烯烃的结构ppt课件

合集下载

第六章 烯烃

第六章  烯烃

(1)选主链
选含有“ C=C ”的最长碳链为主链,并按主链碳数称 为“ 某烯 ”。C10以下用“天干”数,C11以上用“十 一碳烯、十二碳烯…”等来表示。例如:
CH3 C CH CH2 CH3
CH2CH3
母体叫“ 己烯 ”
(2)主链编号
优先双键(从最靠近双键的一端开始给主链编号)。用 双键碳中最小的编号表示双键的位置,并用阿拉伯数字写在 母体名前,中间加短线隔开。
2708 k j/m ol 2701 k j/m ol
结论:1-丁烯<(Z)2-丁烯<(E)-2-丁烯<异 丁烯,即含同数碳原子的 烯烃异构体中,与烯键碳 原子相连的烷基数目多的 稳定;顺反异构体中,反 式异构体稳定。
二、氢化热
+ H2
催化剂
H3CH2CHC CH2
H3C
CH3
H
H
H3C
H
H
CH3
(4) (2)
(H3C)2C CHCH3
(3)
(1)
(5) (3)
4、单分子消除反应
例如:叔丁基溴在乙醇溶液中除了生成取代产物外,还 生成消除产物:
( H 3 C ) 3 C B r
( H 3 C ) 3 C O C 2 H 5 + ( H 3 C ) 2 C C H 2
8 1 %
1 9 %
具体过程如下:
CH3CH2O H
CH3 H2 HCC
CH3
CH3CH2OH2 + (H3C)2C CH2
CH3CH2O H
CH3 C CH3 CH3
(H3C)3C OHCH2CH3 -H+ (H3C)3C OC2H5
H
H
CC
CH3

有机化学课件-6烯烃

有机化学课件-6烯烃

三、烯烃的命名(CCS系统命名法): (一)命名原则:
1. 主链选择:含碳碳双键(官能团)在内的最长碳链作为主链;
如:CH3CH2CH2CH2C=CH2 (√) CH2CH2CH(3 没有把碳碳双键都包含在内)
2-丙基-1-己烯 或2-丙基己烯(官能团处于1位时可省略去位次)
2. 主链编号:使碳碳双键处于尽量小的编号;
2×7 +2 - 8
,C7H8 ,Ω=
=4; 三个C=C和一个环
2
CH3CH2OH ,C2H6O ,Ω=
O
CH3C NH2,C2H5ON ,Ω=
2×2 +2 - 6
=0
2 2×2 +2 - 5 +1
=1
2
二、烯烃的同分异构: (一)构造异构:
如分子式为 C4H8 的烯烃的构造异构体有: CH3 CH3CH2CH=CH2 ,CH3CH=CHCH3 ,CH3C=CH2
CH3 CH
CH3
CH2CH3
C H
(E)-2,3-二甲基-3-己烯
和顺反命名法相比较,顺式的可能是Z构型的,也可能是E构型;
§2 烯烃的相对稳定性
一、燃烧热:
燃烧热kJ/mol
稳定性
例: CH3CH2CH=CH2
2718
H3C
CH3
CC
2711
HH
H3C
H
CC
2708
H
CH3

烯烃中碳碳双键上的烷基越多,稳定性越高;
6 CH3 如:CH3CH2CH=CHCH2CHCHCH3
1 2 3 4 5 CH37 8
6,7-二甲基-3-辛烯
3. 标明双键的位次;只写双键两个碳原子中位次较小的一个,放

大学有机化学 烯烃和炔烃PPT优质课件

大学有机化学 烯烃和炔烃PPT优质课件

C + Br
C
极性 Br
C
Bδr+
δBr

C B+r + Br-
C
C
π- 络合物
.
σ- 络合物 (溴鎓离子)
第二步: 背面
Br
Br- +
C B+r

C
C
C
Br
.
第三章 烯烃和炔烃 第一节 烯烃 (三、烯烃的性质)
2. 加卤化氢 (HX)
X
C C + HX
CC
H
烯烃与卤化氢同样发生分步的、亲电性加成反应
.
3个sp2杂化轨道取平面正
三角形分布,与未杂化的
p 轨道垂直。sp2 杂化轨
道之间的夹角为 120o.
第三章 烯烃和炔烃 第一节 烯烃 (一、烯烃的结构)
头碰头重叠形成C—Cσ 键
键: 284 kJ/mole
.
肩并肩重叠形
成键,重叠
程度较小, 键 较不牢固,不 能自由旋转。
键键能 357kJ/mole
第三章 烯烃和炔烃
第一节 烯 烃
一 烯烃的结构 二 命名和异构 三 烯烃的性质 四 共轭烯烃
第二节 炔 烃
一 炔烃的结构 二 异构和命名 三 炔烃的性质
.
第三章 烯烃和炔烃
第三章 烯烃和炔烃
(Alkenes and Alkynes)
分子中含C=C双键的叫烯烃; 而含C≡C叁键的叫炔烃。烯烃 和炔烃都是不饱和烃 (Unsaturated hydrocarbons)。
.
诱导效应: 多原子分子中,由于原子和基团电负性的不同,引起 键的极性并通过通过静电诱导作用依次影响分子中不 直接相连的键,使之发生极化,从而引起整个分子中 电子云分布发生改变的作用。用符号 I 表示。

《烯烃炔烃》课件

《烯烃炔烃》课件

详细描述
炔烃可以被酸性高锰酸钾 溶液、重铬酸钾溶液等氧 化剂氧化,生成酮、羧酸 或二氧化碳等物质。
举例
乙炔在酸性高锰酸钾溶液 中氧化得到二氧化碳和锰 离子。
炔烃的聚合反应
总结词
炔烃可以发生聚合反应, 生成高分子化合物。
详细描述
在催化剂的作用下,炔烃 可以发生聚合反应,生成 高分子链,如合成橡胶、 合成纤维等。
总结词
烯烃的氧化反应是指烯烃在一定条件下被氧化生成更复杂的有机物。
详细描述
烯烃的氧化反应可以通过多种方式进行,如空气氧化、臭氧氧化、过氧化氢氧 化等。在氧化过程中,烯烃的碳碳双键被氧化成羧基或酮基等含氧官能团,生 成相应的醛、酮、酸等化合物。
烯烃的聚合反应
总结词
烯烃的聚合反应是指多个烯烃分子相互结合形成高分 子化合物的过程。
《烯烃炔烃》ppt课件
目 录
• 烯烃炔烃的简介 • 烯烃的性质 • 炔烃的性质 • 烯烃与炔烃的鉴别 • 烯烃炔烃的应用 • 烯烃炔烃的未来发展
01
烯烃炔烃的简介
烯烃的定义与结构
烯烃的定义
烯烃是一种不饱和烃,其分子中 含有碳碳双键。
烯烃的结构
烯烃的分子结构由一个碳碳双键 和两个碳氢单键组成。
炔烃的定义与结构
炔烃的应用前景展望
炔烃作为一种重要的有机化合物,在合成高 分子材料、药物、农药等领域具有广泛的应 用前景。未来,炔烃有望在生物医用材料、 环保型农药等领域发挥重要作用,为解决人 类社会面临的资源、能源和环境问题提供新 的解决方案。
THANKS
感谢观看
烯烃炔烃在许多化学反应中用作反应剂和催 化剂,如烷基化反应、聚合反应等。
在生物医学领域中作为药 物和生物活性分子

[理学]3 烯烃

[理学]3 烯烃

Cl -
17%
83%
Cl -
碳正离子重排
CH3 H3C C CH CH3 CH3
过氧化(物)效应 在过氧化物存在下,HBr与不对称烯烃加成的 取向反马氏规则,称为过氧化(物)效应。
CH3
无过氧化物
H 3C
C Br
CH2 H
CH3 H3 C C CH2 + HBr
符合Markovnikov 规则
有过氧化物

诱导效应(inductive effect):
由分子中电负性不同的原子或基团的作用而引起分子 中电子云沿着化学键(键or键)向某一方向移动的 效应。用I表示:-I: 吸电子诱导效应,+I: 推电子诱导 效应

诱导效应的大小与取代基的电负性大小有关,并随着取代 基的距离增加而减弱:一般相隔3个 键 ,作用几乎为 0
Br
CH2
+
H
Br
H3C
C H
CH2 Br
+
Br
链终止:略
过氧化(物)效应只限于HBr; HCl键较强,难生成氯自由基;
HI键虽弱,但碘自由基活性低,键传递困难
过氧化物容易产生自由基,可作为引发剂采用自由基反 应过程制备高分子化合物,常用过氧化二苯甲酰。
与水加成(酸催化) 硫酸、磷酸等催化,烯烃与水直接加成生成醇。
CH3CHCH2Cl OH
马氏加成
4.硼氢化氧化反应
硼氢化反应,生成烷基硼
H3C CH CH2
+ -
- + H BH2
H H3C CH2 CH2 BH + H3C CH CH2
B
+ H3C CH CH2HΒιβλιοθήκη B 硼化物的氧化碱性水解:

烯烃的结构与性质及命名++课件++2024-2025学年高二化学人教版(2019)选择性必修3

烯烃的结构与性质及命名++课件++2024-2025学年高二化学人教版(2019)选择性必修3
第二章《烃》
第二节 烯 烃、炔 烃
第一课时 烯 烃的结构、性质及命名
学习目标: 1.结合代表物,认识烯烃的组成和结构特点。 2.了解烯烃物理性质的变化规律,掌握烯烃的化学性质及应用。 3.了解烯烃的结构特征和顺反异构
自然界里存在许多烯烃,如番茄中的番茄红 素、鲨鱼油中的角鲨烯都是烯烃。
乙烯是常见的烯烃
因烯烃中C%(85.7%)较大,燃烧时火焰明亮且伴有黑烟C。H4
C2H4
烯烃能使酸性高锰酸钾溶液 褪色 。
可利用酸性KMnO4溶液鉴别乙烯与甲烷等饱和气态烷烃 但不可用于除去CH4中的C2H4
拓展1:烯烃被酸性高锰酸钾溶液氧化的产物规律
烯烃中双键被
CH2=
RCH=
氧化的部分 (双键C上2个H) (双键C上1个H)
-6.3 30 63.3 93.6
相对密度 0.566 0.5193 0.5951 0.6405 0.6731 0.6970
2、烯烃的性质
(1)烯烃的物理性质 :随着分子中碳原子数的递增,呈现规律性的变化。 颜色:__无__色____ 所有的烃都难溶与水且密度比水小! 溶解性:均难溶于水,易溶于有机溶剂
两个双键连在同一个碳上
共轭二烯烃 C=C-C=C-C 稳 定
两个双键被一个单键隔开
孤立二烯烃 C=C-C-C=C 性质同单烯烃
两个双键被两个或 两个以上单键隔开
c) 1,3-丁二烯与溴发生加成反应
请类比乙烯/丙烯加成反应书写下列物质的加成反应方程式
➢ CH2=CH-CH=CH2与足量溴水的加成反应
物理性质
密度:随C数目的增加而增大;但相对密度都小于1 熔沸点:一般随碳数增加而升高;同碳数时,支链越
多熔沸点越低 (主要由分子间作用力决定!)

有机化学课件(李景宁主编)第3章-单烯烃

有机化学课件(李景宁主编)第3章-单烯烃

总目录
第二节 烯烃的同分异构和命名
一、烯烃的同分异构现象
1. 构造异构(constitutional isomerism)
构造异构——分子式相同,原子或基团在分子 中连接次序不同。
碳干异构:
位置异构:(官能团变位)
CH3 CH2 CH CH2
CH3 CH2 CH CH2
CH3 C CH2 CH3
CH3 CH CH CH3
a > b;c > d
a > b,c > d
优先基团同侧-(Z) 优先基团异侧-(E)
总目录
Cl >H,Br >CH3 (E)-
I >CH3,Br >H (Z)-
(E)
(Z)
总目录
(E)-2,2,4-三甲基-3-己烯 (E)-2,2,4-trimethyl-3-hexene
(E)-3,4-二甲基-2-戊烯 顺-3,4-二甲基-2-戊烯 (E)-3,4-dimethyl-2-pentene
因为内能:烯烃 > 烷烃,所以氢化反应放热
总目录
烯烃
氢化热 kJ.mol-1
137.2 125.1 126.8 119.7
115.1
总目录
烯烃
氢化热 kJ.mol-1
126.8
119.2
112.5
111.3
总目录
(1)稳定性:反式 > 顺式 (2)C=C连接的烷基越多越稳定 • 稳定性:
• R2C=CR2 > R2C=CHR > RCH=CHR ≈ R2C=CH2 > RCH=CH2 > CH2=CH2
总目录
注意:
• 顺、反与Z、E是两种不同的表示烯烃几 何构型的方法,在大多数情况下,不存 在对应关系。即顺式不一定是Z构型,而 反式不一定是E构型。例如:

烯 烃ppt课件

烯  烃ppt课件

碳碳单键和双键电子云分布的比较
C-C s键
电子云不易与外界接近
C-C 键
电子云暴露在外.易接近亲电试剂
a:s键电子云集中在两核之间,不易与外界试剂接近 b:双键是由四个电子组成,相对单键来说,电子云密 度更大;且构成键的电子云暴露在乙烯分子所在的平 面的上方和下方,易受亲电试剂(s+)攻击,所以双键有 亲核性 (s-).
r- B r + B C H H 2 C 2
第一步
C C
CH2Br CH2Br _
+ + B r- B r
C Br: + Br C
Br
::
C
C
Br + Br-
::
溴鎓离子
第二步
C
Br- C
Br
C C Br
反式加成
加成反应首先是亲电子试剂(缺电子的溴正离子)的 进攻引起的,称为亲电加成反应。如果双键的电子云 密度越大,反应越容易进行,反之亦然。
5.顺反异构体命名
a.双键两个碳原子上连接的两相同的基团在同 侧为顺式,在异侧为反式。名称前附以顺或反, 用短线连接。
CH3 H C C CH2CH3 H H C C CH3
b.双键两个碳原子所连接的4个基团不相同时, 采用Z、E命名法。Z:“同一侧”,E:“相 a d 反”。 a c 基团优先次序: C C C C b a>b, c>d c b d
第一节 烯烃的结构
不饱和:即有机物分子中与碳原子数相等的开 链烷烃相比较,氢原子的数目少于开链烷烃的 氢原子数。
实验表明乙烯的结构为: ① 所有原子在同一平面,每个碳原子只和三个原子相连, 键角120°。 ② 键能:C = C 610 kJ/mol(C—C 345.6 kJ/mol),双键的 键能≠两个单键键能之和:345.6 * 2 = 691.2 kJ/mol ③ 键长: C = C 0.133nm(C—C 0.153nm),不是单键的1/2。 H

烯烃的结构 PPT

烯烃的结构 PPT

• CH2=C-

CH3
1-丙烯基 2-丁烯基 2-丙烯基(烯丙基) 1-甲基乙烯基
(异丙烯基)
(3)Z/E命名法
• ⅠIUPAC命名法,Z指同一侧的意思,E 指相反的意思。用“顺序规则”来决定Z, E的构型。
• Ⅱ “顺序规则”主要内容: • 一是将双键碳原子所连接的原子或基团
按原子序数大小排列,把大的排在前面, 小的排在后面,同位素按原子量大小次 序排列。
5, π键和σ键的对比
π键 • 没有对称轴 • 不能自由旋转 • 侧面重叠,重叠程度
较小,容易破裂. • 分散成上下两方,流
动性较大,易反应. • 键长较短,0.134nm • 键能264.4kJ/mol
•σ键 •有对称轴 •成键原子间能自由旋转 •重叠程度较大,键能高, 比较稳定.
电子云集中,不易反应 键长较长0.154nm •键能345.6kJ/mol
4,产生顺反异构的条件
• 必须在构成双键的任何一个碳原子上所 连接的两个原子或基团要不相同。也就 是说,当双键的任何一个碳原子所连接 的两个原子或基团相同时就没有顺反异 构现象。
下列化合物没有顺反异构体:
a
aa
d
C=C
C=C
a
bb
d
∵ a=a
∵ d=d
∴无顺反异构
∴无顺反异构
二,烯烃的命名
• (1) 烯 烃的系统命名法:与烷 烃相似, 其要点是:
• π轨道:每个碳原子还剩下一个2py轨道, 它们的对称轴垂直于这五个σ键所在的平 面,且互相平行,电子的自旋方向相反, 沿着轴平行地重叠,便组成新的轨道, 称为π轨道。
(3)乙烯 分子中的σ键和π键
H C
H

高中化学有机课件:烯烃

高中化学有机课件:烯烃

3.β-月桂烯的结构如图所示,一分子该物质与两分子溴发生加成反应的产物(只 考虑位置异构)理论上最多有( C )
A.2种 C.4种
B.3种 D.6种
【解析】因分子存在三种不同的碳碳双键,如图所示
;1分子该物质与2
分子Br2加成时,可以在①②的位置上发生加成,也可以在①③位置上发生加成 或在②③位置上发生加成,还可以1分子Br2在①②发生1,4-加成反应,另1分子 Br2在③上加成,故所得产物共有4种。
3.苯丙烯(C9H10)具有A、B两种直链位置异构体,其中A具有顺式C和反式D两 种异构体,请写出它们的结构简式。
A______________;B________________; C_____________;D_____________。
当堂检测
1.既可以用来鉴别乙烯和甲烷,又可用来除去甲烷中混有的乙烯的方法是( A ) A.通入足量溴水中 B.与足量的液溴反应 C.通入酸性高锰酸钾溶液中 D.一定条件下与H2反应
4.烷烃存在顺反异构现象吗?试总结产生顺反异构现象的条件是什么? 提示:烷烃不存在顺反异构现象;产生顺反异构现象的条件是分子中存在碳碳 双键,且碳碳双键的同一碳原子上连有不同的原子或原子团。
归纳总结 二、烯烃的立体异构
1.顺反异构的概念 通过碳碳双键连接的原子或原子团不能绕键轴旋转会导致其空间排列方式不同, 产生顺反异构现象。 (1)顺式结构:相同的原子或原子团位于双键同一侧的顺式结构,如顺-2-丁烯:
3.已知
的键线式可写作 ,某有机化合物的键线式为

其正确名称是( D ) A.5-乙基-2-己烯 C.3-甲基-5-庚烯
B.2-甲基庚烯 D.5-甲基-2-庚烯
【解析】有机化合物的键线式是将碳原子和氢原子省略,用线段的端点和拐点

烯烃、二烯烃的性质与结构-高中化学同步课件(苏教版2019选择性必修3)

烯烃、二烯烃的性质与结构-高中化学同步课件(苏教版2019选择性必修3)
CH3CH2OH(乙醇)
烯烃能使酸性高锰酸钾和溴水褪色
烯烃的不对称加成反应
【提问】试写出CH2=CH-CH3与HBr的反应。
CH2=CH-CH3 + HBr
CH2-CH-CH3
|
|
Br
H
CH2-CH-CH3
|
|
主要产物
H
Br
当不对称烯烃与含氢化合物(HBr、H2O等)加成时,H原子主要
加到连有较多H原子的C原子上(马氏规则)
CH3
[ CH2
CH3
C]
n
CH3
二、加聚反应的类型
②共轭烯烃型加聚反应 双键要打开,单键变双键
n CH2=CH—CH=CH2 催化剂
[ CH2—CH=CH—CH2 ]n
【练一练】试右侧物质的加聚反应?
不变 ,氢原子质量分数 不变 。

环烷烃:CnH2n (n≥3)
单烯烃与同碳原子数的环烷烃是同分异构体
3.烯烃的结构:
含有碳碳双键,乙烯所有原子 能 共平面,键角约为 120° 。
3和sp2
sp

烯烃中含有键和 键,碳原子的杂化方式为
。碳原子
数不同的单烯烃之间关系是 同系物

二、烯烃的立体异构
1.顺反异构产生的原因:由于与双键相连接的两个碳原子不能旋转,导致原子
现象:若发生取代反应则生成HBr,则有淡黄色沉淀或加石蕊会变红;
若发生加成反应,则无此现象。
四、烯烃的化学性质
3.氧化反应:
①在氧气中燃烧
现象:在空气中燃烧,火焰明亮且伴有黑烟
反应方程式:
四、烯烃的化学性质
3.氧化反应:
②与酸性高锰酸钾溶液反应
现象:酸性高锰酸钾溶液褪色

高中化学课件:烯烃

高中化学课件:烯烃

试写出丙烯(CH2==CHCH3)、苯乙烯( 聚反应。
CH=CH2 )、四氟乙烯(CF2==CF2)的加
3.氧化反应 (1)燃烧
链状单烯烃的燃烧通式:CnH2n+32nO2 点燃 nCO2 + nH2O
乙烯燃烧的现象: 火焰明亮,并伴有黑烟 (可用燃烧法鉴别甲烷与乙烯)
(2)乙烯气体通入酸性高锰酸钾溶液 现象:溶液紫色褪去 CH2=CH2 KMnO4 CO2+H2O 反应化学方程式 ?
-138.9 3.7 0.621
-105.5 0.9
0.604
化学性质相同,物理性质有差异
五、二烯烃的结构
1.概念:分子中含有两个碳碳双键的烃 2.链状二烯烃的通式: CnH2n-2(n≥3) 3.二烯烃的分类:
累积二烯烃 CH2==C==CH2 共轭二烯烃 CH2==CH—CH==CH2 (1,3-丁二烯) 孤立二烯烃 CH2==CH—CH2—CH==CH2(1,4-戊二烯)
CH2==CH2 +H2
催化剂 加热
CH3—CH3
CH3—CH==CH2+H2
催化剂 加热
CH3—CH2—CH3
工业上将植物油催化氢化得到人造黄油。
(3)与氢卤酸发生加成反应
CH2==CH2+HCl
催化剂 加热
CH3—CH2Cl
CH3CH==CH2+HCl
催化剂 加热

CH3—CH —CH2 Cl H
乙烯CH2==CH2的加聚反应过程?
CH2==CH2+CH2==CH2+CH2==CH2+......
n CH2==CH2 单体
催化剂
[ CH2—CH2 ]n
(聚乙烯) 链节
聚合度
加聚反应的特点: (1)反应物特征——含有不饱和键。 (2)生成物特征——与反应物具有相同的组成。 (3)反应特征——没有小分子化合物生成。

烯烃的结构与性质、立体异构课件-高二化学人教版(2019)选择性必修3

烯烃的结构与性质、立体异构课件-高二化学人教版(2019)选择性必修3

1,2—加成
Cl
1
3
4
2
Cl
1
3
2 4 + Cl2
1,4—加成
Cl
1
3 24
Cl
1,3-丁二烯的1,2-加成和1,4-加成是竞争反应,
到底哪一种加成占优势,取决于反应条件。 在温度较高的条件下大多发生1,4-加成,
在度较低的条件下大多发生1,2-加成。
3.加聚反应: 原理:双键中的π键打开,双键碳原子在主链,其余C成为支链。
乙烯能使酸性高锰酸钾、溴的四氯化碳溶液褪色,原理一样吗? 提示:乙烯使酸性高锰酸钾溶液褪色是发生了氧化反应,
使溴的四氯化碳溶液褪色是发生了加成反应,因此原理不一样。
对点训练 既可以用来鉴别乙烯和乙烷,又可以用来除去乙烷中
A 混有的乙烯的方法是( )
√A.通入溴水中
B.将气体点燃
C.通入酸性高锰酸钾溶液中
聚乙烯保鲜膜
典例分析
nCH2=CH 一定条件下 [ CH2—CH ]n
Cl
Cl
(聚氯乙烯PVC)
nCH2=CH 一定条件下 [ CH2—CH ]n
CH3
CH3
(聚丙烯PP)
nCH2=CH—CH3一定条件下
CH3 [ CH2—CH ]n
CH3
CH3
(聚异丁烯PC)
对点训练 分别写出下列烯烃加聚产物的结构简式:
[也叫:异戊二烯]
CH3
【思考】 1,3-丁二烯分子中最少有多少个C原子在同一平面上? 3个 最多可以有多少个原子在同一平面上?
10个(全部)
3、类别: 依据两个双键在碳链中的不同位置: ①累积二烯烃 C-C=C=C-C 不稳定
最简单的共轭二烯烃: 1,3-丁二烯

有机化学课件烯烃的结构及命名

有机化学课件烯烃的结构及命名

区域选择性——马氏规则
RCH=CH2 + HBr 马氏经验规律:
R C H C H 3 + RCH2CH2Br
Br 主
H加在含氢较多的双键碳原子上,X加在含氢原 子较少的双键碳原子上。
实质:由碳正离子的稳定性决定。
碳正离子的稳定性:R3C+
>
+ R2CH
++ >RCH2>CH3
正碳离子(carbon cation)
条件——不能自由旋转的碳原子所连接的原子或原子团不同
1)双键的存在
A
D
B
E
环或双键 的存在
A≠B并且D≠E时,存 在顺反异构
2)环的存在
• 烯烃的命名
双键视为烯烃的官能团
“三步曲”: ①选主链——最长(最多) ①主链应含双键(官能团)
②编号——最近
②主官能团的位次尽可能小
③命名——“取代基位次 (最低系列)
R C+
> R C+ > H C+
R
H
H
H
R3C·> R2CH·> RCH2·> CH3·
过氧化物下加氢溴酸
l 特例——反马氏规则 即氢加在氢少的碳原子上
– 条件:过氧化物存在 – 机理:自由基加成反应
R2
R3
R2
H Br
C
R3 H
R2 H
R3
H RO OOO RH
Br
Br
R1
R4
R1
R4
R1
R4
1,6-二甲基环己烯 •编号先官能团(双键),
后取代基
例3
9'

烯烃的结构、异构和命名

烯烃的结构、异构和命名
4
CC
3
2
CH3
1
Cl
6
Z -2-氯-2-丁烯
烯烃的物理性质
• 同烷烃相似: • C2-C4为气体,高级烯烃为固体; • 熔点、沸点和比重随 分子量的增大而上升,
比重 < 1
• 不易溶于水。易溶于非极性或弱极性有机溶 剂中。
烯烃的化学性质
• C=C 的π-电子裸露于外,可提供e,具碱性
容易受到缺电子试剂:酸 E+(亲电试剂)的进 攻;
INTERLOCK OTEMPVER
CSR相同的硬件。 UID 1 2
OSPARENLIE
PSOUWPEPRLYPSOUWPEPRLYMIROR DIMMS
PRCCISAIEGRE
12345678
HP ProLiant DL380G5
PPM M
PROPCROC FANS
INTERLOCK OTEMPVER
UID 1 2
2. 车载设备 TGMT子系统采用的首—尾编组,Airlink列车单元安装在接近头车厢和尾车厢的位置 ,与TGMT子系统相应的车载控制单元和无线天线相邻,如图 5 4所示。 在TGMT子系统的中间编组如图 5 5所示,列车单元被安装在接近头车厢和尾车厢的 地方,通过交换机连接TGMT系统的列车控制单元。车载天线直接连接每个列车单元 。
• 容易发生加成反应,生成两个新的σ键,得到 饱和烃——烷烃。
H
C H
H C
H
一、 烯烃的加成反应
1. 催化加氢:
在催化剂 Ni、Pt、Pd等催化剂作用下,烯 烃可以与氢进行加成反应。
• 反应在催化剂表面进行,为顺式加成,得 顺式加成产物,发热(新键生成);无催 化剂不进行,表明活化能高。

第四章 烯烃

第四章 烯烃

H C
CH3
11
问题:下列化合物是否存在顺反异构?
CH3
C2H5 D
C=C
H
Cl H
H C=C
CH3
CH2-CH-CH3 CH-CH3
CH3CH2
CH3
CC
H
CH3
12
顺反异构体理化性质差异
表一 顺-2-丁烯和反-2-丁烯的理化性质
异构体 顺-2-丁烯
m.P
b.P 偶极矩 氢化热
(℃) (℃) (D) (KJ/mol)
4. 相对密度 ❖烯烃的相对密度都小于1,但比相应的烷烃大。 5. 溶解度 ❖在水里的溶解度很小,但也比烷烃大;
30
第四节 烯烃的化学性质
平面分子:
H
H
Cπ C

H
C=C 键性质活泼 π电子易流动,易极化 π键键能较低
烯烃的化学性质是由其官能团C=C 决定。由于 C=C的特性,因而烯烃的化学性质较烷烃活泼,易发 生催化氢化、亲电加成、氧化、聚合等反应。
Cl C
H
优先基
(E)-1-氯-2-溴乙烯
(Z)-1-氯-2-溴乙烯
23
课堂练习: 命名
Br
Cl
HC
C CH3
(Z)-2-氯-1-溴丙烯
H3C C
H
CH2 C
CH2
CH3 CH2
CH3
(E)-3-乙基-2-己烯
24
Z-E构型命名法适用于所有具有顺反异构 体的烯烃的命名;四个基团均不相同时,只能 用Z, E标示法;但这两套命名法之间没有必然 的对应关系。例如:
HH
HH
CC
过渡金属 催化剂
氢气吸附在催化 剂表面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 碳干异构 • 位置异构----双键位置不同引起的 • 顺反异构----由于双键两侧的基团在空间
的位置不同引起的
15
2, 丁烯 的同分异构体
• (1)丁烯 的碳干和位置异构: • CH2=CH--CH2--CH3 CH3 CH=CHCH3

1-丁烯

(1)
2-丁烯 (2)
• (1),(2)是双键位置异构。
• π轨道:每个碳原子还剩下一个2py轨道, 它们的对称轴垂直于这五个σ键所在的平 面,且互相平行,电子的自旋方向相反, 沿着轴平行地重叠,便组成新的轨道, 称为π轨道。
7
(3)乙烯 分子中的σ键和π键
H C
H
H C
H
乙烯分子中的σ键和π键
8
* MO
C-C
C=C
* MO 键能/kJmol-1 346
610
E
键长/nm
0.154 0.134
MO
MO
键键能:264kJ/mol
顺、反异构体转化活化能:
>264kJ/mol
9
4,分子轨道法的解释
碳碳π键的形成: 当两个碳原子各以一个p轨道线性组合成 两个分子轨道时,一个是π成键轨道,另一 个是π*反键轨道。在基态时,两个轨道 上的两个电子处在成键轨道上,形成了π 键,反键轨道多一个节面,能量较高, 在基态时反键轨道是空着的。
5
sp2
B
B
CC
A
A
C-C
C=C
键键键:能26/k4JkmJ/oml-1ol 346
610
E
键长/nm
0.154
0.134
Sp2 轨道与 p 轨道的关系
6
(2)乙烯分子的成键
• 两个碳原子各以一个sp2轨道重叠形成一 个C--Cσ键,各又以两个sp2轨道和四个氢 原子的1s轨道重叠,形成四个σ键。这样 形成的五个σ键在同一平面上。
• (1) 烯 烃的系统命名法:与烷 烃相似, 其要点是:
• 最长碳链为主链(母体烯 烃) • 以最小的编号给双键 • 双键的位次,只写出双键两个碳原子中位
次较小的一个,放在烯烃名称的前面. • 其他同烷烃的命名原则.
21
(2) 烯 基
• 烯 基:当烯烃从形式上去掉一个氢原子后 剩下的一价基团叫做烯 基。
10
5, π键和σ键的对比
π键 • 没有对称轴 • 不能自由旋转 • 侧面重叠,重叠程度
较小,容易破裂. • 分散成上下两方,流
动性较大,易反应. • 键长较短,0.134nm • 键能264.4kJ/mol
11
•σ键 •有对称轴 •成键原子间能自由旋转 •重叠程度较大,键能高, 比较稳定.
电子云集中,不易反应 键长较长0.154nm •键能345.6kJ/mol
课件10
第三章 单 烯 烃
烯烃的结构 烯烃的同分异构和命 名 烯烃的物理性质 化学性质 烯
烃的制备 反应历程 马氏规则
1
单烯烃的概念和功能团
• 单烯烃是指分子中含有一个碳 碳双键 (C==C)的不饱和开链烃,简称烯烃。烯 表示分子中含量氢较少的意思。
• 单烯烃的通式是CnH 2n。 • 碳碳双键叫做烯键,是烯烃的官能团。
• CH3CH=CH-
• CH3CH=CHCH2-
• CH2=CHCH2-
• CH2=C-

CH3
1-丙烯基 2-丁烯基 2-丙烯基(烯丙基) 1-甲基乙烯基
(异丙烯基)
22
(3)Z/E命名法
• ⅠIUPAC命名法,Z指同一侧的意思,E 指相反的意思。用“顺序规则”来决定Z, E的构型。
• Ⅱ “顺序规则”主要内容: • 一是将双键碳原子所连接的原子或基团
一侧的则为(E)构型,命名时在名称前面
附以(E)字,均用一短线连接。
a
c
a
d
C==C
a>b
C==C
a>b
b
d c>d
b
c c>d
(Z)
(E)
24
2-丁烯的顺反异构体
• H3C
CH3

C==C
•H
H
H3C
H
C==C
H
CH3
• (Z)-2-丁烯
16
CH 3 CH2 CH3
异丁烯
(1),(2)和(3)是碳干异构体
(3)
(2) 2-丁烯又有两个顺反异构体:
H3C
CH3
C=C
H
H
顺-2-丁烯 (4)
H3C
H
C=C
H
CH3
反-2-丁烯
(5)
17
3,顺反异构现象
• 由于组成双键的两个碳原子不能相对自 由旋转,使得这两个碳原子上所连接的 原子或基团在空间的配置不同,以致形 成的几何构型不同,这一现象称为顺反 异构现象。
• 丙烯分子的分子结构:

H
CH3

C====C
sp2
B CC
B

H
H
A
A
4
2,杂化轨道 理论解释
• (1)杂化:乙烯碳原子成键时,碳原子 以一个s轨道和两个p轨道进行杂化,组 成三个等同的sp2轨道,sp2轨道 对称轴在 同一平面上,彼此成120º角,这种杂化方 式叫sp2杂化。
• 每个碳原子余下一个未参加杂化的2p轨 道,仍保持原来的形状,其对称轴垂直 于在三个sp2轨道的对称轴所在的平面。
按原子序数大小排列,把大的排在前面, 小的排在后面,同位素按原子量大小次 序排列。
23
几种原子的顺序为:
I,Br,Cl,S,P,O,N,C,D,H
当与C1所连接的两个原子或基团中原子序数 大的与C2所连接原子序数大的原子或基团处 在平面同一侧的为(Z)构型,命名时在
名称的前面附以(Z)字。反之,若不在同
18
4,产生顺反异构的条件
• 必须在构成双键的任何一个碳原子上所 连接的两个原子或基团要不相同。也就 是说,当双键的任何一个碳原子所连接 的两个原子或基团相同时就没有顺反异 构现象。
19
下列化合物没有顺反异构体:
a
aa
d
C=C
C=C
a
bb
d
∵ a=a
∵ d=d
∴无顺反异构
∴无顺反异构
20
二,烯烃的命名
12
6,碳碳双键的组成
• 烯烃的双键: • 由一个σ键和一个π键组成的.π键的直剖面
垂直于σ键所在的平面. • 烯 烃的构造式,用两条短线来表示双键.一
条短线代表σ键,另一条是代表π键.
13
第二节 烯烃的同分异构和命名
烯烃的同分异构现象 烯烃的命名
14
一,烯烃的同分异构现象
• 1,由于烯 烃含有双键,因此烯 烃的同 分异构有:
2
第一节 烯烃的结构
• 乙烯 是最简单的烯烃,气体,分子式为C2H4, 构造式为H2C==CH2。
• 以乙烯为例来了解烯烃双键的结构:

H
H
121.7º
• •
117º
C====C
H 0.133nm
0.108nm
H
sp2
B CC
A
B A
3
1,碳碳双键
• 碳碳双键是由一个σ键和一个π键构成的, 而不是由两个单键所构成的。并被现代 物理方法充分证明。
相关文档
最新文档