偏振光实验报告
光偏振现象的实验报告
光偏振现象的实验报告光偏振现象的实验报告引言:光是一种电磁波,具有波动性和粒子性。
在自然界中,我们经常观察到光的偏振现象,即光波的振动方向在特定的方向上发生偏离。
本实验旨在通过实际操作,观察和研究光的偏振现象,并探索其背后的物理原理。
实验材料与仪器:1. 光源:白炽灯2. 偏振片:线性偏振片、圆偏振片3. 透光物体:透明塑料片、玻璃片4. 光屏:白色光屏5. 光学台和支架6. 透镜实验步骤:1. 实验一:观察线性偏振光的现象a. 将白炽灯放置在光学台上,并打开电源,确保光源稳定。
b. 在光源和白色光屏之间放置一个线性偏振片,并调整偏振片的方向,观察光在白色光屏上的表现。
c. 旋转线性偏振片,观察光的亮度变化。
2. 实验二:观察圆偏振光的现象a. 将白炽灯放置在光学台上,并打开电源,确保光源稳定。
b. 在光源和白色光屏之间放置一个圆偏振片,并调整偏振片的方向,观察光在白色光屏上的表现。
c. 旋转圆偏振片,观察光的亮度变化。
3. 实验三:观察透光物体对光的偏振的影响a. 将白炽灯放置在光学台上,并打开电源,确保光源稳定。
b. 在光源、白色光屏和透光物体之间放置一个线性偏振片,并调整偏振片的方向,观察光在白色光屏上的表现。
c. 更换透光物体,如透明塑料片或玻璃片,重复步骤b,观察光的亮度变化。
实验结果与讨论:1. 实验一的结果表明,当线性偏振片的方向与光的振动方向垂直时,光在白色光屏上的亮度最低;当二者平行时,光的亮度最高。
这说明线性偏振片可以选择性地阻挡特定方向上的光振动。
2. 实验二的结果显示,圆偏振片可以将线偏振光转化为圆偏振光。
当圆偏振片的方向与光的振动方向相同时,光在白色光屏上的亮度最高;当二者垂直时,光的亮度最低。
3. 实验三的结果表明,透光物体对光的偏振有一定的影响。
不同的透光物体对光的偏振方向有不同的选择性吸收作用,从而导致光在白色光屏上的亮度变化。
结论:通过本次实验,我们观察到了光的偏振现象,并了解了线性偏振片和圆偏振片对光的影响。
偏振光的研究实验报告
偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是指光波中电场矢量在空间中的振动方向固定的光。
它在光学领域有着广泛的应用,包括材料的表征、光学器件的设计和光通信等。
本实验旨在通过研究偏振光的性质和特点,探索其在实际应用中的潜力。
实验一:偏振片的特性在实验中,我们首先使用了一块偏振片。
偏振片是一种能够选择性地通过特定方向偏振光的光学器件。
我们将偏振片放置在光源前方,并逐渐旋转它。
观察到当光通过偏振片时,光强度会随着旋转角度的变化而发生明显的变化。
这说明偏振片能够选择性地通过特定方向的偏振光。
实验二:马吕斯定律的验证马吕斯定律是描述光的偏振现象的基本定律之一。
它表明,当一束偏振光通过一个偏振片时,出射光的偏振方向与入射光的偏振方向之间的夹角保持不变。
我们使用了两块偏振片,并将它们叠加在一起。
通过旋转第二块偏振片,我们观察到光的强度随着旋转角度的变化而发生周期性的变化。
这一结果验证了马吕斯定律的正确性。
实验三:偏振光的干涉在实验中,我们使用了一束激光器发出的偏振光,并将其分成两束,分别通过两个不同的光程。
然后,我们将两束光重新合并在一起。
通过调节两束光的光程差,我们观察到干涉现象。
当光程差等于整数倍的波长时,干涉现象最为明显。
这一实验结果说明了偏振光的干涉现象是由于光的相位差引起的。
实验四:偏振光的旋光性质偏振光的旋光性质是指光在通过旋光物质时,偏振方向会发生旋转的现象。
我们使用了一块旋光片,并将它放置在光源前方。
通过观察光通过旋光片后的偏振方向,我们发现光的偏振方向确实发生了旋转。
这一实验结果验证了偏振光的旋光性质。
结论:通过以上实验,我们对偏振光的性质和特点有了更深入的了解。
偏振光的研究不仅有助于我们理解光的本质,还在许多实际应用中发挥着重要作用。
例如,在材料的表征中,偏振光可以用来分析材料的结构和性质。
在光学器件的设计中,偏振光可以用来控制光的传输和调制。
在光通信中,偏振光可以用来提高信号传输的可靠性和速率。
光的偏振物理实验报告
光的偏振物理实验报告一、实验目的1、观察光的偏振现象,加深对光的偏振基本概念的理解。
2、学习使用偏振片来产生和检验偏振光。
3、测量布儒斯特角,并验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场和磁场的振动方向垂直于光的传播方向。
一般情况下,光的振动方向是随机的,这种光称为自然光。
如果光的振动方向在某个特定方向上具有优势,这种光称为部分偏振光。
当光的振动方向完全固定在一个方向上时,称为完全偏振光,又分为线偏振光和圆偏振光。
2、偏振片偏振片是一种只允许特定方向振动的光通过的光学元件。
其工作原理是基于晶体的二向色性,即某些晶体对不同方向振动的光吸收程度不同。
3、布儒斯特定律当自然光在两种介质的分界面上发生反射和折射时,反射光和折射光都成为部分偏振光。
当入射角等于某一特定角度时,反射光成为完全偏振光,其振动方向垂直于入射面,这个角度称为布儒斯特角,满足以下定律:\\tan \theta_B =\frac{n_2}{n_1}\其中,\(\theta_B\)为布儒斯特角,\(n_1\)和\(n_2\)分别为两种介质的折射率。
三、实验仪器1、光源(钠光灯)2、起偏器(偏振片)3、检偏器(偏振片)4、玻璃堆5、光具座6、白屏四、实验内容与步骤1、观察光的偏振现象(1)打开钠光灯,让光线通过起偏器,旋转起偏器,观察白屏上光强的变化。
(2)在起偏器后加上检偏器,旋转检偏器,观察光强的变化,并记录消光位置。
2、验证马吕斯定律(1)将起偏器和检偏器的偏振化方向调到夹角为\(0^{\circ}\),记录此时的光强\(I_0\)。
(2)逐渐增大两偏振片的夹角\(\theta\),每隔\(10^{\circ}\)记录一次光强\(I\)。
(3)根据马吕斯定律\(I = I_0 \cos^2 \theta\),绘制\(I \cos^2 \theta\)关系曲线。
3、测量布儒斯特角(1)将玻璃堆放在光具座上,让钠光灯的光线以一定角度入射到玻璃堆上。
偏振光的实验报告
偏振光的实验报告偏振光的实验报告引言:偏振光是一种特殊的光波,它的振动方向在一个平面上,而不是在所有方向上均匀分布。
在本次实验中,我们将探索偏振光的性质,并研究如何通过实验来检测和测量偏振光。
实验一:偏振片的特性在这个实验中,我们使用了一块偏振片和一束来自光源的自然光。
我们将偏振片放在自然光的路径上,并观察光线通过偏振片后的变化。
结果显示,当自然光通过偏振片时,只有与偏振片振动方向平行的光线能够通过,而与振动方向垂直的光线则被阻挡。
这表明偏振片具有选择性地通过特定方向的光线的能力。
实验二:偏振光的产生在这个实验中,我们使用了一束来自光源的线偏振光。
我们通过将自然光通过一个偏振片,只允许一个方向的光通过,从而产生线偏振光。
我们进一步观察了线偏振光的性质。
当我们将第二个偏振片放在线偏振光的路径上,并旋转它时,我们发现光的强度会发生变化。
当两个偏振片的振动方向平行时,光的强度最大;而当两个偏振片的振动方向垂直时,光的强度最小。
这说明线偏振光的振动方向与偏振片的振动方向之间存在一定的关系。
实验三:马吕斯定律马吕斯定律是描述光的偏振性质的重要定律之一。
它表明,当一束线偏振光通过一个偏振片后,再通过另一个偏振片时,光的强度与两个偏振片之间的夹角的余弦的平方成正比。
为了验证这一定律,我们进行了一系列实验。
我们首先将一束线偏振光通过一个偏振片,然后通过一个旋转的第二个偏振片。
我们测量了不同夹角下光的强度,并计算了夹角的余弦的平方。
实验结果与马吕斯定律的预测非常吻合,验证了这一定律的准确性。
实验四:偏振光的应用偏振光在许多领域中有着广泛的应用。
例如,在液晶显示器中,偏振片被用来控制光的传播方向,从而实现图像的显示。
在摄影中,偏振滤镜可以减少反射和增强颜色饱和度。
此外,偏振光还在光学通信、医学和科学研究等领域中发挥着重要的作用。
结论:通过本次实验,我们深入了解了偏振光的性质和特点。
我们发现偏振光具有选择性地通过特定方向的能力,并且其强度与偏振片之间的夹角的余弦的平方成正比。
偏振光的研究实验报告
偏振光的研究实验报告篇一:偏振光的观测与研究~~实验报告偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。
本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。
光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。
目前偏振光的应用已遍及于工农业、医学、国防等部门。
利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。
【实验目的】1.观察光的偏振现象,加深偏振的基本概念。
2.了解偏振光的产生和检验方法。
3.观测布儒斯特角及测定玻璃折射率。
4.观测椭圆偏振光和圆偏振光。
【实验仪器】光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置图1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。
两者均垂直于光的传播方向。
从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。
在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。
光源发射的光是由大量原子或分子辐射构成的。
由于热运动和辐射的随机性,大量原-子或分子发射的光的振动面出现在各个方向的几率是相同的。
一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。
有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。
还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。
图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。
偏振光分析实验报告
一、实验目的1. 观察光的偏振现象,加深对光的偏振现象的认识。
2. 学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生与检验方法。
3. 掌握1/4波片、1/2波片等光学元件的作用及使用方法。
4. 验证马吕斯定律,加深对光的偏振理论的理解。
二、实验原理1. 光的偏振现象:光是一种电磁波,其电矢量在垂直于传播方向的平面上振动。
当光波的电矢量振动方向固定时,光称为线偏振光;当电矢量振动方向随时间作有规律的变化时,光称为圆偏振光或椭圆偏振光。
2. 偏振光的产生与检验:利用偏振片、波片等光学元件可以产生和检验偏振光。
偏振片可以使自然光变为线偏振光,波片可以改变光的偏振状态。
3. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系满足马吕斯定律。
三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 1/4波片(两块)5. 1/2波片(两块)6. 玻璃平板及刻度盘7. 白屏四、实验步骤1. 将激光器发出的光束通过偏振片P1,得到线偏振光。
2. 将线偏振光通过1/4波片B1,得到圆偏振光。
3. 将圆偏振光通过1/2波片B2,观察出射光的偏振状态。
4. 将线偏振光通过1/4波片B1,得到椭圆偏振光。
5. 将椭圆偏振光通过1/2波片B2,观察出射光的偏振状态。
6. 重复以上步骤,改变偏振片P1和波片B1、B2的相对位置,观察出射光的偏振状态。
7. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。
五、实验结果与分析1. 观察到当线偏振光通过1/4波片B1时,出射光变为圆偏振光;当圆偏振光通过1/2波片B2时,出射光变为线偏振光。
2. 观察到当线偏振光通过1/4波片B1时,出射光变为椭圆偏振光;当椭圆偏振光通过1/2波片B2时,出射光变为线偏振光。
3. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。
光的偏振研究实验报告
一、实验目的1. 观察光的偏振现象,加深对光的波动性质的认识。
2. 掌握产生和检验偏振光的方法和原理。
3. 学习使用偏振片、波片等光学元件,了解其工作原理。
4. 验证马吕斯定律,研究偏振光透过两个偏振器后的光强与夹角的关系。
二、实验原理光是一种电磁波,其电场矢量E的振动方向决定了光的偏振状态。
自然光中的电场矢量在垂直于光传播方向的平面内振动方向是随机的,而偏振光则具有特定的振动方向。
偏振光可以通过以下几种方法产生:1. 利用起偏器(如偏振片)将自然光变为线偏振光。
2. 利用双折射现象将一束光分解为两束具有不同振动方向的偏振光。
3. 利用反射、折射等光学现象使自然光部分偏振。
检验偏振光的方法有:1. 利用检偏器(如偏振片)观察光强变化。
2. 利用光电池、光电倍增管等光电探测器检测偏振光。
马吕斯定律指出,当完全线偏振光通过检偏器时,光强I与入射光强I0、检偏器透光轴与入射线偏振光的光矢量振动方向的夹角θ的关系为:I = I0 cos²θ。
三、实验仪器与用具1. 中央调节平台和两臂调节机构2. 半导体激光器和电源3. 偏振片(两块)4. 1/4波片(两块)5. 光电倍增管探头及电源6. 光电流放大器7. 光具座8. 白屏9. 刻度盘四、实验步骤1. 将激光器、偏振片、1/4波片和光电倍增管探头依次放置在光具座上,调整光路,使激光束通过偏振片后成为线偏振光。
2. 将线偏振光通过1/4波片,观察光强变化,记录数据。
3. 将1/4波片旋转一定角度,观察光强变化,记录数据。
4. 将线偏振光通过第二个偏振片,观察光强变化,记录数据。
5. 将第二个偏振片旋转一定角度,观察光强变化,记录数据。
6. 根据记录的数据,验证马吕斯定律。
五、实验结果与分析1. 观察到线偏振光通过1/4波片后,光强发生变化,说明1/4波片具有改变光偏振状态的作用。
2. 当1/4波片旋转一定角度时,光强也随之变化,说明光强与偏振片透光轴与入射线偏振光的光矢量振动方向的夹角θ有关。
光的偏振 实验报告
光的偏振实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。
2、了解偏振片的特性,掌握产生和检验偏振光的方法。
3、测量布儒斯特角,验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场矢量和磁场矢量相互垂直且都垂直于光的传播方向。
一般情况下,光的电场矢量在垂直于光传播方向的平面内的取向是随机的,这种光称为自然光。
如果光的电场矢量在垂直于光传播方向的平面内只沿某一固定方向振动,则称其为线偏振光。
还有部分偏振光和椭圆偏振光等偏振态。
2、偏振片偏振片是一种只允许某一方向的光振动通过的光学元件。
其透振方向就是允许光振动通过的方向。
当自然光通过偏振片时,只有与透振方向平行的光振动分量能够通过,从而得到线偏振光。
3、布儒斯特定律当自然光在两种介质的分界面上反射和折射时,反射光和折射光都将成为部分偏振光。
当入射角满足一定条件时,反射光将成为完全偏振光,其振动方向垂直于入射面,这个入射角称为布儒斯特角,用θB表示。
布儒斯特定律为:tanθB = n2 / n1 ,其中 n1 和 n2 分别为两种介质的折射率。
三、实验仪器光源(钠光灯)、起偏器(偏振片)、检偏器(偏振片)、光具座、玻璃片、刻度盘等。
四、实验步骤1、调节仪器将光源、起偏器、检偏器依次安装在光具座上,使其共轴。
调节起偏器和检偏器的透振方向,使其初始时平行。
2、观察偏振现象打开光源,旋转检偏器,观察透过检偏器的光强变化。
可以发现,当检偏器的透振方向与起偏器的透振方向平行时,光强最强;当两者透振方向垂直时,光强最弱,几乎为零。
这表明通过起偏器得到的线偏振光,其振动方向是固定的。
3、测量布儒斯特角在光具座上放置一块玻璃片,使自然光以一定角度入射到玻璃片表面。
旋转检偏器,使反射光消光(光强最弱),此时入射角即为布儒斯特角。
测量此时的入射角,并记录下来。
4、验证布儒斯特定律已知钠光灯发出的光在空气中的波长λ,以及玻璃片的折射率 n2,根据布儒斯特定律计算理论上的布儒斯特角。
偏振光的观察与研究实验报告数据(精选10篇)
偏振光的观察与研究实验报告数据偏振光指的是只在一个平面上振动的光,它的传播方式与普通光有所不同。
由于其具有特殊的偏振状态,因此可以在各个领域中发挥重要作用。
在本次实验中,我们对偏振光的观察与研究进行了探究。
一、实验目的1. 学习偏振光的概念及其传播方式。
2. 观察线偏振器和波片对偏振光的影响。
3. 研究偏振光的干涉现象。
二、实验仪器及材料1. 两个偏光片2. 一块玻璃板3. 一块亚克力板4. 一束激光光源5. 一个手机屏幕三、实验步骤1. 将一块玻璃板和一块亚克力板插入两个偏光片之间,调整偏光片的方向,观察得到的光的强度变化。
2. 将一个偏光片放置在激光器前,记录得到的光的强度值,并将其称为“I”。
然后将另一个偏光片放在激光光路中,并逐渐旋转它的方向。
记录得到的光的强度值,并将其称为“T”。
3. 将一个手机屏幕放置在两个偏光片之间,逐渐旋转其中一个偏光片的方向。
观察手机屏幕的显示情况。
4. 在两个偏光片之间插入一块玻璃板,然后将其中一个偏光片旋转一定的角度,并记录得到光的强度值。
四、实验结果1. 调整偏光片的方向之后,得到的光的强度会发生变化,实验表明,当两个偏光片的方向垂直时,通过的光线最弱,当两个偏光片的方向相同时,通过光线最强。
2. 在实验过程中,我们发现,当两个偏光片的方向偏离90度时,通过的光线几乎消失。
这说明当光的振动方向被偏振后,只有振动方向与偏振方向一致的光才能通过。
3. 在手机屏幕的观察实验中,我们发现当两个偏光片的方向相同时,手机屏幕显示为亮屏,而当两个偏光片的方向垂直时,手机屏幕显示为黑屏。
这说明手机屏幕与偏振光的作用原理是相似的。
4. 在偏振光的干涉实验中,我们发现,在通过玻璃板的偏振光中,存在两个方向的振动状态,这两个方向的振动状态会互相干涉,导致光线强度的变化。
五、实验结论本次实验通过观察偏振光的传播方式,观察了线偏振器和波片对偏振光的影响,以及研究了偏振光的干涉现象。
光学偏振小实验报告(3篇)
第1篇一、实验目的1. 观察光的偏振现象,加深对光的偏振规律的认识。
2. 掌握产生和检验偏振光的光学元件(如偏振片、1/4波片等)的工作原理。
3. 学习使用偏振片进行光路准直和极坐标作图。
二、实验原理1. 光的偏振现象:光是一种电磁波,其电场矢量E在垂直于光传播方向的平面上可以有不同的振动方向。
当光在传播过程中,若电场矢量E保持一定的振动方向,则称为偏振光。
2. 偏振片:偏振片是一种具有选择性吸收特定方向振动光线的材料。
当自然光通过偏振片时,只有与偏振片偏振方向一致的光线能够通过,从而实现光的偏振。
3. 1/4波片:1/4波片是一种厚度为1/4波长(λ/4)的透明介质,它可以将线偏振光转换为椭圆偏振光或圆偏振光。
4. 马吕斯定律:当线偏振光通过一个与其偏振方向成θ角的偏振片时,透射光的强度I与入射光强度I0之间的关系为:I = I0 cos²θ。
三、实验仪器1. 光具座2. 偏振片3. 1/4波片4. 激光器5. 白屏6. 直尺7. 量角器四、实验步骤1. 将激光器发出的激光照射到白屏上,调整激光器与白屏的距离,使激光在白屏上形成明亮的点。
2. 将偏振片放置在激光器与白屏之间,调整偏振片的偏振方向,观察白屏上的光点变化。
3. 记录偏振片偏振方向与光点变化的关系,分析光的偏振现象。
4. 将1/4波片放置在偏振片与白屏之间,调整1/4波片的光轴方向,观察白屏上的光点变化。
5. 记录1/4波片光轴方向与光点变化的关系,分析1/4波片的作用。
6. 将偏振片与1/4波片组合,观察白屏上的光点变化,分析光的偏振现象。
7. 利用偏振片和1/4波片进行光路准直,观察准直效果。
8. 使用直尺和量角器测量偏振片和1/4波片的偏振方向,分析极坐标作图方法。
五、实验结果与分析1. 当偏振片的偏振方向与光点变化方向一致时,光点亮度最大;当偏振片的偏振方向与光点变化方向垂直时,光点亮度最小。
2. 1/4波片可以将线偏振光转换为椭圆偏振光或圆偏振光,当1/4波片的光轴方向与偏振片的偏振方向成45°时,光点亮度最大。
光偏振现象实验报告
一、实验目的1. 观察光的偏振现象,了解光偏振的基本规律。
2. 掌握偏振光的产生、检验及其相关光学元件的使用方法。
3. 通过实验验证马吕斯定律,加深对偏振光理论知识的理解。
二、实验原理光是一种电磁波,其电场矢量在不同方向上的振动决定了光的偏振状态。
当光波通过某些光学元件(如偏振片、波片等)时,其振动方向会发生变化,从而产生偏振光。
1. 偏振光的产生:自然光通过偏振片后,由于偏振片的透光方向限制,光波振动方向被限定在一个特定的平面上,从而产生线偏振光。
2. 偏振光的检验:通过偏振片观察线偏振光,可以看到明暗交替的现象,这种现象称为消光现象。
当偏振片的透光方向与线偏振光的振动方向垂直时,光无法通过偏振片,产生消光现象。
3. 马吕斯定律:当线偏振光通过第二个偏振片(检偏器)时,光强与两个偏振片透光方向夹角的余弦平方成正比。
即 I = I₀ cos²θ,其中 I₀为入射光强,θ 为两个偏振片透光方向的夹角。
三、实验仪器与材料1. 自然光源(如太阳光、激光等)2. 偏振片(两片)3. 波片(1/2波片、1/4波片)4. 支架5. 铁夹6. 光具座7. 毫米刻度尺四、实验步骤1. 将自然光源放置在光具座上,调整光源方向,使其垂直于光具座。
2. 将第一片偏振片固定在支架上,使其透光方向与光源方向垂直。
3. 将第二片偏振片固定在支架上,调整其透光方向与第一片偏振片透光方向的夹角。
4. 观察通过第一片偏振片后的光,可以看到明暗交替的现象,即消光现象。
5. 调整第二片偏振片的透光方向,使其与第一片偏振片透光方向重合,观察光强。
6. 改变第二片偏振片的透光方向,记录不同夹角下的光强。
7. 将波片(1/2波片、1/4波片)插入第一片偏振片与第二片偏振片之间,观察光强变化。
8. 重复步骤6和7,记录不同波片插入后的光强变化。
五、实验结果与分析1. 通过第一片偏振片后的光产生消光现象,说明自然光经过偏振片后成为线偏振光。
偏振光学实验报告
一、实验目的1. 观察光的偏振现象,加深对光的偏振理论的认识。
2. 验证马吕斯定律,了解偏振光的基本特性。
3. 掌握1/2波片和1/4波片的作用,学会使用这些光学元件。
4. 研究椭圆偏振光和圆偏振光的产生与检测。
二、实验原理1. 光的偏振性:光是一种电磁波,电磁波对物质的作用主要是电场。
在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。
2. 自然光与偏振光:自然光在垂直于传播方向的平面内,光矢量在各个方向上的振动分量相等。
偏振光在垂直于传播方向的平面内,光矢量只在一个方向上振动。
3. 偏振片:利用二向色性获得偏振光。
当自然光通过偏振片时,只有光矢量在偏振片透振方向上的分量能够通过,其他方向上的分量被吸收。
4. 1/2波片和1/4波片:1/2波片可以将线偏振光转换为圆偏振光,1/4波片可以将线偏振光转换为椭圆偏振光。
5. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光的强度、入射光与偏振片的夹角有关。
当入射光与偏振片的夹角为θ时,出射光的强度为I = I0 cos^2(θ)。
三、实验仪器与设备1. 自然光源:He-Ne激光器、白光光源。
2. 偏振片:两块。
3. 1/2波片:两块。
4. 1/4波片:两块。
5. 光具座、白屏、刻度盘、导线等。
四、实验步骤1. 观察自然光的偏振现象:将自然光源照射到白屏上,用偏振片观察,可以看到光斑的明暗变化。
2. 验证马吕斯定律:将自然光通过偏振片,使偏振片透振方向与光具座上的刻度盘平行。
调整偏振片与刻度盘的夹角,记录光斑的明暗变化,并计算出射光的强度与入射光的强度、入射光与偏振片的夹角的关系。
3. 研究椭圆偏振光和圆偏振光的产生与检测:将自然光通过1/4波片,观察光斑的明暗变化,判断光斑是否为圆偏振光或椭圆偏振光。
4. 使用1/2波片将线偏振光转换为圆偏振光:将自然光通过1/2波片,观察光斑的明暗变化,判断光斑是否为圆偏振光。
光的偏振研究实验报告
光的偏振研究实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。
2、掌握产生和检验偏振光的方法。
3、了解偏振片的特性以及马吕斯定律。
二、实验原理1、光的偏振态光可以看作是由电场和磁场相互垂直并垂直于光的传播方向的电磁波。
一般情况下,光的振动方向在垂直于传播方向的平面内是随机分布的,这种光称为自然光。
如果光的振动方向始终保持在一个特定的方向上,这种光称为线偏振光。
部分偏振光则是介于自然光和线偏振光之间的一种光,其振动方向在某一方向上占优势。
2、偏振片偏振片是一种只允许某一方向振动的光通过的光学元件。
其原理是利用某些物质的二向色性,即对不同方向振动的光具有不同的吸收程度。
3、马吕斯定律当一束强度为 I₀的线偏振光通过一个偏振化方向与光的振动方向夹角为θ的偏振片时,透过偏振片的光强 I 为:I = I₀cos²θ 。
三、实验仪器1、半导体激光器2、起偏器和检偏器(偏振片)3、光功率计4、旋转台四、实验步骤1、打开半导体激光器,调整其位置和角度,使激光束水平射出。
2、将起偏器安装在旋转台上,旋转起偏器,使通过起偏器的光强达到最大,此时起偏器的偏振化方向与激光的振动方向一致。
3、在起偏器后放置检偏器,旋转检偏器,观察光功率计的读数变化。
4、每隔 10°记录一次光功率计的读数,直至旋转 180°。
5、重复实验多次,以减小误差。
五、实验数据及处理|角度(°)| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |||||||||||||||||||||||光强(mW)| 20 | 19 | 16 | 12 | 08 | 05 | 02 | 01 |005 | 0 | 005 | 01 | 02 | 05 | 08 | 12 | 16 | 19 | 20 |以角度为横坐标,光强为纵坐标,绘制光强与角度的关系曲线。
偏振光的实验报告
一、实验目的1. 了解偏振光的产生原理。
2. 掌握偏振光的检测方法。
3. 验证马吕斯定律,加深对光的偏振现象的认识。
二、实验原理1. 偏振光的产生光波是一种电磁波,具有横波特性。
当光波通过某些光学元件时,其振动方向会限定在某一平面内,这种光称为偏振光。
常见的偏振光产生方法有:(1)反射:当光从一种介质射向另一种介质时,部分光会被反射,反射光会发生偏振现象。
(2)折射:当光从一种介质射向另一种介质时,部分光会被折射,折射光也会发生偏振现象。
(3)起偏器:利用光学元件(如偏振片)选择性地透过某一方向的光,从而产生偏振光。
2. 偏振光的检测检测偏振光的方法主要有以下几种:(1)干涉法:利用两束偏振光相互干涉,观察干涉条纹的变化,从而判断光是否为偏振光。
(2)马吕斯定律:利用偏振片检测偏振光的振动方向,验证马吕斯定律。
(3)光电效应:利用光电探测器检测偏振光的强度变化,验证偏振光的存在。
3. 马吕斯定律当一束偏振光通过一个偏振片时,其振动方向与偏振片的透振方向平行时,光强最大;当振动方向与透振方向垂直时,光强为零。
马吕斯定律的表达式为:I = I0 cos²θ其中,I为透过偏振片后的光强,I0为入射光强,θ为入射光的振动方向与偏振片的透振方向之间的夹角。
三、实验仪器与材料1. 实验仪器:(1)He-Ne激光器(2)偏振片(两块)(3)1/4波片(两块)(4)光具座(5)白屏(6)刻度盘2. 实验材料:(1)玻璃平板(2)反射镜四、实验步骤1. 将He-Ne激光器固定在光具座上,调整激光束的传播方向,使其垂直于白屏。
2. 将一块偏振片放置在激光束的路径上,调整偏振片的透振方向,使其与激光束的振动方向平行。
3. 观察白屏上的光强变化,记录光强最大时的偏振片透振方向。
4. 将1/4波片放置在偏振片之后,调整1/4波片的位置,使透过1/4波片的光强最大。
5. 改变偏振片和1/4波片之间的夹角,观察光强变化,记录光强最小时的夹角。
偏振光学实验实验报告
偏振光学实验实验报告一、实验目的1、了解偏振光的基本概念和产生方法。
2、掌握偏振片的特性和使用方法。
3、观察和研究光的偏振现象,验证马吕斯定律。
4、了解波片的作用和线偏振光通过波片后的偏振状态变化。
二、实验原理1、偏振光的概念光是一种电磁波,其电场和磁场的振动方向垂直于光的传播方向。
一般情况下,光的振动方向是随机的,这种光称为自然光。
如果光的振动方向在某个特定的方向上具有优势,就称为偏振光。
偏振光可以分为线偏振光、圆偏振光和椭圆偏振光。
2、偏振片偏振片是一种只允许特定方向的光振动通过的光学元件。
其原理是利用某些材料的二向色性,即对不同方向的光振动吸收程度不同。
通过偏振片后的光成为线偏振光,其振动方向与偏振片的透振方向相同。
3、马吕斯定律当一束强度为 I₀的线偏振光通过一个透振方向与光振动方向夹角为θ 的偏振片时,其透过的光强 I 为:I = I₀cos²θ4、波片波片是一种能使光的偏振状态发生改变的光学元件。
常见的波片有1/4 波片和 1/2 波片。
当线偏振光通过 1/4 波片时,会变成椭圆偏振光或圆偏振光;当线偏振光通过 1/2 波片时,其偏振方向会旋转一定的角度。
三、实验仪器1、半导体激光器2、起偏器(偏振片)3、检偏器(偏振片)4、 1/4 波片5、光功率计四、实验步骤1、搭建实验光路将半导体激光器、起偏器、检偏器依次放置在光学导轨上,使激光束依次通过起偏器和检偏器,调整各器件的高度和角度,使光路保持水平。
2、观察自然光和偏振光(1)不放置起偏器,观察激光束的状态,此时为自然光。
(2)在光路中插入起偏器,旋转起偏器,观察通过起偏器后的光强变化,此时为线偏振光。
3、验证马吕斯定律(1)固定起偏器的透振方向,旋转检偏器,每隔 10°记录一次光功率计的读数。
(2)根据测量数据,绘制光强与角度的关系曲线,验证马吕斯定律。
4、研究 1/4 波片的作用(1)在起偏器和检偏器之间插入 1/4 波片,旋转 1/4 波片,观察光强的变化。
偏振光学实验报告
偏振光学实验报告偏振光的产⽣和检验⼀.实验⽬的1、掌握偏振光的产⽣原理和检验⽅法,观察线偏振光2. 验证马吕斯定律,测量布儒斯特⾓;⼆.实验原理1.光的偏振性光波是波长较短的电磁波,电磁波是横波,光波中的电⽮量与波的传播⽅向垂直。
光的偏振观象清楚地显⽰了光的横波性。
光⼤体上有五种偏振态,即线偏振光、圆偏振光、椭圆偏振光、⾃然光和部分偏振光。
⽽线偏振光和圆偏振光⼜可看作椭圆偏振光的特例。
(1)⾃然光光是由光源中⼤量原⼦或分⼦发出的。
普通光源中各个原⼦发出的光的波列不仅初相彼此不相关,⽽且光振动⽅向也是彼此不相关的,呈随机分布。
在垂直于光传播⽅向的平⾯内,沿各个⽅向振动的光⽮量都有。
平均说来,光⽮量具有轴对称⽽且均匀的分布,各⽅向光振动的振幅相同,各个振动之间没有固定的相联系,这种光称为⾃然光或⾮偏振光(见下图)。
我们设想把每个波列的光⽮量都沿任意取定的x轴和y轴分解,由于各波列的光⽮量的相和振动⽅向都是⽆规则分布的,将所有波列光⽮量的x分量和y分量分别叠加起来,得到的总光⽮量的分量Ex 和Ey之间没有固定的相关系,因⽽它们之间是不相⼲的。
同时Ex 和Ey的振幅是相等的,即Ax=Ay。
这样,我们可以把⾃然光分解为两束等幅的、振动⽅向互相垂直的、不相⼲的线偏振光。
这就是⾃然光的线偏振表⽰,如下图(a)所⽰。
分解的两束线偏振光具有相等的强度Ix =Iy,⼜因⾃然光强度I=Ix+Iy所以每束线偏振光的强度是⾃然光强度的1/2,即通常⽤图(b)的图⽰法表⽰⾃然光。
图中⽤短线和点分别表⽰在纸⾯内和垂直于纸⾯的光振动,点和短线交替均匀画出,表⽰光⽮量对称⽽均匀的分布。
(2)线偏振光光⽮量只沿⼀个固定的⽅向振动时,这种光称为线偏振光,⼜称为平⾯偏振光。
光⽮量的⽅向和光的传播⽅向所构成的平⾯称为振动⾯,如图(a )所⽰。
线偏振光的振动⾯是固定不动的,图(b )所⽰是线偏振光的表⽰⽅法,图中短竖线表⽰光振动在纸⾯内,点表⽰光振动垂直于纸⾯。
偏振光满分实验报告
一、实验目的1. 了解光的偏振现象,验证马吕斯定律。
2. 掌握偏振光的产生、检测和调节方法。
3. 熟悉偏振光在光学器件中的应用。
二、实验原理光是一种电磁波,其电场矢量在垂直于传播方向的平面内可以有不同的振动方向。
当光波的电场矢量在某一平面内振动时,这种光称为偏振光。
偏振光可以由自然光通过偏振片产生。
当一束偏振光通过另一偏振片时,根据马吕斯定律,透射光的强度与两个偏振片的夹角有关。
三、实验仪器与材料1. 激光器2. 偏振片(两块)3. 波片(1/4波片和1/2波片)4. 光具座5. 白屏6. 玻璃平板7. 检流计四、实验步骤1. 将激光器、偏振片、波片和玻璃平板依次放置在光具座上,调整好光路,使激光束垂直照射到偏振片上。
2. 将第一块偏振片(起偏器)固定在光具座上,调整其方向,使激光束通过起偏器成为偏振光。
3. 将第二块偏振片(检偏器)固定在光具座上,调整其方向,观察白屏上的光斑变化。
4. 改变检偏器的方向,观察光斑的明暗变化,验证马吕斯定律。
5. 将波片插入光路,观察光斑的变化,分析波片对偏振光的作用。
6. 改变波片的厚度,观察光斑的变化,分析波片厚度的变化对偏振光的影响。
7. 将玻璃平板插入光路,观察光斑的变化,分析玻璃平板对偏振光的作用。
8. 通过调整光路,观察圆偏振光和椭圆偏振光的形成。
五、实验数据与处理1. 在实验过程中,记录不同角度下检偏器对光斑的影响,验证马吕斯定律。
2. 分析波片厚度对偏振光的影响,得出结论。
3. 分析玻璃平板对偏振光的影响,得出结论。
4. 通过观察光斑的变化,分析圆偏振光和椭圆偏振光的形成。
六、实验结果与分析1. 实验验证了马吕斯定律,即偏振光的强度与两个偏振片的夹角有关。
2. 波片可以改变偏振光的振动方向,其厚度对偏振光的影响较大。
3. 玻璃平板可以改变偏振光的传播方向,对偏振光的作用较小。
4. 通过调整光路,成功观察到圆偏振光和椭圆偏振光的形成。
七、实验总结1. 通过本次实验,加深了对光的偏振现象的认识,验证了马吕斯定律。
偏振光实验报告结论
偏振光实验报告结论篇一:实验报告--偏振光学实验实验报告姓名: ***** 班级: ***** 学号: *****实验成绩:同组姓名:**** 实验日期:***** 指导教师:批阅日期:偏振光学实验实验目的1.观察光的偏振现象,验证马吕斯定律; 2.了解1 / 2 波片、1 / 4 波片的作用;3.掌握椭圆偏振光、圆偏振光的产生与检测。
实验原理1.光的偏振性光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度 E 称为光矢量。
在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。
如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。
此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。
若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。
如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。
2.偏振片虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光,介质的这种性质称为二向色性。
)。
偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。
用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。
实际上,起偏器和检偏器是通用的。
3.马吕斯定律设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为A0,则透过检偏器的线偏振光的强度为I式中I0 为进入检偏器前(偏振片无吸收时)线偏振光的强度。
4.椭圆偏振光、圆偏振光的产生;1/2 波片和1/4 波片的作用当线偏振光垂直射入一块表面平行于光轴的晶片时,若其振动面与晶片的光轴成α角,该线偏振光将分为e 光、o 光两部分,它们的传播方向一致,但振动方向平行于光轴的 e 光与振动方向垂直于光轴的o 光在晶体中传播速度不同,因而产生的光程差为位相差为式中ne 为e 光的主折射率,no 为o 光的主折射率(正晶体中,δ>0,在负晶体中δ<0)。
偏振光学实验实验报告
一、实验目的1. 观察光的偏振现象,验证马吕斯定律。
2. 了解1/2波片和1/4波片的作用。
3. 掌握椭圆偏振光和圆偏振光的产生与检测。
二、实验原理光是一种电磁波,具有横波特性。
当光波通过某些介质时,其振动方向会被限制在某一特定方向上,这种现象称为光的偏振。
偏振光可分为线偏振光、椭圆偏振光和圆偏振光。
马吕斯定律描述了线偏振光通过偏振片时的光强变化。
当线偏振光的振动方向与偏振片的透振方向一致时,光强最大;当两者垂直时,光强为零。
1/2波片和1/4波片是常用的偏振元件。
1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,而1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。
三、实验仪器1. 自然光源2. 偏振片3. 1/2波片4. 1/4波片5. 硅光电池6. 检偏器7. 光具座8. 透镜9. 光屏10. 毫米刻度尺四、实验步骤1. 将自然光源放置在光具座上,调整光路使其成为平行光。
2. 将偏振片放置在光具座上,使入射光通过偏振片。
3. 将检偏器放置在光具座上,调整其位置,使透过偏振片的光能够照射到检偏器上。
4. 观察检偏器上的光强变化,记录光强最大和最小时的偏振片角度。
5. 将1/2波片放置在光具座上,调整其位置,使透过偏振片的光能够照射到1/2波片上。
6. 观察1/2波片后的光强变化,记录光强最大和最小时的1/2波片角度。
7. 将1/4波片放置在光具座上,调整其位置,使透过1/2波片的光能够照射到1/4波片上。
8. 观察1/4波片后的光强变化,记录光强最大和最小时的1/4波片角度。
9. 利用马吕斯定律,计算偏振片、1/2波片和1/4波片的透振方向与光矢量振动方向的夹角。
五、实验结果与分析1. 观察到当偏振片的透振方向与光矢量振动方向一致时,光强最大;当两者垂直时,光强为零,验证了马吕斯定律。
2. 观察到1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:偏振光实验室二、实验项目名称:偏振光实验三、实验学时:四、实验原理:光波的振动方向与光波的传播方向垂直。
自然光的振动在垂直与其传播方向的平面内,取所有可能的方向;某一方向振动占优势的光叫部分偏振光;只在某一个固定方向振动的光线叫线偏振光或平面偏振光。
将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。
(一)线偏振光的产生1.非金属表面的反射和折射光线斜射向非金属的光滑平面(如水、木头、玻璃等)时,反射光和折射光都会产生偏振现象,偏振的程度取决于光的入射角及反射物质的性质。
当入射角是某一数值而反射光为线偏振光时,该入射角叫起偏角。
起偏角的数值α与反射物质的折射率n 的关系是:n =αtan (1)称为布如斯特定律,如图1所示。
根据此式,可以简单地利用玻璃起偏,也可以用于测定物质的折射率。
从空气入射到介质,一般起偏角在53度到58度之间。
非金属表面发射的线偏振光的振动方向总是垂直于入射面的;透射光是部分偏振光;使用多层玻璃组合成的玻璃堆,能得到很好的透射线偏振光,振动方向平行于入射面的。
图 1 图 22.偏振片分子型号的偏振片是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构的分子,这些分子平行地排列在同一方向上。
这种胶膜只允许垂直于分子排列方向的光振动通过,因而产生线偏振光,如图2所示。
分子型偏振片的有效起偏范围几乎可达到180度,用它可得到较宽的偏振光束,是常用的起偏元件。
图 3鉴别光的偏振状态叫检偏,用作检偏的仪器叫或元件叫检偏器。
偏振片也可作检偏器使用。
自然光、部分偏振光和线偏振光通过偏振片时,在垂直光线传播方向的平面内旋转偏振片时,可观察到不同的现象,如图3所示,图中(α)表示旋转P ,光强不变,为自然光;(b )表示旋转P ,无全暗位置,但光强变化,为部分偏振光;(c )表示旋转P ,可找到全暗位置,为线偏振光。
(二)圆偏振光和椭圆偏振光的产生线偏振光垂直入射晶片,如果光轴平行于晶片的表面,会产生比较特殊的双折射现象。
这时,非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差 d n n e )(200-=λπδ(2)式中0λ表示单色光在真空中的波长,o n 和e n 分别为晶体中o 光和e 光的折射率,d 为晶片厚度。
1.如果晶片的厚度使产生的相位差1(21)2k δπ=+,k =0,1,2,…,这样的晶片称为1/4波片,其最小厚度为0min 4()o e d n n λ=-。
线偏振光通过1/4波片后,透射光一般是椭圆偏振光;当α=π/4时,则为圆偏振光;当0=α或π/2时,椭圆偏振光退化为线偏振光。
由此可知,1/4波片可将线偏振光变成椭圆偏振光或圆偏振光;反之,它也可将椭圆偏振光或圆偏振光变成线偏振光。
2.如果晶片的厚度使产生的相差πδ)12(+=k ,k =0,1,2,…,这样的晶片称为半波片,其最小厚度为0min 2()o e d n n λ=-。
如果入射线偏振光的振动面与半波片光轴的交角为α,则通过半波片后的光仍为线偏振光,但其振动面相对于入射光的振动面转过α2角。
3. 如果晶片的厚度使产生的相差2k δπ=,k =1,2,3,…,这样的晶片称为全波片,其最小厚度为0min o e d n n λ=-。
从该波片透射的光为线偏振光。
(三)线偏振光通过检偏器后光强的变化强度为0I 的线偏振光通过检偏器后的光强θI 为θθ20cos I I =(3)式中,θ为线偏振光偏振面和检偏器主截面的夹角,(3)式为马吕斯(Malus )定律,它表示改变角可以改变透过检偏器的光强。
当起偏器和检偏器的取向使得通过的光量极大时,称它们为平行(此时θ= 00)。
当二者的取向使系统射出的光量极小时,称它们为正交(此时θ= 900)。
(四)布儒斯特角光线斜射向非金属介质的表面,当入射角是某一数值时,其反射光为线偏振光,该入射角叫起偏角,又称布儒斯特角。
以自然光入射两种介质的界面,其反射光和折射光通常都是部分偏振光。
五、实验目的:12/n n tg =α(一)理解光的各种偏振特性;(二)学会鉴别圆偏振光、线偏振光、椭圆偏振光和部分偏振光;(三)验证马吕斯定律;(四)通过测布儒斯特角求材料的相对折射率。
六、实验内容:(一)观察起偏和消光现象;(二)鉴别圆偏振光、线偏振光、椭圆偏振光和部分偏振光;(三)验证马吕斯定律;(四)了解1/4波片和1/2波片的作用;(五)通过测布儒斯特角求材料的相对折射率。
七、实验器材(设备、元器件):半导体激光器1个,具有测量垂直旋转角度功能的偏振片2个、1/4波片1个和1/2波片1个,带底座玻片1个,布儒斯特角专用旋转工作台和转动支架1个,普通光具座若干,光学导轨(两组合用)1条,光强传感器和相对光强测量仪1套。
八、实验步骤:进行以下操作时,应保证激光束与光学导轨平行,且激光束垂直穿过所有镜片的圆心,到达传感器的中心。
(一)观察起偏和消光现象。
1.起偏:将激光投射到屏上,在激光束中插入一偏振片,使偏振片在垂直于光束的平面内转动,观察透过光强的变化,并据此判断激光束(光源)的偏振情况。
2.消光:在第一片偏振片和屏之间加入第二块偏振片,将第一块固定,转动第二块偏振片,观察现象,能否找到一个消光位置,此时两偏振片的位置关系怎样?(二)验证马吕斯定律数据记录表见表1−1。
首先在光源后放上P1,使激光束垂直通过P1中心,旋转P1使光强最强(光电流的读数应在200−1500之间),记下P1的角度坐标,再在P1之后加入P2,使光线垂直通过P2中心,旋转P2到透过之光最强,记下P2的度数,此时P1和P2的夹角为θ=0°或180°,保持P1不动,旋转P2,每隔10°记录一次对应的光强值I,θ直到旋转180°。
注意光强测试仪的读数与光强成线性关系,但没有定不代表绝对光强,可以不写单位。
标,Iθ(三)1/4波片和1/2波片的作用1.1/4波片的作用:数据记录及分析表见表1−2。
保持P1不动,记下P1的度数,旋转P2到看到消光现象,记下P2的度数,然后在P1、P2之间插入1/4波片C1,并使C1转动到再次出现消光现象,记下此时C1的度数,然后使C1由消光位置分别再转过15°、30°、45°、60°、75°、90°时,每次都将P2逐步旋转360°,观察其间光强的变化情况,试问能看到几次光强极大和极小的现象?各次之间有无变化?为什么?并说明各次由C1透出光的偏振性质。
2.1/2波片的作用数据记录表见表1−3。
保持P1不动,记下P1的度数,旋转P2到看到消光现象。
(1)在P1和P2之间插入一个1/2波片,将此波片旋转360°,能看到几次消光?(2)将1/2波片任意转过一个角度,破坏消光现象,再将P2旋转360°,能看到几次消光?(3)改变1/2波片的光轴与激光通过P1后偏振方向之间夹角θ的数值,使其分别为15°、30°、45°、Array 60°、75°、90°,把P2旋转360°寻找消光位置,记录相应的角度θp2,解释上面实验结果,并由此总结出1/2波片的作用。
(四)通过测布儒斯特角求材料的相对折射率要测量玻璃的相对折射率,首先要测出空气中平面玻璃的布儒斯特角。
为此,必须在光具座上安装旋转工作台和转动支架。
参考图1−1,具体步骤如下:1.在光具座上装一个移动座,其后再放入专用移动座,并把旋转支架装到专用移动座上,再把旋转工作台装入到专用移动座上,把接收屏装入旋转支架的末端,把偏振片装在工作台与接收屏之间。
2.在移动座上装上光源。
并调整反射光、偏振片光轴、接收器光轴在同一平面内。
3.将平面玻璃样品置于旋转工作台中心,并使反射面通过旋转中心,并用压片把样品砖固定。
使反射面垂直于入射光,读下此时工作台度数i o。
转动载物台以改变入射角,致使反射光为线偏振光,即旋转接收屏前的偏振片时会出现消光现象,读下此时旋转工作台的度数i 1,记录到表1−4。
重复3次,取i 1平均值。
4.0i i i l -=,i 为所测得布儒斯特角。
由此公式求出相对折射率: tg i =n 2/n 1n 2=n 1·tg i式中 n 2为要求的相对折射率, n 1为空气的折射率,值为1。
(n 1是多少位有效数字?)九、实验数据及结果分析:(一)观察起偏和消光现象(1)起偏:在激光束中插入一偏振片,3600旋转偏振片,观察透过光强几乎看不出明暗变化,根据光源判断已起偏得到偏振光。
(2)消光:在第一片偏振片和屏之间加入第二块偏振片,3600转动第二块偏振片,观察透过光强有2次消光,2次最强的现象,在消光位置,此时两偏振片的位置相互垂直。
(二)验证马吕斯定律 P 1=__3020____, P 2=_3450___计算cos 2θ值P 1和P 2之间的夹角θ0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 光电流I θ797 780 743 693 630 534 413 240 83 8 cos θ 1.000.9850.940 0.866 0.766 0.643 0.500 0.340 0.174 0.00 cos 2θ 1.000.970 0.883 0.750 0.587 0.413 0.250 0.117 0.0300.00 绘制出I θ—θ和I θ—cos 2θ曲线图,并分析曲线的含义。
光电流I θ和P 1和P 2之间的夹角θ的关系图 从图中可以看出光电流I θ随着θ有小变大其值由最大变为零又变为最大,变化形式为余弦函数关系。
θ/度 I θI θ光电流I θ与cos 2θ关系图由2cos θ—I θ可知道2cos θ与I θ成线性关系。
(三)1/4波片的作用 o P 01= o P 5.922= o C 9041=波片λ 1C 由消光位置分别再转过 o 0 o 15 o 30 o 45 o 60 o 75 o 90 2P 旋转o 360光强几次极大,几次极小各2次 各2次 各2次 0次各2次 各2次 各2次 各次之间光强变化明显程度很明显 较明显 不明显 无变化 不明显 较明显 很明显 1C 透出光的偏振性质 线偏振 椭圆椭圆 圆偏振椭圆 椭圆 线偏振答:1/4波片可将线偏振光变成椭圆偏振光或圆偏振光;反之,它也I θcos 2θ可将椭圆偏振光或圆偏振光变成线偏振光(四)1/2波片的作用1.在P1和P2之间插入一个1/2波片,将此波片旋转3600,能看到几次消光?请加以解释。