固体物理基础-能带理论

合集下载

《固体能带理论》课件

《固体能带理论》课件
分类
导带、价带、禁带等,导带与价带之 间的区域称为能隙,决定了固体是否 导电。
能带结构的形成
原子轨道重叠
固体中的原子通过轨道重叠形成分子轨道,进一步形 成能带。
周期性结构
固体中的原子按照一定的周期性排列,导致能带结构 的周期性。
电子相互作用
电子之间的相互作用会影响能带结构,包括电子间的 排斥力和交换力等。
量子场论和量子力学
与量子场论和量子力学的结合,将有助于更全面地描述和理解固体中的电子行为 和相互作用。
谢谢聆听
新材料的设计与发现
拓扑材料
随着拓扑学的发展,将会有更多具有独特电子结构和性质的拓扑材料被发现, 为新材料的设计和开发提供新的思路。
二维材料
二维材料具有独特的物理性质和结构,未来将会有更多新型二维材料被发现和 应用。
与其他理论的结合与发展
强关联理论
固体能带理论与强关联理论的结合,将有助于更深入地理解强关联体系中的电子 行为和物理性质。
电子在能带中的状态
01
02
03
占据电子
价带中的电子被原子轨道 上的电子占据,导带中的 电子较为自由。
热激发
在温度较高时,价带中的 电子可以被激发到导带中 ,形成电流。
光电效应
光照在固体表面时,能量 较高的光子可以使价带中 的电子激发到导带中,产 生光电流。
03 固体能带理论的的基本方程,描述 了电子密度随时间和空间的变化 。
02
交换相关泛函
03
自洽迭代方法
描述电子间的交换和相关作用的 能量,是密度泛函理论中的重要 部分。
通过迭代求解哈特里-福克方程 ,得到电子密度和总能量,直至 收敛。
格林函数方法
格林函数

《固体物理能带理论》课件

《固体物理能带理论》课件

探索禁带宽度
禁带宽度的影响
深入探究禁带宽度对材料性质的 影响,介绍如何利用禁带宽度调 控材料性质。
直接/间接带隙
介绍直接带隙和间接带隙的概念 和特点,以及如何通过调控禁带 宽度实现它们之间的转换。
量子点
了解量子点的概念及其在光伏、 光催化、发光等方面的应用。
电子在周期势场中的行为
布拉歇特条件
探究布拉歇特条件的作用和意义,以及如何通过布拉歇特条件来理解材料导电性。
电子自旋
介绍电子自旋的概念和特点,以及在磁性材料中的重要作用。
量子霍尔效应
了解量子霍尔效应的概念和特点,以及其在电子学、自旋测量等方面的应用。
应用能带理论
1
太阳能电池
探究太阳能电池的原理和构造,以及如
半导体激光器
2
何利用能带理论来提高太阳能电池的性 能。
介绍半导体激光器的原理和构造,以及
如何通过能带理论来优化激光器的性能。
《固体物理能带理论》 PPT课件
通过本PPT了解固体物理能带理论,理解能带的概念和特点,并探究能带理论 在实际应用中的应用。
什么是固体物理能带理论?
晶体的电子结构
介绍晶体的基本结构和存在能带 的原因,以及能带分布的规律。
能带、狄拉克相对论
进一步探究能带的特点及其与材 料导电性的关系,介绍狄拉克相 对论的意义。
Bloch定理和能带图
介绍Bloch定理的作用,以及如何 通过能带图来描绘材料的电子结 构。
深入理解价带和导带
价带的物理意义
介绍价带中电子的特征和性 质,并探讨不同能级之间的 关系。
导带的物理意义
深入剖析导带中的电子行为, 介绍电子元件中导带的作用。
轻重空穴带

固体物理_第4章_能带理论

固体物理_第4章_能带理论

ik ( r R n ) u ( r Rn ) e u (r )
u ( r ) ,代入上式有:
(2 )
则:u (r Rn ) u (r )
即布洛赫波是振幅受到具有同晶格周期相同的周期性函数调制的平面 波。
ˆ ( R ) H HT ( R ) 0 ˆ ˆˆ T n n
根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选 择哈密顿量的本征态 (r ) 为共同本征态。
采用波恩-卡曼周期性边界条件有: N ˆ ˆ ˆ ˆ (r ) (r N1a1 ) T ( N1a1 ) (r ) T (a1 )T (a1 )T (a1 ) (r ) 1 1 (r )
,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实 这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以 及电子波函数反对称性而带来的交换作用。 能带理论是单电子近似理论,即把每个电子的运动看成是独立的 在一个等效势场中的运动。单电子近似理论最早用于研究多电子原子
,又称为哈特里(Hartree)-福克(o )自洽场方法。 把多体问题简化为单电子问题需要进行多次简化。1、绝热近似: 原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论 电子问题时可以认为离子是固定在瞬时位置上。这样多种粒子的多体 问题就简化为多电子问题;
能带理论取得相当的成功,但也有他的局限性。如过渡金属化 合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不 能把价电子看成共有化电子,周期场的描述失去意义,能带理论不 再适用。此外,从电子和晶格相互作用的强弱程度来看,在离子晶 体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起 前进的,这些情况都不能简单看成周期场中单电子运动。

§17.3 固体能带理论基础

§17.3 固体能带理论基础
分开,原子数N变化时,能带宽度不变,密度变化。 2)能带宽度随能量增加而增加,随离子对电子约束程
度增加而减少。
E N个子能级
E N个子能级
N个子能级
3)每个角量子数一定的能带中最多容纳的电子数为: 2(2l+1)N
能带被电子填满: 满带 能带未被电子填满: 导带 完全未被电子填充: 空带(激发态能级)
热运动足以使一些电子从满带进入空带,使空 带成为导带,满带中留下空穴。
E
空带
空带
E=0.1~1.5eV
价带
E=0.1~1.5eV
价带
外 场
导带中电子逆电场方向运动 ——电子导电
作 原满带中电子填补空穴
用 满带中空穴沿电场方向运动 ——空穴导电 下
“电子—空穴”对为载流子
2) n型半导体(四价元素中掺入五价元素)
同学们好!
一.物态 §17.3 固体能带理论基础
物质的聚集态:大量粒子在一定温度、压力等外界 条件下聚集而成的稳定结构状态。
p
T
一定条件下,各种物态可以相互转化,有时还可以共存。
物态 条 件
结构
热运动动能 气态 >>分子相互 完全无序
作用势能
性质
对称性
无外场时自动趋向稳 定、均匀的平衡态, 最高 无一定形状、体积。
2) 泡利不相容原理 由于共有化电子彼此间量子数不能完全相同,于是 各原子中能量相同的能级分裂为N个与原来能级接 近的新能级,组成能带来容纳这些共有化电子。
N个
数量级概念: 晶格常数:d~10-10m,1cm3中点阵数:N~1023-1024
能带宽度:△E:几个eV,子能级间隔:10-23eV
2. 能带特点 1)能带由准连续的N个子能级组成,能带之间用禁带

固体物理-能带理论

固体物理-能带理论

三维晶体中单个电子在周期性势场中的运动问题处理
电子波函数的计算
—— 根据能量本征值确定电子波函数展开式中的系数 得到具体的波函数
—— 在不同的能带计算模型和方法中 采取的理论框架相同,只是选取不同的函数集合
能带理论的局限性
一些过渡金属化合物晶体
—— 价电子的迁移率小 自由程与晶格常数相当__电子不为原子所共有 周期场失去意义__能带理论不适用了
第四章 能带理论
能带理论 —— 研究固体中电子运动的主要理论基础 —— 定性阐明了晶体中电子运动的普遍性的特点
—— 说明了导体、非导体的区别 —— 晶体中电子的平均自由程为什么远大于原子的间距 —— 半导体理论问题的基础,推动了半导体技术的发展
能带理论 —— 单电子近似的理论
每个电子的运动 —— 看成是独立的 在一个等效势场中的运动
TT T T
平移算符和哈密顿量对易 对于任意函数

微分结果一样
T H HT
T和H存在对易关系 —— 具有共同本征函数
H E T1 1 T2 2 T3 3
—— 平移算符的本征值
—— 周期性边界条件
对于 对于 对于
—— 整数
2 i l1
1 e N1
2 i l2
2 e N2
2 i l3
—— 本征值相同
为了使简约波矢 的取值和平移算符的本征值一一对应
—— 取值限制第一布里渊区
bj 2
kj
bj 2
简约波矢
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
第一布里渊区体积
简约波矢
k
l1 N1
b1
l2 N2
b2

固体物理学基础晶体的电子结构与能带理论

固体物理学基础晶体的电子结构与能带理论

固体物理学基础晶体的电子结构与能带理论在固体物理学中,研究晶体的电子结构是一项重要的课题。

晶体是由周期性排列的原子或分子组成的固体,而其电子行为对于晶体的性质以及各种物理现象的理解至关重要。

能带理论是描述晶体中电子行为的一种重要模型,通过能带理论,我们可以更好地理解晶体材料的导电、绝缘和半导体特性等基本特性。

首先,让我们来了解晶体的电子结构。

晶体中的原子或分子排列成一定的周期性结构,这种结构会对电子的行为产生重要影响。

在晶体中,电子的行为可以近似地看作是存在于一系列能级中,称为能带。

能带可以被分为价带和导带,其中价带中的电子被束缚在原子核附近,而导带则存在着自由电子。

晶体的周期性结构使得电子在其中受到布里渊区的限制。

布里渊区是倒格子中一个基本单元,它是晶体中全部电子状态所覆盖的空间。

当电子在布里渊区内运动时,具有周期性的波动特性,其波矢量(k)和波函数(Ψ)可以描述电子在晶体中的运动。

能带理论则进一步解释了电子如何填充在能级中。

根据泡利不相容原理,每个能级只能容纳一个电子,因此能带在填充时会出现能级填充顺序的规律。

根据能带的填充情况,我们将晶体分为导体、绝缘体和半导体三类。

对于金属晶体,由于其导带和价带之间存在较小的能隙,几乎所有能级都可以被电子填充,因此金属具有良好的导电性能。

对于绝缘体晶体,导带和价带之间存在较大的能隙,这意味着电子必须获取足够的能量才能从价带跃迁到导带。

由于常温下绝缘体的电子很难获得足够的能量,因此导带中很少有电子,绝缘体表现出非常低的导电性能。

而在半导体晶体中,导带和价带之间的能隙处于介于绝缘体和金属之间的状态。

半导体的电导率可以通过控制掺杂或加热等方式进行调节。

除了以上三类基本晶体材料,还有一类特殊的材料,称为拓扑绝缘体。

拓扑绝缘体是一种新兴的研究领域,它们具有特殊的能带结构和边界态,可以展现出一些非常有趣的现象和性质。

总结起来,固体物理学中研究晶体的电子结构和能带理论是了解晶体导电、绝缘和半导体等基本特性的重要途径。

固体物理学:第四章 能带理论

固体物理学:第四章 能带理论
第三步简化 —— 周期性势场 所有离子势场和其它电子的平均场是周期性势场
能量本征值的计算 选取某个具有布洛赫函数形式的完全集合,晶体中
的电子的波函数按此函数集合展开。
将电子的波函数代入薛定谔方程,确定展开式中的 系数应满足的久期方程,求解久期方程得到能量本征 值。
电子波函数的计算
根据能量本征值确定电子波函数展开式中的系数, 得到具体的波函数。
能带理论是研究固体中电子运动的主要理论基础。 能带理论对固体中电子的状态进行了较为精确的物理 描述,成功地解释了固体的导电性,所以它一直是固 体物理学的核心部分之一。
(#) (#)中
能带理论是用量子力学研究固体中电子的运动规律,把原 本复杂的多体问题经过一定的近似处理后,转化为一个电子在 周期性势场中的运动,晶体中其它所有电荷的影响均可以用此 单电子的周期性势场来概括。有时也称能带理论为固体的单电 子理论。
这一能级分裂成由 N条能级组成的能带后,能 带最多能容纳 2N(2l +1)个电子。
例如,1s、2s能带,最多容纳 2N个电子。
2p、3p能带,最多容纳 6N个电子。
电子排布时,应从最低的能级排起。
能带理论强调了共有化的价电子以及在波矢 空间中的色散关系,在解释实验现象和预测物理 性质方面都取得了可观的成功。说明了导体、非 导体的区别,是研究半导体理论问题的基础,推 动了半导体技术的发展。
能带理论是一个近似理论,存在着一定的局限性。
注意:能带理论的局限性
1. 一些过渡金属化合物晶体 价电子的迁移率小, 自由程与晶格间距相当, 电
子不为原子所共有, 周期场失去意义,能带理论不适 用了。
2.非晶态固体 非晶态固体和液态金属只有短程有序,两种物质的电
子能谱显然不是长程序的周期场的结果。

固体物理-第四章 能带理论

固体物理-第四章 能带理论

V* , v, V分别是倒易原胞,晶格原胞和整个晶体的 体积, N = N1N2N3是原胞总数。
k-空间中单位体积中的状态密度为V/(2p)3 .每个 布里渊区k的数目为: V*/(V*/N)=N
4.1.基本概念
4.1.4.定态微扰简述 处于定态的粒子体系,受到一个微小的恒定的扰动后体 系的状态和能量等发生微小的变化。对于简并和非简并 情况处理方法不同。 1.非简并微扰 体系的哈密顿算符为 Ĥ=Ĥ0+ĥ (4.1.4.1) Ĥ0的本征值和本征函数是已知的或者可以精确求解的且 不存在简并。Ĥ0的本征方程为: Ĥ0y n (0) = En (0)y n (0) (4.1.4.2) n能级序号,ĥ 微扰项。为便于比较,令ĥ=lĤ’ , l<<1, Ĥ’ 的作用相当于Ĥ0,但Ĥ’不等于Ĥ0。。于是 Ĥ=Ĥ0+ lĤ’
第四章 能带理论

4.1.基本概念 4.2.近自由电子近似 4.3.紧束缚近似 4.4.晶体中电子的速度、准动量及有效质量 4.5.固体导电性能的能带理论解释 4.6.晶体中电子的态密度 4.7.能带理论的局限性
4.1.基本概念
4.1.1.能带理论的基本假定 晶体由离子实(原子核+内层电子)和外层的价电子组成。 价电子的哈密顿量应该考虑:价电子的动能,离子实的动 能,价电子之间,离子实之间,价电子与离子实之间的相 互作用势能。 为了简化用单个电子在静止的周期势场中的运动,来描述 晶体中所有等同电子的状态. 在上述假定下,晶体中价电子的哈密顿算符 Ĥ=-ħ22/2m +V(r) ( 4.1.1.1) 其中, V(r+Rn)=V(r), 它包含代替价电子相互作用的平均势 与离子实的周期势。 格矢,Rn=n1a1+ n2a2 + n3a3, n1, n2, n3为整数, a1,a2 ,a3 为晶胞 的单位矢量. r ,电子的位矢.

固体物理(第14课)能带理论

固体物理(第14课)能带理论
i k Rn
根据布洛定理,有 k ( r Rn ) e e e 因而有:
k (r)
e uk ( r ) uk ( r )
i k Rn i k r i k ( Rn r )
uk ( r Rn ) uk ( r )
i k r
上式表明,在周期场中 运动的单电子,其能量 本征函数
l1、l2、l3 Z
为了确定本征值,引入玻恩-卡门边界条件
( r ) ( r N1a1 ), ( r ) ( r N 2a2 ), ( r ) ( r N 3a3 ),
N1
N N1 N 2 N 3
( r N1a1 ) T1 ( r ) 1 ( r ),
(r) u(r) eikr
比较
势场为0
正离子
周期势场 正离子
电子波函数
周期性势场
势场中电子的波函数
6.1.1 布洛赫定理的证明
平移对称性
晶体势场的周期性是晶格平移对称性的反映,即晶格 在平移对称操作下是不变的。 T(Rn)平移算符表示使r到r+Rn的平移操作相当的算符。 其意义是使T(Rn)作用在任意函数f(r)上产生新的函数 f(Rn+r)。 T(Rn) f(r)= f(Rn+r) 晶体中的平移算符共有N1×N2×N3种 平移算符彼此对易,即:
k ( r N1a1 N 2a2 N 3a3 ) eik( N a N a N a ) k ( r ) 因此有:N1a1 N 2a2 N 3a3 2 n
1 1 2 2 3 3
l1 l2 l3 而此仅当 k b1 b2 b3 N1 N2 N3 时才能满足。

固体物理学中的电子结构和能带理论

固体物理学中的电子结构和能带理论

固体物理学中的电子结构和能带理论固体物理学是研究物质的电子结构、自旋、磁性、导电、热学等性质的分支学科。

而电子结构与能带理论是固体物理学中最基础、最基本的概念之一。

电子结构指的是物质中电子的分布状态。

在经典物理学中,物质中的电子被视为点电荷,可以精确地计算出电子在各个位置上的势能的大小。

但是,在量子力学中,电子被视为一种波动性粒子,其能量和动量在各个方向上都是有限制的。

因此,在固体中,每个电子存在着特殊的运动方式,也即是所谓的“波函数”。

能带理论是电子结构理论中的一种,用于解释在固体物质中电子结构与导电性等现象。

能带即不同电子能量的总体能量段。

在能带理论中,一个电子在周期性势场作用下发生运动,其波函数可以写成布洛赫函数的形式。

由于电子的波函数受局限于介质的周期性势场,存在独特的运动方式,所以电子的能量只能分布在特定能量范围内,而不是一种连续的分布。

电子的能量态分布在空间中的不同区域、形成电子能带结构或禁带结构。

由于禁带存在,在晶体中当电子没有激发到更高的能量带时,这些电子是不能参与导电的,因此,晶体的导电性与禁带的大小有着密切的联系。

除此之外,电子的运动、能量和动量在车里士空间中是有限制的,车里士空间即为由倒易格子所构成的空间。

倒易空间的概念,在固体物理学中也是非常重要的概念之一。

由倒易空间的性质可以分析出生长晶体过程中的晶格常数大小对于晶体中能带结构的影响。

总之,电子结构与能带理论在固体物理学、材料学、电子学等领域的应用不可谓不广泛。

对于制造半导体材料与计算机芯片来说,这些概念至关重要。

同时,电子结构理论的另一大作用,是使得物理学者们在研究电子结构时,更进一步理解微观世界的本质。

《固体物理》能带理论

《固体物理》能带理论
固体的能带理论的建立:1928,F. Bloch 应用量子理论研 究固体的电子运动,提出Bloch定理,奠定了现代量子固体 物理的基础。1931年,A. H. Wilson 依据能带理论,成功 地解释了金属、绝缘体和半导体的差别(定性研究)。
1964, W. Kohn等建立密度泛函理论, 借助与计算机,能够定量计算高分子、纳 米材料、介观器件等。(精确计算)
五、能带的近似理论
2)单电子近似
其他电子的影响忽略,或归结到势场。
理由:由于泡利不相容原理,两电子 间的平均距离较大。
3)周期场近似
离子实或其他电子的作用归结为一个周期
性势场:
V
(r )
V
(r
Rn
)
五、能带的近似理论
能带问题简化为“单电子在周期场”的运动
H (r) E (r)
2 2m
电子的动量。
hk 被称为“晶体动量”,K是描述电子状态
的一个量子数。
§3-2 近自由电子近似
实际晶格中,势能是周期性变化的, 若势能起伏不太大
取平均势 势的起伏用微扰论处理(周期性微扰)
一、模型和微扰计算
V
周期势: V (x) V (x la)
1.零级近似:
, x 0, x L V (x) V , 0 x L
2
V
(r)
(r)
E
(r)
本 章 下 面 的 内 容 主 要 讨 论 这 种 单 电 子 Schordinger 方程的求解方法——初等量子力学
§3-1 布洛赫定理
Next:怎样求解周期场中的Schordinger 方程
一、Bloch 定理(1)
在周期性势场中运动的电子的波 函数可写成布洛赫波的形式:

能带理论

能带理论

能带理论是研究固体中电子运动规律的一种近似理论。

固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。

为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。

能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出.能带和能带隙具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。

前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。

能级(Enegy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。

每个壳层上的电子具有分立的能量值,也就是电子按能级分布。

为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。

能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。

致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。

从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。

禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。

原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。

被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。

价带(Valence Band):原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。

适合初学者看的能带理论

适合初学者看的能带理论

03
分子能带理论
分子能级与电子排布
分子能级
分子中的原子在相互振动时,会形成 不同的能级,这些能级决定了分子的 稳定性和化学反应能力。
电子排布
分子中的电子按照能量高低在不同轨 道上排布,形成不同的电子构型,对 分子的化学性质产生影响。
分子光谱与电子跃迁
分子光谱
通过分析分子吸收或发射的光谱,可以了解分子内部能级结 构和电子排布。
量子计算与量子通信的能带理论基础
量子计算
量子计算利用量子力学的特性进行信息处理,能带理论在理解量子比特和量子门操作等 方面发挥了重要作用。
量子通信
量子通信利用量子态的传输进行信息传递,能带理论在量子密钥分发和量子隐形传态等 方面提供了理论基础。
能带理论与其他物理理论的交叉研究
凝聚态物理
能带理论与凝聚态物理密切相关,通过研究 不同材料的能带结构和物理性质,可以深入 理解物质的微观结构和宏观性质。
光子禁带
在光子晶体的能带结构中,某些频率的光不能在其中传播,这种现象被称为光子禁带。光子禁带的存在可以用来 控制光的传播和光与物质的相互作用。
光子在介质中的传播与散射
传播
当光子在介质中传播时,会受到介质的折射和反射。折射和反射的性质取决于光子的波长和介质的性 质。
散射
当光子与介质中的原子或分子相互作用时,可能会发生散射。散射会导致光的方向改变和能量的损失 。散射的性质取决于介质的微观结构和光子的波长。
太阳能电池原理与应用
01
02
03
光吸收与能带结构
太阳能电池利用半导体材 料的能带结构,通过光吸 收产生光生载流子,从而 实现光电转换。
光电转换效率
能带理论有助于理解光电 转换效率的限制因素,为 提高太阳能电池效率提供 理论指导。

固体物理--能带理论 ppt课件

固体物理--能带理论  ppt课件




e
i
a 2

E
at s

A

J


ia
kx ky kz
ia
e 2
ia
kx ky kz

e 2 kx k y kz e 2 kx k y kz


e
i
a 2
kx ky kz
a
a
于是
eikna 1 n
因此得 kna 2s 1nπ 所以 k 2s 1 π s 0,1,2...
a
(2)
icos
π a
x

a

icos
π a
x

π

eikna cos
x a

eikna i n

kna 2s 3 nπ
ia
e 2
kx ky kz


E sat

A
2J
e
i
a 2
k
x

k
y


cos
kza 2

e
i
a 2
k
x
ky

cos
kza 2


i a
e2kx ky源自coskza 2
e
i
a 2

k
x

k
y

cos
kza 2


E
at s

A
4J
α

能带理论基础

能带理论基础

h3 h1 h2 k= b1 + b2 + b3 N1 N2 N3
ik ⋅aα
这里b1,b2和b3为倒格子基矢,于是有
λα = e
aα ⋅ bβ = 2πδ αβ
ψ ( r + Rl ) = ψ ( r + l1a1 + l 2 a2 + l 3a3 )
= T T T ψ (r ) = λ λ λ ψ (r )
②证明: (1)平移算符 由于势场的周期性反映了晶格的平移对称性,可定 义一个平移算符Tα,使得对于任意函数f(r)有
Tα f ( r ) = f ( r + aα )
这里,aα,α=1, 2, 3是晶格的三个基矢。 而
Tα Tβ f ( r ) = Tα f ( r + aβ ) = f ( r + aβ + aα )
周期性势场: U ( x ) = U ( x + a ) 作Fourier展开:
这表明,这两个波矢量k和k’= k+Gn所描述的电子在 晶体中的运动状态相同。因此,为了使k和平移算符的 本征值一一对应, k必须限制在一定范围内,使之既 能概括所有不同的λ的取值,同时又没有两个波矢k相 差一个倒格矢Gn。与讨论晶格振动的情况相似,通常 将k取在由各个倒格矢的垂直平分面所围成的包含原点 在内的最小封闭体积,即简约区或第一布里渊区中。
第五章
能带理论基础
§1 能带论的基本假设
1、能带的形成: Li 1s22s1 Li2 LiN
N个原子组成的固体,如能级分裂宽度(最大差别)5eV, N=1023, 则次能级的平均间隔约为5×10-23eV,完全可以视为连续分布。 能带的形成不是由于周期性,而是来源于原子多

固体物理学中的能带理论

固体物理学中的能带理论

固体物理学中的能带理论固体物理学是研究固体物质特性和行为的学科。

其中,能带理论是固体物理学中的重要内容之一。

这个理论的提出和发展,深刻地影响着我们对物质的认识和应用。

在本文中,将介绍能带理论的基本概念、理论构建的主要过程以及对实际应用的影响。

1. 能带理论的基本概念能带理论是描述固体材料中电子结构的理论框架。

它基于量子力学的原理,认为在固体中,电子的运动状态和能量分别由多个能带和能带间的禁带带宽所决定。

能带是指具有类似能量水平的电子能级。

禁带带宽则表示在能带之间禁止电子的能量范围。

2. 理论构建的主要过程能带理论的构建经历了一系列的发展过程。

最早的一些能带理论如卢瑟福模型和Drude模型,是基于经典力学和经典电动力学的假设,对于一些简单情况具有一定的解释能力。

然而,这些模型无法解释复杂固体中的行为,因为它们没有考虑到量子力学效应。

在量子力学的框架下,人们使用薛定谔方程和波函数的理论来描述电子在固体中的行为。

经典的能带理论建立在Bloch定理的基础上,该定理认为固体中的电子具有周期性的晶格势场作用下的波函数形式。

通过求解薛定谔方程,我们可以得到电子的能量本征值和本征态。

3. 对实际应用的影响能带理论的提出和发展对固体物理学的研究产生了深远的影响。

首先,能带理论提供了解释固体材料电子运动行为的一个理论模型。

它可以解释金属、绝缘体和半导体等不同类型材料的电导特性,以及它们在外界条件下的响应。

其次,能带理论对材料的设计和合成起着重要作用。

通过对能带结构的调控,我们可以设计出具有特定能带特性的新材料。

例如,针对光电子器件应用的材料,我们可以通过调节能带结构来实现不同波长的能带过渡和光电转换。

而且,能带理论也对半导体器件的工作原理给出了关键的解释。

例如,能带理论对于理解和优化半导体二极管、晶体管和太阳能电池等器件的性能至关重要。

它可以揭示不同物理机制对器件行为的影响,为器件的设计和优化提供了指导。

总结起来,能带理论是固体物理学中一项重要的理论构建。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NZ
e j 1 j i 4 0 ri r j
NZ
1
2
NZ ve ri i 1
1 ve ri 2
e2 j 1 j i 4 0 ri r j
NZ
1
2)单电子近似
• 电子体系的哈密顿量变为:
ˆ T Rm Rn r Rm Rn r 又 ˆ T ˆ r r T R Rm Rn m Rn Rm Rn Rm Rn 将Rn =e Rn 带入得 Rm Rn = Rn + Rm , 仅当 是Rn的线性函数 时满足,因此取 Rn =k Rn , 则
Bloch定理说明
ik Rn r Rn e r
i k r k r e uk r , uk r Rn uk r
用Bloch波函数描述的电子,或遵从周期势单电子薛 定谔方程的电子,称为Bloch电子; 布洛赫波的特征:周期性条幅的平面波;当平移晶 ik R 格矢量 ������ ������ 时,波函数只变化一个相位因子 e n • 表明在不同原胞的对应点上,波函数只相差一个相 位因子,波函数的大小相同,所以电子出现在不同 原胞的对应点上几率是相同的。这是晶体周期性的 反映。
将使矢量 ������ 平移 ������ ������ ,即
ˆ f r f r R T n Rn
各平移算符之间互相对易
ˆ T ˆ f r T ˆ f r R f r R R T m n m Rn Rn Rm ˆ T ˆ f r T ˆ f r R f r R R T n m n R R Rm m n ˆ T ˆ f r T ˆ T ˆ f r T ˆ T ˆ T ˆ T ˆ T Rm Rn Rn Rm Rm Rn Rn Rm ˆ ,T ˆ 0 T Rn Rm
• 周期场近似:不管单电子势具体形式如何,假设它具有与 晶格相同的平移对称性;
V ri Rn V ri
Bloch定理

Bloch定理:单电子势V(r)取周期性势场,即 V(r+Rn)=V(r)时, 对应单电子薛定谔方程 2 2 V r r r 2m 的本征函数,是按布拉维格子周期性调幅的平面波,即
• 将平移算符作用在其上可得 ˆ u (r ) T ˆ e ik r ( r ) T Rn Rn k
固体物理基础
能带理论1
固体系统的哈密顿量
考虑有N个带正电荷Ze的原子核(离子实),相应有NZ个电 子(价电子)的体系; 原子核和电子的位置矢量分别用Rn和ri表示; 整个体系的哈密顿量:
ˆ T ˆ V R , R T ˆ V (r , r ) V ( R , r ) H n nm n m e ee i j ne n i
NZ N NZ
2
2
2
1)波恩-奥本海默(Born-Oppenheimer)近似

Born-Oppenheimer近似:考虑到原子核(离子实)和电子 在质量上的巨大差别(数千倍),电子的速度比原子核要 快很多;因而可以认为在原子核运动的每一个瞬间,电子 的运动快到足以实时调整其状态;当只关注电子体系的状 态时,可以认为原子核是固定在其给定瞬时位置上(因认 为原子核的运动并不会造成电子态之间的跃迁,只会引起 各电子态连续的、绝热的变化,所以也称绝热近似)。
Bloch定理的证明
由于势场的周期性,以及微分算符与坐标原点的平移无关, 因此单电子哈密顿量具有平移对称性,即
2 2 ˆ 2 2 ˆ H r Rn r Rn V r Rn r V r H r 2m 2m
2
dr r Rn dr =1 Rn 1
2 2
−������������������
������
的形式,即������ ������ + ������ ������ 与������ ������ 只差一个
Bloch定理的证明
• 另外平移符的特性:连续两次平移 ������ ������ 和 ������ ������ ,相当于一 ˆ T ˆ r T ˆ 次平移 ������ ������ + ������ ������ ,即 T r ; Rm Rn Rm Rn
ˆ T ˆ V (r , r ) V ( R , r ) H e e ee i j ne n i
2
1
• 在单电子近似下,整个电子体系的哈密顿量是各个分立单 电子哈密顿量之和;多体问题简化成了单体问题。
ˆ ii i H
Hatree-Fock 平均场近似
3)周期场近似
• 单电子哈密顿量
或表述为:对上述单电子薛定谔方程的每一个本征解, 对属于布拉维
格子的所有格矢 ������ ������ 成立。
• Bloch定理
Bloch定理 ik R r Rn e r
n
• Bloch波函数可以写成如下形式
i k r R i k R i k r n n • 证明 r Rn e uk r Rn e e uk r Rn k ik Rn ik r ik Rn e e uk r e k r
i k r k r e uk r , uk r Rn uk r
• Bloch波函数是按Bravais格子周期性调制的平面波; ‘When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal….By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation’ F. BLOCH
2 Ze i2 ve ri i 1 2m i 1 i 1 n 1 4 0 ri Rn 2 2 NZ N NZ 1 Ze ˆ i2 ve ri H i i 1 2m n 1 4 0 ri Rn i 1 NZ NZ NZ N
1 1 Ze 2 n 2 n ,m 4 0 Rn Rm n 1 2 M
N 2 2
1 1 e 1 Ze 2 i 2 i , j 4 0 ri rj n 1 i 1 4 0 Rn ri i 1 2m
r e uk r
ik r
且������������ ������ + ������ ������ = ������������ ������ 对 ������ ������ 取布拉维格子的所有格矢成
立。

ik Rn 存在波矢������,使得 r Rn e r
Bloch定理的证明


势场的周期性是晶格的平移对称性的结果,即平移任意晶格 矢量 ������ ������ = ������1 ������ 1 + ������2 ������ 2 + ������3 ������ 3 时,晶格保持不变;
引入平移算符������������������ ,其定义为������������������ 作用在任意函数������ ������ 上,
电子体系的哈密顿量

ˆ T ˆ V (r , r ) V ( R , r ) H e e ee i j ne n i
NZ
NZ N 2 2 1 1 e2 1 Ze2 i 2 i , j 4 0 ri rj i 1 n 1 4 0 ri Rn i 1 2m
Bloch定理的证明
ˆ r r T Rn Rn 由 r Rn Rn r ˆ r r R T n Rn 由波函数的归一性
r
������ ������ ������ 可写成������ ������ ������ =������ 相位因子。
哈密顿量与平移算符对易,证明如下:
2 2 ˆ ˆ TRn Hf r r Rn V r Rn f r Rn 2m 2 2 ˆ r R HT ˆ ˆ f r r V r f r Rn Hf n Rn 2 m ˆ H ˆ HT ˆ ˆ H ˆ ,T ˆ 0 T Rn Rn
2 e 2 ˆ (令Z=1) H i i ve ri 2m n 1 4 0 ri Rn 2 2 2 1 e i2 ve ri i2 V ri 2m 2m Rn 4 0 ri Rn N 2
1
2 1 e • 单电子势 V r v r i e i Rn 4 0 ri Rn
i
R =eik R
n
n
ˆ r r R r eik Rn r ,也即H ˆ 的本证 即:T n Rn Rn ik Rn 函数满足 r Rn e r 。
• 如果定义一函数
uk ( r ) e ik r ( r ) 也即 ( r )=eik r u k ( r )
相关文档
最新文档