北师大版八年级数学下册:5.3《分式的加减法》习题
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(有答案解析)(3)
![(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(有答案解析)(3)](https://img.taocdn.com/s3/m/9002820d33d4b14e8424686c.png)
一、选择题1.若关于x 的分式方程3111m x x-=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠ B .4m ≥-且3m ≠- C .2m ≥且3m ≠D .4m >-2.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( ) A .1010302x x -= B .102010602x x += C .1010302x x+= D .102010602x x-= 3.已知113x y -=,则代数式21422x xy y x xy y----的值( ) A .4B .9C .-4D .-84.若关于x 的一元一次不等式组312(2)213x x x a +≤-⎧⎪-⎨<⎪⎩的解集为x≤-5,且关于x 的分式方程24233ax x x ++=--有非负整数解,则符合条件的所有整数a 的和为( ) A .-6 B .-4 C .-2 D .05.若关于x 的方程2033x a x x ++=++有增根,则 a 的值为( ) A .1 B .3 C .4 D .56.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 7.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定8.若分式293x x -+的值为0,则x 的值为( )A .4B .4-C .3或-3D .39.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -111.若关于x 的分式方程222x m x x=---的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .2,3D .1,312.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1-B .1C .3D .3-二、填空题13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.已知2a b=,则a b a b +-=_____.15.若x 2-x -1=0,则232x x x--=___.16.x 的取值范围是______. 17.要使分式3x 2-有意义,则x 的取值范围是___________.18.如果2y =,那么y x =_______________________. 19.计算22111m m m---,的正确结果为_____________. 20.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______.三、解答题21.先化简2222121a a a a ⎛⎫-- ⎪-+⎝⎭÷221a aa +-,然后从0,1,2中选一个合适的数作为a 的值代入求值.22.计算:2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 23.先化简,再求值:221b a a b a b ⎛⎫÷- ⎪--⎝⎭,其中12a =,13b =-. 24.为应对新冠疫情,某药店到厂家选购A B 、两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.8元,若用7000元购进A 品牌数量是用4900元购进B 品牌数量的2倍.(1)求A B 、两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2.2元,B 品牌口罩每个售价为3.3元,药店老板决定一次性购进A B 、两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个? 25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.(1)化简:221111x x x ⎛⎫÷- ⎪-+⎝⎭(2)先化简再求值:22224221121a aa a a a --⎛⎫-+÷ ⎪+--+⎝⎭,其中2=a .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m+3=x﹣1,再由整式方程的解为非负数得到m+4≥0,由整式方程的解不能使分式方程的分母为0得到m+4≠1,然后求出不等式的公共部分得到m的取值范围.【详解】解:去分母得m+3=x﹣1,整理得x=m+4,因为关于x的分式方程311mx x-=--1的解是非负数,所以m+4≥0且m+4≠1,解得m≥﹣4且m≠﹣3,故选:B.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.D解析:D【分析】设骑车学生每小时走x千米,则设乘车学生每小时走2x千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x千米,则设乘车学生每小时走2x千米,由题意得:102010602x x-=,故选:D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.A解析:A【分析】由11x y=3,变形得y-x=3xy,然后整体代入代数式,计算化简,即可得到结论.【详解】解:由11x y=3,得y xxy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xyxy xy----=4.故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.4.D解析:D 【分析】先解不等式组,根据不等式组的解集得到a 的范围,再解分式方程,根据分式方程的解为非负数得到a 的值,即可求解. 【详解】解:不等式组整理得:523x x a -⎧⎨<+⎩,由解集为5x -,得到235a +>-,即4a >-, 分式方程去分母得:()2234ax x --+-=, 整理得:(2)12a x -=, 解得:122x a=-, 由x 为非负整数,且3x ≠,得到21a -=,2,3,6,12, 解得1a =或0或1-或4-或10-4a >-,1a 或0或1-,符合条件的所有整数a 的和为1010+-=. 故选:D . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.A解析:A 【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可. 【详解】解:分式方程去分母得:20x a ++=, 由分式方程有增根,得到x+3=0,即x=-3, 把x=-3代入整式方程得:320a -++=,解得1a =故选:A . 【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.6.A解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.7.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.8.D解析:D 【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得. 【详解】由题意得:2903x x -=+,则290x ,即29x =,由平方根解方程得:3x =±, 分式的分母不能为0, 30x ∴+≠,解得3x≠-,则x的值为3,故选:D.【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】原式=211m mm m---=21m mm--=(1)1m mm--=m,故选:A.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明11.D解析:D【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【详解】等式的两边都乘以(x - 2),得x = 2(x-2)+ m , 解得x=4-m ,且x≠2,由关于x 的分式方程的解为正数, ∴4-m >0,4-m≠2 ∴m<4且m≠2则满足条件的正整数 m 的值为m=1,m=3, 故选: D. 【点睛】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.12.D解析:D 【分析】先将分式方程化为整式方程,再将1x =代入求解即可. 【详解】解:原式化简为81233ax a x +=-, 将1x =代入 得81233a a +=- 解得-3a =.当a =-3时a -x=-3-1=-4≠0 ∴a =-3 故选则:D . 【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键解析:92【分析】 解方程得到2ab=,代入代数式即可得到结论. 【详解】 解:44a b b a+=,两边同时乘以a b得:2()44a a b b +=⨯,∴2ab=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】本题考查了分式的化简求值,求得ab的值是解题的关键. 14.3【分析】首先由可设a =2kb =k 然后将其代入即可求得答案【详解】解:∵∴设a =2kb =k ∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k 法设出未知数解析:3 【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案.【详解】解:∵2ab=, ∴设a =2k ,b =k ,∴a b a b +-=22k kk k +-=3. 故答案为:3. 【点睛】本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.2【分析】把x2-x-1=0变形得x2-1=x 然后对分式进行化简再代入求值【详解】∵x2-x-1=0∴x2-1=x ∵故答案是:2【点睛】本题主要考查分式的化简求值掌握分式的减法运算是解题的关键解析:2 【分析】把x 2-x -1=0变形得x 2 -1=x ,然后对分式进行化简,再代入求值. 【详解】 ∵x 2-x -1=0, ∴x 2 -1=x ,∵232x x x --=()222221322222x x x x x x x x x----====,故答案是:2. 【点睛】本题主要考查分式的化简求值,掌握分式的减法运算是解题的关键.16.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键解析:3x ≤且2x ≠- 【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得. 【详解】 由题意得:2030x x +≠⎧⎨-≥⎩,解得3x ≤且2x ≠-, 故答案为:3x ≤且2x ≠-. 【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.17.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2 【分析】根据分式有意义得到分母不为0,即可求出x 的范围. 【详解】 解:要使分式3x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2. 【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0.18.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可. 【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.19.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.20.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式=11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 三、解答题21.1a a +,32【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案.【详解】解:原式=[22(1)(1)a a a --﹣1]÷(1)(1)(1)a a a a ++- =(2111a a a a ----)÷1a a - =111a a a a +-⋅- =1a a+, ∵a≠1且a≠0,∴a =2,当a =2时, 原式=21322+=. 【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 22.33m - 【分析】根据分式的性质化简即可;【详解】原式()()()2333333m m m m m m m +⎛⎫+=- ⎪+++-⎝⎭, ()()()233333m m m m +=++-, 33m =-; 【点睛】本题主要考查了分式的化简,准确计算是解题的关键.23.1a b+,6 【分析】 根据分式的性质将分式进行化简,再将a 和b 的值代入即可求解.【详解】原式()()()b b a b a b a b =÷+-- ()()()b a b a b a b b -=⨯+- 1a b=+ 将12a =,13b =-代入上式,得:原式6= 【点睛】 本题考查了分式的化简求值,解题关键是熟练掌握分式的性质,在计算除法时,要注意除以一个数等于乘以这个数的倒数.24.(1)A 品牌口罩每个进价为2元,B 品牌口罩每个进价为2.8元;(2)最少购进B 品牌口罩2000个.【分析】(1)设A 品牌口罩每个进价为x 元,则B 品牌口罩每个进价为(0.8)x +元,根据用7000元购进 A 品牌数量是用4900元购进B 品牌数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进B 品牌口罩m 个,则购进A 品牌口罩(6000)m -个,根据总利润 =每个的利润⨯销售数量(购进数量)结合这批口罩全部出售后所获利润不低于1800元,即可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:(1)设A 品牌口罩每个进价为x 元,则B 品牌口罩每个进价为(0.8)x +元, 依题意,得:7000490020.8x x =⨯+, 解得:2x =,经检验,2x =是所列方程的解,且符合题意,0.820.8 2.8x ∴+=+=,答:A 品牌口罩每个进价为2元,B 品牌口罩每个进价为2.8元.(2)设购进B 品牌口罩m 个,则购进A 品牌口罩(6000)m -个,依题意,得:(2.22)(6000)(3.3 2.8)1800m m --+-≥,解得:2000m ≥.答:最少购进B 品牌口罩2000个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,理解题目的意思列出方程和不等式是解题的关键.25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)21x -,(2)21a +,2- 【分析】(1)先计算括号内的分式减法,再算除法即可;(2)先依据分式运算法则和顺序化简,再代入求值即可.【详解】解:(1)221111x x x ⎛⎫÷- ⎪-+⎝⎭,2211111x x x x x +⎛⎫=÷- ⎪-++⎝⎭, 221·1x x x x+=-, ()()21·11x x x x x +=+-,21x =-; (2)22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭, ()()()()22212·1112a a a a a a a--=++-+-, 22(1)11a a a a -=-++, 21a =+, ∵2=a ,∴a=2(不符合题意,舍去)或a=-2,把a=-2代入,原式2221-+==-. 【点睛】本题考查了分式的运算和分式化简求值,解题关键是熟练运用分式的运算法则和运算顺序解题.。
北师版八年级下册数学精品教学课件 第五章 分式与分式方程 第3课时 异分母分式的加减(2)
![北师版八年级下册数学精品教学课件 第五章 分式与分式方程 第3课时 异分母分式的加减(2)](https://img.taocdn.com/s3/m/ab8e33d1c9d376eeaeaad1f34693daef5ef713b9.png)
3
m
m3
3m
3
2m (m 3)
m 3m 3
m
m3
3m
3
从 1,-3,3 中任 选一个你喜欢的 m 值代入求值.
1. m3
当
m
=
1
时,原式
1 1
3
1 2
做一做
先化简,再求值: 1 x 1
x
2 2
,其中 1
x
2.
解:
1 x 1
2 x2 1
1 x 1
2 (x 1)(x 1)
(x 1)
2
(x 1)(x 1) (x 1)(x 1)
计算结果要化为最简分式或整式.
例解4:原计式算: (m1)2m22
2m
5 2m
m
5 ••232m3mm4mm;41
2
(m
或
2)(2 2m
m)
9 m2 • 2m 2
先算括号里的
2m 3m
加法,再算括
3 m3 m 22 m
•
号外的乘法
2m
3m
2m 3 2m 6.
注:当式子中出现整式时,把整式看成整体,并把
第五章 分 式
5.3 分式的加减法
第3课时 异分母分式的加减(2)
复习引入 1. 分式的乘除法则是什么?用字母表示出来:
b d bd a c ac
b d b c bc a c a d ad
2. 分式的加减法则是什么?用字母表示出来:
b d bc ad bc ad a c ac ac ac
异分母 通分 相加减 转化为
同分母 分母不变 相加减 转化为
分子 (整式) 相加减
2. 分式的混合运算法则 先算乘除,再算加减;如果有括号先算括号内的.
北师版八年级下册数学第5章 分式与分式方程 异分母分式的加减法
![北师版八年级下册数学第5章 分式与分式方程 异分母分式的加减法](https://img.taocdn.com/s3/m/562dd0b7970590c69ec3d5bbfd0a79563c1ed45b.png)
整1数)+,其1结+果为1__+____+_____1____. 1 3 2 4 3 5 n(n+2)
3n2+5n 4(n+1)(n+2)
知1-练
感悟新知
知识点 2 分式加减的应用及分式混合运算
知2-练
例2 小刚家和小丽家到学校的路程都是3km,其中小丽走的是 平路,骑车速度是2vkm/h.小刚需要走1km的上坡路、 2km的下坡路,在上坡路上的骑车速度为vkm/h,在下 坡路上的骑车速度为3vkm/h.那么 (1)小刚从家到学校需要多长时间? (2)小刚和小丽谁在路上花费的时间少?少用多长时间?
知1-讲
特别解读: 通分的关键是确定最简公分母,分式与分式相加减时的最简 公分母是各分母的所有因式的最高次幂的积.
感悟新知
例1 计算:
(1) (32) (3a) 15 ; a 5a
1 1; x3 x3
知1-练
2a 1
a2
4
a
. 2
解:(1) 3 a 15 15 a 15 15 a 15 a 1 ;
(2)分式加减运算的结果要约分,化为最简分式(或整式).
课堂小结
异分母分式的加减 法
某学生化简分式出1现了+错误1 ,解答过程如下:
原式
x+1 x2-1
=(x+1)1(x-1)+(x+1)2(x-1)(第一步)
=(x+1)1+(2 x-1)(第二步)
=
3 x2-1
.(第三步)
课堂小结
异分母分式的加减 法
C.D.
-x x+2
x x- 2
知1-练
感悟新知
3. 计算的结a2+果2是ab(+b2 -) b
A
a2-b2 a-b
北师大八年级数学下册《分式的加减法》习题.docx
![北师大八年级数学下册《分式的加减法》习题.docx](https://img.taocdn.com/s3/m/dc9eea990740be1e640e9a3e.png)
初中数学试卷 桑水出品《分式的加减法》习题一、填空题1.计算:242+-x = .2.计算:aba b b a +=++________.3.分式25,34c abc a 的最简公分母是_________..4.计算:23124xy x +=________.5. 计算213122xx x ---- 的结果是____________..6.计算:abc ac ab 433265+-= .7.若222222m xy y x yx y x y x y --=+--+,则m =________.8.当分式2121111y y y ---+-的值等于零时,则x =_________.二、选择题:1.下若x x 1=,则分式36224+-+x x x 的值为( )A .0B . 1C .-1D .-22.分式x-y +22y x y +的值为( ) A. 22x y y x y -++ B .x+y C. 22x yx y ++D.以上都不对3. 如果分式b a b a +=+111,那么a bb a+的值( )A .1B .-1C .2D .-24.化简11(m )(n )n m -÷-的结果是( )A .1B .m nC .nm D .-15.化简11123x x x ++等于( )A .12xB .32xC .116xD .56x6.计算37444a a b b a b b a a b ++----得( ) A .264a b a b +-- B .264a b a b+- C .2- D .2 三、解答题1.计算(1)222)3(9)3(x y x y x ----- (2)211x x x --- (3)4412222+----+x x x x x x (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭2.已知21(y 1)(y 2)12y A B y y +=+-+-+,求A 、B 的值. 3.先化简,再求值:26333x x x x x x +-+--,其中32x =. 4. 一项工程,甲工程队单独完成需要m 天,乙工程队单独完成比甲队单独完成多需要n 天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?参考答案一、填空题1. 答案:2x x 2+ 解析:【解答】242+-x =2(x 2)42x 442x x 2x 2x 2x 2x 2++-=-=+++++ 【分析】根据分式加减的运算法则化简即可.2.答案:1;解析:【解答】1a b a b a b a b b a a b a b a b++=+==+++++ 【分析】根据分式加减的运算法则化简即可.3. 答案:15bc 2;解析:【解答】分式24a a 3bc 5c与的最简公分母是15bc 2 【分析】根据最简公分母的定义分析即可.4. 答案:264x y x y+; 解析:【解答】2223162444x y xy x x y x y +=+=264a b a b +【分析】根据分式加减的运算法则化简即可.5. 答案:32-; 解析:【解答】213122x x x ----=2313(1)3121212---=-=----()()x x x x x 【分析】根据分式加减的运算法则化简即可.6. 答案:10c 8b 912abc-+; 解析:【解答】abc ac ab 433265+-=10c 8b 910c 8b 912abc 12ac 12abc 12abc -+-+= 【分析】根据分式加减的运算法则化简即可.7. 答案:2x ;解析:【解答】2222222222222222()----=+=+=--+---m xy y x y xy y x y x x y x y x y x y x y x y,∴m=x 2. 【分析】把2222--+-+xy y x y x y x y化简即可. 8. 答案:23; 解析:【解答】2222212112(y 1)1321111111y y y y y y y y y -+---=--=--+-----,∴3y-2=0,y=23 【分析】把2121111y y y ---+-化简,然后根据给出的条件求出x 的值即可.二、选择题1. 答案:C ;解析:【解答】∵xx 1=即x 2=1,36224+-+x x x =2222(x 3)(x 2)x 2x 3+-=-+=1-2=-1,故选C. 【分析】根据xx 1=求出x 2=1,把分式36224+-+x x x 化简得x 2-2,把x 2=1代人即可. 2. 答案:C ;解析:【解答】原式=222222221x y y x y y x y x y x y x y x y--++=+=++++,故选C. 【分析】把x-y +22y x y+化简即可知答案. 3. 答案:B ;解析:【解答】∵11a b 1a b ab a b ++==+,∴(a+b)2=1即a 2+b 2+2ab=ab ,原式=a b b a +=22a b ab +=ab 1ab -=-,故选B.【分析】根据分式111a b a b +=+得a 2+b 2=-ab ,化简原式代人即可. 4. 答案:B. 解析:【解答】11111(m )(n )1mn mn mn m m n m n m n mn n----÷-=÷=⨯=-,故选B. 【分析】根据分式的混合运算法则把11(m )(n )n m -÷-化简即可. 5. 答案:C ;解析:【解答】11163211236666++=++=,x x x x x x x故选C. 【分析】根据分式加减的运算法则把11123++x x x 化简即可. 6. 答案:D ;解析:【解答】37373728244444444a a b b a a b b a a b b a b a b b a a b a b a y a b a b a b++----+-=--===--------,故选D. 【分析】根据分式加减的运算法则把37444a a b b a b b a a b ++----化简即可. 三、解答题1. 答案:(1)33+-x x ;(2)11x -;(3)2)2(4--x x x ;(4)12y -+; 解析:【解答】(1)222)3(9)3(x y x y x -----222x 9(x 3)(x 3)x 3(x 3)(x 3)x 3-+-+===---; (2)211x x x ---=222(1)(1)11111+---=-----x x x x x x x x x =11x -; (3)4412222+----+x x x x x x =222222x 2x 1x 4x x x 4x(x 2)(x 2)x(x 2)x(x 2)x(x 2)+-----=-=----- (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭=22(y 1)(y 1)32111114y y y y y y y y ⎛⎫-+---÷-=⨯ ⎪-----⎝⎭211(y 2)(y 2)y y y --=⨯-+-=12y -+ 【分析】根据分式加减的运算法则化简即可.2.答案:A=1,B=1;解析:【解答】21)2)(1(12++-=+-+x B x A x x x =()()A(x 2)B(x 1)x 1x 2++--+=()()A B x 2A B x 1x 2++--+(),所以:A+B=2,2A-B=1,解得A=1 ,B=1 【分析】把A B x 1x 2+-+化简得()()A B x 2A B x 1x 2++--+(),根据21)2)(1(12++-=+-+x B x A x x x求出A、B的值即可.3. 答案:13 3解析:【解答】原式=(x2-x-6+3x-9)/x(x-3)=(x2+2x-15)/x(x-3)=(x+5)(x-3)/x(x-3)=(x+5)/x=1+5/x=1+5/(3/2)=1+10/3=13/3【分析】根据分式加减的运算法则化简,然后把x的值代人即可.4. 答案:(m2+mn)/(2m+n)(天)解析:【解答】甲单独需m天完成,所以甲每天做1/m,乙单独完成比甲单独完成多需n天,所以乙每天做1/(m+n),所以二人每天共做:1/m+1/(m+n)=(2m+n)/m*(m+n)所以乙合作1/((2m+n)/m(m+n))=(m2+mn)/(2m+n)(天)完成【分析】根据题意列出相应的分式,然后化简即可.。
53《分式的加减法》习题含解析北师大八年级下初二数学试题试卷.doc
![53《分式的加减法》习题含解析北师大八年级下初二数学试题试卷.doc](https://img.taocdn.com/s3/m/9913245db7360b4c2f3f642c.png)
《分式的加减法》习题一. 填空题1 •计算:2——-- _________ ■x + 22. __________________________ 计算:—+ —=a+b b+a 3. 分式出~,亠】的最简公分母是 3bc 5c 2314•计算:二-+ —7 = _________ •2xy 4x 2 l-3x5.计算 ------------- -- 的结果是x — 1 2 — 2x523---------------- 1 ------- 6cib 3ac 4abc二. 选择题:2 .分式x-y+ 2^—的值为 x+ y A 兀_『+2于x+ yD •以上都不对3. 如果分式丄+ - = —!— a b a+ bA. 1B. C. 2 D. -26•计算:7•若in^72小一于 o 2 广-y8.当分式占----- 的值等于零时,则兀=1.下若X =—Xn I八八兀4 +兀__ 6则分式x 2 +3的值为(A. 0B.C. -1D. -2B.x+yc.4. ------------------------------- 化简(m ) -5- (n -------------------------------- )的结果是()n m三、解答题1 •计算A ・1m B ・— nn C-— mD ・一 11 3c.11 A.B ■—2x2x6x6 •计算3° a + b _ + ------------7b -得( )) a-4b 4b 一 aa-4bB. 5•化简P 界等于2a + 6b a-4b D.5 6x A .a-4bC. -2D. 29 —y (3-x)2-------- x-\ x-l(3)x+2 x-l x 2 -2x x 2 -4x + 4(4)y-l-J- y + 1 —2•已知2y+i二丄+丄求A、B的值.(y-l)(y+ 2) y-\ y + 23.先化简,再求值:乞-总+ £,其心|.4.一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?5 2 3 10c 8b 9 10c-8b + 9---------------- 1 -------- - ---------------------- 1 -------- = -------------------6ab 3ac4abc 12abc 12ac 12abc 12abc【分析】根据分式加减的运算法则化简即可.一、填空题答案:2x x + 2解析:参考答案【解答】2一一 二"x + 2) 一_= x+2 x+2x+22x + 4__ _ x + 2 x + 22xx + 2【分析】根据分式加减的运算法则化简即可.2. 答案:1;解析:【解答】厶+上二厶+上_ =旦=1 a + b b + a a + b a + b a + b 【分析】根据分式加减的运算法则化简即可.3・答案:15bc 2;/4 Q g解析:【解答】分式臥与忘的最简公分母是叫?【分析】根据最简公分母的定义分析即可.4.答案:6x + y 4x 2yy 6a + b解析:【解答】詁存花+心S【分析】根据分式加减的运算法则化简即可.35. 答案:—;2解析:【解答】—-一匕竺二 ——=_3(x-l) = _3X —1 2 — 2x x — 1 2(x — 1)2(x — 1) 2【分析】根据分式加减的运算法则化简即可.6.答案:10c —8b + 912abc解析: 【解答】7.答案:x 2;解析:【解答】』^ =耸•[ +xr - y- x" _ y_ x+ y 【分析】把I'」':+匚1化简即可._ y x + y28.答案:-31乂4 + 2 _ §【分析】根据兀=—求出x 2=l,把分式 ----------- - ----- 化简得X 2-2,把xJl 代人即可.x 厂+32.答案:C ;解析:【解答】原式二兰二2+221 =匕_厂+221 =苕+厂,故选C.1 x+ y x+ y x+ y x+y【分析】把x ・y+2Zl 化简即可知答案. x+ y3. 答案:B :解析:【解答】V — 4- — =°» 二—-—,.*.(a+b)2=l BP a 2+b 2+2ab=ab,原式a baba + ba b a 2 + b 2-ab(ba abab 【分析】根据分式-+-=-^—得,+b —Fb,化简原式代人即可.a b a + b4.答案:B.心" …2、 ( 1、 z 1 mn -1 mn-\ mn -1 m m解析: 【解答】(m ——)-(n ---------- ) = ----------- 一 ----- = --------- x ----------- =—, 故选 B.n m n m n mn-l nm 2xy - y 2 x - y 2xy - y 2 (x- y)2 x 2 . 2解析:【解答】2(y —1) y + 1 2 一 2 2 2 一 ^4^,・・・3y ・2=0, y — 1 y + 1 y — 1 y* — 1 y" y — 1 y — 12y= —3【分析】把R2 1- ----- 化简,然后根据给出的条件求岀x 的值即可. y+1 y-l二. 选择题I.答案:C ;解析:【解答1 Vx = - gp x 2=l,X故选C.【分析】根据分式的混合运算法则把(m- -) 一 (n -丄)化简即可. n m5. 答案:C ;解析:【解答】丄+丄+丄」+3+2』,故选C.x 2x 3x 6x 6x 6x 6x【分析】根据分式加减的运算法则把丄+丄+丄化简即可. x 2x 3x6. 答案:D ;3a a + b 7b 3a a + b 7b 3a-a-b-lb 2a-Sb -------------- + --------------- = = ----------- a-4b 4b-a a-4b a-4b a-4y a-4b a _4b a-4b 故选D.【分析】根据分式加减的运算法则把』一+皂巴-一—化简即可. a-4b 4b _ a a- 4b三、解答题“亠 、兀+ 31 x-41 1.答案:(1);(2) ; (3)c * (4)x-3x-lx(x-2)2y+2解析:【解答】(1)x 2 - y9-yx 2-9(x+3)(x-3)x+3 (—3)2(3-x)2(x-3)2-(x-3)2x-3/、(兀 +1)(兀—1)0—1 1(2) -------- x - \ = ------------------------------ = ------------------ = ------- ;x-\x-\ x-\ x-\ x-\ x-\ (3) x + 2—I _ x + 2 x-l 二 x?-4 x? -x = x-4 x 1 - lx x 2 -4x + 4 x(x-2) (x -2)2 x(x -2)2 x(x -2)2 x(x -2)2(4)= 2_. y-1 二__1_y -1 (y+ 2)(y- 2)y + 2【分析】根据分式加减的运算法则化简即可.2.答案:A=l, B= 1 ;解析:【解答】亠・=丄+ ^=A,+ 2):B(T)= (A :B) : + 2A — B(x-l)(x + 2) x-l x + 2(x-l)(x + 2) (x -l)(x + 2)所以:A+B=2, 2A-B=1,解得 A=1 , B 二 1解析: 【解答】yj Iy —i 丿2 — y . ((y+l)(y-l)2一儿 y_i 人-oy-\ 4求出A. B 的值即可.1 33・答案:—3济军析:【解答】原式=(x'-x-6+3x-9)/x(x-3)=(x'+2x-15)/x(x-3)=(x+5)(x-3)/x(x-3)=(x+5)/x= 1 +5/x= 1 +5/(3/2) = 1 + 10/3=13/3【分析】根据分式加减的运算法则化简,然后把x 的值代人即可.4. 答案:(m 2+mn)/ (2m+n)(天)解析:【解答】甲单独需m 天完成,所以甲每天做1/m,乙单独完成比甲单独完成多需n 天,所以 乙每天做 1/ (m+n),所以二人每天共做:1/m+l/ (m+n) = (2m+n) /m* (m+n) 所以乙合作 1/ ( (2m+n) /m (m+n) ) =(m 2+mn)/ (2m+n)(天)完成 【分析】根据题意列出相应的分式,然后化简即可.【分析】把 化简得(A + B) x + 2 A — B (x —l)(x + 2)2兀+1(兀一1)(兀 + 2)。
2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案
![2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案](https://img.taocdn.com/s3/m/3a4e2dbe988fcc22bcd126fff705cc1755275f91.png)
2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案一. 教材分析《同分母分式的加减法》是北师大版数学八年级下册第五章第三节的一部分。
本节内容是在学生已经掌握了分式的基本概念、分式的乘除法运算的基础上进行的,是分式运算的一个重要组成部分。
通过本节的学习,使学生掌握同分母分式的加减法运算法则,进一步提高学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了分式的基本概念,分式的乘除法运算,因此对于同分母分式的加减法有一定的认知基础。
但学生在解决实际问题时,对于如何运用同分母分式的加减法法则还是会存在一定的困难。
因此,在教学过程中,要注重引导学生理解和掌握同分母分式的加减法法则,并能够运用到实际问题中。
三. 教学目标1.理解同分母分式的加减法法则,并能够熟练运用。
2.能够解决实际问题,提高解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.同分母分式的加减法法则的掌握和运用。
2.解决实际问题,将理论知识运用到实际中。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等,引导学生主动探究,合作学习,提高学生的动手操作能力和解决实际问题的能力。
六. 教学准备1.PPT课件2.教学案例3.分组讨论的准备七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,引导学生思考如何解决这些问题。
例如,计算下列分式的和:(1)34+14;(2)25+35。
2.呈现(10分钟)通过PPT课件,展示同分母分式的加减法法则,引导学生理解并掌握。
同分母分式的加减法法则是:同分母分式相加减,分母不变,分子相加减。
3.操练(10分钟)让学生分组进行讨论,每组给出几个同分母分式的加减法问题,并求解。
例如,计算下列分式的和:(1)34+14;(2)25+35;(3)47+27;(4)5 9−19。
4.巩固(5分钟)让每个小组选出一个问题,向全班展示他们的解题过程和结果,教师进行点评,巩固学生对同分母分式的加减法法则的掌握。
2022年北师大版八下《异分母分式的加减》配套练习(附答案)
![2022年北师大版八下《异分母分式的加减》配套练习(附答案)](https://img.taocdn.com/s3/m/ed0fdb9658fafab068dc020c.png)
5.3 分式的加减法第2课时 异分母分式的加减一、判断正误并改正: (每题4分,共16分) 1. ab a b a a b a a b a --+=--+=0〔 〕2.11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x 〔 〕3.)(2121212222y x y x +=+〔 〕4.222b a c b a c b a c +=-++〔 〕二、认真选一选:(每题4分,共8分)1. 如果x >y >0,那么xy x y -++11的值是〔 〕 A.零B.正数C.负数2. 甲、乙两人分别从相距8千米的两地同时出发,假设同向而行,那么t 1小时后,快者追上慢者;假设相向而行,那么t 2小时后,两人相遇,那么快者速度是慢者速度的〔 〕 A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+三、填一填:1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 22y x M -=2222y x y xy --+yx y x +-,那么M=____________. 6. 假设〔3-a 〕2与|b -1|互为相反数,那么ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 假设0≠-=y x xy ,那么分式=-x y 11____________. 9. 计算22+-x x -22-+x x =____________.第1课时 三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A. 80° B. 80°或20° C . 80°或50° D. 20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ . 10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF= _________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
数学北师大版八年级下册认识分式
![数学北师大版八年级下册认识分式](https://img.taocdn.com/s3/m/256aeed74693daef5ef73de1.png)
目录Word版习题第一章三角形的证明1.1 等腰三角形第1课时全等三角形和等腰三角形的性质第2课时等边三角形的性质第3课时等腰三角形的判定与反证法第4课时等边三角形的判定1.2 直角三角形第1课时勾股定理及其逆定理第2课时直角三角形全等的判定周周练(1.1~1.2)1.3 线段的垂直平分线第1课时线段垂直平分线的性质与判定第2课时三角形三边的垂直平分线1.4 角平分线第1课时角平分线的性质定理及其逆定理第2课时三角形三个内角的平分线章末复习(一) 三角形的证明单元测试(一) 三角形的证明第二章一元一次不等式与一元一次不等式组2.1 不等关系2.2 不等式的基本性质2.3 不等式的解集2.4 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用周周练(2.1~2.4)2.5 一元一次不等式与一次函数2.6 一元一次不等式组小专题(一) 一元一次不等式(组)的解法章末复习(二) 一元一次不等式与一元一次不等式组单元测试(二) 一元一次不等式与一元一次不等式组第三章图形的平移与旋转3.1 图形的平移第1课时平移的认识第2课时平移与坐标变化3.2 图形的旋转3.3 中心对称周周练(3.1~3.3)3.4 简单的图案设计章末复习(三) 图形的平移与旋转单元测试(三) 图形的平移与旋转期中测试第四章因式分解4.1 因式分解4.2 提公因式法第1课时提单项式因式分解第2课时提多项式因式分解4.3 公式法第1课时运用平方差公式因式分解第2课时运用完全平方公式因式分解小专题(二) 因式分解章末复习(四) 因式分解单元测试(四) 因式分解第五章分式与分式方程5.1 认识分式第1课时认识分式第2课时分式的基本性质及约分5.2 分式的乘除法5.3 分式的加减法第1课时同分母分式的加减法第2课时异分母分式的加减法第3课时分式的加减混合运算小专题(三) 分式的运算周周练(5.1~5.3)5.4 分式方程第1课时分式方程的概念及解法第2课时分式方程的应用章末复习(五) 分式与分式方程单元测试(五) 分式与分式方程第六章平行四边形6.1 平行四边形的性质第1课时平行四边形的边、角的性质第2课时平行四边形的对角线的性质6.2 平行四边形的判定第1课时平行四边形的判定定理1、2第2课时平行四边形的判定定理3及平行线之间的距离小专题(四) 平行四边形的性质与判定6.3 三角形的中位线周周练(6.1~6.3)6.4 多边形的内角和与外角和章末复习(六) 平行四边形单元测试(六) 平行四边形期末测试161期末复习期末复习(一) 三角形的证明期末复习(二) 一元一次不等式与一元一次不等式组期末复习(三) 图形的平移与旋转期末复习(四) 因式分解期末复习(五) 分式与分式方程期末复习(六) 平行四边形电子导学案第一章三角形的证明1.1 等腰三角形第1课时全等三角形和等腰三角形的性质第2课时等边三角形的性质第3课时等腰三角形的判定与反证法第4课时等边三角形的判定1.2 直角三角形第1课时勾股定理及其逆定理第2课时直角三角形全等的判定1.3 线段的垂直平分线第1课时线段垂直平分线的性质与判定第2课时三角形三边的垂直平分线1.4 角平分线第1课时角平分线的性质定理及其逆定理第2课时三角形三个内角的平分线第二章一元一次不等式与一元一次不等式组2.1 不等关系2.2 不等式的基本性质2.3 不等式的解集2.4 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用2.5 一元一次不等式与一次函数第1课时一元一次不等式与一次函数(1)第2课时一元一次不等式与一次函数(2)2.6 一元一次不等式组第1课时一元一次不等式组(1)第2课时一元一次不等式组(2)第三章图形的平移与旋转3.1 图形的平移第1课时平移的认识第2课时平移与坐标变化3.2 图形的旋转3.3 中心对称3.4 简单的图案设计第四章因式分解4.1 因式分解4.2 提公因式法4.3 公式法第1课时运用平方差公式因式分解第2课时运用完全平方公式因式分解第五章分式与分式方程5.1 认识分式第1课时认识分式第2课时分式的基本性质及约分5.2 分式的乘除法5.3 分式的加减法第1课时同分母分式的加减法第2课时异分母分式的加减法第3课时分式的加减混合运算5.4 分式方程第1课时分式方程的概念及解法第2课时分式方程的应用第六章平行四边形6.1 平行四边形的性质第1课时平行四边形的边、角的性质第2课时平行四边形的对角线的性质6.2 平行四边形的判定第1课时平行四边形的判定定理1、2第2课时平行四边形的判定定理3及平行线之间的距离6.3 三角形的中位线6.4 多边形的内角和与外角和第1课时多边形的内角和第2课时多边形的外角和PPT课件第一章三角形的证明1.1 等腰三角形第1课时全等三角形和等腰三角形的性质第2课时等边三角形的性质第3课时等腰三角形的判定与反证法第4课时等边三角形的判定1.2 直角三角形第1课时勾股定理及其逆定理第2课时直角三角形全等的判定1.3 线段的垂直平分线第1课时线段垂直平分线的性质与判定第2课时三角形三边的垂直平分线1.4 角平分线第1课时角平分线的性质定理及其逆定理第2课时三角形三个内角的平分线第二章一元一次不等式与一元一次不等式组2.1 不等关系2.2 不等式的基本性质2.3 不等式的解集2.4 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用2.5 一元一次不等式与一次函数2.6 一元一次不等式组第三章图形的平移与旋转3.1 图形的平移第1课时平移的认识第2课时平移与坐标变化3.2 图形的旋转3.3 中心对称3.4 简单的图案设计第四章因式分解4.1 因式分解4.2 提公因式法4.3 公式法第1课时运用平方差公式因式分解第2课时运用完全平方公式因式分解第五章分式与分式方程5.1 认识分式第1课时认识分式第2课时分式的基本性质及约分5.2 分式的乘除法5.3 分式的加减法第1课时同分母分式的加减法第2课时异分母分式的加减法5.4 分式方程第1课时分式方程的概念第2课时分式方程的解法第3课时分式方程的应用第六章平行四边形6.1 平行四边形的性质第1课时平行四边形的边、角的性质第2课时平行四边形的对角线的性质6.2 平行四边形的判定第1课时平行四边形的判定定理1、2第2课时平行四边形的判定定理3及平行线之间的距离6.3 三角形的中位线6.4 多边形的内角和与外角和。
北师大版 八年级下册第五章分式与分式方程5.3分式的加减法(第2课时)教案设计
![北师大版 八年级下册第五章分式与分式方程5.3分式的加减法(第2课时)教案设计](https://img.taocdn.com/s3/m/d1af4662ccbff121dd368355.png)
5.3 分式的加减法(第2课时异分母分式的加减)教学目标1.会找最简公分母,能进行分式的通分.2.理解并掌握异分母的分式加减法法则.教学重点异分母的分式加减法法则.教学难点异分母分式的通分.课时安排1课时教学过程导入新课小学我们学习过异分母分数的加减法,如13+12=1×23×2+1323⨯⨯=56,那么如何计算11x+-21x-呢?探究新知异分母的分式加减法法则异分母的分式相加减,先通分,化为同分母的分式,再按同分母分式的加减法法则进行计算.[合作探究,解决问题]思考:通分的原则是什么?异分母通分时, 通常取各分母的最简公分母作为它们的共同分母.追问:如何进行通分呢?(1)找出各分式中各分母的最简公分母;(2)利用分式的基本性质,将各分式的分子与分母同时乘以同一个适当的式子,使各分式的分母化成最简公分母,使各分式化成分母相同的分式.思考:确定最简公分母的方法与步骤是怎样的?(1)最简公分母的系数是各分母的系数的最小公倍数;(2)各分母中所含的相同字母或多项式取最高次幂;(3)对于只在一些分母中含有的字母或多项式,连同它的指数一起当作最简公分母的一个因式.[练一练]找出下列各题中的各个分式的最简公分母.(1)22y a x ,23x y ,14xy ; (2)13x + ,13x - ; (3)214a - ,12a - ; (4)5x y - ,23()x y - .解:(1)12a 2xy 2;(2)(x +3)(x -3);(3)(a +2)(a -2);(4)(x -y )2.【例1】计算:(1)3a +155a a-; (2)13x --13x +; (3)224a a --12a -.【互动】学生自主解答,小组讨论,老师统一讲解,对存在问题进行点评.解:(1)3a +155a a -=155a +155a a -=15155a a +-=5a a =15; (2)13x --13x +=3(3)(3)x x x +-+-3(3)(3)x x x --+ =(3)(3)(3)(3)x x x x +--+-=33(3)(3)x x x x +-++-=269x -. (3)224a a --12a - =2(2)(2)a a a -+-2(2)(2)a a a +-+ =2(2)(2)(2)a a a a -+-+ =22(2)(2)a a a a ---+ =2(2)(2)a a a --+ =12a +. [老师总结]分母是多项式时,应先因式分解,目的是为了找最简公分母以便通分.【例2】有一客轮往返于重庆和武汉之间,第一次往返航行时,长江的水流速度为a 千米/时;第二次往返航行时,正遇上长江汛期, 水流速度为 b 千米/时(b >a ).已知该船在两次航行中,静水速度都为v 千米/时,问该船两次往返航行所花时间是否相等,若你认为相等,请说明理由;若你认为不相等,请分别表示出两次航行所花的时间,并指出哪次时间更短些?分析:重庆和武汉之间的路程一定,可设其为s ,所用时间=顺流时间+逆流时间,注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,把相关数值代入,比较即可.解:设两次航行的路程都为s . 第一次所用时间为s v a+ +s v a - =222vs v a -, 第二次所用时间为s v b + +s v b - =222sv v b -. ∵b >a ,∴b 2>a 2,∴v 2-b 2<v 2-a 2, ∴222sv v b->222vs v a -. ∴第一次的时间要短些.【总结】(学生总结,老师点评)(1)运用分式解决实际问题时,用分式表示实际问题中的量是解决问题的关键;(2)比较分子相同的两个分式的大小,分母大的反而小.课堂练习1.计算1a +1+1a (a +1)的结果是( ) A.1a +1B.1a a +C.1aD.1a a + 2.计算24142x x ---的结果是( ) A.-12x + B.12x + C.-12x - D.264x x --- 3.计算: (1)32b a a b+ ; (2)21211a a +--;(3)22x y x y y x xy+-- . 4.已知实数a 、b 满足ab =1,求下列分式的值. (1)11a b a b +++ ; (2)221111a b +++.参考答案1.C2.D3.解:(1)22236b a ab + . (2)11a + . (3)2y x- . 4.解:(1)原式=a ab a + +1b b+ =11b ++1b b+=1. (2)原式=2ab a ab+ +2ab b ab +=b a b ++a a b +=1. 课堂小结1、异分母分式的加减法法则:异分母的分式相加减,先通分,化为同分母的分式,再按同分母分式的加减法法则进行计算.2、最简公分母的确定方法:(1)系数:取分母中各系数的最小公倍数;(2)因式:凡各分母中出现的不同因式都要取到;(3)因式的指数:相同因式取指数最高的.布置作业教材随堂练习/习题5.5的第1、2、3题板书设计异分母分式的加减法异分母的分式相加减,先通分,化为同分母的分式,再按同分母分式的加减法法则进行计算.。
北师大版八年级数学下册分式的加减法练习试题及答案
![北师大版八年级数学下册分式的加减法练习试题及答案](https://img.taocdn.com/s3/m/ebb94f9584868762caaed5db.png)
3.3 分式的加减法(1)一、目标导航1.同分母的分式的加减法的运算法则及其应用;2.简单的异分母的分式相加减的运算.二、基础过关1.计算:(1)ab ab c ab c 743+-= ;(2)ab b b a a -+-= ; (3)=+-+3932a a a __________;(4)abcac ab 433265+-= . 2.下列计算正确的是( )A .m m m 312=-+B .1=---ab b b a a C .212122++=++-+y y y y y D .b a a b b b a a -=---1)()(22 3.分式25,34ca bc a 的最简公分母是_________. 4.计算:242+-x = . 5.计算213122x x x ---- 的结果是____________. 6.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.7.计算:(1)ab a b 1+- (2) ab b a ab b a 22)2()2(+--(3)222)3(9)3(x y x y x ----- (4)22225421a a a a a a --+--8.先化简,再求值:))(())((2222a c b a b c c a b a b a ---+---,其中3=a ,2-=b ,1-=c .三、能力提升9.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 10.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 11.化简11x y y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1 B .x y C .y x D .-1 12.计算:(1)969392222++-+++x x x x x x x (2)23111x x x x -⎛⎫÷+- ⎪--⎝⎭13. 已知03461022=+--+b a b a ,求ab a b ab a ab b a b a b a -++⨯-÷⎪⎭⎫ ⎝⎛+-2222222的值.四、聚沙成塔已知x +y 1=z +x 1=1,求y +z 1的值.3.3分式的加减法(1)1.⑴abc -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.。
北师大版八年级下册数学第五章《分式与分式方程》综合练习题
![北师大版八年级下册数学第五章《分式与分式方程》综合练习题](https://img.taocdn.com/s3/m/a63fff90b84ae45c3a358c22.png)
《分式与分式方程》综合练习题一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6 7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.15.(2009春•营山县期末)已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.(2020秋•北京期末)依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=++,则++=三.解答题(共10小题)21.(2021•包河区三模)市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.(2021•平房区三模)某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.(2021•岳阳二模)岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.(2021•宝安区模拟)为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.(2020秋•香洲区期末)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.(2021春•滨湖区期中)小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.(2021春•大兴区期中)已知非零实数a、b满足等式,求的值.28.(2020秋•连山区期末)阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.(2020秋•乌苏市期末)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.30.(2021•禅城区校级一模)先化简(1﹣)÷,再从0,2,﹣1,1中选择一个合适的数代入并求值.参考答案一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=50【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据“现在生产400台机器所需时间比原计划生产450台机器所需时间少1天”列出方程即可.【解答】解:设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据题意,得﹣=1.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,利用本题中“生产400台机器所需时间比原计划生产450台机器所需时间少1天”这一个隐含条件,进而得出等式方程是解题关键.2.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.3.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.15【考点】分式方程的解;解一元一次不等式组.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据不等式组的解集为x≥6,列出不等式,求出a的范围;解出分式方程的解,根据方程的解是正整数,列出不等式,求得a的范围;检验分式方程,列出不等式,求得a的范围;综上所述,得到a的范围,最后根据方程的解是正整数求得满足条件的整数a的值,求和即可.【解答】解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.【点评】本题考查了解一元一次不等式组,解分式方程,注意解分式方程一定要检验.4.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.5【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;一元一次不等式(组)及应用;推理能力.【分析】分别求出满足不等式有解与分式方程的解为正数的a的取值范围,再求出其中满足使分式方程的解为正整数的a的整数值,注意舍去增根的情况.【解答】解:解不等式①得x<2,解不等式②得x>﹣1,∵不等式组有解,∴﹣1<2,解得a<9,解分式方程=4﹣得y=,∵方程的解为正数,∴>0且≠3,∴a>﹣且a≠3,∴﹣<a<9且a≠3,满足使方程的解为正整数的整数a的值有0,6两个.故选:A.【点评】本题考查一元一次不等式组与分式方程的解,解题关键是求解过程要注意分式方程的增根情况.5.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣1【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据“结果比原计划提前一周完成任务”即可得出关于x的分式方程,此题得解.【解答】解:设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据题意,得:=+1.故选:C.【点评】本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.6.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据有且只有两个整数解列出不等式求出a的范围;解分式方程,根据解为正数,且y﹣1≠0,得到a的范围;然后得到a的范围,再根据a为整数得到a的值,最后求和即可.【解答】解:,解不等式①得:x≤2,解不等式②得:x≥,∴不等式组的解集为≤x≤2,∵不等式组有且只有两个整数解,∴0<≤1,∴0<a≤3;分式方程两边都乘以(y﹣1)得:1﹣3y+2a=﹣2(y﹣1),解得:y=2a﹣1,∵分式方程的解为正数,∴2a﹣1>0,∴a>;∵y﹣1≠0,∴y≠1,∴2a﹣1≠1,∴a≠1,∴<a≤3,且a≠1,∵a是整数,∴a=2或3,∴2+3=5,故选:C.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时别忘记检验.7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出不等式组的解集,根据不等式组有解且至多3个整数解,求得m的取值范围;解分式方程,检验,根据方程有整数解求得m的值【解答】解:,解不等式①得:x≥﹣1,∴﹣1≤x<,∵不等式组有解且至多3个整数解,∴﹣1<<2,∴﹣3<m<6,分式方程两边都乘以(x﹣1)得:mx﹣2﹣3=2(x﹣1),∴(m﹣2)x=3,当m≠2时,x=,∵x﹣1≠0,∴x≠1,∴≠1,∴m≠5,∵方程有整数解,∴m﹣2=±1,±3,解得:m=3,1,5,﹣1,∵m≠5,∴,m=3,1,﹣1.故选:C.【点评】本题考查了解一元一次不等式组,解分式方程,考核学生的计算能力,解分式方程时一定要检验.8.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.15【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解不等式组,根据不等式组有且仅有3个整数解,得到a的范围;解分式方程,根据分式方程有意义和方程有正数解求得a的范围,从而得到2<a≤6,且a≠5,所以a 的整数解为3,4,6,和为13.【解答】解:,解不等式①得:x<5,解不等式②得:x≥,∴不等式组的解集为,∵不等式组有且仅有3个整数解,∴1<≤2,∴2<a≤6;分式方程两边都乘以(x﹣1)得:ax﹣2﹣3=x﹣1,解得:x=,∵x﹣1≠0,∴x≠1,∵方程有正数解,∴0,≠1,∴a>1,a≠5,∴2<a≤6,且a≠5,∴a的整数解为3,4,6,和为13,故选:B.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程不要忘记检验.9.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时【考点】分式方程的应用.【专题】分式方程及应用.【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【解答】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.解得x=20经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.10.设x<0,x﹣=,则代数式的值()A.1B.C.D.【考点】分式的值;分式的加减法.【专题】计算题;整体思想.【分析】根据完全平方公式以及立方和公式即可求出答案.【解答】解:∵x﹣=,∴(x)2=5,∴x2+=7,∴(x+)2=x2+2+=9,∵x<0,∴x+=﹣3,∴x2+1=﹣3x,∴x4+1=7x2,∵(x2+)2=x4+2+,∴x4+=47,∴x8+1=47x4,∵x3+=(x+)(x2﹣1+),∴x3+=﹣18,∴x6+1=﹣18x3,∴原式=====故选:B.【点评】本题考查学生的整体的思想,解题的关键是熟练运用完全平方公式以及立方和公式,本题属于难题.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为﹣2.【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】分别解出两个一元一次不等式的解集,根据不等式组的解集为x≥5,列出不等式求得a的范围;解分式方程,根据方程有非负整数解,且y﹣2≠0列出不等式,求得a 的范围;综上所述,求得a的范围.根据a为整数,求出a的值,最后求和即可.【解答】解:,解不等式①得:x≥5,解不等式②得:x>a+2,∵解集为x≥5,∴a+2<5,∴a<3;分式方程两边都乘以(y﹣2)得:y﹣a=﹣(y﹣2),解得:y=,∵分式方程有非负整数解,∴≥0,∴a≥﹣2,∵≠2,∴a≠2,综上所述,﹣2≤a<3且a≠2,∴符合条件的所有整数a的数有:﹣2,﹣1,0,1,和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时一定记得要检验.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是4710元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).【考点】分式方程的应用.【专题】整式;运算能力.【分析】设乙的成本价为a,然后根据题意列出90﹣s=40%a,求得a,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,然后列式计算即可.【解答】解:设乙的成本价为a,根据题意列出90﹣s=40%a,解得a=70,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,m+n=50则有70n+m(3x+3×)=6213÷(1+30%)70n+70m+mx=4710.xm=,节后乙每盒成本98÷2÷(1+40%)=35,甲每盒成本2x+2×x+35﹣x=35+x,总成本35n+m(35+x)=35×50+×=2657.5.故答案为:2657.5.【点评】本题考查了列代数式和一元一次方程,根据题意正确列出代数式是解题的关键.13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】计算题;方程与不等式;应用意识.【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【解答】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2且a≠1综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1,故答案为:1.【点评】本题考查了解一元一次不等式组,分式方程,本题易错,易忽视分式方程有意义的条件.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.【考点】分式的化简求值.【分析】先根据题意得出x2=5x﹣1,再根据分式混合运算的法则进行计算即可.【解答】解:∵x2﹣5x+1=0,∴x2=5x﹣1,∴原式======.故答案为:.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15.(2009春•营山县期末)已知,则=﹣.【考点】分式的化简求值.【专题】探究型.【分析】先根据题意得出x﹣y=﹣2xy,再代入所求代数式进行计算即可.【解答】解:∵﹣=2,∴=2,即x﹣y=﹣2xy,原式====﹣.故答案为:﹣.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.【考点】分式的化简求值.【专题】分式;运算能力;推理能力.【分析】根据xyz=6,可以先将所求式子化简,然后根据x+a2=2010,y+a2=2011,z+a2=2012,可以得到x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,然后代入化简后的式子即可解答本题.【解答】解:∵xyz=6,∴++﹣﹣﹣=﹣=﹣==[(x﹣y)2+(y﹣z)2+(x﹣z)2],∵x+a2=2010,y+a2=2011,z+a2=2012,∴x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,∴原式=×[(﹣1)2+(﹣1)2+(﹣2)2]=×(1+1+4)==,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有27人.【考点】分式方程的应用.【专题】一元一次不等式(组)及应用;应用意识.【分析】设每人每天可检疫x头猪,该组检疫工作人员有y人,则每人半天检疫头猪,由甲养殖场的生猪比乙养殖场的生猪多1倍,根据题意可得不等式,从而得解.【解答】解:设每人每天可检疫x头猪,该组检疫工作人员有y人,由题意得:xy+x(1+20%)×<2[x(1+20%)×+6×],化简得:0.4y<11.4∴y<28.5,∵y只能为正整数,且有一人离开后,人数平分∴y的最大值为27.故答案为:27.【点评】本题是较复杂的不等式应用题,题目中有两个变量,但是列完之后,每个因式中都含有x,从而可以消掉,变成一元一次不等式,从而得解,本题的难点在于变量较多,不等关系的得出较为复杂.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比。
第五章第03讲 分式的加减法(10类热点题型讲练)(解析版)--初中数学北师大版8年级下册
![第五章第03讲 分式的加减法(10类热点题型讲练)(解析版)--初中数学北师大版8年级下册](https://img.taocdn.com/s3/m/17723933b94ae45c3b3567ec102de2bd9605de93.png)
第03讲分式的加减法(10类热点题型讲练)1.熟练掌握同分母的分式加减运算;2.会找最简公分母,能进行分式通分,理解并掌握异分母分式的加减法则;3.能进行分式的混合运算及较复杂的分式化简求值.知识点01分式的通分分式的通分:利用分式的性质,将分式的分母变成最小公倍数,分子根据分母扩大的倍数相应扩大,不改变分式的值。
具体步骤:①通过短除法,求出分式分母的最小公倍数;②分母变为最小公倍数的值,确定原式分母扩大的倍数;③分子对应扩大相同倍数.知识点02最简公分母最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.知识点03同分母分式的加减同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.知识点04异分母分式的加减异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.注意:分式是分数的扩展,因此分式的运算法则与分数的运算法则类似.知识点01平面向量基本定理知识点02平面向量的坐标表示知识点03平面向量的坐标运算题型01同分母分式加减法题型02最简公分母题型03通分题型04异分母分式加减法题型05整式与分式相加减题型06已知分式恒等式,确定分子或分母【点睛】本题考查分式的加减,解题关键是掌握分式加法的运算法则.【变式训练】题型07分式加减混合运算题型08分式加减的实际应用【点睛】本题主要考查了分式加减的应用,解题的关键是根据题意列出分式,熟练掌握分式加减运算法则,准确计算.【变式训练】题型09分式加减乘除混合运算题型10分式化简求值一、单选题1.(23-24八年级上·天津红桥·期末)计算2111x x x x --++的结果是()A .1B .1x +C .11x +D .1x x +2.(22-23八年级上·贵州黔南·期末)分式22x x -,36x -的最简公分母是()A .2x -B .()2x x -C .()()323x x --D .()32x x -【答案】D【分析】本题考查了最简公分母,先因式分解取系数的最小公倍数,字母的最高次幂,1,3的最小公倍数为3,x 的最高次幂为1,2x -的最高次幂为1,则得出最简公分母.A .2222233y y x x ⎛⎫= ⎪⎝⎭B .110x y y x-=--C .3263x x y y ⎛⎫-=- ⎪⎝⎭D .()111333x y x y +=+将这些防护服尽快投入使用,增加了人手,最后平均每天比原计划多生产了60套,则工厂完成这个订单的时间比原计划提前()A .60x x y ⎛⎫- ⎪⎝⎭天B .60x x y y ⎛⎫- ⎪+⎝⎭天C .60x x y y ⎛⎫-⎪-⎝⎭天D .60x x y y ⎛⎫-⎪-⎝⎭天5.(23-24九年级下·湖北武汉·开学考试)已知2220x x --=,计算2121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是()A .1B .1-C .0.5D .0.5-二、填空题6.(2023八年级下·江苏·专题练习)计算:221b a b a b+=-+.7.(23-24八年级上·山东东营·阶段练习)将分式29-a 和93a-进行通分时,最简公分母是【答案】()()333a a -+-【分析】本题考查了分式的通分;先对分式的分母进行因式分解,然后即可确定它们的最简公分母.【详解】解:∵()()2933a a a -=+-,()9333a a -=--,∴最简公分母是()()333a a -+-,故答案为:()()333a a -+-.8.(23-24八年级上·湖南长沙·阶段练习)若2574515x A Bx x x x -=+--+-,A ,B 为常数,则2A B -的值为.9.(2024八年级下·全国·专题练习)小刚在化简22a b M--时,整式M 看不清楚了,通过查看答案,发现得到的化简结果是1a b-,则整式M 是.和,多次重复进行这种运算的过程如下:则第2024次运算的结果2024y =.(用含字母x 的式子表示)三、解答题11.(22-23八年级上·山东济宁·阶段练习)通分:(1)235a b c 与2710c a b;(2)22x x +与21x x-.(1)2111x x x -++;(2)24411a a a a a a -+⎛⎫-÷⎪--⎝⎭.(1)2m n m n n m m n n m -++---(2)22211111 m m mmm m-+-⎛⎫÷--⎪-+⎝⎭14.(23-24八年级上·全国·课时练习)计算:(1)22211x x x -++;(2)3a b a b a b b a -+---;(3)2243164x x+--;(4)222a a a ---.(1)211y y y ---;(2)2221111x x x +--+-;(3)21613962x x x x------;(4)2()a b a b a b+--+.16.(2024九年级下·山东·专题练习)下面是某同学计算11a a ---的解题过程:解:211a a a ---()-=---22111aa a a ……………………①()2211a a a --=-………………………②2211a a a a -+-=-………………………③111a a -==-.……………………………④上述解题过程从第几步开始出现错误?请写出正确的解题过程.17.(23-24八年级上·江苏南通·阶段练习)先化简,再求值:111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭,请从1-,0或2中选择你喜欢的一个数代入求值.18.(22-23八年级下·辽宁本溪·阶段练习)先化简,再求值:111x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中()1013.142x π-⎛⎫=-+ ⎪⎝⎭形式,那么称这个分式为“美好分式”,如:112122111111x x x x x x x x +-+-==+=+-----,则11x x +-是“美好分式”.(1)下列分式中,属于“美好分式”的是______;(只填序号)①6325x x +;②232x x +;③33x x +;④24321x x +-.(2)将“美好分式”2221x x x -+-化成一个整式与一个分子为常数的分式的和的形式;(3)判断2251117x x x x x x x---÷+-的结果是否为“美好分式”,并说明理由.形式,那么称这个分式为“和谐分式”.如:514144111111x x x x x x x x ++++==+=++++++,则51x x ++是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①23x x+;②21x x +;③21x x +-.(2)将“和谐分式”2472y y y -+-化成一个整式与一个分子为常数的分式的和的形式;(3)应用:先化简22321112a a a a a a a-+--÷--,并回答:a 取什么整数时,该式的值为整数?3a ∴=,3a ∴=时,该式的值为整数.。
2022-2023学年北师大版八年级数学下册5
![2022-2023学年北师大版八年级数学下册5](https://img.taocdn.com/s3/m/237ac745001ca300a6c30c22590102020740f227.png)
5.3 分式的加减法 同步练习题 2022-2023学年北师大版八年级数学下册一、选择题1.计算m 2m−1-2m−1m−1的结果是( )A.m +1B.m -1C.m -2D.-m -22.计算x x−1-y y−1的结果为( )A.−x+y (x−1)(y−1)B.x−y (x−1)(y−1)C.−x−y (x−1)(y−1)D.x+y (x−1)(y−1)3.若代数式(M +21−x )÷x−22x−2的化简结果为2x +2,则整式M 为( )A.-xB.xC.1-xD.x +1 4.如果x -y =4,那么代数式2x x 2−y 2-2y y 2−x 2的值是( )A.-2B.2C.12D.-12 5.粗心的小倩在放学回到家后,发现把数学练习册忘在教室了,担心教室关门,于是她跑步到学校取了练习册,再步行回到家(取书时间忽略不计).已知跑步速度为x ,步行速度为y ,则她往返一趟的平均速度是( )A.xB.yC.x+y 2 D.2xy x+y 6.如果m +n =1,那么代数式(2m+n m 2−mn +1m )·(m 2-n 2)的值为( )A.-3B.-1C.1D.3 7.设n =2x+3+23−x +2x+18x 2−9,若n 的值为整数,则整数x 可以取的值的个数是( )A .5 B.4 C.3 D.28.已知A =4x 2−4,B =1x+2+12−x ,其中x ≠±2,则A 与B 的关系是( )A.A =BB.A =-BC.A >BD.A <B 二、填空题9.计算:(a a+b +2b a+b )·a a+2b = .10.计算:m 2m+1+m+11+2m = .11.对于任意两个非零实数a 、b ,定义新运算“*”如下:a*b =1b -1a ,例如:3*4=14-13=-112.若x*y =2,则2 022xy x−y 的值为 .12.某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了 小时完成任务.(用含m 的代数式表示)13.如果2x y +3y x =-5,那么4x 2+5xy+6y 22x 2+3y 2的值为 .14.若x 2-6x +9与|y -2|互为相反数,则x 2xy−y 2+y 2y 2−xy 的值为 .三、解答题15.通分:(1)x 6ab 2,y 9a 2bc ; (2)1x 2−16,12x−8; (3)1a 2−ab ,1a 2−b 2,1a 2−2ab+b 2.16.先化简,再求值:x 2x−y -y 2x−y ,其中x =1+2√3,y =1-2√3.17.化简:-5x x 2+2x ÷(1x−2−x−3x 2−4),再从-2,-1,0,1,2中选取一个合适的数作为x 的值代入求值.18.先化简,再求值:(a −1−2a−1a+1)÷a 2−4a+4a+1,其中a =2+√3.19.先化简,再求值:2a+1a+1+a 2−2a a 2−1÷(2a−1a−1−a −1),其中a =-32.20.先化简,再求值:a 3−6a2+9aa2+2a÷(5a+2−a+2),其中a为负整数且满足不等式3-a≤2(a+6).21.先化简,再求值:(a−4a )÷a−2a2,请从不等式组{a+1>0,4a−53≤1的整数解中选择一个合适的数代入求值.22.老师设计了接力游戏,用合作的方式完成分式化简,规则是每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:(1)接力中,自己负责的一步出现错误的同学是;(2)请你书写正确的化简过程,并在“-1,0,1”中选择一个合适的数作为x的值代入求值.23.阅读下面的材料,并解答问题.分式2x+8x+2(x≥0)的最大值是多少?解:2x+8x+2=2x+4+4x+2=2(x+2)x+2+4x+2=2+4x+2, 因为x ≥0,所以x +2的最小值是2, 所以4x+2的最大值是2, 所以2+4x+2的最大值是4, 即2x+8x+2(x ≥0)的最大值是4.根据上述方法,试求分式2x 2+5x 2+1的最大值.。
北师大版八年级数学(下)课件:5.3.3 分式的加减法
![北师大版八年级数学(下)课件:5.3.3 分式的加减法](https://img.taocdn.com/s3/m/b754324df46527d3240ce0f4.png)
答案:(1) 4 a ;
a2
a 1 (2) ;
a2 1
(3) c a . ab
例5 计算:
(1) y 1 ; xy x xy x
(2) x2 x 1; x 1
解:原式 y( y 1) y 1 x(y 1)(y 1)
解:原式 x2 (x 1) x 1
(2 y)2 (2y)2 y2
4. 3
还有其它 方法吗?
1.先化简,再求值:
已知
x y
=3,求 4xy
x2 y2
x y 的值.
x y
解: 4xy x2 y2
x x
y y
4xy(- x2 2xy x2 y2
y2)
(x y)2 (x y)(x y)
3
(2)已知
x
3 y ,求
4xy x2 y2
x y x y
的值. 答案: 1 .
2
3.某蓄水池装有 A,B 两个进水管,每小时可分别 进水 at,bt.若单独开放 A 进水管,ph 可将该水池 注满.如果 A,B 两根水管同时开放,那么能提前多 长时间将该蓄水池注满?
答案: bp h . ab
(a 1)2 a 1 . a(a 1)(a 1) a2 a
例6
已知
x y
2,求
x x y
y x y
y2 x2 y2
的值.
解:原式
x(x
y) y(x x2 y2
y)
y2
x2 x2 y2
因为 x 2, 即 x 2y. y
八年级数学下册 5.3 分式的加减法 方法茶座 通分技巧大放送素材 (新版)北师大版
![八年级数学下册 5.3 分式的加减法 方法茶座 通分技巧大放送素材 (新版)北师大版](https://img.taocdn.com/s3/m/7ab454c6a0116c175f0e48bf.png)
通分技巧大放送(一)分式的运算,一要准确,二要迅速,其中起着关键作用的就是通分,但对于某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,对于分式的通分,要讲究技巧.下面介绍几种常用的通分技巧.一、逐步通分例1 计算:2121111xx x ++++- 分析:本题若采用将各项一起通分后再相加的方法,计算量很大,注意到前后分母之间存在着平方差的关系,则可逐步通分来计算.[来*#源:zz~s&tep.c^om]解:原式=4221412-12x x x -=++. 说明:若一次通分计算量太大,利用分母间的递进关系逐步通分,避免了复杂的计算.依次通分构成平方差公式,可使问题简单化.二、整体通分例2 计算:112++a a -a+1. 分析:本题中既有分式又有整式,不相统一,同学们可以寻求作为整体的部分,那么计算起来就可以简便一些.解:原式=112++a a -121111)1)(122+=++-+=++-a a a a a a a (. 说明:本题是一个分式与多项式的和,若把整个多项式看作是分母为1的代数式,再通分相加,则可使问题的解法更简便.三、分裂整数法例3 计算:2312++-++x x x x . 分析:如果两个分式的分母不同,通分时可使用分裂整数法.解:原式=212111+++=+++x x x x =(1+11+x )-(1+21+x ) =2111+-+x x =)2)(1(1)2)(1()1(2++=+++-+x x x x x x . 说明:当算式中各分式的分子次数与分母次数相同时,一般要先利用分裂整数法对分子降次后再通分.2 四、活用乘法分式例4 计算:(x+x 1)(x 2+21x )(x 4+41x )(x 8+81x )·(x 16+161x)(x 2-1),(x ≠0且x ≠1). 分析:乍一看本题,同学们可能会感觉要求的式子很长,不知如何下手,仔细观察各式的特点,巧妙运用平方差公式逐步通分,可使运算简便.解:当x ≠0且x ≠1时,原式=[(x-x 1)(x+x 1)(x 2+21x )(x 4+41x )(x 8+81x )·(x 16+161x )](x 2-1)÷(x-x1) =[(x 2 -21x )(x 2+21x )(x 4+41x )(x 8+81x )·(x 16+161x )]·(x 2-1)÷(x-x1) =…=(x 32-321x )·x =x 33-311x . 评注:在本题中,原式乘以一个代数式后再除以同一个代数式还原,就可连续运用平方差公式,在分式运算中,若能恰当地运用乘法公式,则可使计算简便.。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(1)
![(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(1)](https://img.taocdn.com/s3/m/1c9d0dd17cd184254a35356c.png)
一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >-2.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( )A .1010302x x -= B .102010602x x += C .1010302x x += D .102010602x x-= 3.已知关于x 的分式方程131k x x =+无解,则k 的值为( ) A .0 B .0或-1 C .-1 D .0或134.某市为有效解决交通拥堵营造路网微循环,决定对一条长1200米的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加20%,结果提前5天完成任务,求实际每天改造道路的长度和实际施工的天数.一位同学列出方程()1200120050120%x x+-=+,则方程中未知数x 所表示的量是( ) A .实际每天改造的道路长度 B .实际施工的天数C .原计划施工的天数D .原计划每天改造的道路长度 5.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+ 6.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④ 7.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a a b b ++=-- 8.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .29.若x 2y 5=,则x y y+的值为( ) A .25 B .72 C .57 D .7510.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个 11.若关于x 的分式方程222x m x x =---的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .2,3D .1,312.下列计算正确的是( )A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a-=- 二、填空题13.设m ,n 是实数,定义关于@的一种运算如下:22@()()m n m n m n =+--,则下列结论:①若0mn ≠,m@8n =,则223944163m m n n ÷=; ②@()@@m n k m n m k -=-;③不存在非零实数m ,n ,满足22@5m n m n =+;④若设2m ,n 是长方形的长和宽,若该长方形的周长固定,则当m n =时,@m n 的值最大.其中正确的是_____________.14.若113m n+=,则分式225m n mn m n +---的值为________ . 15.已知5,3a b ab -==,则b a a b+的值是__________.16.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 17.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.18.已知215a a+=,那么2421a a a =++________. 19.对于每个非零自然数n ,x 轴上有(,0)n A x ,(,0)n B y 两点,以n n A B 表示这两点间的距离,其中n A ,n B 的横坐标分别是方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩的解,则112220202020A B A B A B +⋅⋅⋅++的值等于_______.20.若()()023248x x ----有意义,则x 的取值范围是______. 三、解答题21.解方程:32122x x x =--- 22.计算题:(1)- (2)(2a )3·b 4÷8a 3b 2 (3)(-a b )2·(-22b a)3÷(-ab 4) (4)()(5)1-2222244a b a b a b a ab b--÷+++ (6)(x -y +4xy x y -)(x +y -4xy x y+) 23.根据已知条件,求下列各式的值:()1已知3,2m n x x ==,求32m n x +的值;()2先化简:2211121x x x x x x ⎛⎫ ⎪+++÷--⎝+⎭,然后从22x -≤≤中选取一个合适的整数作为x 的值代入求值.24.为预防新冠疫情的反弹,康源药店派采购员到厂家去购买了一批A 、B 两种品牌的医用外科口罩.已知每个B 品牌口罩的进价比A 品牌口罩的进价多0.7元,采购员用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌每个口罩的进价分别为多少元?(2)若B 品牌口罩的售价是A 品牌口罩的售价的1.5倍,要使康源药店销售这批A 、B 两种品牌口單的利润为8800元,则它们的售价分别定为多少元?25.(1)计算:()24342a b ab ÷-(2)解方程:1233x x x-=-- 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m +3=x ﹣1,再由整式方程的解为非负数得到m +4≥0,由整式方程的解不能使分式方程的分母为0得到m +4≠1,然后求出不等式的公共部分得到m 的取值范围.【详解】解:去分母得m +3=x ﹣1,整理得x =m +4,因为关于x 的分式方程311m x x-=--1的解是非负数, 所以m +4≥0且m +4≠1,解得m ≥﹣4且m ≠﹣3,故选:B .【点睛】 本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.D解析:D【分析】设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,由题意得: 102010602x x-=, 故选:D .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.D解析:D【分析】此题考查了分式方程的解,始终注意分母不为0这个条件,分式方程去分母转化为整式方程,由分式方程无解确定出k 的值即可.【详解】解:分式方程去分母得:33x kx k =+ ,即 ()313k x k -=- ,当310k -=,即 13k =时,方程无解; 当x=-1时,-3k+1=-3k ,此时k 无解;当x=0时,0=-3k ,k=0,方程无解; 综上,k 的值为0或13 . 故答案为:D .【点睛】本题考查了根据分式方程的无解求参数的值,是需要识记的内容.分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0. 4.D解析:D【分析】根据提前天数+实际工作用天数-原计划天数=0,可以判断方程中未知数x 表示的量.【详解】设原计划每天铺设管道x 米,则实际每天改造管道(1+20%)x ,根据题意,可列方程: ()1200120050120%x x+-=+, 所以所列方程中未知数x 所表示的量是原计划每天改造管道的长度,故选:D .【点睛】本题考查了由实际问题布列分式方程,解题的关键是依据所给方程等量关系.5.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y -+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.6.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】 原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x -=-++ 1x x =+ 又因为x 为正整数,所以11 21xx≤<+,故选B.【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.7.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.D解析:D【分析】将y xx y+进行通分化简,整理出含已知条件形式的分式,即可得出答案.【详解】解:2222()2221 =21y x y x x y xyx y xy xy++--⨯+===故选D.【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.9.D解析:D【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】 解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.10.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+ ∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2.当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】 此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 11.D解析:D【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【详解】等式的两边都乘以(x - 2),得x = 2(x-2)+ m ,解得x=4-m ,且x≠2,由关于x 的分式方程的解为正数,∴4-m >0,4-m≠2∴m<4且m≠2则满足条件的正整数 m 的值为m=1,m=3,故选: D.【点睛】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.12.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 二、填空题13.②③④【分析】根据所给新定义可得再分别判断【详解】解:∵①∴==8∴mn=2∴故错误;②=∴故正确;③∴∴当m-2n=0n=0∴m=0∴不存在非零实数mn 满足故正确;④∵m@n=(m+n )2-(m-解析:②③④【分析】根据所给新定义,可得22@()()4m n n m n m m n =-=+-,再分别判断.【详解】解:∵22@()()4m n n m n m m n =-=+-,①22m@()()8n m n m n =+--=,∴22()()m n m n +--=4mn =8,∴mn=2, ∴222239316241649334m m m n n n n m mn ÷=⨯==,故错误; ②()()22@()m n k m n k m n k -=+---+=4()m n k -, ()@@444m n m k mn mk m n k -=-=-,∴@()@@m n k m n m k -=-,故正确;③22@45m n mn m n ==+,∴22540m n mn +=-,∴()2220m n n -+=, 当m-2n=0,n=0,∴m=0,∴不存在非零实数m ,n ,满足22@5m n m n =+,故正确;④∵m@n=(m+n )2-(m-n )2=4mn ,(m-n )2≥0,则m 2-2mn+n 2≥0,即m 2+n 2≥2mn ,∴m 2+n 2+2mn≥4mn ,∴4mn 的最大值是m 2+n 2+2mn ,此时m 2+n 2+2mn=4mn ,解得m=n ,∴m@n 最大时,m=n ,故正确,故答案为:②③④.【点睛】本题考查因式分解的应用、整式的混合运算,分式的乘除,解题的关键是明确题意,找出所求问题需要的条件.14.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13- 【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=,∴=3m n mn +,即m+n=3mn , ∴225m n mn m n+--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn- =13-. 故答案为:13-.【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 15.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则. 16.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a -【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.17.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】将n 看做已知数求出方程组的解表示出x 与y 列举出所求式子各项拆项后抵消即可得到结果【详解】解:方程组①+②得即将代入①得:∴∵n >0∴是该方程组的根∴则原代数式故答案为:【点睛】此题考查了分式 解析:20202021【分析】将n 看做已知数求出方程组的解表示出x 与y ,列举出所求式子各项,拆项后抵消即可得到结果.【详解】 解:方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩①②, ①+②得22n x =,即1x n =, 将1x n =代入①得:11y n =+, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩, ∵n >0, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩是该方程组的根, ∴111n n A B n n =-+,则原代数式1111112020112232020202120212021=-+-+⋯+-=-=. 故答案为:20202021. 【点睛】 此题考查了分式的加减法,解二元一次方程组,以及坐标与图形性质,熟练掌握运算法则是解本题的关键.20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.76x =. 【分析】 方程两边同时乘以2(x-1),把分式方程转化为整式方程求解即可.【详解】解:方程两边同时乘以2(x-1),得234(1)x x =--,去括号,得2344x x =-+,移项,合并同类项,得67x =,系数化为1,得6经检验,76x =是原方程的根, 所以原方程的解为76x =. 【点睛】本题考查了分式方程的解法,熟练确定最简公分母是解题的关键,解后要验根是注意事项,不能漏落.22.(1;(2)2b ;(3)218a ;(4)2+5)b a b -+(6)22x y -【分析】(1)先化为最间二次根式,再合并同类二次根式即可;(2)先算积的乘方再算同底数幂乘除法即可;(3)先算分式的乘方,再约分,最后计算分式除法;(4)先计算二次根式的除法,转化为二次根式除以二次根式即可;(5)先进行分子分母因式分解,同时把除法转化为乘法,约分,再通分,合并即可; (6)先将括号内通分,利用公式变形,再约分,最后利用平分差公式展开即可.【详解】解:(1)- ,=-,== (2)(2a )3·b 4÷8a 3b 2 =8 a 3·b 4÷8a 3b 2,=b 2;(3)(-a b )2·(-22b a)3÷(-ab 4), =()264238a b ab b a ⎛⎫⋅-÷- ⎪⎝⎭, =()448b ab a -÷-,28a(4)(),==(5)1-2222244a b a b a b a ab b--÷+++, =()()()2212a b a b a b a b a b +--⋅++-, =()()2a b a b a b a b ++-++, =b a b -+; (6)(x -y +4xy x y -)(x +y -4xy x y+), =()()22x-y +4x+y 4x+y xyxy x y-⋅-, =()()22x+y x-y x+y x y ⋅-,=()()x+y x y -,=22x y -.【点睛】本题考查二次根式加减乘除混合运算,幂指数乘除混合运算,分式的乘法乘除混合运算,分式加减乘除混合运算,掌握二次根式加减乘除混合运算,幂指数乘除混合运算,分式的乘法乘除混合运算,分式加减乘除混合运算是解题关键.23.()1108;()2221x x -+;x=-2时,6或x=2时,23 【分析】(1)利用幂指数运算的逆运算原式()()32mn x x =⋅,当3,2m n x x ==时,整体代入求值即可;(2)先化简分式,从不等式中可选取-2或2,可任选一个代入求值即可.【详解】解: ()1原式=32m n x x ⋅()()32mn x x =⋅, 当3,2m n x x ==时,原式108=;()2原式=22112111x x x x x x x x ⎛⎫ +--+⎝⨯-⎭+-+⎪, =()()21211x x x x x -⨯-+, 221x x -=+, 在22x -≤≤范围内有整数x=-2,-1,0,1,2,使分式有意义的x 的值:x=-2,2,当2x =-时,原式6=;当2x =时,原式23=. 【点睛】本题考查幂指数运算求值,和分式化简求值,掌握幂指数运算求值的方法,和分式化简求值方法是解题关键.24.(1)A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元;(2)A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【分析】(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则可列方程7200500020.7x x =⨯+,解方程并检验即可得到答案; (2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个,再列方程()()4000 1.820001.5 2.58800,y y -+-= 解方程可得答案.【详解】解:(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则7200500020.7x x =⨯+ 1825,0.7x x ∴=+ 251812.6x x ∴=+712.6,x ∴=1.8,x ∴=经检验: 1.8x =是原方程的根,且符合题意,1.82.5x ∴+=即A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元.(2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个, 则()()4000 1.820001.5 2.58800,y y -+-=17.552.5,y ∴=3y ∴=1.5 4.5,y ∴=答:A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【点睛】本题考查的是一元一次方程的应用,分式方程的应用,掌握利用相等关系列方程解决实际问题是解题的关键.25.(1)2a b ;(2)7x =是原方程的解.【分析】(1)单项式与单项式相除,系数与系数相除作为商的系数,相同字母分别相除,底数不变,指数相减计算即可;(2)等式两边同时乘以x-3化为整式方程,从而求出x 的值,再检验即可;【详解】(1)原式()432244a b a b =÷2a b =(2)解:方程左右两边乘()3x -得()123x x +=-126x x +=-7x =检验7x =时,30x -≠,∴7x =是原方程的解;【点睛】本题考查了单项式与单项式相除和解分式方程,掌握计算方法是解题的关键; 26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
北师大版数学八年级下册5.3《分式的加减法》教案
![北师大版数学八年级下册5.3《分式的加减法》教案](https://img.taocdn.com/s3/m/a9bb308bc0c708a1284ac850ad02de80d5d80668.png)
(4)实际问题的应用:将实际问题转化为分式模型时,学生可能会对问题情境的理解和分析出现偏差。
举例:在速度问题中,学生可能不理解速度与时间、路程之间的关系,从而错误地建立分式模型。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式加减法的基本概念。分式加减法是指对分母相同的分式进行加减运算,或者通过通分将分母不同的分式转化为分母相同的分式后再进行加减运算。它在解决实际问题中有着广泛的应用,如计算合并速度、比较不同单位下的量等。
2.案例分析:接下来,我们来看一个具体的案例。假设有两辆汽车,一辆以速度\( \frac{60}{2} \)公里/小时行驶,另一辆以\( \frac{50}{3} \)公里/小时行驶,如何计算它们的总速度?通过这个案例,我们将学习如何运用分式加减法解决实际问题。
北师大版数学八年级下册5.3《分式的加减法》教案
一、教学内容
本节课选自北师大版数学八年级下册第五章第三节《分式的加减法》。教学内容主要包括以下方面:
1.掌握分式加减法的运算规则。
2.能够正确计算分式加减法,并进行化简。
3.了解分式加减法在实际问题中的应用。
具体内容包括:
(1)同分母分式的加减运算。
(2)异分母分式的加减运算,需要先通分,再进行加减。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过模拟两辆车的行驶,演示如何通过分式加减法计算总速度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式加减法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学下册:5.3《分式的加减法》习题 学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:422x -+= .2.计算:aba b b a +=++________.3.分式43abc 与25ac 的最简公分母是_________.4.计算:23124xy x +=________.5.计算213122xx x ---- 的结果是____________.6.计算:523634ab ac abc -+= .7.若222222m xy y x y x y x y x y --=+--+,则m =________.8.当分式2121111y y y ---+-的值等于零时,则y =_________.二、单选题9.若1x x =,则分式42263x x x +-+的值为( )A .0B .1C .-1D .-2 10.分式x-y +22y x y +的值为( )A .22x y y x y -++ B .x+y C .22x y x y ++D .以上都不对 11.如果分式111a b a b +=+,那么abb a +的值( )A .1B .-1C .2D .-2 12.化简11()()m n n m -÷-的结果是( )A .1B .mn C .nmD .-1 13.化简11123x x x ++等于( )A .12xB .32xC .116xD .56x 14.计算37444a a b b a b b a a b++----得( ) A .264a b a b +-- B .264a b a b +- C .2- D .2三、解答题15.计算(1)2229(3)(3)x y y x x ----- (2)211x x x --- (3)2221244x x x x x x +----+ (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭ 16.已知21(1)(2)12y A B y y y y +=+-+-+,求A 、B 的值. 17.先化简,再求值:26333x x x x x x +-+--,其中32x =. 18.一项工程,甲工程队单独完成需要m 天,乙工程队单独完成比甲队单独完成多需要n 天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?参考答案1.22x x + 【解析】 试题分析:原式=2(2)422x x x +-++ =24422x x x +-++ =22x x +. 故答案为:22x x +. 点睛:本题考查了整式与分式的减法,计算时可将整式看作是分母为1的分式,然后通分相减即可.2.1【解析】 试题分析:原式=a b a b a b +++ =a b a b++ =1.故答案为:1.3.15bc 2【解析】 试题分析:分式43a bc 与25a c的最简公分母是15bc 2. 故答案为15bc 2.点睛:本题考查了最简公分母的找法,若分母是单项式,一般找最简公分母分三步进行:①找系数,系数取所有分母系数的最小公倍数;②取字母,字母取分母中出现的所有字母;③取指数,指数取同一字母指数的最大值.4.264x y x y+ 【解析】 试题分析:原式=22644x y x y x y+=264x y x y+. 故答案为:264x y x y+. 5.5322x x -- 【解析】 本题考查的是分式的加减先通分,再把分子部分相加减,分母不变。
原式=2134134135312222222222x x x x x x x x x x --+--+=+==------. 6.108912c b abc -+ 【解析】 试题分析:原式=1089121212c b abc ac abc -+ =108912c b abc-+. 故答案为:108912c b abc-+. 7.2x【分析】先将等式右边通分,再比较等式两边的分子即可求解.【详解】()222222222x y m xy y x y x y x y--=+---, 222222222m xy y x xy y x y x y -+-+=--, 即22222m x x y x y=--. 2m x ∴=.故答案为: 2x .【点睛】本题考查了分式的加减运算.解决本题首先将等式右边通分,再比较等式两边的分子即可.8.23【解析】 试题分析:2121111y y y ---+-=22212(1)1111y y y y y -+-----=2321y y ---, ∵分式2121111y y y ---+-的值等于零, ∴3y -2=0,y 2-1≠0,∴y =23. 故答案为23. 点睛:本题考查了分式的加减运算和分式值为零的条件,正确的将分式进行化简是解决此题的关键.9.C【解析】 试题分析:∵1x x=即x 2=1, 42263x x x +-+=222(3)(2)3x x x +-+=x 2-2=1-2=-1, 故选C .点睛:本题考查了分式的值的计算,将已知条件转化为x 2=1是解题的关键.10.C【解析】 试题分析:原式=221x y y x y-++ =2222x y y x y x y-+++ =22x y x y++. 故选C .点睛:本题考查了整式与分式的加法运算,计算时可将整式看作是分母为1的分式,然后通分相加即可.11.B【解析】试题分析:∵111a ba b ab a b++==+,∴(a+b)2=ab,即a2+b2+2ab=ab,a2+b2=-ab,原式=a bb a+=22a bab+=abab-=-1,故选B.点睛:此题考查了分式的化简求值,解题的关键是通过把已知式子进行变形,得到a2+b2=-ab,再以整体的形式代入.12.B【解析】试题分析:11 ()() m nn m-÷-=11 mn mnn m--÷=11 mn m n mn-⨯-=mn.故选B.13.C 【解析】试题分析:11123 x x x ++=632 666 x x x++=116x.故选C.14.D 【解析】试题分析:37444a a b b a b b a a b++---- =37444a a b b a b a b a b+----- =374a a b b a b---- =284a b a b-- =2(4)4a b a b -- =2.故选D .点睛:本题考查了分式的加减运算,解决此题的关键是把4b -a 转化为-(a -4b ). 15.(1)33x x +-;(2)11x -;(3)24(2)x x x --;(4)12y -+. 【解析】试题分析:(1)同分母分式相减,分母不变,把分子相减,最后结果化成最简即可; (2)把整式看成是分母为1的分式,通分后把分子相减即可;(3)把两个分母分解因式后通分,再利用同分母分式减法法则进行计算即可; (4)把括号内的分式通分相减,化成最简后,再把除法转化为乘法,分母分解因式后再进行约分即可.试题解析: 解:(1)原式=229(3)x y y x --+- =229(3)x x -- =2(3)(3)(3)x x x +-- =33x x +-; (2)原式=2(1)(1)11x x x x x +---- =22111x x x x ----=11x -; (3)原式=221(2)(2)x x x x x +---- =22(2)(2)(1)(2)(2)x x x x x x x x +----- =22224(2)(2)x x x x x x x ----- =24(2)x x x --; (4)原式=2(1)(1)3111y y y y y y ⎛⎫-+-÷- ⎪---⎝⎭=22114y y y y --⨯-- =211(2)(2)y y y y y --⨯-+- =12y -+. 点睛:本题考查分式的混合运算,解答本题的关键是明确运算顺序和运算法则. 16.A=1,B=1.【解析】试题分析:已知等式右边两项通分并利用同分母分式的加法法则计算,利用分式相等的条件即可求出A 与B .试题解析: 解:21(1)(2)y y y +-+=12A B y y +-+=(2)(1)(1)(2)A y B y y y ++--+=()2(1)(2)A B y A B y y ++--+, ∴221A B A B +=⎧⎨-=⎩, 解得:11A B =⎧⎨=⎩. 点睛:本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型.17.133【解析】试题分析:第二个分母分解因式,找出最简公分母,通分加减,化成最简后代入x 的值计算即可.试题解析: 解:原式=263(3)(3)(3)(3)x x x x x x x x x +--+--- =2639(3)x x x x x --+-- =2215(3)x x x x +-- =(5)(3)(3)x x x x +-- =5x x+, 当x =32时, 原式=35232+ =133. 点睛:本题考查了分式的化简求值,掌握异分母分式加减法法则是解决此题的关键.18.nm mn m ++22 【解析】本题考查的是根据实际问题列分式根据工作时间即可表示出工作效率,从而得到结果。
由题意得,甲的工作效率为m 1,乙的工作效率为nm +1, 则甲、乙工程队合做的时间为=+++=++)(1111n m m m n m n m m .22n m mn m ++。