+(米). 12. 如图,第一、二两人乘车的路程AC ,应该与第一、三两人骑车的路程DB 相等,否则三人不能同时到达B 点.同理AD =BC .当第一人骑车在D 点与第三人相遇时,骑车人走的路程为AD +2CD ,第三人步行路程为AD .因自行车速度比步行速度快2倍,即自行车速度是步行的3倍,故AD +2CD =3CD ,从而AD =CD =BC .因AB =36千米,故AD =CD =BC =12千米,故C 距A 24千米,D 距A 12千米.13. 行人速度为3.6公里/时=1米/秒,骑车人速度为1.8公里/时=3米/秒.设车身长为x 米,依题得326122+=+x x ,故x =286.即车长286米. 14. 设某人从A 镇到B 镇共用x 小时,依题意得,(11+1.5)x +(3.5+1.5)(8-1-x )=50.解得x =2,故A 、B 两镇的水路距离为(11+1.5)⨯2=25(千米).A D CB 第二人步行第三人步行。
六年级行程问题(含答案)
六年级奥数.行程. 比例解行程问题(ABC 级).学生版Page 1 of 32 比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v ts v t =´ìí=´î甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲,得到s s t v v ==甲乙乙甲,s vs v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,22个物体所用的时间之比等于他们速度的反比。
s v t s v t =´ìí=´î甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =´=´乙乙乙甲甲甲,得s v t v t =´=´乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比(1)理解行程问题中的各种比例关系理解行程问题中的各种比例关系. .(2)掌握寻找比例关系的方法来解行程问题.重难点知识框架比例解行程问题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的。
小学六年级数学应用题行程问题(可锻炼学生思维)
1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了 公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的 倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用 秒.、B 两城相距56千米.有甲、乙、丙三人.甲、乙从A 城,丙从B 城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经 小时,乙在甲丙之间的中点6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了 步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走米,妹每秒走米,他们第十次相遇时,妹妹还需走 米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有 公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C 时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D 与第三个人相遇,然后两人同乘自行车前往B ;第二个人在C 处下车后继续步行前往B 地.结果三个人同时到达B 地.那么,C 距A 处多少千米D 距A 处多少千米13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时公里,骑车人速度为每小时公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时千米.已知A 、C 两镇水路相距50千米,水流速度为每小时千米.某人从A 镇上乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.AD、B两地相距150千米.两列火车同时从A地开往B地.快车每小时行60千米.慢车每小时行48千米.当快车到达B地时,慢车离B地还有千米.2.某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时公里.3.某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为公里时才能和平常一样按时到达学校.4.一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快米.5.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需分钟才能追上乙.6.甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑米,乙每秒钟跑米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了次.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.8.有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的倍.9.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的倍.10.游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有分钟这两条船的前进方向相同11.一个圆的周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行厘米和厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒12.小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗13.有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间(按小时计算)14.甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.。
小学六年级数学行程问题完整版
小学六年级数学行程问题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】行程问题例1 甲乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
辆车在距中点32千米处相遇。
东西两地相距多少千米?例2 快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?例3 快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米?例4 甲、乙两列火车同时从A、B两城相对开出,行了小时后,两列还相距全程的5/8, 两车还需要几小时才能相遇?例5 客车从甲地,货车从乙地同时相对开出。
一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米?例6 甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。
甲车出发到相遇用了多少小时?例7 客车从甲地到乙地要10小时,货车从乙地到甲地要15小时,两车同时从两地相对开出,相遇时客车比货车多行了90千米,甲、乙两地之间的距离是多少千米?相遇时客车和货车各行了多少千米?例8 客车和货车同时从甲、乙两地相向而行,在距离中点6千米处相遇,已知货车速度是客车速度的4/5,甲、乙两地相遇多少千米?例9 甲、乙两车同时从A、B两地相对开出,经过8小时相遇,相遇后两车继续前进,甲车又用了6小时到达B 地,乙车要用多少小时才能从B地到达A地。
例10 一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开到甲地,这辆汽车的平均速度N 是多少千米?例11 小明上山每分钟行50米,16分钟到达山顶,再按每分钟80米的速度按原路下山,那么,上、下山每分钟平均行多少米?例12 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
六年级的行程问题练习及答案.doc
六年级行程问题练习及答案一、填空题1.两车同时从甲乙两地相对开出 , 甲每小时行 48 千米 , 乙车每小时行 54千米 , 相遇时两车离中点36 千米 , 甲乙两地相距千米.2.小明从甲地到乙地 , 去时每小时走 6 公里 , 回来时每小时走 9 公里 , 来回共用 5 小时 . 小明来回共走了公里.3.一个人步行每小时走 5 公里 , 如果骑自行车每 1 公里比步行少用 8 分钟 ,那么他骑自行车的速度是步行速度的倍.4.一位少年短跑选手 , 顺风跑 90 米用了 10 秒钟 . 在同样的风速下 , 逆风跑 70 米 , 也用了 10 秒钟 . 在无风的时候 , 他跑 100 米要用秒.5.A、B 两城相距 56 千米 . 有甲、乙、丙三人 . 甲、乙从 A 城, 丙从 B 城同时出发 . 相向而行 . 甲、乙、丙分别以每小时 6 千米、 5 千米、 4 千米的速度行进 .求出发后经小时 , 乙在甲丙之间的中点 ?6.主人追他的狗 , 狗跑三步的时间主人跑两步 , 但主人的一步是狗的两步 , 狗跑出 10 步后 , 主人开始追 , 主人追上狗时 , 狗跑出了步.7.兄妹二人在周长 30 米的圆形水池边玩 , 从同一地点同时背向绕水池而行 ,兄每秒走 1.3 米, 妹每秒走 1.2 米 , 他们第十次相遇时 , 妹妹还需走米才能回到出发点 .8.骑车人以每分钟 300 米的速度 , 从 102 路电车始发站出发 , 沿 102 路电车线前进 , 骑车人离开出发地 2100 米时 , 一辆 102 路电车开出了始发站 , 这辆电车每分钟行 500 米 , 行 5 分钟到达一站并停车 1 分钟 , 那么需要分钟,电车追上骑车人.9.一个自行车选手在相距 950 公里的甲、乙两地之间训练 , 从甲地出发 , 去时每90 公里休息一次 , 到达乙地并休息一天后再沿原路返回 , 每 100公里休息一次 .他发现恰好有一个休息的地点与去时的一个休息地点相同 , 那么这个休息地点距甲地有公里.10.如图 , 是一个边长为 90 米的正方形 , 甲从 A 出发 , 乙同时从 B 出发 , 甲每分钟行进 65 米, 乙每分钟行进 72 米 , 当乙第一次追上甲时 , 乙在边上.D CA B二、解答题11.动物园里有 8 米的大树 . 两只猴子进行爬树比赛 , 一只稍大的猴子爬上 2 米时 , 另一只猴子才爬了 1.5 米. 稍大的猴子先爬到树顶 , 下来的速度比原来快了 2 倍 . 两只猴子距地面多高的地方相遇 ?12.三个人自 A 地到 B 地, 两地相距 36 千米 , 三个人只有一辆自行车 , 这辆车只能坐两人 , 自行车的速度比步行速度快两倍 .1 / 3他们三人决定 : 第一个人和第二个人同乘自行车 , 第三个人步行 . 这三个人同时出发 , 当骑车的二人到达某点 C 时 , 骑车人放下第二个人 , 立即沿原路返回去接第三个人 , 到某处 D 与第三个人相遇 , 然后两人同乘自行车前往 B;第二个人在 C 处下车后继续步行前往 B 地. 结果三个人同时到达 B 地. 那么 , C 距 A 处多少千米?D 距 A 处多少千米 ?13.铁路旁一条平行小路上 , 有一行人与一骑车人同时向南行进 , 行人速度为每小时 3.6 公里 , 骑车人速度为每小时 10.8 公里 . 这时有一列火车从他们背后开过来 , 火车通过行人用 22 秒钟 , 通过骑车人用 26秒钟 . 这列火车的车身长多少米 ?14.一条小河流过 A、B、C 三镇 . A、B 两镇之间有汽船来往 , 汽船在静水的速度为每小时 11 千米 . B、C 两镇之间有木船摆渡 , 木船在静水中的速度为每小时3.5 千米 . 已知 A、C 两镇水路相距 50 千米 , 水流速度为每小时 1.5 千米 . 某人从 A 镇上乘汽船顺流而下到 B 镇 , 吃午饭用去 1 小时 , 接着乘木船又顺流而下到 C 镇 , 共用 8 小时 , 那么 A、 B 两镇的水路路程是多少米 .———————————————答案——————————————————————1. 1224乙每小时比甲多行54-48=6( 千米 ), 而乙相遇时比甲多行36 2=72(千米 ), 故相遇时的时间为72 6=12(小时 ), 从而甲乙两地相距 12 (48+54)=1224( 千米 ).2. 36设甲、乙两地相距 x 公里 , 则xx 5 , 故 x=18, 于是小明共行了 18 2=36(公里 )6 93. 3这个人步行每小时 5 公里 , 故每 12 分钟 1 公里 , 故他骑车每 12-8=4( 分钟 )1 公里 , 即每小时 15 公里 , 故他骑车速度是步行速度的 15 5=3( 倍).4. 12.5顺风时速度为 90 10=9(米 / 秒 ), 逆风时速度为 70 10=7( 米/ 秒). 故在无风时该选手的速度为 (9+7) 2=8( 米/ 秒), 他跑 100 米要 100 8=12.5( 秒).5. 7设经过x 小时后 , 乙在甲、丙之间的中点, 依题意得6x-5 x=5x+4x-56, 解得x=7.6. 30设狗跑3 步的时间为单位时间, 则狗的速度为每单位时间3 步, 主人的速度为每单位时间 2 2=4(步), 主人追上狗需要 10 (4-3)=10( 单位时间 ), 从而主人追上狗时 , 狗跑了 3 10=30(步).7. 6第一次相遇的时间为 :30 (1.3+1.2)=12( 秒); 兄妹第十次相遇时走的距离为 1.2 12 10=144( 米 ); 因 144 30=4 ⋯ 24( 米 ), 故妹妹离出发点的距离为 30-24=6( 米).8. 15.52 / 3不考虑停车时间 , 电车追上骑车人所用时间为 2100 (500-300)=10.5( 分 ), 这期间 , 电车需要经过两站 , 停车 2 分钟 . 骑车人在 2 分钟内所走的距离为 300 2=600( 米 ). 这样 , 考虑停车时间 , 电车追上骑车人所用时间为 :(2100+600) (500-300)+2=15.5( 分).9. 450 这个选手去时休息的地点与甲地距离依次为:90 公里 ,180 公里 ,270 公里 ,360 公里 ,450 公里 ,540 公里 ,630 公里 ,720 公里 ,810 公里和 900 公里 , 而他返回休息地点时距甲的距离为 850 公里 ,750 公里 ,650 公里 ,450 公里 ,350 公里 ,250公里 ,150 公里和 50 公里 . 故这个相同的休息地点距甲地 450 公里 .10. DA乙追上甲时所用的时间是(90 3) (72-65)=270( 分); 乙追上甲时所走的距7离为 72 27021690 ( 米 ); 这 时乙 走过 了21690 90 30 6 ( 条 ) 边 , 因7 7773064 7 2 6, 故乙追了 7 圈后 , 还需走 2 6条边便可追上甲 , 显然乙在 DA 边77 7上 .11. 设大猴爬 2 米和小猴爬 1.5 米都用时 1 秒. 当大猴爬上树稍时 , 小猴爬 的距离为 8 2 1.5=6( 米); 两猴相遇的时间为 (8-6)[1.5+2 (2+1)]= 4( 秒). 两415猴相遇时 , 距地面高度为 6 1.5 6.4 ( 米).1512. 如图 , 第一、二两人乘车的路程 AC, 应该与第一、三两人骑车的路程 DB 相等 , 否则三人不能同时到达 B 点 . 同理 AD=BC.A D C B第二人步行第三人步行当第一人骑车在 D 点与第三人相遇时 , 骑车人走的路程为 AD+2CD, 第三人步行路程为 AD. 因自行车速度比步行速度快 2 倍, 即自行车速度是步行的 3 倍,故 AD+2CD=3CD, 从而 AD=CD=BC.因 AB=36 千米 , 故 AD=CD=BC=12 千米 , 故 C 距 A24 千米 , D 距 A12 千米 .13. 行人速度为 3.6 公里 / 时 =1米 / 秒 , 骑车人速度为 1.8 公里 / 时=3 米/ 秒. 设车身长为 x 米, 依题得x1x3, 故 x=286. 即车长 286 米.22 2614. 设某人从 A 镇到 B 镇共用 x 小时 , 依题意得 ,(11+1.5) x+(3.5+1.5)(8-1- x)=50. 解得 x=2, 故 A 、B 两镇的水路距离为 (11+1.5) 2=25( 千米 ).3 / 3。
(完整版)六年级数学行程问题应用题练习.docx
行程问题应用题1、两汽同从、西两站相开出,第一次在离站60 千米的地方相遇,之后两以原来速度前,各到站后立即返回,又在离中点 30 千米相遇,两站相距多少千米?2、甲、乙两分从、西两站同相开出。
第一次相遇,甲行了 80 千米,两以原来速度前,各到站后立即返回,第二次相遇地点在第一次相遇地点 40 千米。
、西两站相距多少千米?3、甲、乙二人自行从形公路上同一地点同出,背向而行。
在已知甲走一圈的是 70 分,如果在出后 45 分甲、乙二人相遇,那么乙走一圈的是多少分?4、一个自行手在相距950 千米的甲、乙两地之。
从甲地出,去每 90 千米休息一次;到达乙地并休息一天后再沿原路返回,每100 千米休息一次;他恰好有一个休息的地点与去的一个休息地点相同,那么个休息地点距甲地有多少千米?5、一个的周 1.26 米,两只从一条直径的两端同出沿周相向爬行。
两只每秒分爬 5.5 厘米和 3.5 厘米。
它每爬行 1 秒,3 秒、5 秒⋯⋯(的奇数),就爬行。
那么,它相遇,已爬行的是多少秒?6、在一条公路上,甲、乙两个地点相距600 米。
明每小行走 4 千米,李每小行走 5 千米。
8 点整,他两人从甲、乙两地同出相向而行, 1 分后他都反向而行,再 3 分,他又相向而行,依次按照 1,3,5,7,⋯⋯(的奇数)分行走,那么,李两人相遇是8 点几分?7、一汽从甲地开往乙地,如果把速提高 20%;可以比原定提前一小到达;如果以原速行 120 千米后,再将速度提高 25%可提前 40 分到达。
那么,甲、乙两地相距多少千米?8、甲、乙两分从A、B 两地出,在 A、B 之不断往返行,已知甲的速度是每小 15 千米,乙的速度是每小 35 千米,并且甲、乙两第三次相遇的地点与第四次相遇的地点恰好相距 100 千米,那么 A、B 两地之的距离等于多少千米?9、从甲市到乙市有一条公路,它分成三段,在第一段上,汽速度是每小 40 千米;在第二段上,汽速度是每小 90 千米;在第三段上,汽速度是每小 50 千米。
(完整版)六年级行程问题练习及答案.docx
行程问题 (1)一、填空题1.两车同时从甲乙两地相对开出 , 甲每小时行 48 千米 , 乙车每小时行 54千米 , 相遇时两车离中点36 千米 , 甲乙两地相距千米.2.小明从甲地到乙地 , 去时每小时走 6 公里 , 回来时每小时走 9 公里 , 来回共用 5 小时 . 小明来回共走了公里.3.一个人步行每小时走 5 公里 , 如果骑自行车每 1 公里比步行少用 8 分钟 ,那么他骑自行车的速度是步行速度的倍.4.一位少年短跑选手 , 顺风跑 90 米用了 10 秒钟 . 在同样的风速下 , 逆风跑 70 米 , 也用了 10 秒钟 . 在无风的时候 , 他跑 100 米要用秒.5.A、B 两城相距 56 千米 . 有甲、乙、丙三人 . 甲、乙从 A 城, 丙从 B 城同时出发 . 相向而行 . 甲、乙、丙分别以每小时 6 千米、 5 千米、 4 千米的速度行进 .求出发后经小时 , 乙在甲丙之间的中点 ?6.主人追他的狗 , 狗跑三步的时间主人跑两步 , 但主人的一步是狗的两步 , 狗跑出 10 步后 , 主人开始追 , 主人追上狗时 , 狗跑出了步.7.兄妹二人在周长 30 米的圆形水池边玩 , 从同一地点同时背向绕水池而行 ,兄每秒走 1.3 米, 妹每秒走 1.2 米 , 他们第十次相遇时 , 妹妹还需走米才能回到出发点 .8.骑车人以每分钟 300 米的速度 , 从 102 路电车始发站出发 , 沿 102 路电车线前进 , 骑车人离开出发地 2100 米时 , 一辆 102 路电车开出了始发站 , 这辆电车每分钟行 500 米 , 行 5 分钟到达一站并停车 1 分钟 , 那么需要分钟,电车追上骑车人.9.一个自行车选手在相距 950 公里的甲、乙两地之间训练 , 从甲地出发 , 去时每90 公里休息一次 , 到达乙地并休息一天后再沿原路返回 , 每 100公里休息一次 .他发现恰好有一个休息的地点与去时的一个休息地点相同 , 那么这个休息地点距甲地有公里.10.如图 , 是一个边长为 90 米的正方形 , 甲从 A 出发 , 乙同时从 B 出发 , 甲每分钟行进 65 米, 乙每分钟行进 72 米 , 当乙第一次追上甲时 , 乙在边上.D CA B二、解答题11.动物园里有 8 米的大树 . 两只猴子进行爬树比赛 , 一只稍大的猴子爬上 2 米时 , 另一只猴子才爬了 1.5 米. 稍大的猴子先爬到树顶 , 下来的速度比原来快了 2 倍 . 两只猴子距地面多高的地方相遇 ?12.三个人自 A 地到 B 地, 两地相距 36 千米 , 三个人只有一辆自行车 , 这辆车只能坐两人 , 自行车的速度比步行速度快两倍 .他三人决定 : 第一个人和第二个人同乘自行 , 第三个人步行 . 三个人同出 , 当的二人到达某点 C , 人放下第二个人 , 立即沿原路返回去接第三个人 , 到某 D 与第三个人相遇 , 然后两人同乘自行前往 B;第二个人在 C 下后步行前往 B 地. 果三个人同到达 B 地. 那么 , C 距 A 多少千米?D 距 A 多少千米 ?13.路旁一条平行小路上 , 有一行人与一人同向南行 , 行人速度每小 3.6 公里 , 人速度每小 10.8 公里 . 有一列火从他背后开来 , 火通行人用22 秒 , 通人用 26秒 . 列火的身多少米 ?14.一条小河流 A、B、C 三 . A、B 两之有汽船来往 , 汽船在静水的速度每小11 千米 . B、C 两之有木船渡 , 木船在静水中的速度每小 3.5 千米 . 已知 A、C 两水路相距 50 千米 , 水流速度每小 1.5 千米 . 某人从A 上乘汽船流而下到B , 吃午用去 1 小 , 接着乘木船又流而下到C , 共用 8 小 , 那么 A、 B 两的水路路程是多少米 .———————————————答案——————————————————————1. 1224乙每小比甲多行54-48=6( 千米 ), 而乙相遇比甲多行36 2=72(千米 ), 故相遇的72 6=12(小 ), 从而甲乙两地相距 12 (48+54)=1224( 千米 ).2.36甲、乙两地相距 x 公里 , xx 5 , 故 x=18, 于是小明共行了 18 2=36(公里 )693.3个人步行每小 5 公里 , 故每 12 分 1 公里 , 故他每 12-8=4( 分 )1 公里 , 即每小 15 公里 , 故他速度是步行速度的 15 5=3( 倍).4. 12.5速度 90 10=9(米 / 秒 ), 逆速度 70 10=7( 米/ 秒). 故在无手的速度 (9+7) 2=8( 米/ 秒), 他跑 100 米要 100 8=12.5( 秒).5. 7x 小后 , 乙在甲、丙之的中点, 依意得6x-5 x=5x+4x-56, 解得x=7.6. 30狗跑 3 步的位 , 狗的速度每位 3 步, 主人的速度每位 2 2=4(步), 主人追上狗需要 10 (4-3)=10( 位 ), 从而主人追上狗 , 狗跑了 3 10=30(步).7. 6第一次相遇的 :30 (1.3+1.2)=12( 秒); 兄妹第十次相遇走的距离 1.2 1210=144( 米 ); 因 144 30=4 ⋯ 24( 米 ), 故妹妹离出点的距离 30-24=6( 米).8. 15.5不考虑停车时间 , 电车追上骑车人所用时间为 2100 (500-300)=10.5( 分 ),这期间 , 电车需要经过两站 , 停车 2 分钟 . 骑车人在 2 分钟内所走的距离为 300 2=600( 米 ). 这样 , 考虑停车时间 , 电车追上骑车人所用时间为 :(2100+600) (500-300)+2=15.5( 分).9. 450 这个选手去时休息的地点与甲地距离依次为:90 公里 ,180 公里 ,270 公里 ,360 公里 ,450 公里 ,540 公里 ,630 公里 ,720 公里 ,810 公里和 900 公里 , 而他返回休息地点时距甲的距离为 850 公里 ,750 公里 ,650 公里 ,450 公里 ,350 公里 ,250公里 ,150 公里和 50 公里 . 故这个相同的休息地点距甲地 450 公里 .10. DA乙追上甲时所用的时间是(90 3) (72-65)=270( 分); 乙追上甲时所走的距7离为 72 27021690 ( 米 ); 这 时乙 走过 了21690 90 30 6 ( 条 ) 边 , 因7 777 3064 7 2 6, 故乙追了 7 圈后 , 还需走 2 6条边便可追上甲 , 显然乙在 DA 边77 7上 .11. 设大猴爬 2 米和小猴爬 1.5 米都用时 1 秒. 当大猴爬上树稍时 , 小猴爬 的距离为 8 2 1.5=6( 米); 两猴相遇的时间为 (8-6)[1.5+2 (2+1)]= 4( 秒). 两415猴相遇时 , 距地面高度为 6 1.5 6.4 ( 米).1512. 如图 , 第一、二两人乘车的路程 AC, 应该与第一、三两人骑车的路程 DB 相等 , 否则三人不能同时到达 B 点 . 同理 AD=BC.A D C B第二人步行第三人步行当第一人骑车在 D 点与第三人相遇时 , 骑车人走的路程为 AD+2CD, 第三人步行路程为 AD. 因自行车速度比步行速度快 2 倍, 即自行车速度是步行的 3 倍, 故 AD+2CD=3CD, 从而 AD=CD=BC.因 AB=36 千米 , 故 AD=CD=BC=12 千米 , 故 C 距 A24 千米 , D 距 A12 千米 .13. 行人速度为 3.6 公里 / 时 =1米 / 秒 , 骑车人速度为 1.8 公里 / 时=3 米/ 秒. 设车身长为 x 米, 依题得x1x3, 故 x=286. 即车长 286 米.22 2614. 设某人从 A 镇到 B 镇共用 x 小时 , 依题意得 ,(11+1.5) x+(3.5+1.5)(8-1- x)=50. 解得 x=2, 故 A 、B 两镇的水路距离为(11+1.5) 2=25( 千米 ).。
六年级数学行程问题应用题练习
六年级数学行程问题应用题练习
1.小明的自行车
小明骑自行车从家到学校,全程需要20分钟。
某天早上,他骑了5分钟后发现车胎没气了,于是停下来打气。
打气花了3分钟。
之后,他继续骑行到学校,结果比平时晚了2分钟到达。
请问,如果小明没有停下来打气,他还需要骑行多长时间才能到达学校?
2.两车相遇
两辆汽车分别从A城和B城同时出发,相向而行。
A城到B城的距离是300公里。
甲车的速度是60公里/小时,乙车的速度是40公里/小时。
请问,两车相遇时,它们各自行驶了多少公里?
3.追及问题
小华和小明在同一地点开始跑步,小明的速度比小华快。
小华先跑了5分钟后,小明才开始跑。
已知小华的速度是每分钟200米,小明的速度是每分钟250米。
请问,小明跑了多少分钟后能追上小华?
4.火车过桥
一列火车长150米,以每秒20米的速度通过一座长350米的桥。
请问,火车完全通过这座桥需要多少秒?
5.环形跑道
在一条长400米的环形跑道上,小明和小华同时从起点开始跑步。
小明每秒跑6米,小华每秒跑4米。
请问,小明第一次追上小华时,他们各自跑了多少圈?
以上这些题目涵盖了相遇问题、追及问题、火车过桥问题以及环形跑道上的追及问题等不同类型的行程问题,旨在帮助学生加深对速度、时间和距离之间关系的理解,提高解决实际问题的能力。
六年级下册数学行程问题应用题
011行程问题(1)姓名:___________【知识要点】行程问题的三个基本量是:速度、时间、路程,它们之间的关系是:速度×时间=路程,路程÷速度=时间,路程÷时间=速度行程问题按所行方向的不同,可分为①相遇问题(相向而行)②相离问题(相背而行)③追及问题(同向而行),其基本数量关系是:①相遇问题:速度和×相遇时间=路程②相离问题:速度和×时间=相距路程③追及问题:速度差×时间=追及路程【基本练习】1、一辆客车和一辆小车同时从甲、乙两地相对开出,经过2.5小时相遇。
已知客车每小时行72千米,是小车速度的34,甲乙两地相距多少千米?2、客、货两车同时从相距378千米的两地相对开出,客车每小时行72千米,货车每小时行63千米,经过几小时两车相遇?相遇时客车比货车多行多少千米?3、甲、乙两车同时从相距540千米的两地相对开出,经过3.6小时相遇。
已知甲车每小时行72,乙车每小时行多少千米?4、甲、乙两车同时从相距567千米的两地相对开出,经过3.5小时相遇。
已知甲、乙两车的速度比是5:4,甲、乙两车每小时各行多少千米?5、甲、乙两船同时从武汉出发开往上海,已知甲船每小时行52千米,乙船每小时行45千米,8小时后,两船相距多少千米?【例1】一辆客车和一辆货车同时从甲、乙两地相对开出,在距中点12千米处相遇。
已知客、货两车的速度比是6:5,甲、乙两地相距多少千米?分析:时间一定,路程和速度成正比例,客、货两车的速度比是6:5,所以相遇时两车所行的路程的比也是6:5,即甲车行了全程的611,乙车行了全程的511;又两车在距中点12千米处相遇,也就是相遇时甲车比乙车多行了12×2=24千米。
解答:12×2÷(611-511)=练习1:1、甲、乙两车同时从A、B两地相对开出,在距中点15千米处相遇。
已知甲、乙两车的速度比是7:8,A、B两地相距多少千米?.2、两辆汽车同时从A地出发开往B地,甲、乙两车的速度比是6:5,甲车达到B地后立即返回,在距B地12千米处与乙车相遇。
六年级上册数学(行程问题)应用题专项训练题
六年级上册数学1.快车和慢车从甲、乙两地同时相对开出,1.4小时后两车相遇,快车每小时行53千米,慢车每小时行45千米,甲、乙两地间的公路长多少千米?解:(53+45)×1.4=98×1.4=137.2(千米)答:甲、乙两地间的公路长137.2千米。
2.甲、乙两辆汽车从相距255千米A、B两地同时相向开出,甲车的速度是45千米/时,乙车的速度是40千米/时,他们几小时后相遇?解:255÷(45+40)=255÷85=3(小时)答:他们3小时后相遇。
3.甲、乙两车同时从A地开往B地,乙车6小时达到,甲车每小时比乙车慢8千米,因此比乙车迟到一小时达到.A、B两地间的路程是多少千米?解:8÷(1/6﹣1/7)=8÷1/42=336(千米)答:A、B两地间的路程是336千米。
4.甲乙两港相距120千米,一艘轮船从甲港驶往乙港用了5.5小时,返回时因为顺水比去时少用了1小时,求这艘轮船往返的平均速度。
解:120×2÷(5.5+5.5﹣1)=240÷(11﹣1)=24(千米)答:这艘轮船往返的平均速度是24千米。
5.韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?解:速度为:480÷20=24(米/分),现在的速度为:24+16=40(米/分),上学所用的时间为:480÷40=12(分钟)答:7点40分从家出发,12分钟后,即7点52分可到学校。
6.小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?解:从家到学校的路程:15×2=30(千米)回来的时间30÷10=3(小时)答:回来需要3个小时。
7.王叔叔骑自行车从甲地到乙地,如果每小时行12千米,5小时到达,如果想提前1小时到达,每小时需要行多少千米?解:12×5÷(5﹣1)=60÷4=15(千米)答:每小时需要行15千米。
六年级行程问题经典例题40题
六年级行程问题经典例题40题一、相遇问题1. 甲、乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时后两人相遇。
求A、B两地的距离。
解析:根据相遇问题的公式,路程 = 速度和×相遇时间。
甲、乙的速度和为5 + 4 = 9(千米/小时),相遇时间是3小时,所以A、B两地的距离为9×3 = 27(千米)。
2. 两地相距600千米,上午8时,客车以每小时60千米的速度从甲地开往乙地,货车以每小时50千米的速度从乙地开往甲地。
要使两车在中点相遇,货车必须在上午几时出发?解析:两地中点距离为600÷2 = 300千米。
客车到达中点需要的时间为300÷60 = 5小时,货车到达中点需要的时间为300÷50 = 6小时。
客车上午8时出发,5小时后即13时到达中点,货车要6小时到达中点,所以货车必须提前1小时出发,也就是上午7时出发。
3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,3小时后两车还相距50千米。
A、B两地相距多远?解析:甲、乙两车3小时行驶的路程之和为(70 + 80)×3=450千米,此时还相距50千米,所以A、B两地相距450+ 50 = 500千米。
二、追及问题4. 甲、乙两人在相距12千米的A、B两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?解析:乙的速度是4×3 = 12千米/小时,乙与甲的速度差是12 4 = 8千米/小时。
追及路程是12千米,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷8 = 1.5小时。
5. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。
在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?解析:汽车先开出5小时行驶的路程为40×5 = 200千米。
六年级数学行程问题应用题练习
行程问题应用题1、两辆汽车同时从东、西两站相对开出,第一次在离车站60千米的地方相遇,之后两车继续以原来速度前进,各车到站后立即返回,又在离中点30千米处相遇,两站相距多少千米2、甲、乙两车分别从东、西两站同时相对开出;第一次相遇时,甲车行了80千米,两车继续以原来速度前进,各车到站后立即返回,第二次相遇地点在第一次相遇地点东侧40千米处;东、西两站相距多少千米3、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行;现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟4、一个自行车选手在相距950千米的甲、乙两地之间训练;从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有多少千米5、一个圆的周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行;这两只蚂蚁每秒分别爬厘米和厘米;它们每爬行1秒,3秒、5秒……连续的奇数,就调头爬行;那么,它们相遇时,已爬行的时间是多少秒6、在一条公路上,甲、乙两个地点相距600米;张明每小时行走4千米,李强每小时行走5千米;8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再过3分钟,他们又调头相向而行,依次按照1,3,5,7,……连续的奇数分钟调头行走,那么,张李两人相遇时是8点几分7、一辆汽车从甲地开往乙地,如果把车速提高20%;可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%则可提前40分钟到达;那么,甲、乙两地相距多少千米8、甲、乙两车分别从A、B两地出发,在A、B之间不断往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇的地点与第四次相遇的地点恰好相距100千米,那么A、B两地之间的距离等于多少千米9、从甲市到乙市有一条公路,它分成三段,在第一段上,汽车速度是每小时40千米;在第二段上,汽车速度是每小时90千米;在第三段上,汽车速度是每小时50千米;已知第一段公路的长恰好是第三段的2倍,现在有两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分后在第二段的1/3处从甲到乙方向的1/3处相遇;那么,甲、乙两市相距多少千米10、小张、小王和小李同时从湖边同一地点出发,绕湖行走;小张速度是每小时千米,小王速度是每小时千米,他们两人同方向而行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇;那么,绕湖一周的行程是多少千米11、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的倍,而且甲比乙速度快;开始后1小时,甲与乙在高山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰;那么甲回到出发点共用多少小时12、甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车;小张和小王分别骑车从甲、乙两地出发,相向而行;每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车;已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟一、解答题行程问题第一讲1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇。
六年级数学行程问题应用题练习
六年级数学行程问题应用题练习1. 小明前往某地,第一天他走了30公里,第二天走了40公里,第三天走了50公里,第四天走了60公里,第五天走了70公里,第六天走了80公里,第七天走了90公里。
求他一共走了多少公里?解题思路:将每一天走的公里数相加即可。
答案:30 + 40 + 50 + 60 + 70 + 80 + 90 = 420公里2. 旅游团从A地出发,先乘坐大巴车行驶4小时到达B地,然后转乘小轿车行驶3小时到达C地,最后步行2小时到达旅游景点D地。
已知小轿车的时速是大巴车的两倍,大巴车的时速是20公里/小时,求旅游团从A地到D地一共用了多少小时?解题思路:先计算小轿车的时速,然后根据时间与距离的公式求出总时间。
小轿车的时速:20 × 2 = 40公里/小时总时间:4 + 3 + 2 = 9小时答案:总时间是9小时。
3. 学校组织春季郊游,班级里的同学们分成两组,一组选择徒步走路,另一组选择骑自行车。
徒步走路的同学用时4个小时到达目的地,骑自行车的同学用时2个小时到达同一目的地。
已知徒步走路的速度是骑自行车的一半,求到达目的地的距离是多少?解题思路:首先需要求出骑自行车的速度,然后利用时间和速度的公式求出距离。
骑自行车的速度:距离÷时间= (2×骑自行车的速度)÷ 2 = 骑自行车的速度徒步走路的速度:骑自行车的速度÷2距离= 速度× 时间= (骑自行车的速度×2小时)+(骑自行车的速度÷2×4小时)= 3.5骑自行车的速度答案:距离是3.5倍骑自行车的速度,未知速度,因此无法计算距离。
1. 小明和小李在同一时间出发,向同一地点前进。
小明每小时走10公里,小李每小时走12公里。
如果小明先出发,那么多长时间小李才能赶上他?解:设两人相遇时间为t小时,则小明走的路程为10t公里,小李走的路程为12t公里。
由于两人走的距离相等,因此10t = 12t - x,解得x = 2t,即小明先走了2t公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题应用题(四)
1、两辆汽车同时从东、西两站相对开出,第一次在离车站60千米的地方相遇,之后两车继续以原来速度前进,各车到站后立即返回,又在离中点30千米处相遇,两站相距多少千米?
2、甲、乙两车分别从东、西两站同时相对开出。
第一次相遇时,甲车行了80
千米,两车继续以原来速度前进,各车到站后立即返回,第二次相遇地点在第一次相遇地点东侧40千米处。
东、西两站相距多少千米?
3、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?
4、一个自行车选手在相距950千米的甲、乙两地之间训练。
从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有多少千米?
5、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。
这两只蚂蚁每秒分别爬5.5厘米和3.5厘米。
它们每爬行1秒,3秒、5秒……(连续的奇数),就调头爬行。
那么,它们相遇时,已爬行的时间是多少秒?
6、在一条公路上,甲、乙两个地点相距600米。
张明每小时行走4千米,李强每小时行走5千米。
8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再过3分钟,他们又调头相向而行,依次按照1,3,5,7,……(连续的奇数)分钟调头行走,那么,张李两人相遇时是8点几分?
7、一辆汽车从甲地开往乙地,如果把车速提高20%;可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%则可提前40分钟到达。
那么,甲、乙两地相距多少千米?
8、甲、乙两车分别从A、B两地出发,在A、B之间不断往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇的地点与第四次相遇的地点恰好相距100千米,那么A、B两地之间的距离等于多少千米?
9、从甲市到乙市有一条公路,它分成三段,在第一段上,汽车速度是每小时40千米;在第二段上,汽车速度是每小时90千米;在第三段上,汽车速度是每小时50千米。
已知第一段公路的长恰好是第三段的2倍,现在有两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分后在第二段的1/3处(从甲到乙方向的1/3处)相遇。
那么,甲、乙两市相距多少千米?
10、小张、小王和小李同时从湖边同一地点出发,绕湖行走。
小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向而行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。
那么,绕湖一周的行程是多少千米?
11、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快。
开始后1小时,甲与乙在高山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。
那么甲回到出发点共用多少小时?
12、甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车。
小张和小王分别骑车从甲、乙两地出发,相向而行。
每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车。
已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?。