江西省初三数学练习册答案(全一册)

合集下载

九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版

九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版

九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版1 第1课时菱形的概念及其性质知识点 1 菱形的定义及对称性1.如图1-1-1,在?ABCD中,若添加下列条件:①AB=CD;②AB=BC;③∠1=∠2.其中能使?ABCD成为菱形的有( )图1-1-1A.0个B.1个C.2个D.3个2.菱形OACB在平面直角坐标系中的位置如图1-1-2所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( ) A.(3,1) B.(3,-1)C.(1,-3) D.(1,3)1-1-2 1-1-33.如图1-1-3,P是菱形ABCD对角线BD上的一点,PE⊥AB 于点E,PE=4 cm,则点P到BC的距离是________cm.知识点 2 菱形的边的性质4.如图1-1-4,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是( )A.25 B.20C.15 D.101-1-4 1-1-5 5.如图1-1-5,在菱形ABCD中,对角线AC,BD相交于点O,H为AD边的中点.若菱形ABCD的周长为32,则OH的长为________.6.如图1-1-6,在△ABC中,AB=AC,四边形ADEF是菱形.求证:BE=CE.图1-1-6知识点 3 菱形的对角线的性质7.教材习题1.1第2题变式题如图1-1-7,在菱形ABCD中,AC=6,BD=8,则菱形ABCD的边长为( )A.5 B.10 C.6 D.88.已知菱形的边长是2 cm,一条对角线长是2 cm,则另一条对角线长是( )A.4 cm B.2 3 cmC. 3 cm D.3 cm1-1-7 1-1-89.如图1-1-8,在菱形ABCD中,AC,BD相交于点O,若∠BCO=55°,则∠CBO=________°.10.如图1-1-9,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为( )图1-1-9A.(-5,4) B.(-5,5)C.(-4,4) D.(-4,3)11.一个菱形的边长为4 cm,且有一个内角为60°,则这个菱形的面积是________.12.如图1-1-10,在菱形ABCD中,∠BAD=80°,对角线AC,BD相交于点O,点E 在AB上,且BE=BO,则∠EOA=________°.1-1-10 1-1-1113.如图1-1-11,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为________.14.如图1-1-12所示,已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是________.图1-1-1215.如图1-1-13,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.图1-1-1316.如图1-1-14所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F,请你猜想CE与CF在数量上有什么关系,并证明你的猜想.图1-1-1417.如图1-1-15,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=CE;(2)若∠E=50°,求∠BA O的度数.图1-1-15第2课时菱形的判定知识点 1 由菱形的定义作判定1.如图1-1-16,要使?ABCD成为菱形,则需添加的一个条件是( )图1-1-16A.AC=AD B.BA=BCC.∠ABC=90° D.AC=BD2.如图1-1-17,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.图1-1-17知识点 2 根据菱形的对角线作判定3.下列命题中,正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形图1-1-184.如图1-1-18,在?ABCD中,AB=13,AC=10,当BD=________时,四边形ABCD 是菱形.5.教材例2变式题如图1-1-19,在?ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.求证:四边形ABCD是菱形.图1-1-19知识点 3 根据菱形的边作判定6.用直尺和圆规作一个菱形,如图1-1-20,能判定四边形ABCD是菱形的依据是( )图1-1-20A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7.如图1-1-21,在△ABC中,AB=AC,∠B=60°,∠FAC,∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.图1-1-218.如图1-1-22所示,在?ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判定四边形AECF为菱形的是( )A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线1-1-22 1-1-239.如图1-1-23,D,E,F分别是△ABC的边AB,BC,AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是( )A.AB⊥AC B.AB=ACC.AB=BC D.AC=BC10.顺次连接对角线相等的四边形的各边中点,所形成的四边形是________.图1-1-2411.如图1-1-24,E,F,G,H分别是任意四边形ABCD中AD,BD,BC,CA的中点,当四边形ABCD的边满足条件____________时,四边形EFGH是菱形.12.如图1-1-25,在△ACB中,∠ACB=90°,∠B=60°,作边AC的垂直平分线l 交AB于点D,过点C作AB的平行线交l于点E,判断四边形DBCE的形状,并说明理由.图1-1-2513.如图1-1-26,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE 并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.图1-1-2614.某校九年级学习小组在探究学习过程中,用两块完全相同且含60°角的三角板ABC 与三角板AEF按如图1-1-27①所示方式放置,现将三角板AEF绕点A按逆时针方向旋转α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,判断四边形ABPF的形状,并说明理由.图1-1-27第3课时菱形的性质与判定的综合应用知识点 1 菱形的面积1.已知菱形的两条对角线长分别是12和16,则此菱形的面积是( )A.192 B.96 C.48 D.40图1-1-282.如图1-1-28,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是( )A.6 B.12C.24 D.483.如图1-1-29,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的面积及高.图1-1-29知识点 2 菱形的性质与判定的应用4.如图1-1-30,在平行四边形ABCD中,AC平分∠DAB,AB=2,则四边形ABCD的周长为( )A.4 B.6 C.8 D.121-1-30 1-1-315.如图1-1-31,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=BCC.AB=CD,AD=BCD.∠DAB+∠BCD=180°6.如图1-1-32,将等边三角形ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC 互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )A.1 B.2 C.3 D.41-1-3 1-1-337.如图1-1-33,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.8.如图1-1-34所示,在菱形ABCD中,AE⊥BC,BE=EC,AE=2,则AB=________.1-1-3 1-1-359.如图1-1-35,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,且AD交EF于点O,则∠AOF=________°.10.如图1-1-36,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求四边形BCFE的周长.图1-1-36图1-1-3711.如图1-1-37,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD的周长为( )A.52 cm B.40 cmC.39 cm D.26 cm12.如图1-1-38,在给定的一张平行四边形纸片ABCD上作一个菱形,甲、乙两人的作法如下:图1-1-38甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A .甲正确,乙错误B .甲错误,乙正确C .甲、乙均正确D .甲、乙均错误图1-1-3913.如图1-1-39,菱形ABCD 的边长为8 cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为________cm 2.14.如图1-1-40,在菱形ABCD 中,P 是AB 上的一个动点(不与点A ,B 重合),连接DP 交对角线AC 于点E ,连接BE .(1)求证:∠APD =∠CBE ;(2)试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的14,为什么?图1-1-4015.2017·贺州如图1-1-41,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为O .(1)求证:四边形ABCD 是菱形;(2)若CD=3,BD=2 5,求四边形ABCD的面积.图1-1-4116.教材“做一做”变式题明明将两张长为8 cm,宽为2 cm的长方形纸条交叉叠放,如图1-1-42①所示,他发现重叠部分可能是一个菱形.(1)请你帮助明明证明四边形ABCD是菱形;(2)明明又发现:如图②所示,当菱形的一条对角线与长方形纸条的一条对角线重合时,菱形ABCD的周长最大,求此时菱形ABCD的周长.图1-1-422 第1课时矩形的概念及其性质知识点 1 矩形边、角的性质1.若矩形ABCD的两邻边长分别是1,2,则其对角线BD的长是( )A. 3 B.3 C. 5 D.2 52.如图1-2-1所示,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.51-2-1 1-2-23.如图1-2-2,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC 的度数是( )A.30° B.22.5° C.15° D.10°4.如图1-2-3,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD.求证:AO=BO.图1-2-3知识点 2 矩形对角线的性质5.如图1-2-4,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB 的度数为( )A.30° B.60° C.90° D.120°1-2-4 1-2-56.教材例1变式题如图1-2-5,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB =60°,AC=6 cm,则AB的长是( )A .3 cmB .6 cmC .10 cmD .12 cm图1-2-67.如图1-2-6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是AO ,AD 的中点,若AB =6 cm ,BC =8 cm ,则EF =________ cm.8.如图1-2-7,在矩形ABCD 中,过点B 作BE ∥AC 交DA 的延长线于点E .求证:BE =BD .图1-2-7知识点 3 直角三角形斜边上的中线的性质9.若直角三角形两条直角边的长分别为6和8,则斜边上的中线的长是( ) A .5 B .10 C.245 D.125图1-2-810.如图1-2-8,△ABC 中,∠ACB =90°,∠B =55°,D 是斜边AB 的中点,那么∠ACD 的度数为( )A.15° B.25°C.35° D.45°11.如图1-2-9,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E 为AB的中点.求证:CE=DE.图1-2-912.如图1-2-10,已知矩形ABCD沿着直线BD折叠,使点C 落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为( ) A.3 B.4 C.5 D.61-2-10 1-2-1113.如图1-2-11,在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.2014.如图1-2-12,在矩形ABCD中,两条对角线相交于点O,折叠矩形,使顶点D与对角线交点O重合,折痕为CE,已知△CDE的周长是10 cm,则矩形ABCD的周长为( )A.15 cm B.18 cm C.19 cm D.20 cm1-2-121-2-1315.如图1-2-13,在Rt△ABC中,∠ACB=90°,D,E,F分别是边AB,BC,CA的中点,若CD=6 cm,则EF=________ cm.16.2017·荆州如图1-2-14,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC 方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.图1-2-1417.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图1-2-15①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图1-2-15②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,。

九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版

九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版

九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版1 第1课时菱形的概念及其性质知识点 1 菱形的定义及对称性1.如图1-1-1,在?ABCD中,若添加下列条件:①AB=CD;②AB=BC;③∠1=∠2.其中能使?ABCD成为菱形的有( )图1-1-1A.0个B.1个C.2个D.3个2.菱形OACB在平面直角坐标系中的位置如图1-1-2所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )A.(3,1) B.(3,-1)C.(1,-3) D.(1,3)1-1-2 1-1-33.如图1-1-3,P是菱形ABCD对角线BD上的一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是________cm.知识点 2 菱形的边的性质4.如图1-1-4,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是( )A.25 B.20C.15 D.101-1-4 1-1-5 5.如图1-1-5,在菱形ABCD中,对角线AC,BD相交于点O,H为AD边的中点.若菱形ABCD的周长为32,则OH的长为________.6.如图1-1-6,在△ABC中,AB=AC,四边形ADEF是菱形.求证:BE=CE.图1-1-6知识点 3 菱形的对角线的性质7.教材习题1.1第2题变式题如图1-1-7,在菱形ABCD中,AC=6,BD=8,则菱形ABCD的边长为( )A.5 B.10 C.6 D.88.已知菱形的边长是2 cm,一条对角线长是2 cm,则另一条对角线长是( )A.4 cm B.2 3 cmC. 3 cm D.3 cm1-1-7 1-1-89.如图1-1-8,在菱形ABCD中,AC,BD相交于点O,若∠BCO=55°,则∠CBO=________°.10.如图1-1-9,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为( )图1-1-9A.(-5,4) B.(-5,5)C.(-4,4) D.(-4,3)11.一个菱形的边长为4 cm,且有一个内角为60°,则这个菱形的面积是________.12.如图1-1-10,在菱形ABCD中,∠BAD=80°,对角线AC,BD相交于点O,点E 在AB上,且BE=BO,则∠EOA=________°.1-1-10 1-1-1113.如图1-1-11,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为________.14.如图1-1-12所示,已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是________.图1-1-1215.如图1-1-13,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.图1-1-1316.如图1-1-14所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F,请你猜想CE与CF在数量上有什么关系,并证明你的猜想.图1-1-1417.如图1-1-15,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=CE;(2)若∠E=50°,求∠BAO的度数.图1-1-15第2课时菱形的判定知识点 1 由菱形的定义作判定1.如图1-1-16,要使?ABCD成为菱形,则需添加的一个条件是( )图1-1-16A.AC=AD B.BA=BCC.∠ABC=90° D.AC=BD2.如图1-1-17,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.图1-1-17知识点 2 根据菱形的对角线作判定3.下列命题中,正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形图1-1-184.如图1-1-18,在?ABCD中,AB=13,AC=10,当BD=________时,四边形ABCD 是菱形.5.教材例2变式题如图1-1-19,在?ABCD中,对角线AC,BD相交于点O,AB =5,AC=6,BD=8.求证:四边形ABCD是菱形.图1-1-19知识点 3 根据菱形的边作判定6.用直尺和圆规作一个菱形,如图1-1-20,能判定四边形ABCD是菱形的依据是( )图1-1-20A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7.如图1-1-21,在△ABC中,AB=AC,∠B=60°,∠FAC,∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.图1-1-218.如图1-1-22所示,在?ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判定四边形AECF为菱形的是( )A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线1-1-22 1-1-239.如图1-1-23,D,E,F分别是△ABC的边AB,BC,AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是( )A.AB⊥AC B.AB=ACC.AB=BC D.AC=BC10.顺次连接对角线相等的四边形的各边中点,所形成的四边形是________.图1-1-2411.如图1-1-24,E,F,G,H分别是任意四边形ABCD中AD,BD,BC,CA 的中点,当四边形ABCD的边满足条件____________时,四边形EFGH是菱形.12.如图1-1-25,在△ACB中,∠ACB=90°,∠B=60°,作边AC的垂直平分线l 交AB于点D,过点C作AB的平行线交l于点E,判断四边形DBCE的形状,并说明理由.图1-1-2513.如图1-1-26,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC 的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.图1-1-2614.某校九年级学习小组在探究学习过程中,用两块完全相同且含60°角的三角板ABC 与三角板AEF按如图1-1-27①所示方式放置,现将三角板AEF绕点A按逆时针方向旋转α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF 交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,判断四边形ABPF的形状,并说明理由.图1-1-27第3课时菱形的性质与判定的综合应用知识点 1 菱形的面积1.已知菱形的两条对角线长分别是12和16,则此菱形的面积是( )A.192 B.96 C.48 D.40图1-1-282.如图1-1-28,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD =6,则菱形ABCD的面积是( )A.6 B.12C.24 D.483.如图1-1-29,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的面积及高.图1-1-29知识点 2 菱形的性质与判定的应用4.如图1-1-30,在平行四边形ABCD中,AC平分∠DAB,AB=2,则四边形ABCD的周长为( )A.4 B.6 C.8 D.121-1-30 1-1-315.如图1-1-31,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=BCC.AB=CD,AD=BCD.∠DAB+∠BCD=180°6.如图1-1-32,将等边三角形ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )A.1 B.2 C.3 D.41-1-3 1-1-337.如图1-1-33,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D 的坐标为(0,2),则点C的坐标为________.8.如图1-1-34所示,在菱形ABCD中,AE⊥BC,BE=EC,AE=2,则AB=________.1-1-3 1-1-359.如图1-1-35,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,且AD交EF于点O,则∠AOF=________°.10.如图1-1-36,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求四边形BCFE的周长.图1-1-36图1-1-3711.如图1-1-37,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD的周长为( )A.52 cm B.40 cmC.39 cm D.26 cm12.如图1-1-38,在给定的一张平行四边形纸片ABCD上作一个菱形,甲、乙两人的作法如下:图1-1-38甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A .甲正确,乙错误B .甲错误,乙正确C .甲、乙均正确D .甲、乙均错误图1-1-3913.如图1-1-39,菱形ABCD 的边长为8 cm ,∠A =60°,D E ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为________ cm 2.14.如图1-1-40,在菱形ABCD 中,P 是AB 上的一个动点(不与点A ,B 重合),连接DP 交对角线AC 于点E ,连接BE .(1)求证:∠APD =∠CBE ;(2)试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的14,为什么?图1-1-4015.2017·贺州如图1-1-41,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为O .(1)求证:四边形ABCD 是菱形;(2)若CD=3,BD=2 5,求四边形ABCD的面积.图1-1-4116.教材“做一做”变式题明明将两张长为8 cm,宽为2 cm的长方形纸条交叉叠放,如图1-1-42①所示,他发现重叠部分可能是一个菱形.(1)请你帮助明明证明四边形ABCD是菱形;(2)明明又发现:如图②所示,当菱形的一条对角线与长方形纸条的一条对角线重合时,菱形ABCD的周长最大,求此时菱形ABCD的周长.图1-1-422 第1课时矩形的概念及其性质知识点 1 矩形边、角的性质1.若矩形ABCD的两邻边长分别是1,2,则其对角线BD的长是( )A. 3 B.3 C. 5 D.2 52.如图1-2-1所示,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE =2,则CD的长是( )A.2 B.3 C.4 D.51-2-1 1-2-23.如图1-2-2,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC 的度数是( )A.30° B.22.5° C.15° D.10°4.如图1-2-3,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD.求证:AO =BO.图1-2-3知识点 2 矩形对角线的性质5.如图1-2-4,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB 的度数为( )A.30° B.60° C.90° D.120°1-2-4 1-2-56.教材例1变式题如图1-2-5,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB =60°,AC=6 cm,则AB的长是( )A .3 cmB .6 cmC .10 cmD .12 cm图1-2-67.如图1-2-6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是AO ,AD 的中点,若AB =6 cm ,BC =8 cm ,则EF =________ cm.8.如图1-2-7,在矩形ABCD 中,过点B 作BE ∥AC 交DA 的延长线于点E .求证:BE =BD .图1-2-7知识点 3 直角三角形斜边上的中线的性质9.若直角三角形两条直角边的长分别为6和8,则斜边上的中线的长是( ) A .5 B .10 C.245 D.125图1-2-810.如图1-2-8,△ABC 中,∠ACB =90°,∠B =55°,D 是斜边AB 的中点,那么∠ACD 的度数为( )A.15° B.25°C.35° D.45°11.如图1-2-9,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E 为AB的中点.求证:CE=DE.图1-2-912.如图1-2-10,已知矩形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为( )A.3 B.4 C.5 D.61-2-10 1-2-1113.如图1-2-11,在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.2014.如图1-2-12,在矩形ABCD中,两条对角线相交于点O,折叠矩形,使顶点D与对角线交点O重合,折痕为CE,已知△CDE的周长是10 cm,则矩形ABCD的周长为( )A.15 cm B.18 cm C.19 cm D.20 cm1-2-121-2-1315.如图1-2-13,在Rt△ABC中,∠ACB=90°,D,E,F分别是边AB,BC,CA 的中点,若CD=6 cm,则EF=________ cm.16.2017·荆州如图1-2-14,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC 方向平移,使点B移到点C,得到△DC E.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.图1-2-1417.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图1-2-15①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD 是“友好三角形”,并且S△ACD=S△BCD.应用:如图1-2-15②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F 在BC上,。

人教版九年级下册数学配套练习册配套参考答案(解析版)

人教版九年级下册数学配套练习册配套参考答案(解析版)

数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)(),6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =- §26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<- 3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,.§26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.x m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-+⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.(()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。

九年级上册数学练习册答案(共10篇)

九年级上册数学练习册答案(共10篇)

九年级上册数学练习册答案(共10篇)九年级上册数学练习册答案(一): 九年级数学上册配套练习册答案我不会延长等腰三角形abc的腰ba和ca分别到点d,e使ad=ab,ae=ac,b,c,d,e.试判定四边形bcde的形状,并证明你的结论请采纳答案,支持我一下.九年级上册数学练习册答案(二): 九年级上册语文/数学配套练习册答案(山东出版总社)gergser43534【九年级上册数学练习册答案】九年级上册数学练习册答案(三): 求数学配套练习册答案九年级上九年级上册数学练习册答案(四): 九年级上册数学练习册期末综合练习22题答案作业是对一天学习情况的检验.光上课不去做题,自己不会知道自己哪一个知识点掌握的比较薄弱.而且现在的学生有个毛病,一听就会,一看就懂,一做就错.做题既能自我检验,还能巩固一天之内的所学知识.老师一般留得作业都是比较经典的题型,涵盖很多知识网,多做多得,不做作业分数难提高哦.所以作业还是要自己做的哦~【九年级上册数学练习册答案】九年级上册数学练习册答案(五): 上海教育九年级上数学练习册答案急~~大赏啊.买学生自助手册是多学科的练习册答案~或者买一本帮数学书长得很像的教辅.后面有练习册答案.不过貌似现在还没出来~九年级上册数学练习册答案(六): 九年级上册数学人教版拓展题目求九年级上册数学一本练习册:重点、难点、拓展题目,最好比较难的求书名~~!!![最重要是拓展题,难点的无所谓,只要有解析]←最好再发个题目上来我看看谢谢了五年中考三年模拟!非常好用哦或者是启东作业本也不错举例一题阅读材料,材料:我们知道,若(x-a)(x-b)=0.则x1=a,x2=b若(x-a)(x-b)(x-c)=0,则x1=a,x2=b,x3=c,依此类推,若(x-p1)(x-p2)(x-p3).(x-n)=0,则x1=p1,x2=p2,x3=p3.xn=pn(1)若方程x(x+1)(x-3/2)=0,则x的值是A x1=0 x2=-1 x3=3/2B x1=0 x2=1 x3= -3/2C x1=0 x2=-1 x3=-3/2D x1=0 x2=1 x3=3/2(2)仿照材料的解法,请你试着解方程:x -3x -10x=0九年级上册数学练习册答案(七): 人教版九年级上册数学复习题22的答案设甬道的宽为x米两条纵向甬道面积=2*80*x=160x等腰梯形中位线=(上底+下底)/2=(100+180)/2=140横向甬道=中位线*高=140x甬道的面积=160x+140x-2x*x=300x-2x^2等腰梯形总面积=140*80甬道的面积是花坛的总面积的六分之一则6*(300x-2x^2)=140*80-(300x-2x^2)x^2-150x+800=0解得x=75-5√193 ≈5.5米九年级上册数学练习册答案(八): 数学·九年级·全一册(人教版)(十四)九年级上册数学期中测试卷(A)的答案各地的教材不一样九年级上册数学练习册答案(九): 九年级数学练习册答案已知△ABC相似△A"B"C"顶点A、B、C分别与A"B"C"对应,它们的周长分别为30厘米和36厘米,且BC=10厘米,A"C"=9厘米.求AC、B"C"的长.因为△ABC相似△A"B"C"所以 BC:B"C"=AC:A"C"所以 10:B"C"=AC:9所以 AC=(10X9)/B"C"又因为周长之比等于相似比所以有时间给你补充啊...忙九年级上册数学练习册答案(十): 九年级数学拓展二练习册P35-38答案1、[格言] 征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验.2、[格言] 莫找借口失败,只找理由成功.(不为失败找理由,要为成功找方法)3、[格言] 大学不仅仅是为了解决现实社会问题和适应当前社会需求而设立的,大学还有它更为重要的任务,它传授的是一代又一代学生一生需要的最基本、最重要的思想、知识和方法,他要探求人类最有普遍意义和恒久价值的真理和学理,它更多地关注“应当怎样”和理想培养,而不是实际的操作和现实的受协方案.4、[名言警句] 成功=艰苦的劳动+正确的方法+少谈空话.——爱因斯坦5、[名言警句] 所有的人都以快乐幸福作为他们的目的;没有例外,不论他们所使用的方法是如何不同,大家都在朝着这同一目标前进.——帕斯卡6、[名言警句] 成功=艰苦劳动+正确的方法+少说空话.——爱因斯坦7、[名言警句] 完成工作的方法是爱惜每一分钟.——达尔文8、[名言警句] 你可以从别人那里得来思想,你的思想方法,即熔铸思想的模子却必须是你自己的.——拉姆9、[名言警句] 读书之法,在循序而渐进,熟读而精思.——朱熹10、[名言警句] 学习知识要善于思考,思考,再思.我就是靠这个方法成为科学家的.——爱因斯坦11、[名言警句] 知识本身并没有告诉人们怎样运用它,运用的方法乃在书本之外.——培根12、[名言警句] 成功=艰苦劳动+正确方法+少说空话——爱因斯坦。

九年级全一册数学基础+综合(习题集答案)

九年级全一册数学基础+综合(习题集答案)

九年级全一册数学基础+综合习题集(参考答案)一元二次方程概念、解法、根的判别式要点回顾1. 整式方程,化简整理,一元二次.2. 一元一次方程,完全平方;2402b x b ac a-±=-()≥,20ax bx c ++= 因式分解;若0m n ⋅=,则0m =或0n =. 3. 因式分解法,配方法4. 24b ac -5. 两个不相等,2;两个相等,1;没有,无,无练习巩固1. B2. C3. B4.③④⑥5. 2230x x --=,22x ,1-,3-6. 1≠±,1=-7. 28. 12213x x ==-, 9. k >-1且0k ≠10. (1)1222x x =+=- (2)12x x ==.11. (1)121122x x ==; (2)127744x x +==12. (1)1221x x =-=,;(2)1216x x =-=,.13. (1)1211x x ==(2)123322x x ==; (3)1247x x ==-,;(4)1211m x x m-==,.思考小结1. B ,C ,D ,A2. 一元一次方程;去分母;消元;配方,因式分解3. 正方形;配方法,负4. 123224x x x ==-=-,,.一元二次方程根与系数关系及应用题要点回顾1. 根与系数的关系,b ca a-, ,≥,≥2. ①增长率型;②面积型;③经济型;增长率型,经济型.巩固练习1. 2173(1%)127x -=2. (502)(802)5400x x ++=3. 50%4.5433-, 5. 4158a <≤. 6. (1)53-; (2)43; (3)3;(4)203. 7. (1)10%; (2)2 928.2万元.8. 方案一中2x =,方案二中2x =.9. 将每件商品提高9元出售时,才能使每天的利润为1 210元. 10. 每千克这种水果盈利了15元.思考小结1. 列表,②方程,不等式,函数2. ①降次,配方,因式分解;②公式法,配方法;③根与系数关系成比例线段及相似图形要点回顾1. c 与d 的比,a c b d= 2. ①a cb d =,ad =bc ,a cb d =;②a c n b dm ===…,0b d n +++≠…,a c m a b d n b+++=+++……3. 两,平行线,对应线段,平行于三角形一边的直线截其他两边(或两边的延长线)所得对应线段成比例.4. 各角分别相等,各边成比例,相似比,相似比5. 三角对应相等,三边成比例.高,角平分线,中线,周长,相似比;相似比的平方.例题示范1.1 22. 1.85米,1.15米 巩固练习1.2222.83.4 94.13,385.25:126.k =2或k=-17.6:4:38. B9. B10.13:311.212.7.8 cm13.作图略,(1)113,,2)是14.③④⑤15.150°,60°16.32,152,70,6017.27思考小结1.形状,全等图形;全等,相似2.方程3.相似三角形的判定及应用要点回顾1.①两角分别相等的两个三角形相似.②两边成比例且夹角相等的两个三角形相似③三边成比例的两个三角形相似④平行于三角形一边的直线和其他两边(的延长线)相交所构成的三角形与原三角形相似.2.利用阳光下的影子、利用标杆、利用镜子的反射3.①不仅相似,对应顶点的连线相较于一点,位似中心②任意一对对应点到位似中心的距离之比巩固练习1.①②③2.92,33. B4. B5.证明略6.证明略7.259或528.559.t=32或t=12510.A11.A12.①②③④13.1:2思考小结1.(1)位似中心是原点,位似比是1 2(2)位似中心是原点,位似比是1 2(3)位似,原点,k.2.条件,结论3.C,B,A相似基本模型要点回顾DE ∥BC ,B AED ∠=∠,B ACD ∠=∠AC ∥BD ,B C ∠=∠,AD 是Rt ABC △斜边上的高巩固练习1. 2,12. D3. 3:24. C5. 46. 4m7. 证明略8. 29. 证明略 10. 8m11. (7m 12. 20m 13. 11.8m相似综合要点回顾1. 一线三等角2. 45°,60°巩固练习1. 612()55-,2. 1或63. 434. ①②5. ②④⑤⑥6. (1)(2,0),(0,4)(2)1234(44)(04)(2(2P P P P -,,,,, 7. 证明略8.(1)证明略;(2)证明略;(3)AM⊥BE,理由略反比例函数表达式、图象、性质及计算 要点回顾1.kyx=,1y kx-=,xy k=;常数,k≠0;kyx=,xy k=2.一、三;二、四;相交,无限接近3.减小;增大.轴对称,中心对称,原点,y x=,y x=-.面积不变性,k,xy k=.4.图象,①点的相对位置,②交点,2,x≠0巩固练习1. D2. A3. D4. B5. A6. A7. C8. C9. C10.12 yx =11.3 yx =12.x>2或-2<x<013.①③④14.315.(1)45y x x= (010)≤≤(2)80y xx= (>10)(3)50分钟16.(1)12,16 (2)x>4或-8<x<0 (3)P思考小结1.2. 2,2,2ABO ABCO S S k ==△矩形 3. (1)路程一定时,速度与时间的关系,即sv t =(2)质量相同时,密度与体积的关系,即mvρ=(3)做功相同时,力与力的方向上移动的距离,即W F S=反比例函数与几何综合要点回顾①关键点坐标,横平竖直线段长,函数特征,几何特征 ③函数特征,几何特征巩固练习1. 3,(2,32) 2. 43. 2y x =-4. 345. (12,12) 6. 67. 1:1 8. -29.10. (1)m =2;(2)C (-4,0)11. (1)k 1=-3,k 2=6(2)12x <<(3)PC =PE ,理由略 思考小结1. ①关键点②关键点坐标,横平竖直的线段长 ③函数特征,几何特征 2. 证明略直角三角形的边角关系 要点回顾1.2.3.直角三角形,转移、构造巩固练习1. C2. C3. D4. D5. C6. B7. 28.9.10.111.512.13.B14.(1)52;(2)1;(3)7;(4)-115.(1)证明略;(2)816.6思考小结3. 22114. 证明略测量类应用题要点回顾1. ①数学问题②判断标准2. 线段,角度,直角三角形巩固练习1.2. (1)/小时(2)能,理由略3. 4. 236.5米 5. (1)6米(2)(12)米几何综合巩固练习1. 48m2. 3123. 288033y x x x =-+<<()4. ①②③⑤5.5415942020,, 6. 1657. 125128. 241609. 2512投影、视图、概率和统计巩固练习1. C2. A3. C4. A5. 166. 137. C8. (1)20;(2)1150;(3)223二次函数表达式、图象、性质及计算要点回顾1. 配方法,224()24b ac b y a x a a-=++2. ①抛物线,轴对称,直线2b x a =-,(2ba -,24)4ac b a- ②小,244ac b a -;大,244ac b a -③2b x a <-,减小,2bx a >-,增大;2b x a <-,增大,2b x a>-,减小.3. 上;下.y 轴,纵坐标.左同右异4. ①点的平移,坐标.②左加右减、上加下减.顶点式.巩固练习1.A 2. B3. C4. A5. C6.D7. D8. D9. D10. D11. B 12. (0,9),0,大,9;>013. >314. -4,215. (1)过程略,x =-3,(-3,-1),24(3)10x +-=,132x +=±,5(0)2-,,7(0)2-, (2)过程略,对称轴直线x =3,顶点坐标(3,0),与x 轴交点坐标(3,0)16. (1)3,-5,x =3,(3,-5),3,小,-5.(2)过程略,对称轴为直线x =2,顶点坐标(2,-3),最小值-3.17. 2 56y x x =-+18. 24167333y x x =++ 19. (1)直线x =1,(1,3);(2)略;(3)12y y <.思考小结1. 向上;向下 直线2b x a=-,直线x h =, 减小,增大,增大,减小2b x a =-大(小)244ac b a- h 大(小)k2. (1)223y x x =--;(2)2(1)2y x =-+3. 篮球入篮的路线为抛物线;拱桥为一抛物线二次函数图象性质应用要点回顾① 直线2b x a =-,纵坐标,对称,122x x x +=. ② 2b a >-,小,244ac b a-; 2b a <-,大,244ac b a-. 增减性,函数图象.③ 函数图象,横坐标.2y ax bx c =++,x 轴,2,1,无巩固练习1.D 2.B 3.D 4.C 5.A 6.A 7.D 8.D 9. (-1,0)10. 一11. -24≤y ≤1,-15<y ≤0,-15<y ≤112. (1)4 (2)无交点13. (1)①1221x x =-=,②8 ③增大 (2)2224y x x =+-,最小值:92-思考小结1. ①-2≤y ≤7②-18<y ≤-9 ③-2<y ≤72. ①函数与x 轴交点的横坐标即为方程的根②两,两;一,一;无,无.函数综合训练要点回顾2. ①a ,b ,c ,对称轴②函数值③等式巩固练习1.A 2.C 3.D 4.D 5.D 6.B 7.D 8.A 9. 13αβ<<<;<αx <β10. 94m >11. (1)A (-1,0),B (3,0)(2)存在,P 1(4,5),P 2(-2,5)(3)-3<b <1 二次函数应用题要点回顾1. 列表、图形,关键点坐标,函数表达式,自变量取值范围3. 实际背景,取值范围巩固练习1. (1)223y x x =-++(2)3米 2. (1)2125y x =-(2)能安全通过此桥 3. (1)2101302300y x x =-++(1≤x ≤10,且为整数)(2)32(3)36或37,最大的月销售利润是2720元4. (1)2240w x =-+(2)2234015000y x x =-+-,当x =85时,y max =-550(3)75圆中的基本概念及定理要点回顾1. 垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;①过圆心的直线②垂直于弦③平分弦④平分优弧⑤平分劣弧2. 同圆或等圆,两个圆心角,两条弧,两条弦,两个弦心距3. 圆周角的度数等于它所对弧上的圆心角度数的一半;同弧或等弧所对的圆周角相等;直径所对的圆周角是直角,90°的圆周角所对的弦是直径.圆内接四边形对角互补.4. 不在同一条直线上的三点确定一个圆巩固练习1.A 2.D 3.B 4.D 5.B 6.30°8. 27°9. 65°10. 411. 26寸12. (-2,-1)13.14. 60°15. 6思考小结3. ①证明略②175R C =∠=︒,与圆有关的位置关系及圆中的计算要点回顾1. d r >;d r <2. 切点的直径;过半径外端;切线长;这一点和圆心的连线平分两条切线的夹角3. 180n r l π=.①2360n r S π=;②. S lr π=.全面积 侧面积底面积巩固练习1. A2. B3. A4.0x ≤5. 120°6. 40°7.70°8. 256 9.16)+10.π 11. 90°12. 60π13. 414. 8-2π 15. 2:32lr S =17.(1)相切,证明略(2)203 BD=思考小结1.d,r,圆心O到直线l的距离,圆的半径.2.略【试题1】证明略【试题2相似每日一练(一)1. B2. C3. A4. B5. 26.7. C8.1:39.9 cm 210.120 1311.C12.65︒13.(1)△ACF ∽△GCA,理由略;(2)45︒.相似每日一练(二)1. B2. A3.8:54.354cm5.2ab a b -6.77. A8. B9. 510.4cm11.证明略相似每日一练(三)1.432. D3. B4. A5. 2126. 36()55-,7. 证明略8. (12)21322y x x =-+(3)439. (1)相似,证明略;(2)存在,2k =,理由略.反比例函数每日一练(一)1. 42. 323. 6y x= 4. B5. 6-6. (1)133y x y x==,,(31)A , (2)3x >或3x -<<0反比例函数每日一练(二)1.2. 63. 6-4. 95. 26. 27. 163-8. 3 反比例函数每日一练(三)1. 42. -3或13. -44. 85. 6. ①②③④ 7. ①②④二次函数每日一练(一)1. B2. C3. C4. B5. 2286y x x =++6. 27. 一,1a >8. 3m ≥9. 1x -<<310. <11. <12. 3二次函数每日一练(二)1. D2. D3. 74. 5x αβαβ3<<<<<,5. ①③6. 29922y x x =-+ 7. 4n8. ①②③⑤二次函数每日一练(三)1. (1)223y x x =-++(2)23MN m m m =-+ (0<<3)(3)存在,32m =,理由略 2. (1)4k =-(2)①(14)M --,,8AMB S =△②758AMCB S =四边形,315()24M --,二次函数每日一练(四)1. (1)243y x x =-+(2)12(10)(21)P P -,,,(3)存在,12(21)(21)F F ,2. (1)2142y x x =+- (2)24S m m m =-- (-4<<0),最大值为4(3)1234(22(44)(22(44)Q Q Q Q -+----+-,,,,,。

江西九年级试卷和答案数学【含答案】

江西九年级试卷和答案数学【含答案】

江西九年级试卷和答案数学【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 22. 如果 a > b,那么下列哪个选项是正确的?()A. a b > 0B. a + b < 0C. a b > 0D. a / b < 03. 下列哪个数是偶数?()A. 21B. 16C. 9D. 174. 下列哪个数是素数?()A. 27B. 29C. 35D. 395. 下列哪个数是无理数?()A. √9B. √16C. √25D. √2二、判断题1. 任何数乘以0都等于0。

()2. 两个负数相乘的结果是正数。

()3. 任何数除以1都等于它本身。

()4. 两个奇数相加的结果是偶数。

()5. 两个偶数相乘的结果是偶数。

()三、填空题1. 如果 a = 3,那么 2a 5 = _______。

2. 如果 x 是一个负数,那么 -x 是一个_______数。

3. 5的平方根是_______。

4. 两个质数相乘的结果是_______。

5. 1的倒数是_______。

四、简答题1. 解释什么是偶数。

2. 解释什么是奇数。

3. 解释什么是质数。

4. 解释什么是合数。

5. 解释什么是无理数。

五、应用题1. 如果一个数是6的倍数,那么这个数除以3的结果是什么?2. 如果一个数是4的倍数,那么这个数除以2的结果是什么?3. 如果一个数是9的倍数,那么这个数除以3的结果是什么?4. 如果一个数是5的倍数,那么这个数乘以2的结果是什么?5. 如果一个数是7的倍数,那么这个数乘以3的结果是什么?六、分析题1. 解释为什么两个负数相乘的结果是正数。

2. 解释为什么两个奇数相加的结果是偶数。

七、实践操作题1. 使用计算器计算√9 的值,并解释为什么它是无理数。

2. 使用计算器计算√16 的值,并解释为什么它是有理数。

八、专业设计题1. 设计一个函数,使其输入一个整数n,输出n的阶乘。

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.计算﹣5+2的结果是()A.﹣7B.﹣3C.3D.72.2015年12月26日,南昌地铁一号线正式开通试运营.据统计,开通首日全天客流量累积近25万人次,数据25万可用科学记数法表示为()A.0.25×105B.2.5×104C.25×104D.2.5×1053.下列各运算中,计算正确的是()A. =±3B.2a+3b="5ab"C.(﹣3ab2)2=9a2b4D.(a﹣b)2=a2﹣b24.如图,将一只青花碗放在水平桌面上,它的左视图是()A.B.C.D.△ABC中,∠C=90°,∠BAC=40°,AD是△ABC的一条角平分线,点E,F,G分别在AD,AC,5.如图,在RtBC上,且四边形CGEF是正方形,则∠DEB的度数为()A.40°B.45°C.50°D.55°6.如图,点E是菱形ABCD边上一动点,它沿A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,下列图象中能反映y与x函数关系的是()A.B.C.D.二、填空题1.因式分解:2m2﹣8n2= .2.在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是.3.若关于x的一元二次方程x2﹣(2m+1)x+m2+2m=0有实数根,则m的取值范围是.4.如图,在△ABC中,AB=4,将△ABC沿射线AB方向平移得到△A′B′C′,连接CC′,若A′C′恰好经过BC边的中点D,则AB′的长度为.5.如图,这是一组由围棋子摆放而成的有规律的图案,则摆第(n)个图案需要围棋子的枚数是.6.在平面直角坐标系中,已知点A(0,2),B(3,0),点C在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标为.三、解答题1.化简:2.如图,AB是圆的直径,弦CD∥AB,AD,BC相交于点E,若AB=6,CD=2,∠AEC=α,求cosα的值.3.解不等式组,并将它的解集在数轴上表示出来.4.一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.5.如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.6.小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20cm.(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科学计算器)7.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时,求△CDE的面积.8.一次函数y=kx+b的图象与反比例函数y=的图象相交于A,B两点,且交y轴于点C.已知点A(1,4),点B在第三象限,且点B的横坐标为t(t<﹣1).(1)求反比例函数的解析式;(2)用含t的式子表示k,b;(3)若△AOB的面积为3,求点B的坐标.9.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C(0,﹣3).(1)求此二次函数的解析式.(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.四、计算题1.计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|2.某校开展阳光体育活动,要求每名学生从以下球类活动中选择一项参加体育锻炼:A﹣乒乓球;B﹣足球;C﹣篮球;D﹣羽毛球.学校王老师对八年级某班同学的活动选择情况进行调查统计,绘制了两幅不完整的统计图,如图所示.(1)请你求出该班学生的人数并补全条形统计图;(2)已知该校八年级学生共有500人,学校根据统计调查结果进行预估,按参加项目人数每10人购买一个训练用球的标准,为B,C两个项目统一购买训练用球.经了解,某商场销售的足球比篮球的单价少30元,此时学校共需花费2700元购买足球和篮球.求该商场销售的足球和篮球的单价.江西初三初中数学中考模拟答案及解析一、选择题1.计算﹣5+2的结果是()A.﹣7B.﹣3C.3D.7【答案】B【解析】原式=﹣(5﹣2)=﹣3,故选B.【考点】有理数的加法.2.2015年12月26日,南昌地铁一号线正式开通试运营.据统计,开通首日全天客流量累积近25万人次,数据25万可用科学记数法表示为()A.0.25×105B.2.5×104C.25×104D.2.5×105【答案】D【解析】将25万用科学记数法表示为:2.5×105.故选:D.【考点】科学记数法—表示较大的数.3.下列各运算中,计算正确的是()A. =±3B.2a+3b="5ab"C.(﹣3ab2)2=9a2b4D.(a﹣b)2=a2﹣b2【答案】C【解析】A、=3,故选项错误;B、2a与3b不是同类项,不能合并,故选项错误;C、(﹣3ab2)2=9a2b4,故选项正确;D、(a﹣b)2=a2﹣2ab+b2,故选项错误.故选:C.【考点】完全平方公式;算术平方根;合并同类项;幂的乘方与积的乘方.4.如图,将一只青花碗放在水平桌面上,它的左视图是()A.B.C.D.【答案】C【解析】根据从左边看得到的图形是左视图,可得答案.从左边看下边是一个圆台,上边是一个矩形,故选:C.【考点】简单组合体的三视图.△ABC中,∠C=90°,∠BAC=40°,AD是△ABC的一条角平分线,点E,F,G分别在AD,AC,5.如图,在RtBC上,且四边形CGEF是正方形,则∠DEB的度数为()A.40°B.45°C.50°D.55°【答案】B【解析】作EM⊥AB于M,∵四边形EFCG是正方形,∴∠EFC=∠AFE=∠EGC=90°,EF=EG,∵EF⊥AC,EM⊥AB,AD平分∠BAC,∴EF=EM=EG,∵EG⊥BC,EM⊥AB,∴EB平分∠ABC,∵∠C=90°,∴∠CAB+∠CBA=90°,∴∠BED=∠EAB+∠EBA=(∠CAB+∠CBA)=45°.故答案为45°.【考点】正方形的性质.6.如图,点E是菱形ABCD边上一动点,它沿A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,下列图象中能反映y与x函数关系的是()A.B.C.D.【答案】A【解析】因为点E在菱形ABCD上移动,所以可知菱形各顶点向对边作的高为定值,可设高的长为k=•AE•k如图一,当点E在AB上移动时,将AE作为△ADE底边,则有S△ADE随着点E移动,AE的长在增大,三角形的面积也是在增大的,y与x满足正比例函数关系;如图二,当点E在BC上移动时,将AD作为底边,则有S=•AD•k△ADE点E的移动不会带来AD长度的变化,所以此时三角形面积为定值;如图三,当点E在BC上移动时,将DE作为△ADE底边,则有S=•DE•k△ADE随着点E移动,DE的长在减少,三角形的面积也是在减少的,y与x满足正比例函数关系.所以应该选A.【考点】动点问题的函数图象.二、填空题1.因式分解:2m2﹣8n2= .【答案】2(m+2n)(m﹣2n)【解析】2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).【考点】提公因式法与公式法的综合运用.2.在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是.【答案】9【解析】由题意得,=8,解得:x=10,这组数据按照从小到大的顺序排列为:5,6,9,10,10,则中位数为:9.故答案为9.【考点】中位数;算术平均数.3.若关于x的一元二次方程x2﹣(2m+1)x+m2+2m=0有实数根,则m的取值范围是.【答案】m≤【解析】由已知得:b2﹣4ac=[﹣(2m+1)]2﹣4(m2+2m)≥0,即1﹣4m≥0,解得:m≤.故答案为:m≤.【考点】根的判别式.4.如图,在△ABC中,AB=4,将△ABC沿射线AB方向平移得到△A′B′C′,连接CC′,若A′C′恰好经过BC边的中点D,则AB′的长度为.【答案】6【解析】∵A′C′恰好经过BC边的中点D,∴AA′=AB=×4=2,∵△ABC沿射线AB方向平移得到△A′B′C′,∴A′B′=AB,∴AB′=AA′+A′B′=2+4=6.故答案为:6.【考点】平移的性质.5.如图,这是一组由围棋子摆放而成的有规律的图案,则摆第(n)个图案需要围棋子的枚数是.【答案】4n+1【解析】∵第(1)个图案需要棋子数为:1+4×1=5个;第(2)个图案需要棋子数为:1+4×2=9个;第(3)个图案需要棋子数为:1+4×3=13个;第(4)个图案需要棋子数为:1+4×4=17个;…∴第(n)个图案需要棋子数为:1+4×n=4n+1个;故答案为:4n+1.【考点】规律型:图形的变化类.6.在平面直角坐标系中,已知点A(0,2),B(3,0),点C在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标为.【答案】(﹣3,0),(,0),(,0)【解析】∵A(0,2),B(3,0),∴OA=2,OB=3,AB=,①以A为圆心,以AB为半径作弧,交x轴于C、,此时C点坐标为(﹣3,0);1②当AC=BC,此时C点坐标为(,0);③以B为圆心,以AB为半径作弧,交x轴于C,此时点C坐标为(,0);3故答案为:(﹣3,0),(,0),(,0);【考点】等腰三角形的性质;坐标与图形性质.三、解答题1.化简:【答案】原式===.【解析】原式变形后,利用同分母分式的加法法则计算即可得到结果.试题解析:原式===.【考点】分式的加减法.2.如图,AB是圆的直径,弦CD∥AB,AD,BC相交于点E,若AB=6,CD=2,∠AEC=α,求cosα的值.【答案】cosα==【解析】如图,连接AC.在Rt△AEC中,求出的值即可,根据= =可以得出结论.试题解析:如图,连接AC.∵AB∥CD,∴△ABE∽△DCE,,∴= ,∠BCD=∠ADC,∴EC=ED,AB=6,CD=2,∴====,∵AB是直径,∴∠ACE=90°,∴cosα==.【考点】相似三角形的判定与性质;圆周角定理;解直角三角形.3.解不等式组,并将它的解集在数轴上表示出来.【答案】0≤x<3.【解析】分别求出每一个不等式的解集,将两个不等式解集表示在数轴上找到其公共部分即可.试题解析:解不等式①得:x<3,解不等式②得:x≥0,将不等式解集表示在数轴上如图:故不等式组的解集为:0≤x<3.【考点】解一元一次不等式组;在数轴上表示不等式的解集.4.一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.【答案】(1)随机(2)【解析】(1)直接利用随机事件的定义分析得出答案;(2)利用树状图法画出图象,进而利用概率公式求出答案.试题解析:(1)“其中有1个球是黑球”是随机事件;故答案为:随机;(2)如图所示:,一共有20种可能,2个球颜色相同的有8种,故2个球颜色相同的概率为:=.【考点】列表法与树状图法.5.如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.【答案】见解析【解析】(1)过点E,作EF∥AD交CD于点F,则点F是CD的中点;(2)连接BD,过点E作EG∥BD交AD于点G,则点G是AD的中点.试题解析:(1)如图所示:(2)如图所示:【考点】菱形的性质;作图—复杂作图.6.小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20cm.(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科学计算器)【答案】(1)FG的长度约为3.8cm.(2)cm【解析】(1)作GM⊥OE可得矩形EFGM,设FG=xcm,可知EF=GM=20cm,OM=(20﹣x)cm,根据tan∠EOG= 列方程可求得x的值;(2)RT△EFO中求出OF的长及∠EOF的度数,由∠EOG度数可得旋转角∠FOF′度数,根据弧长公式计算可得.试题解析:(1)如图,作GM⊥OE于点M,∵FE⊥OE,GF⊥EF,∴四边形EFGM为矩形,设FG=xcm,∴EF=GM=20cm,FG=EM=xcm,∵OE=20cm,∴OM=(20﹣x)cm,在RT△OGM中,∵∠EOG=65°,∴tan∠EOG=,即=tan65°,解得:x≈3.8cm;故FG的长度约为3.8cm.(2)连接OF,在RT△EFO中,∵EF=20,EO=20,∴FO==40,tan∠EOF= ==,∴∠EOF=60°,∴∠FOG=∠EOG﹣∠EOF=5°,又∵∠GOF′=90°,∴∠FOF′=85°,∴点F在旋转过程中所形成的弧的长度为:=cm.【考点】解直角三角形的应用.7.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时,求△CDE的面积.【答案】(1)证明见解析;=•ED•CD=.(2)S△ECD【解析】(1)如图1中,连接OD,欲证明ED是切线,只要证明∠EDO=90°即可.(2)如图2中,连接BC,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.试题解析:(1)如图1中,连接OD.∵∠C=45°,∴∠AOD=2∠C=90°,∵ED∥AB,∴∠AOD+∠EDO=180°,∴∠EDO=90°,∴ED⊥OD,∴ED是⊙O切线.(2)如图2中,连接BC,∵CF=DF,∴AF⊥CD,∴AC=AD,∴∠ACD=∠ADC,∵AB∥ED,∴ED⊥DC,∴∠EDC=90°,在RT△ACB中,∵∠ACB=90°,∠CAB=30°,AB=2,∴BC=1,AC=,∴CF=AC=,CD=2CF=,在RT△ECD中,∵∠EDC=90°,CD=,∠E=∠CAB=30°,∴EC=2CD=2,ED= =3,∴S△ECD= •ED•CD=.【考点】切线的判定.8.一次函数y=kx+b的图象与反比例函数y=的图象相交于A,B两点,且交y轴于点C.已知点A(1,4),点B在第三象限,且点B的横坐标为t(t<﹣1).(1)求反比例函数的解析式;(2)用含t的式子表示k,b;(3)若△AOB的面积为3,求点B的坐标.【答案】(1)反比例函数的解析式为y=;(2)(3)点B的坐标(﹣2,﹣2).【解析】(1)把点A(1,4)代入y=即可得到结论;(2)由点B的横坐标为t,得到B(t,),把A,B的坐标代入y=kx+b,解方程组即可得到结果;(3)根据三角形的面积列方程即可得到结论.试题解析:(1)把点A(1,4)代入y=得:m=4,∴反比例函数的解析式为y=;(2)∵点B的横坐标为t,∴B(t,),∴,∴;(3)∵OC=,∴S△AOB =S△ACO+S△BCO= •×(﹣t+1)=3,∴t=﹣2,∴点B的坐标(﹣2,﹣2).【考点】反比例函数与一次函数的交点问题.9.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C(0,﹣3).(1)求此二次函数的解析式.(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2﹣2x﹣3.(2)四边形EFCD是正方形;(3)当P点坐标为(1+,2)或(1﹣,2)或(0,﹣2)时,存在以A,E,M,P为顶点且以AE为一边的平行四边形.【解析】(1)利用待定系数法即可解决问题.(2)结论四边形EFCD是正方形.如图1中,连接CE与DF交于点K.求出E、F、D、C四点坐标,只要证明DF⊥CE,DF=CE,KC=KE,KF=KD即可证明.(3)如图2中,存在以A,E,M,P为顶点且以AE为一边的平行四边形.根据点P的纵坐标为2或﹣2,即可解决问题.试题解析:(1)把A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c得,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)结论四边形EFCD是正方形.理由:如图1中,连接CE与DF交于点K.∵y=(x﹣1)2﹣4,∴顶点D(1,4),∵C、E关于对称轴对称,C(0,﹣3),∴E(2,﹣3),∵A(﹣1,0),设直线AE的解析式为y=kx+b,∴,解得,∴直线AE的解析式为y=﹣x﹣1.∴F(1,﹣2),∴CK=EK=1,FK=DK=1,∴四边形EFCD是平行四边形,又∵CE⊥DF,CE=DF,∴四边形EFCD是正方形.(3)如图2中,存在以A,E,M,P为顶点且以AE为一边的平行四边形.由题意点P 的纵坐标为2或﹣2,当y=2时,x 2﹣2x ﹣3=2,解得x=1±,可得P 1(1+,2),P 2(1-,2),当y=﹣2时,x=0,可得P 3(0,﹣2),综上所述当P 点坐标为(1+ ,2)或(1﹣,2)或(0,﹣2)时,存在以A ,E ,M ,P 为顶点且以AE 为一边的平行四边形.【考点】二次函数综合题.四、计算题1.计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|【答案】原式=﹣2﹣.【解析】原式利用立方根定义,负整数指数幂、零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果. 试题解析:原式=﹣2﹣3+1+2﹣=﹣2﹣.【考点】实数的运算;零指数幂;负整数指数幂.2.某校开展阳光体育活动,要求每名学生从以下球类活动中选择一项参加体育锻炼:A ﹣乒乓球;B ﹣足球;C ﹣篮球;D ﹣羽毛球.学校王老师对八年级某班同学的活动选择情况进行调查统计,绘制了两幅不完整的统计图,如图所示.(1)请你求出该班学生的人数并补全条形统计图;(2)已知该校八年级学生共有500人,学校根据统计调查结果进行预估,按参加项目人数每10人购买一个训练用球的标准,为B ,C 两个项目统一购买训练用球.经了解,某商场销售的足球比篮球的单价少30元,此时学校共需花费2700元购买足球和篮球.求该商场销售的足球和篮球的单价.【答案】(1)20人;条形图见解析(2)该商场销售的足球单价是117元,篮球的单价是147元.【解析】(1)根据C 的人数和所占的百分比求出总人数,用总人数乘以D 类人数所占的百分比求出D 类的人数,再用总人数减去其它类的让人数,求出A 类的人数,从而补全统计图;(2)设该商场销售的足球单价是x 元,则篮球的单价是(x+30)元,根据学校的总人数和参加项目人数每10人购买一个训练用球的标准,列出方程,求出x 的值,即可得出答案.试题解析:(1)该班学生的总人数是=50(人),D 类的人数是:50×20%=10(人),D 类的人数是:50﹣8﹣12﹣10=20(人),补图如下:(2)设该商场销售的足球单价是x元,则篮球的单价是(x+30)元,根据题意得:(500×÷10)x+(500×÷10)(x+30)=2700,解得:x=117,则篮球的单价是117+30=147(元).答:该商场销售的足球单价是117元,篮球的单价是147元.【考点】条形统计图;扇形统计图.。

九年级数学全一册检测卷新版新人教版附答案

九年级数学全一册检测卷新版新人教版附答案

九年级数学全一册检测卷新人教版附答案(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.一元二次方程x2-x-2=0的解是( C )A.x1=2,x2=1B.x1=-2,x2=1C.x1=2,x2=-1D.x1=-2,x2=-12.观察下列图形,其中既是轴对称又是中心对称图形的是( D )3.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( B )A.4,30°B. 2,60°C.1,30°D.3,60°4.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( C )A.316 B.38 C.58 D.13165.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-m的图象上的三点,则y1,y2,y3的大小关系是( B )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y36.如图,函数y1=k1x与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是( C )A.x>1B.-1<x<0C.-1<x<0或x>1D.x<-1或0<x<17.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为( C )A.20海里B.103海里C.202海里D.30海里8.如图,在Rt△ABC中,∠C=90°,AC=6 cm,BC=2 cm,点P在边AC 上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是( C )A.20 cmB.18 cmC.2 5 cmD.3 2 cm9.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( B )A.51213 B.125 C.3513 D.231310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是( C )A.①④B.②④C.①②③D.①②③④二、填空题(每小题4分,共24分)11.若正数a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是5.12.如图,在△ABC中,M,N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=3.13.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cos A=255.14.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 (225+252)π .15.从-1,2,3,-6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数y =6x 图象上的概率是 13 .16.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 22 .三、解答题(共66分)17.(6分) 先化简,再求值:(x 2-2x +4x -1+2-x )÷x 2+4x +41-x,其中x 满足x 2-4x +3=0.解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x =x +2x -1·1-x (x +2)2=-1x +2, 解方程x 2-4x +3=0得,(x -1)(x -3)=0,x 1=1,x 2=3.当x=1时,原式无意义;当x=3时,原式=-12+3=-15.18.(6分)如图,矩形ABCD为台球桌面,AD=260 cm,AB=130 cm,球目前在E点位置,AE=60 cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.解:(1)证明:如图,在矩形ABCD中,由对称性可得出:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;(2)解:∵由(1)知,△BEF∽△CDF.∴BECD=BFCF,即70130=260-CFCF,解得:CF=169.即:CF的长度是169 cm.19.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=1 12.20.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?解:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据题意得:3500x =2400x -11,解得:x =35,经检验,x =35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60-35)×100(1+a )2=(60-35+11)×100,解得:a =0.2=20 %或a =-2.2(不合题意,舍去).答:年增长率为20 %.21.(8分)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB 的高,他们在旗杆正前方台阶上的点C 处,测得旗杆顶端A 的仰角为45°,朝着旗杆的方向走到台阶下的点F 处,测得旗杆顶端A 的仰角为60°,已知升旗台的高度BE 为1米,点C 距地面的高度CD 为3米,台阶CF 的坡角为30°,且点E ,F ,D 在同一条直线上,求旗杆AB 的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:过点C 作CM ⊥AB 于M .则四边形MEDC 是矩形,∴ME =DC =3.CM =ED ,在Rt △AEF 中,∠AFE =60°,设EF =x ,则AF =2x ,AE =3x ,在Rt △FCD 中,CD =3,∠CFD =30°,∴DF =33,在Rt △AMC 中,∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC ,∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF ,∴3x -3=3x +3,∴x =6+33,∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米.答:旗杆AB 的高度约为18.4米.22.(10分)“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数关系:y =-4x +220(10≤x ≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入-运营成本).(1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 解:(1)根据题意,得:w =(-4x +220)x -1000=-4x 2+220x -1000;(2)∵w =-4x 2+220x -1000=-4(x -27.5)2+2025,∴当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.23.(10分),如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AD 平分∠CAE 交⊙O 于点D ,且AE ⊥CD ,垂足为点E .(1)求证:直线CE 是⊙O 的切线.(2)若BC =3,CD =32,求弦AD 的长.(1)证明:连接OD ,如图,∵AD 平分∠EAC ,∴∠1=∠3,∵OA =OD ,∴∠1=∠2,∴∠3=∠2,∴OD ∥AE ,∵AE ⊥DC ,∴OD ⊥CE ,∴CE 是⊙O 的切线;(2)连接BD .∵∠CDO =∠ADB =90°,∴∠2=∠CDB =∠1,∵∠C =∠C ,∴△CDB ∽△CAD ,∴CD CA =CB CD =BD AD ,∴CD 2=CB ·CA ,∴(32)2=3CA ,∴CA =6,∴AB =CA -BC =3,BD AD =326 =22 ,设BD =k ,AD =2k ,在Rt △ADB中,2k 2+4k 2=9,∴k =62 ,∴AD = 6.24.(12分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴交与点C (0,3),与x 轴交于A ,B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x =1.(1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.解:(1)∵点B 坐标为(4,0),抛物线的对称轴方程为x =1.∴A (-2,0),把点A (-2,0)、B (4,0)、点C (0,3),分别代入y =ax 2+bx +c (a ≠0),得⎩⎨⎧4a -2b +3=0,16a +4b +3=0,解得 ⎩⎪⎨⎪⎧ a =-38,b =34,c =3,所以该抛物线的解析式为:y =-38x 2+34x +3;(2)设运动时间为t 秒,则AM =3t ,BN =t .∴MB =6-3t .由题意得,点C 的坐标为(0,3).在Rt △BOC 中,BC =32+42=5.如图1,过点N 作NH ⊥AB 于点H .∴NH ∥CO ,∴△BHN ∽△BOC ,∴HN OC =BN BC ,即HN 3=t 5,∴HN =35t .∴S △MBN =12MB ·HN =12(6-3t )·35t =-910t 2+95t =-910(t -1)2+910,当△MBN 存在时,0<t <2,∴当t =1时,S △MBN 最大=910.答:运动1秒使△MBN 的面积最大,最大面积是910;(3)如图2,在Rt △OBC 中,cos ∠B =OB BC =45.设运动时间为t 秒,则AM =3t ,BN =t .∴MB =6-3t .当∠MNB =90°时,cos ∠B =BN MB =45,即t 6-3t=45,化简,得17t =24,解得t =2417,当∠BMN =90°时,cos ∠B =BM BN =6-3t t =45;当∠BM ′N ′=90°时,cos ∠B =BM ′BN ′ =6-3t t =45,化简,得19t =30,解得t =3019,综上所述:t=2417或t =3019时,△MBN 为直角三角形.。

江西九年级试卷和答案数学

江西九年级试卷和答案数学

江西九年级试卷和答案数学专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a√32. 已知函数f(x) = 2x + 3,当x = 2时,f(x)的值为()A. 4B. 7C. 9D. 113. 下列哪个图形不是正多边形?()A. 正方形B. 正五边形C. 等边三角形D. 等腰梯形4. 下列哪个数是无理数?()A. √16B. √9C. √2D. √15. 若|a| = 5,则a的值为()A. 5或-5B. 5C. -5D. 0二、判断题(每题1分,共5分)1. 任何一个正整数都可以分解为几个质数的乘积。

()2. 两条平行线的斜率相等。

()3. 任何一个三角形内角和都等于180度。

()4. 两个负数相乘的结果是正数。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的面积是______。

2. 若一个等差数列的首项为a1,公差为d,第n项为an,则an = ______。

3. 若一个等比数列的首项为b1,公比为q,第n项为bn,则bn = ______。

4. 若一个三角形的两边长分别为3和4,且这两边的夹角为90度,则这个三角形的第三边长为______。

5. 若一个数的算术平方根为4,则这个数为______。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请简述因式分解的定义及意义。

3. 请简述等差数列的定义及通项公式。

4. 请简述等比数列的定义及通项公式。

5. 请简述一元二次方程的求解方法。

五、应用题(每题2分,共10分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。

2. 已知一个等比数列的前三项分别为3,6,12,求该数列的第10项。

3. 解方程:2x + 3 = 7。

4. 解方程:3x 5 = 2x + 1。

5. 已知一个正方形的边长为10,求其对角线长。

九年级上人教版数学练习册答案.pdf

九年级上人教版数学练习册答案.pdf

1 数学·九年级上·人教版第二十一章 二次根式第1节 二次根式1.C 2.B 3.A 4.D 5.A 6.<槡7.7 犪2+犫槡28.(1)狓≥-1;(2)任何实数;(3)犿≤0;(4)犿=2;(5)犪>0;(6)犪>39.(1)80;(2)74;(3)910.4 11.1或-1 12.2犫+犮-犪第2节 二次根式的乘除1.D 2.C 3.C 4.狓≥25.48 32 306.8狓槡狔狔 --槡犪 -槡犫犪7.-1-槡犪 8.< <9.(1)槡-11;(2)(1-犪)1-槡犪;(3)-2犪犫10.(1)-2;(2)2槡11.306cm212.(1)槡117;(2)槡82;(3)槡5513.014.提示:平方后比较,槡槡2+6<槡槡3+5.第3节 二次根式的加减练习一(加减运算)1.B 2.03.(1)槡-142;(2)285槡10;(3)169槡34.(1)0;(2)105.(1)槡246;(2)槡槡6-56.(1)2;(2)槡-657.1槡8.-29.114练习二(混合运算)1.D 2.B 3.A 4.3 45 槡5.326.(狓2+3)(狓+槡3)(狓-槡3)槡7.1-468.(1)狓=-1;(2)狓≤0槡9.1+310.甲的对,被开方数根要大于零11.200112.∵犪槡-4+3犪-槡犫=0而犪槡-4≥0,3犪-槡犫≥0∴犪槡-4=0,且3犪-槡犫=0解之得 犪=4,犫=12∴犪2+犫2=42+122=160.13.提示:作一个腰为1的等腰直角三角形犃犅犆,以其斜边犃犆为直角边作直角三角形犃犆犈,其中犈犆=1.则以点犃为圆心,以直角三角形犃犆犈的斜边长为半径画弧,它与数轴正半轴的交点即为表示槡3的点,即可找到槡3+1的点.图12 人教版·数学·九年级(上)第二十二章 一元二次方程第1节 一元二次方程1.4狓2-5狓+3=0 4 -5 32.D 3.C 4.C 5.B6.狓2+2狓-1=0.7.设最小的整数为狀,则狀2+狀-272=0.8.设这个人行道的宽度为狓m,则(24-2狓)(20-2狓)=32.9.设中粳“6427”稻谷的出米率的增长率为狓,则稻谷产量的增长率为2狓.根据题意,得500(1+2狓)·70%(1+狓)=462,化简可得:50狓2+75狓-8=0.10.(1)设11、12月的平均月增长率为狓,则100(1+狓)+100(1+狓)2=231;(2)1100吨.11.设最短的直角边长为狓,则长直角边为狓+14,可得狓(狓+14)=120.12.设兔舍平行于旧墙的长为狓m,则宽为12(35-狓)m.根据题意,得狓·12(35-狓)=150,化简得:狓2-35狓+300=0,解得狓1=15,狓2=20.第2节 降次———解一元二次方程练习一1.B 2.C3.(1)狓1=2,狓2=4;(2)狓1=2,狓2=10.4.(1)狓1,2=1±槡63;(2)狓1=8,狓2=-193.5.(1)狓1=0,狓2=2;(2)狓=56.狓1=-2,狓2=1 7.1s8.13±槡347≈32分9.4或1.0 10.8,911.若一元二次方程犪狓2+犫狓+犮=0的两个根是狓1、狓2,则二次三项式犪狓2+犫狓+犮=(狓+狓1)(狓+狓2).12.(1)两种方法的本质是相同的,都运用的是配方法.(2)第一种方法出现分式犫2犪,配方比较繁;两边开方时分子、分母都出现“±”,相除后为何只有分子上有“±”,不好理解;还易误认为4犪槡2=2犪.所以,第二种方法好.13.(1)狓2+7狓+6=(狓+1)(狓+6);(2)狓2-7狓-60=(狓-12)(狓+5);(3)狆2+7狆-18=(狆+9)(狆-2);(4)犫2+11犫+28=(犫+4)(犫+7).14.(1)犿1=-1,犿2=-2;(2)狓1=1,狓2=6;(3)犿1=3,犿2=4;(4)狓1=4,狓2=2.练习二1.B 2.0或-2 3.0 -1 14.145.13 6.2.5m7.设三、四月份平均每月增长的百分率为狓,依题意得60×(1-10%)(1+狓)2=96.解得狓=13≈33.3%.8.设2007年年获利率为狓,则2008年的年获利率为(狓+0.1),100(1+狓)(1+狓+0.1)=156,解得狓=20%,0.1+狓=30%.9.因为8<狓<14,通过估算可知狓=10.10.设应挖狓m,则(64-4狓)(162-2狓)=9600,解得狓=1m.11.A 12.C 13.C 14.D 15.C16.2 17.10 18.犽>119.(1)方程无实数根;(2)方程有两个不相等的实数根;20.(1)答案不唯一.根据一元二次方程根的判别式,只要满足犿<5的实数即可;如犿=1,得方程狓2+4狓=0,它有两个不等实数根:狓1=0,狓2=-4;(2)答案不唯一.要依赖(1)中的犿的值,由根与系数的关系可得答案.α=0,β=4,α2+β2+αβ=0+16+0=16.21.(1)Δ=(犿-1)2-4(-2犿2+犿)=9犿2-6犿+1=(3犿-1)2 3  参考答案与提示要使狓1≠狓2,∴Δ>0,得犿≠13.另解:由狓2+(犿-1)狓-2犿2+犿=0得狓1=犿,狓2=1-2犿,由狓1≠狓2解得.(2)∵狓1=犿,狓2=1-2犿,狓12+狓22=2∴犿2+(1-2犿)2=2解得犿1=-15,犿2=1.另解:也可用韦达定理来解.22.(1)狓1=-1,狓2=-1,狓1+狓2=-2,狓1·狓2=1(2)狓1=槡3+132,狓2=槡3-132,狓1+狓2=3,狓1·狓2=-1(3)狓1=1,狓2=-73,狓1+狓2=-43,狓1·狓2=-73猜想:犪狓2+犫狓+犮=0的两根为狓1与狓2,则狓1+狓2=-犫犪,狓1·狓2=犮犪,应用:另一根为槡2-3,犮=123.依题意有:狓1+狓2=-2(犿+2) ①狓1狓2=犿2-5②狓12+狓22=狓1狓2+16③Δ=4(犿+2)2-4(犿2-5)≥0烅烄烆④由①②③解得:犿=-1或犿=-15,又由④可知犿≥-94,∴犿=-15(舍去),故犿=-1.24.由一元二次方程根与系数关系可知:狓1+狓2=2犽-3,狓1·狓2=2犽-4.(1)狓1+狓2>0,狓1·狓2>0即2犽-3>0,2犽-4>0所以犽>2;(2)狓1+狓2>0,狓1·狓2<0即2犽-3>0,2犽-4<0所以32<犽<2;(3)不妨设狓1>3,狓2<3,则狓1-3>0,狓2-3<0,即(狓1-3)(狓2-3)<0所以犽>72.第3节 实际问题与一元二次方程练习一1.C 2.A3.设这两年平均增长的百分率为狓,则8(1+狓)2=9,解得狓≈6%.4.设三、四月份的平均增长率为狓,则1000(1-10%)(1+狓)2=1296,解得狓=20%.5.由题意得10-狓()102=25%,解得狓=5.6.提示:设金边宽为狓cm,则(60+2狓)(40+2狓)-60×40=1375×60×40.7.设垂直墙面的边长为狓m,则另一边长为(33-2狓)m,列方程得狓(33-2狓)=130,解得狓1=6.5,狓2=10.当狓=6.5时,33-2狓=20>18不符合要求,舍去;当狓=10时,33-2狓=13<18符合要求.故花坛的长为13m,宽为10m.8.(1)∵四月份用电180度,交电费,恰好为每度0.2元,∴四月份用电没超过犪度,五月份用电250度,交电费56元,每度超过0.2元.∴五月份用电超过了犪度.(2)由题意得,(250-犪)·犪625+0.2犪=56整理得,犪2-375犪+56×625=0即(犪-200)(犪-175)=0,∴犪1=200,犪2=175又∵犪≥180,∴犪=200.9.(1)18000千克;(2)在果园出售,毛收入为18000×1.1=19800元;在市场出售,毛收入为18000×1.3-18×8×25=19800元;虽然,两个收入相同,但市场出售还要费人力、物力,所以选择在果园出售方式好;(3)设增长率为狓,则(19800-7800)[1+(1+狓)+(1+狓)2]=57000,解得狓=0.5=50%.4 人教版·数学·九年级(上)10.(1)狔=(30-2狓)狓;(2)10,8;(3)不是;狓=7.5时,最大为112.5m2.练习二1.设甬路宽度为狓m,根据题意得(40-2狓)(26-狓)=144×6,解得狓1=2,狓2=44(不合题意,舍去),所以甬路宽为2m.2.根据题意可得方程(50-2-狓)×(30-2狓)=50×302,化简可得 狓2-63狓+345=0,解得: 狓1≈6.06,狓2=56.94,经检验,狓2不合题意舍去,所以狓的值约取6.06m.图23.设狓s后两只蚂蚁与犗点组成的三角形面积等于450cm2.(1)若这只蚂蚁在犗犃上,根据题意得12(50-2狓)·3狓=450,解得狋1=10,狋2=15.(2)若这只蚂蚁在犗犅上,根据题意得12(2狓-50)·3狓=450,解得狋1=30,狋2=-5(不合题意,舍去).所以分别在10s,15s,30s时两只蚂蚁与犗点组成的三角形面积等于450cm2.4.设有狀个人参加聚会,则在这狀个人中任何1个人,他(她)都要与除自己以外的(狀-1)个人握手;又因为甲与乙握手与乙与甲握手是同一次握手,所以握手总次数为12狀(狀-1).所以,狀(狀-1)=56.和这个问题所列方程相同的实际问题很多,如:(1)狀个村庄,每两个之间都有一条公路,若有人统计共有28条公路,问共有多少个村庄?(2)在某两地的铁路线上,共有28个不同的火车站,问这条铁路共有多少个不同的票价?(3)一次乒乓球循环赛,每个队都要见面,共举行了28场比赛,问共有多少个代表队参加?(4)空间狀个点,任意三点不共线,可以连28条不同的直线,求空间共有多少个点?(5)平面上有28条直线,若任意两条不平行,任意三条不共点,则有多少个交点?和这个问题列方程的思想一样的实际问题很多,如:(1)春节前后,几个人互打电话问候,若共打了20次电话,问共有几人?(2)元旦前后,几个同学互相赠送贺年卡,若共赠送了20张贺年卡,问共有几人?(3)在某两地的铁路线上,共有20个不同的火车站,问这条铁路共需设计多少个不同的火车票?5.(1)由题意设2月,3月每月增长的百分率为狓,则25[1+(1+狓)+(1+狓)2]=91,解得狓=0.2=20%.即2月、3月份每月平均增长的百分率为20%.(2)显然,3月份的生产收入为25×(1+0.2)2=25×1.44=36(万元)设治理狀个月后所投资金开始见效,则有91+36(狀-3)-111≥20狀,狀≥8.即治理8个月后所投资金开始见效.6.设商品降低了狓个100元,则优惠价是(3500-100狓)元,每个商品的利润是[(3500-100狓)-2500]元,销售量为(8+2狓)个,由题意得[(3500-100狓)-2500](8+2狓)=8×(3500-2500)(1+12.5%),解得狓1=1,狓2=5.所以,优惠价应定为3000元或3400元.到底定为多钱,要视具体情况而定.7.(1)70,4,2007.(2)设2009年和2010年两年绿地面积的年平均增长率为狓,根据题意,得70(1+狓)2=84.7.整理后,得(1+狓)2=1.21.解这个方程,得狓1=0.1,狓2=-2.1(不合题意,舍去).故所求平均增长率为10%.第二十三章 旋 转第1节 图形的旋转1.C 2.B 3.D 4.A 5  参考答案与提示5.相同 相等 旋转中心6.45° 90° 7.犅犆犇 犆 60°8.底角是60°,腰与底相等的等腰梯形9.图略 10.五角星图311.(1)不正确.例如图(1)的情况下不正确,但图(2)的情况下正确.(2)犅犈=犇犌成立.如图3,连结犅犈.∵四边形犃犅犆犇和犃犈犉犌都是正方形,∴犃犇=犃犅,犃犌=犃犈,∠犇犃犅=∠犌犃犈=90°.∴∠犇犃犌+∠犌犃犅=90°=∠犅犃犈+∠犌犃犅.∴∠犇犃犌=∠犅犃犈.∴△犇犃犌≌△犅犃犈.∴犅犈=犇犌.12.(1)犃犅=2m,犃犆槡=3m.(2)画出犃点经过的路径,如图4所示.图4∵∠犃犅犃1=180°-60°=120°,犃1犃2=犃犆槡=3m,∴犃点所经过的路径长=120180×π×槡2+3=43π槡+3≈5.9(m).第2节 中心对称1.B 2.C 3.C 4.C5.关于原点对称6.3 7.48.(1)①④,(2)③④,(3)④,(4)④9.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(图5)(2)将得到的这组图形以一条边的中点为旋转中心旋转.(图6)(3)分别以这两组图形为平移的“基本图形”,各平移两次,即可得到最终的图形.图5图610.如图7所示,△犃″犅″犆″与△犃′犅′犆′是关于原点犗成中心对称的.图711.两个全等的正方形犃犅犆犇和犆犇犈犉组成矩形犃犅犉犈,它是中心对称图形,对称中心就是对角线犃犉与犅犈的交点犗,四边形犆犇犈犉绕犗顺时针(或逆时针)旋转180°后,能与四边形犃犅犆犇重合.注意到四边形犆犇犈犉绕点犇顺时针旋转90°后或绕点犆逆时针旋转90°后能与正方形犃犅犆犇重合,所以可以作为旋转中心(不是对称中心但包含对称中心)的点有3个,即犇、犗、犆.12.(1)以犅犆为对称轴作对称变换(如图8).(或以犅犆的中点犗把△犃犅犆绕犗点旋转180°)图8(2)把△犃犅犆绕犃犆的中点犗旋转180°即可(如图9).6 人教版·数学·九年级(上)图9四边形是菱形,平行四边形.13.答案不唯一,下面举出三例,如图10所示.图10第3节 课题学习 图案设计1.左右,上下2.圆心 逆时针 90°3.45°(答案不唯一)4.3 犗 90° 矩形犃犅犉犎 犉犎5.旋转变换,平移变换(答案不唯一)6.平移变换,旋转变换(答案不唯一)7.提示:(1)犃犉=犆犈;(2)两次旋转变换(答案不唯一)8.图案如图11所示,四边形犈犗犆犎的面积是4cm2.图119.(1)平移后的小船如图12所示.图12(2)如图12所示,点犃′与点犃关于直线犔成轴对称,连接犃′犅交直线犔于点犘,则点犘为所求.10.答案不唯一,下面举出两例(如图13所示).图1311.略第二十四章 圆第1节 圆练习一1.A 2.B 3.A槡4.63 5.306.50° 7.8 8.200°9.50° 10.15°11.64° 12.30° 13.︵犅犇的中点14.以犕为圆心,以大于犕到⊙犗的最小距离且小于犕到⊙犗的最大距离为半径画圆,与⊙犗的交点即分别为犃、犅.15.1cm或7cm 16.258cm槡17.35cm18.75°练习二1.B 2.C 3.B 4.A 5.96.2.5m7.50° 8.130° 槡9.53cm图1410.证明:如图14所示,作犗犌⊥犆犇于犌,则犆犌=犇犌.∵犈犆⊥犆犇,犇犉⊥犆犇,犗犌⊥犆犇,∴犈犆∥犇犉∥犗犌.∴犗犈=犗犉.又∵犗犃=犗犅,∴犃犈=犅犉.11.连结犃犆.由勾股定理得,犃犆= 7  参考答案与提示犃犅2+犅犆槡2=32+4槡2=5.当狉=犃犅=3时,⊙犃经过点犅,点犆、犇在⊙犃外;当狉=犃犇=4时,⊙犃经过点犇,点犅在⊙犃内,点犆在⊙犃外;当狉=犃犆=5时,⊙犃经过点犆,点犅、犇在⊙犃内.所以,(1)当狉<3时,点犅、犆、犇均在圆外;(2)当3≤狉<4时,点犅、犆、犇中有两点在圆外;(3)当4≤狉<5时,点犅、犆、犇中只有一点在圆外.12.如图15所示,(1)连结犅犈,则∠犅犈犆=90°.∵犃犅=犅犆,犅犈平分∠犃犅犆,∴∠犃犅犈=∠犆犅犈.图15∴︵犇犈=︵犆犈,∴∠犈犇犆=∠犈犆犇.(2)∵︵犇犈=︵犆犈,∴犇犈=犆犈.∵犃犅=犅犆,犅犈⊥犃犆,∴犃犈=犆犈.∴犃犈=犆犈=犇犈=3cm,犃犆=6cm.在Rt△犃犅犈中,犅犈=犃犅2-犃犈槡2=52-3槡2=4,∵犅犆为⊙犗直径,∴∠犃犈犅=∠犃犇犆=90°.又∠犃=∠犃,∴△犃犅犈∽△犃犆犇,∴犃犅犃犆=犅犈犆犇,即56=4犆犇.∴犆犇=4.8cm.13.(1)∵犃犇为∠犈犃犆的平分线,∴∠犈犃犇=∠犇犃犆.∵四边形犃犅犆犇是圆内接四边形,∴∠犈犃犇=∠犅犆犇.又∵∠犇犃犆=∠犇犅犆,∴∠犅犆犇=∠犇犅犆.∴犅犇=犇犆.(2)补充下列条件中的任意一个,都能使直线犇犉经过圆心.①犅犉=犆犉;②犇犉⊥犅犆;③犇犉平分∠犅犇犆.(理由略)图1614.(1)如图16所示,证明:连结犗犇.∵犃犅是直径,犃犅⊥犆犇,∴︵犅犆=︵犅犇.∴∠犆犗犅=∠犇犗犅=12∠犆犗犇.又∵∠犆犘犇=12∠犆犗犇,∴∠犆犘犇=∠犆犗犅.(2)∠犆犘′犇与∠犆犗犅的数量关系是:∠犆犘′犇+∠犆犗犅=180°.∵∠犆犘′犇+∠犆犘犇=180°,∠犆犘犇=∠犆犗犅,∴∠犆犘′犇+∠犆犗犅=180°.第2节 点、直线、圆和圆的位置关系练习一1.C 2.C 3.C 4.D 5.36.∠犅=∠犆7.∵犃犆=犅犆,∴∠犃=∠犅.∵直线犇犈切⊙犗于点犆,∴∠犃犆犇=∠犅.∴∠犃犆犇=∠犃.∴犇犈∥犃犅.图178.(1)如图17所示,连结犗犆.∵犘犆切⊙犗于点犆,∴∠犘犆犗=90°.∵∠犘犆犅=30°,∴∠犅犆犗=60°.∵犗犅=犗犆,∴△犅犗犆是等边三角形.∴∠犆犅犃=∠犅犗犆=60°.(2)在Rt△犗犆犘中,∵犗犆犗犘=cos∠犅犗犆=12,∴犗犘=2犗犆=6.∴犘犃=犗犘+犗犃=6+3=9.9.证明:如图18所示,连结犗犆.∵犅犆∥犗犘,∴∠犘犗犆=∠犅犆犗,∠犘犗犃=∠犅.∵犗犅=犗犆,∴∠犅犆犗=∠犅.∴∠犘犗犆=∠犘犗犃.8 人教版·数学·九年级(上)图18又∵犗犆=犗犃,犗犘=犗犘,∴△犘犗犆≌△犘犗犃,∴∠犘犆犗=∠犘犃犗.∵犘犃⊥犃犅,∴∠犘犃犗=90°,∴∠犘犆犗=90°∴犘犆是⊙犗的切线.图1910.(1)如图19所示,证明:连结犗犕.∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.∵犕犖切⊙犗于点犕,∴∠犗犕犖=90°.∵∠犕犖犆=∠犗犕犖=90°,∴犕犖⊥犅犆.(2)当犗犃<犗犅时,上述结论成立.当犗犃>犗犅时,上述结论也成立.图20如图20所示,以犗犃<犗犅为例证明如下:证明:连结犗犕.∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.∵犕犖切⊙犗于点犕,∴∠犗犕犖=90°.∵∠犕犖犆=∠犗犕犖=90°,∴犕犖⊥犅犆.11.“△犆犇犙是等腰三角形”还成立.证明:如图21所示,连结犗犆.∵犗犃=犗犆,∴∠犗犃犆=∠犗犆犃.∵∠犗犃犆=∠犘犃犙,∴∠犗犆犃=∠犘犃犙.∵犆犇切⊙犗于犆点,∴∠犗犆犇=90°.图21∴∠犇犆犙+∠犗犆犃=90°.∴∠犇犆犙+∠犘犃犙=90°.在Rt△犙犘犃中,∠犙犘犃=90°,∴∠犘犃犙+∠犙=90°.∴∠犇犆犙=∠犙.∴犇犙=犇犆.即△犆犇犙是等腰三角形.练习二1.B 2.A 3.2或6 4.30°5.14π犪2 6.75° 7.68.提示:连结三个圆的圆心构成等边三角形.最高点到地面的距离是2+槡3.图229.证明:如图22所示,延长犆犗2交⊙犗2于点犉,交犇犈于点犌,连结犃犅、犅犉.在⊙犗2中,∠犅犉犆=∠犅犃犆.∵四边形犃犅犈犇是⊙犗1的内接四边形,∴∠犅犃犆=∠犈.∴∠犅犉犆=∠犈.∵犆犉是⊙犗2的直径,∴∠犉犅犆=90°.∴∠犅犆犉+∠犅犉犆=90°.∴∠犅犆犉+∠犈=90°.∴∠犆犌犈=90°,∴犗2犆⊥犇犈.图2310.证明:如图23所示,连接犕犖、犖犃,连接犅犕并延长交犆犇于点犈.∵⊙犕与⊙犖外切于犘点,∴犕犖经过点犘.∴∠犅犘犕=∠犃犘犖.∵犕犅=犕犘,∴∠犅犘犕=∠犅.∵犖犃=犖犘,∴∠犃犘犖=∠犘犃犖.∴∠犅=∠犘犃犖.∴犅犈∥犖犃.∵犃犇切⊙犖于点犃,∴犖犃⊥犃犇. 9  参考答案与提示∴犅犈⊥犃犇,即犅犈⊥犆犇,∴︵犅犆=︵犅犇.图2411.(1)如图24所示,连结犗犙.∵犚犙是⊙犗的切线,∴∠犗犙犘+∠犚犙犘=90°.∵犗犃⊥犗犅,∴∠犗犘犅+∠犅=90°.∵犗犅=犗犙,∴∠犗犙犘=∠犅.∴∠犚犙犘=∠犗犘犅=∠犚犘犙.∴犚犘=犚犙.(2)延长犅犗交⊙犗于点犆.连结犆犙.∵犅犆是⊙犗的直径,∴∠犅犙犆=90°.∵犗犃⊥犗犅,∴∠犅犗犘=90°.∴∠犅犙犆=∠犅犗犘.又∵∠犅=∠犅,∴△犅犙犆∽△犅犗犘.∴犅犙犅犗=犅犆犅犘.∵犗犘=犘犃=1,∴犅犗=犃犗=2.∴犅犘=22+1槡2=槡5,犅犆=2犅犗=4.∴犅犙2=4槡5.∴犅犙=槡855.∴犘犙=槡855槡-5=槡355.图2512.(1)∠犅犘犆=∠犆犘犇成立.(2)(1)中的结论仍然成立,如图25所示.过点犘作两圆的公切线犘犕,则∠犕犘犅=∠犃,∠犕犘犆=∠犅犆犘.∴∠犅犘犆=∠犕犘犆-∠犕犘犅=∠犅犆犘-∠犃=∠犆犘犃.∴∠犅犘犆=∠犆犘犇.第3节 正多边形和圆1.C 2.D 3.B 4.2 5.略6.120,槡3,π 槡7.738.学生1:如图26(1),把井盖卡在角度尺间,可测得犃犅的长.记井盖所在圆的圆心为犗,连接犗犅、犗犆,由切线的性质得犗犅⊥犃犅,犗犆⊥犃犆,又,犃犅⊥犃犆,犗犅=犗犆,则四边形犃犅犆犇为正方形,那么井盖半径犗犆=犃犅,这样就可求出井盖的直径.学生2:如图26(2),把角尺顶点犃放在井盖边上某点,记角尺一边与井盖边缘交于点犅,另一边交于点犆(若角尺另一边无法达到井盖的边上,把角尺当直尺用,延长另一边与井盖边缘交于点犆),度量犅犆长即为直径.学生3:如图26(3),把角尺当直尺用,量出犃犅的长度,取犃犅中点犆,然后把角尺顶点与犆点重合.有一边与犆犅重合,让另一边与井盖边交于犇点,延长犇犆交井盖边于点犈,度量犇犈长即为直径.学生4:如图26(4),把井盖卡在角尺间,记录犅、犆的位置,再把角尺当作直尺用,可测得犅犆的长度.记圆心为犗,作犗犇⊥犅犆,犇为垂足,由垂径定理得犅犇=犇犆=12犅犆,且∠犅犗犇=∠犆犗犇.由作图知∠犅犗犆=90°,∴∠犅犗犇=12×90°=45°.在Rt△犅犗犇中,犅犗=犅犇sin45°,这样就可求出井盖的半径,进而求得直径.图2610 人教版·数学·九年级(上)学生5:如图26(5),把角尺当作直尺用,先测得犃犅的长度,记录犃、犅的位置,再量犃犆=犃犅,记录犆的位置,然后测得犅犆的长度.作等腰三角形犅犃犆底边犅犆上的高犃犇,犇为垂足.∵犃犇垂直平分犅犆,∴由垂径定理可求出犃犇,那么,在Rt△犅犇犗中,犗犅2=犅犇2+犗犇2=犅犇2+(犃犇-犃犗)2.设井盖半径为狉,则狉2=犅犇2+(犃犇-狉)2,∵犅犇、犃犇都已知.∴解一元二次方程就可求出井盖的半径狉,这样就可求出井盖的直径.9.(1)a、b、c,a、c;(2)略第4节 弧长和扇形面积练习一1.C 2.B 3.C 4.B 5.A6.23π 7.1练习二1.D 2.1 3.2π4.160° 5.57.32 6.12π犪27.犾=狀π犚180=120π×6180=4π(cm),∵弧长犾等于圆锥的底面周长,即犆=4π,∴底面半径狉=犆2π=2(cm),∴犛底=4π(cm2).8.23π犪2图279.证明:如图27所示,连结犗犘、犗犆,设∠犘犗犆=狀°.由已知得狀π×5180=52π,解得狀=90.∴∠犘犗犆=90°.∴∠犘犅犆=12∠犘犗犆=45°.∵犃犅是直径,∴∠犃犆犅=90°.∴∠犆犕犅=45°.∴∠犘犅犆=∠犆犕犅.∴犕犆=犅犆.10.(1)证明:∵∠犆犗犇=∠犃犗犅=90°,∴∠犃犗犆=∠犅犗犇.又∵犗犃=犗犅,犗犆=犗犇,∴△犃犗犆≌△犅犗犇.(2)犛阴影=犛扇形犗犃犅-犛扇形犗犆犇=2π.11.方法1:仔细观察,不难发现:犃、犅、犆阴影部分面积相等(正方形面积-圆的面积),由四选一型选择题的特点,只能选犇.方法2:因为犃、犅、犆中圆弧的半径均为犪2,犇中圆弧的半径为犪,所以犃、犅、犆、犇的面积分别为:犛犃=犛犅=犛犆=犪2-π(犪2)2=犪24(4-π);犛犇=犪2-2π犪24-12×犪×[]犪=2犪2-π犪22=犪22(4-π).显然,犇最大.应选犇.图28方法3:因为犃、犅、犆中圆弧的半径均为犪2,所以犃、犅、犆的面积为:犛犃=犛犅=犛犆=犪2-π(犪2)2=犪24(4-π);犇中圆弧的半径为犪,可将原图形犇中白色区域对角线连结,然后将对角线上方的图沿着逆时针方向旋转90°,重新拼成图28,则犛犇=犪×2犪-π犪22=犪22(4-π).显然,犇最大.应选犇.第二十五章 概率初步第1节 随机事件与概率练习一1.16 2.12 12 3.23 4.145.50.2% 6.必然 7.浅色 8.犃9.B 10.A 11.B 12.B 13.3614.摸到红球、白球、黄球的可能性不相同.因为红球最多,所以摸到红球的可能性最大,而摸到黄球的可能性最小.练习二1.152 2.2% 11  参考答案与提示3.(1)小;(2)一样大;(3)大4.大于 5.大于 6.A 7.A 8.B9.D 10.C11.候车不超过3分钟的可能性较大.12.这个游戏不公平,小明更容易获胜.因为任意把两张卡片上的数字相加,和为奇数的更多.13.(1)108,114,120;(2)不能.第2节 用列举法求概率练习一1.D 2.B 3.C 4.C5.15 6.25 7.118 8.3 2 19.百万分之二10.可以用表格列举所有可能得到的牌面数字之和:共有16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5的情况共出现4次,因此牌面数字之和等于5的概率为25%.11.(1)1个;(2)列举略,两次摸到不同颜色的球的概率为犘=1012=56.练习二1.B 2.D 3.A 4.D5.13 23 6.12 12 17.14 113 1528.14组 1189.(1)篮球:10%+12%+15%+5%=42%,足球:20%+12%+18%+5%=55%,乒乓球:15%+18%+15%+5%=53%;所以开展足球运动会有更多人参与;(2)抽到喜欢乒乓球的可能性较大.10.(1)犘(1等奖)=136;犘(2等奖)=19,犘(3等奖)=16;(2)5000元.第3节 利用频率估计概率1.A 2.C 3.C 4.D5.(1)相同条件 (2)实验的次数(3)不一定6.(1)1 3 1;(2)1 20 5,10,15,207.(1)219 (2)519 (3)12198.28 0.56 9.0.3 1510.(1)表中数据:频数从上到下依次为:9,21,50;频率从上到下依次为:0.42,0.04;(2)0.76×400=304;(3)能,不能.11.A、B、C、D、E五种品牌的雪糕分别按总量的25.5%、35%、13%、7.5%、19%进货.12.不合理,图钉落地后钉尖朝上和钉尖朝下的机会不均等.13.(1)不可信.实验次数太少;(2)不好.改变了实验条件,啤酒瓶盖和可乐瓶盖落地后正面朝上的机会不一定相同;(3)好.这样既能提高速度又不会对实验结果造成影响,但应在瓶盖完全相同的条件下进行实验.14.可能性为34,这种说法是正确的.15.24%第4节 课题学习 键盘上字母的排列规律略期中综合练习1.B 2.C 3.B 4.C 5.C 6.C7.A 8.B槡9.2 10.-6 11.1和012.② 13.犿≠-1且犿≠2槡14.3-5 15.略16.化简后为狓2+4 17.略18.19000只19.原式=2狓+4.当狓=槡2-2时,原式槡=22.20.(1)-3,9;(2)是第十个;(3)狓2-2狀狓-3狀2=0.21.提示:(犪-21)(350-10犪)=400,解之得 犪1=25,犪2=31.因为 21×(1+20%)=25.2而犪=3112 人教版·数学·九年级(上)不合题意,舍去.所以 350-10犪=100件所以进货100件,定价为25元.期末综合练习1.A 2.A 3.C 4.D 5.C 6.B7.D 8.D 9.A 10.D槡11.±2212.狓1=1,狓2=-3 13.1 14.515.①③④⑤ 16.127 17.65°18.略 19.4 20.4(1+狓)2=721.原式=槡2-122.(1)犘(指针指向奇数区域)=36=12;(2)方法一:如图29所示,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为23;图29方法二:自由转动转盘,当它停止时,指针指向的数字不小于3时,指针指向的区域的概率是23.23.(1)可以通过逆时针旋转90°使△犃犅犈变到△犃犇犉的位置.(2)犅犈=犇犉.提示:证△犃犅犈≌△犃犇犉(SAS).24.设所折成矩形的长为狓cm,则有狓(11-狓)=30,即狓2-11狓+30=0,解得狓1=5,狓2=6.故矩形的长和宽分别为6cm、5cm时,面积是30cm2.由狓(11-狓)=32,即狓2-11狓+32=0,犫2-4犪犮=121-4×1×32<0,方程无实数根,故不能折成面积是图3032cm2的矩形.25.不改变.如图30所示,连结犗犘,犗犆=犗犘 ∠2=∠犘∠2=∠烍烌烎1 ∠1=∠犘犗犘∥犆犇犆犇⊥}犃犅犗犘⊥犃犅 ︵犘犃=︵犘犅 犘点为中点.26.(1)(方法1)连结犇犗,犗犇是△犃犅犆的中位线,运用中位线的性质.(方法2)连结犃犇,∵犃犅是⊙犗的直径,∴犃犇⊥犅犆.∵犅犇=犆犇,∴犃犅=犃犆.(2)连结犃犇,∵犃犅是⊙犗的直径,∴∠犃犇犅=90°,∴∠犅<∠犃犇犅=90°.∠犆<∠犃犇犆=90°.∴∠犅,∠犆为锐角.∵犃犆和⊙犗交于点犉,连接犅犉,∴∠犃<∠犅犉犆=90°.∴△犃犅犆为锐角三角形檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪殏殏殏殏.《练习册》参考答案下载请登陆:陕西师范大学教育出版集团网址:http://www.snupg.com。

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.(2014•鼓楼区二模)图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是( )A .B .C .D .2.如图,菱形ABCD 放置在直线l 上(AB 与直线l 重合),AB=4,∠DAB=60°,将菱形ABCD 沿直线l 向右无滑动地在直线l 上滚动,从点A 离开出发点到点A 第一次落在直线l 上为止,点A 运动经过的路径的长度为( ).A .B .C .D .二、解答题1.如图1,A 1B 1和A 2B 2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A 1B 1上从A 1处出发,到达B 1后,以同样的速度返回A 1处,然后重复上述过程;乙在赛道A 2B 2上以2m/s 的速度从B 2处出发,到达A 2后以相同的速度回到B 2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B 1B 2的距离为y (m ),运动时间为t (s ),甲游动时,y (m )与t (s )的函数图象如图2所示.(1)赛道的长度是 m ,甲的速度是 m/s ; (2)经过多少秒时,甲、乙两人第二次相遇?(3)若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了 次.2分钟时,乙距池边B 1B 2的距离为多少米.2.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D 在BA 的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73) 3.如图,已知直线y =mx +n 与反比例函数交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F(1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A(x 1,y 1)、B(x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数图象上的点,AM ∥BN ∥x 轴.若,且AM 、BN 之间的距离为5,则k -b =_____________4.如图,在Rt △ABC 中,∠A =90°,点D 、E 分别在AC 、BC 上,且CD·BC =AC·CE ,以E 为圆心,DE 长为半径作圆,⊙E 经过点B ,与AB 、BC 分别交于点F 、G . (1)求证:AC 是⊙E 的切线;(2)若AF =4,CG =5,①求⊙E 的半径;②若Rt △ABC 的内切圆圆心为I ,则IE= .5.计算与解分式方程:(1)(2)6.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接DE 并延长至点F ,使EF =DE ,连接AF ,DC .求证:四边形ADCF 是菱形.7.在正方形网格中,我们把,每个小正方形的顶点叫做格点,连接任意两个格点的线段叫网格线段,以网格线段为边组成的图形叫做格点图形,在下列如图所示的正方形网格中,每个小正方形的边长为1.(1)请你在图1中画一个格点图形,且该图形是边长为的菱形;(2)请你在图2中用网格线段将其切割成若干个三角形和正方形,拼接成一个与其面积相等的正方形,并在图3中画出该格点正方形.8.甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用树状图或列表法求恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其余都相同的乒乓球,设计一个摸球的实验(至少摸两次),并根据该实验写出一个发生概率与(1)所求概率相同的事件.9.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.10.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)求出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,请说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请求出△PDE周长最小时“好点”的坐标,并直接写出所有“好点”的个数.三、判断题某学校为了解本校2400名学生对某次足球赛的关注程度,以利于做好教育和引导工作,随机抽取了本校内的六、七、八、九四个年级部分学生进行调查,按“各年级被抽取人数”与“关注程度”,分别绘制了条形统计图(图①)、扇形统计图(图②)和折线统计图(图③).(1)本次共随机抽查了________名学生,根据信息补全图①中条形统计图,图②中八年级所对应扇形的圆心角的度数为________;(2)如果把“特别关注”“一般关注”“偶尔关注”都看成关注,那么全校关注足球赛的学生大约有多少名?(3)①根据上面的统计结果,谈谈你对该校学生对足球关注的现状的看法及建议;②如果要了解中小学生对校园足球的关注情况,你认为应该如何进行抽样?四、填空题1.满足不等式组的整数解为_________.2.函数自变量的取值范围是_________.3.请写出一个经过第一、二、三象限,并且与y轴交与点(0,1)的直线表达式 ____________.4.如图,已知零件的外径为30 mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)测量零件的内孔直径AB.若OC∶OA=1∶2,且量得CD=12 mm,则零件的厚度x=____________mm.5.将一张半径为4的圆形纸片(如图①)连续对折两次后展开得折痕AB、CD,且AB⊥CD,垂足为M(如图②),之后将纸片如图③翻折,使点B与点M重合,折痕EF与AB相交于点N,连接AE、AF(如图④),则△AEF的面积是__________.6.若D点坐标(4,3),点P是x轴正半轴上的动点,点Q是反比例函数图象上的动点,若△PDQ为等腰直角三角形,则点P的坐标是________.五、单选题1.如图所示,用直尺度量线段AB,可以读出AB的长度为().A.6cm B.7cm C.9cm D.10cm2.下列运算错误的是()A.B.C.D.3.已知、是一元二次方程的两个根,则的值是().A.B.C.D.4.抛物线的部分图象如右图所示,若y>0,则x的取值范围是()A.x<-4或x>1B.x<-3 或x>1C.-3<x<1D.-4<x<1江西初三初中数学中考模拟答案及解析一、选择题1.(2014•鼓楼区二模)图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.【答案】B【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选:B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.2.如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径的长度为().A.B.C.D.【答案】A.【解析】如图,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径的长度为图中弧线长.由题意可知,∠DOA2=120°,DO=,所以点A运动经过的路径的长度=2×+ =.故选:A .【考点】轨迹;菱形的性质.二、解答题1.如图1,A 1B 1和A 2B 2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A 1B 1上从A 1处出发,到达B 1后,以同样的速度返回A 1处,然后重复上述过程;乙在赛道A 2B 2上以2m/s 的速度从B 2处出发,到达A 2后以相同的速度回到B 2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B 1B 2的距离为y (m ),运动时间为t (s ),甲游动时,y (m )与t (s )的函数图象如图2所示.(1)赛道的长度是 m ,甲的速度是 m/s ; (2)经过多少秒时,甲、乙两人第二次相遇?(3)若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了 次.2分钟时,乙距池边B 1B 2的距离为多少米.【答案】(1)50,2.5;(2);(3)5,40米.【解析】(1)由函数图象可以直接得出赛道的长度为50米,由路程÷时间=速度就可以求出甲的速度.(2)设经过x 秒时,甲、乙两人第二次相遇,根据甲游过的路程+乙游过的路程=150米建立方程求出其解即可; (3)分别求出相遇一次的时间就可以求出相遇次数,再由速度与时间的关系就可以求出结论. 试题解析:(1)由图象,得 赛道的长度是:50米, 甲的速度是:50÷20=2.5m/s .(2)设经过x 秒时,甲、乙两人第二次相遇,由题意,得 2.5x+2x=150, 解得:x=;(3)由题意可以得出第一次相遇的时间为:,第二次相遇的时间为:, 第三次相遇的时间为:, 第四次相遇的时间为:, 第五次相遇的时间为:, 第六次相遇的时间为:>120s ,∴甲、乙共相遇5次.2分钟时,乙距池边B 1B 2的距离为:2×(120-100)=40米. 【考点】一次函数的应用.2.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D 在BA 的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73) 【答案】1.9米【解析】在直角三角形BCD 中,由BC 与sinB 的值,利用锐角三角函数定义求出CD 的长,在直角三角形ACD 中,由∠ACD 度数,以及CD 的长,利用锐角三角函数定义求出AD 的长即可. 试题解析:∵∠BDC=90°,BC=10,sinB=, ∴CD=BC•sinB=10×0.59=5.9,∵在Rt △BCD 中,∠BCD=90°﹣∠B=90°﹣36°=54°, ∴∠ACD=∠BCD ﹣∠ACB=54°﹣36°=18°, ∴在Rt △ACD 中,tan ∠ACD=, ∴AD=CD•tan ∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD 的长约为1.9米. 【考点】解直角三角形的应用3.如图,已知直线y =mx +n 与反比例函数交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F(1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A(x 1,y 1)、B(x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数图象上的点,AM ∥BN ∥x 轴.若,且AM 、BN 之间的距离为5,则k -b =_____________【答案】(1)A(-1,m)、B(1,m); (2)y 1+y 2=n ,证明见解析; (3)k -b =3【解析】(1)、根据反比例函数和一次函数的交点坐标的求法得出两点的坐标;(2)、首先联立方程组,得出和的值,然后得出的值;(3)、设N(,m)、B(,m),则BN =设A(,n)、M(,n),则AM =,根据题意得出m-n=5,然后代入得出答案.试题解析:(1) A(-1,m)、B(1,m) (2) 联立,整理得mx 2+nx -k =0 ∴x 1+x 2=,x 1x 2=∴y 1+y 2=m(x 1+x 2)+2n =-n +2n =n (3) 设N(,m)、B(,m),则BN =设A(,n)、M(,n),则AM =∵∴∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b = (m -n)=34.如图,在Rt △ABC 中,∠A =90°,点D 、E 分别在AC 、BC 上,且CD·BC =AC·CE ,以E 为圆心,DE 长为半径作圆,⊙E 经过点B ,与AB 、BC 分别交于点F 、G . (1)求证:AC 是⊙E 的切线;(2)若AF =4,CG =5,①求⊙E 的半径;②若Rt △ABC 的内切圆圆心为I ,则IE=.【答案】(1)证明见解析;(2)①⊙E的半径为20;②IE=【解析】(1)利用三角形相似证得∠EDC=∠A=90°,即可得到结论;(2) ①根据△BHE∽△EDC得到,就能求出⊙E的半径;②根据相似求得BC=45,AB=36,r=9,过I作IH⊥BC,在三角形IEH中,根据勾股定理即可求得IE=.试题解析:(1)证明:∵ CD·BC=AC·CE∴∵∠DCE=∠ACB.∴△CDE∽△CAB∴∠EDC=∠A=90°∴ED⊥AC又∵点D在⊙O上,∴AC与⊙E相切于点D .(2)过点E作EH⊥AB,垂足为H,∴BH=FH.在四边形AHED中,∠AHE=∠A=∠ADE=90°,∴四边形AHED为矩形,∴ED=HA,ED∥AB,∴∠B=∠DEC.设⊙O的半径为r,则EB=ED=EG=r,∴BH=FH=r-4,EC=r+5.在△BHE和△EDC中,∵∠B=∠DEC,∠BHE=∠EDC,∴△BHE∽△EDC.∴,即.∴r=20.即⊙E的半径为20(3)5.计算与解分式方程:(1)(2)【答案】(1) ;(2)x="0" 经检验是原方程的解【解析】(1)原式利用绝对值的代数意义,二次根式性质,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:(1)原式=2×−1−2+2=1−;(2)去分母得:x2−2x−3−2x−6=x2−9,解得:x=0,经检验x=0是分式方程的解。

【初三数学】吉安市九年级数学上(人教版)第21章一元二次方程单元综合练习题及答案

【初三数学】吉安市九年级数学上(人教版)第21章一元二次方程单元综合练习题及答案

《一元二次方程》单元检测试题(含答案)一、选一选,慧眼识金(每小题3分,共24分)1.在一元二次方程265x x x -=+中,二次项系数、一次项系数、常数项分别是( ).A .1、-1、5B .1、6、5C .1、-7、5D .1、-7、-5 2.用配方法解方程22x x +=,方程的两边应同时( ).A .加上14B .加上12C .减去14D .减去123.方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =74.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽,小刚设四周垂下的边宽为xcm ,则应列得的方程为( ). A .(160+x )(100+x )=160×100×2 B .(160+2x )(100+2x )=160×100×2 C .(160+x )(100+x )=160×100 D .(160+2x )(100+2x )=160×1005.电流通过导线会产生热量,设电流强度为I (安培),电阻为R (欧姆),1秒产生的热量为Q (卡),则有Q=0.24I 2R ,现在已知电阻为0.5欧姆的导线,1秒间产生1.08卡的热量,则该导线的电流是( ).A .2安培B .3安培C . 6安培D .9安培 6.关于x 的方程20ax bx c ++=(a ≠0,b ≠0)有一根为-1,则ba c+的值为( ) A .1 B .-1 C .2 D .-27.关于x 的一元二次方程x 2(23)20m x m --+-=根的情况是( ).A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .根的情况无法确定8.在解二次项系数为1的一元二次方程时,粗心的甲、乙两位同学解同一道题,甲看错了常数项,得到两根分别是4和5;乙看错了一次项系数,得到的两根分别是-3和-2,则方程是( )A .2960x x ++=B .2960x x -+=C .2960x x +-=D .2960x x --= 二、填一填,画龙点睛(每题3分,共18分)9.关于x 的方程是一元二次方程,则m 的值为_______. 10.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组m ,n 的实数值可以是m =_________,n =________. 11.第二象限内一点A (1x -, x 2-3),其关于x 轴的对称点为B ,已知AB=12,则点A 的坐标为__________.22(2)(3)20m m xm x --+--=12.随着人们收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入了普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为150万辆,而截止到2010年底,全市的汽车拥有量已达216万辆.则2008年底至2010年底该市汽车拥有量的年平均增长率为__________.13.黎明同学在演算某正数的平方时,将这个数的平方误写成它的2倍,使答案少了35,则这个数为__________.14.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b c d ,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x xx +--+6=,则x =______.三、做一做,牵手成功(共58分)15.(每小题3分,共9分)用适当方法解下列方程: (1)(x -4)2-81=0; (2)3x (x -3)=2(x -3);(3)2216x x -=.16.(5分)已知213y x x =-+,25(1)y x =-,当x 为何值时,12y y =. 17.(6分)飞机起飞时,要先在跑道上滑行一段路程,这种运动在物理中叫做匀加速直线运动,其公式为2012s v t at =+,若某飞机在起飞前滑行了400m 的距离,其中v 0=30m/s ,a =20m/s 2,求所用的时间t .18.(7分)阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x -看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①. 解得y 1=1,y 2=4.当1y =时,211x -=,∴22x =,∴x =;当4y =时,214x -=,∴25x =,∴x =故原方程的解为1x =2x =,22x =-,4x =解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想; (2)请利用以上知识解方程x 4-x 2-6=0.19.(7分)设a 、b 、c 是△ABC 的三条边,关于x 的方程220x c a ++-=有两个相等的实数根,且方程322cx b a +=的根为0. (1)求证:△ABC 为等边三角形;(2)若a 、b 为方程230x mx m +-=的两根,求m 的值.20.(7分)在国家的宏观调控下,某市的商品房成交价由今年5月份的14000元/人教版九年级数学上册第21章一元二次方程单元测试卷(含解析)一、单选题(每小题3分,共30分) 1.下列方程中,是一元二次方程的为( ) A .20ax bx c ++= B .230x x +=C .2110x x+=D .()2210x x x +--= 2.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为() A .−2B .2C .−4D .43.把一元二次方程223x x =-化为一般形式,若二次项系数为1,则一次项系数及常数项分别为()A .2,3B .2,3-C .2,3-D .2,3--4.关于x 的一元二次方程2x 2+4x ﹣c =0有两个不相等的实数根,则实数c 可能的取值为( )A .﹣5B .﹣2C .0D .﹣85.在解方程22410x x ++=时,对方程进行配方,文本框①中是嘉嘉的方法,文本框②中是琪琪的方法,则()A .两人都正确B .嘉嘉正确,琪琪不正确C .嘉嘉不正确,琪琪正确D .两人都不正确6.已知一元二次方程22510x x -+=的两个根为1x ,2x ,下列结论正确的是() A .1x ,2x 都是正数 B .121x x ⋅= C .1x ,2x 都是有理数D .1252x x +=-7.已知1x =是一元二次方程()22210m x mx m --+=的一个根,则m 的值是() A .12或1- B .12-C .12或1 D .128.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x ,根据题意可列方程( )A .82(1+x )2=82(1+x )+20B .82(1+x )2=82(1+x )C .82(1+x )2=82+20D .82(1+x )=82+209.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( ) A .5个B .6个C .7个D .8个10.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是()A .a b c ==B .a b =C .b c =D .a c =二、填空题(每小题3分,共30分)11.已知一元二次方程的一个根是﹣3,则这个方程可以是________(填上你认为正确的一个方程即可)12.若关于x 的一元二次方程2220x mx m --+=的二次项系数、一次项系数和常数项的和为0,则m 的值是_______.13.方程(21)(53)(8)0x x x --+=可以化为三个一次方程,它们分别是________,________,____________.14.关于x 的方程()2228(2)10a a x a x --++-=,当a __________时为一元一次方程;当a ________时为一元二次方程.15.若关于x 的方程x 2+mx -3=0有一根是1,则它的另一根为________.16.三角形的两边长分别为3和6,第三边的长是方程2x -6x +8=0的解,则此三角形的第三边长是_____17.某商品原价为180元,连续两次提价%x 后售价为300元,依题意可列方程:____ 18.若()()215x y x y +++=,则x y +=________.19.如果a 是一元二次方程2350x x --=的一个根,那么代数式283a a -+=_______.20.已知x =y =.则225x xy y -+的值为__________.三、解答题(共60分)21.(16分)用合适的方法解下列方程: (1)2860x x --=;(2)22(3)8x -=;(3)24630x x --=;(4)2(23)5(23)x x -=-.22.(6分)先化简:再求值(1﹣11a +)÷221a a -,其中a 是一元二次方程x 2﹣2x ﹣2=0的正实数根.23.(6分)已知关于x 的一元二次方程()22210x m x m +-+=.(1)用含有m 的式子表示判别式∆=________;(2)当m 在什么范围内取值时,方程有两个不相等的实数根;(3)若该方程有两个不相等的实数根1x ,2x ,问当m 取何值时221214x x +=.24.(6分)如图,在菱形ABCD 中,,AC BD 交于点O ,8cm AC =,6cm BD =,动点M 从点A 出发沿AC 以2cm /s 的速度匀速运动到点C ,动点N 从点B 出发沿BO 以1cm/s 的速度匀速运动到点O ,若点,M N 同时出发,问出发后几秒时,MCN ∆的面积为22cm ?25.(8分)“绿水青山就是金山银山”,为进一步发展美丽乡村建设,自2016年以来,某县加大了美丽乡村环境整治的经费投入,2015年该县投人环境整治经费9亿元,2018年投入环境整治经费12.96亿元.假设该县这两年投入环境整治经费的年平均增长率相同. (1)求这两年该县投入环境整治经费的年平均增长率;(2)若该县环境整治经费的投入还将保持相同的年平均增长率,请你预测2019年该县投入环境整治的经费为多少亿元?26.(8分)随着旅游旺季的到来,某旅行社为吸引市民组团取旅游,推出了如下收费标准:某单位组织员工旅游,共支付给该旅行社费用27000元,请问该单位这次共有多少员工取旅游?27.(10分)某市正大力发展绿色农产品,有一种有机水果A特别受欢迎,某超市以市场价格10元/千克在该市收购了6000千克A水果,立即将其冷藏,请根据下列信息解决问题:①水果A的市场价格每天每千克上涨0.1元;②平均每天有10千克的该水果损坏,不能出售;③每天的冷藏费用为300元;④该水果最多保存110天.(1)若将这批A水果存放x天后一次性出售,则x天后这批水果的销售单价为_____元;可以出售的完好水果还有_____千克;(2)将这批A水果存放多少天后一次性出售所得利润为9600元?参考答案1.B【解析】根据一元二次方程的概念逐一进行判断即可得.解:A. 2ax bx c 0++=,当a =0时,不是一元二次方程,故不符合题意; B. 2x 3x 0+=,是一元二次方程,符合题意; C.2110x x+=,不是整式方程,故不符合题意; D. ()2x 2x x 10+--=,整理得:2+x =0,不是一元二次方程,故不符合题意, 故选B. 2.B【解析】根据一元二次方程的解的定义,把x =1代入方程得关于k 的一次方程1-3+k =0,然后解一次方程即可.解:把x =1代入方程得1+k -3=0, 解得k =2. 故选:B . 3.D【解析】先将223x x =-变形为2230x x --=,再根据一次项系数及常数项的定义即可得到答案.解:根据题意可将方程变形为2230x x --=,则一次项系数为2-,常数项为3-.故选D . 4.C【解析】利用一元二次方程根的判别式(△=b 2﹣4ac )可以判断方程的根的情况,有两个不相等的实根,即△>0.解:依题意,关于x 的一元二次方程,有两个不相等的实数根,即△=b 2﹣4ac =42+8c >0,得c >﹣2根据选项,只有C 选项符合,故选:C . 5.A【解析】利用配方法把含未知数的项写成完全平方式,然后利用直接开平方法解方程. 解:嘉嘉是把方程两边都乘以2,把二次项系数化为平方数,再配方,正确;琪琪是把方程两边都除以2,把二次项系数化为1,再配方,正确; ∴两人的做法都正确. 故选A . 6.A【解析】由根与系数的关系可得出x 1+x 2=52、x 1x 2=12,进而可得出x 1、x 2都是正数,再进行判断.解:∵一元二次方程2x 2-5x +1=0的两个根为x 1、x 2,∴x 1+x 2=52,x 1x 2=12,∴x 1、x 2都是正数. 故选:A . 7.B【解析】把x =1代入方程(m 2 -1)x 2 -mx +m 2=0,得出关于m 的方程,求出方程的解即可.解:把x =1代入方程(m 2 -1)x 2 -mx +m 2 =0得:(m 2 -1)-m +m 2=0, 即2m 2-m -1=0,(2m +1)(m -1)=0, 解得:m =-12或1, 当m =1时,原方程不是二次方程,所以舍去. 故选B . 8.A【解析】根据题意找出等量关系:20=+四月份的营业额三月份的营业额,列出方程即可.解:由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82万元,若设增长率为x ,则三月份的营业额为82(1)x +,四月份的营业额为282(1)x +,四月份的营业额比三月份的营业额多20万元, 则282(1)82(1)20x x +=++, 故选:A9.B【解析】每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:飞机场数×(飞机场数-1)=15×2,把相关数值代入求正数解即可. 解:设这个航空公司共有x 个飞机场,依题意得1x(x 1)152-=, 解得16x =,25x =-(不符合题意,舍去), 所以这个航空公司共有6个飞机场. 故选B . 10.D【解析】根据已知得出方程20(a 0)++=≠ax bx c 有x =-1,再判断即可. 解:把x =−1代入方程20(a 0)++=≠ax bx c 得出a −b +c =0, ∴b =a +c ,∵方程有两个相等的实数根,∴△=24b ac -=22()()4=0a c ac a c --=+,∴a =c , 故选D . 11.x 2+3x =0【解析】方程一个解为−3,假设另一个解为0,则方程可为x (x +3)=0,然后把方程化为一般式即可.解:一元二次方程的一个根是−3,则这个方程可以是x (x +3)=0,即x 2+3x =0. 故答案为x 2+3x =0.12.1【解析】二次项系数、一次项系数、常数项分别是1,-2,-m +2.它们的和是0,即得到1220m m --+=人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(8)一、精心选一选!(每题3分,共30分)1.关于x 的一元二次方程(m +1)21m x++4x +2=0的解为( )A.x 1=1,x 2=-1B. x 1=x 2=-1C. x 1=x 2=1D.无解2.用配方法解方程x 2-4x +2=0,下列配方正确的是( )A.(x -2)2=2B. (x +2)2=2C. (x -2)2=-2D. (x -2)2=6 3.一元二次方程3x 2-x =0的解是( ) A .x =0 B .x 1=0,x 2=13 C .x 1=0,x 2=3 D .x =134.已知关于x 的一元二次方程x 2-m =2x 有两个不相等的实数根,则m 的取值范围是( ) A . m >-1 B . m <-2 C .m ≥0 D .m <05. 一元二次方程x 2+x +2=0的根的情况是( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根 D .有两个相等的实数根6.已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>m B. 43≥m C. 43>m 且2≠m D. 且2≠m 7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++= D.2210x x +-= 8.关于x 的一元二次方程x 2﹣(k ﹣1)x ﹣k +2=0有两个实数根x 1,x 2,若(x 1﹣x 2+2)(x 1﹣x 2﹣2)+2x 1x 2=﹣3,则k 的值( ) A .0或2 B .﹣2或2 C .﹣2 D .2 9.今年“十一”黄金周我市各旅游景点共接待游客约334万人,旅游总收入约9亿元.已知我市前年“五一”黄金周旅游总收入约6.25亿元,那么这两年同期旅游总收入的年平均增长率约为( ) A.12% B.16% C.20% D.25%10.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填!(每题3分,共30分) 11. 方程x 2+2x=0的解为 .12.若0x =是方程22(2)3280m x x m m -+++-=的解,则m =______. 13.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .14. 关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2,则b = ,c = .15.已知a ,b 是方程x 2+x ﹣3=0的两个实数根,则a 2﹣b +2019的值是( )16. 已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .17. 阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-, ac x x =21·.根据该材料填空: 43≥m已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______. 18. 请写出一个值k =________,使一元二次方程x 2-7x +k =0有两个不相等的非0实数根.19. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = . 20.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为xm ,则根据题意,可列方程为 .三、细心做一做!(每题8分,共40分)21.解方程:(1)2220x x +-=; (2)x 2+3=3(x +1). 22. 设23111x A B x x ==+--,,当x 为何值时,A 与B 的值相等。

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.的倒数是().A.2B.﹣2C.D.2.下面几何体的左视图是().A.B.C.D.3.下列运算中正确的是().A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b24.如图,△ABC中,∠BAC=70°,将△ABC绕点C顺时针旋转一定角度,得到△DEC,点A的对应点为D,ED过点A,则旋转角的度数为().A.30°B.35°C.40°D.45°5.抛物线y=x2+2x+2﹣m与x轴有两个交点,则下列m的值符合题意的是().A.﹣2B.﹣1C.0D.26.如图,将一个正方形纸片(图1),切去四个角上同样大小的小正方形,翻折粘合成一个无盖的长方体(图2),若图1中原正方形纸片的边长为6,图2中长方体的长为a,高为b,则下列说法错误的是().A.a<6B.a+2b=6C.a=2时,图2为正方体D.长方体的所有棱长之和是个定值二、填空题1.36的算术平方根是 .2.今年4月份中国汽车工业协会公布的统计数据显示,第一季度全国乘用车共销售566.90万辆,将566.90万用科学记数法可表示为 .3.已知一组数据2,4,x ,3,5,3,2的众数是2,则这组数据的中位数是 .4.如图,直线l 1∥l 2,两直线之间的距离为2,A ,B 是直线l 2上两点,AB=4,点P 直线l 1上一个动点,则∠APB 的最大值为 .5.如图,矩形ABCD 内接于⊙O ,AB=2,AD=3,点P 是⊙O 上任一点,则sin ∠APB 的值为 .6.一次函数y=kx+2的图象过点A (2,4),且与x 轴相交于点B ,若点P 是坐标轴上一点,∠APB=90°,则点P 的坐标为 .三、计算题(1)计算:()﹣1﹣﹣()0+|﹣1|(2)先化简,再求值:(x+2)(x ﹣2)﹣(x ﹣1)2,其中x=﹣.四、解答题1.如图,△AOB 和△COD 均为等腰直角三角形,∠AOB=∠COD=90°,点D 在AB 上,连接AC ,求证:△AOC ≌△BOD .2.求不等式组的解集,并判断x=是否为该不等式组的一个解.3.如图,反比例函数y=的图象过点A (1,3),请根据下列条件试用无刻度的直尺分别在图1和图2中按要求画图.(1)在图1中取一点B ,使其坐标为(﹣1,﹣3);(2)在图2中,在(1)中画图的基础上,画一个平行四边形ACBD .4.已知x 1,x 2是方程x 2﹣2x+a=0的两个实数根,且x 1+2x 2=﹣1,求x 1,x 2和a 的值.5.某艺术剧院门票价格如表所示:某团体准备了700元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.门票价格一览表(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中选中一种总票张数最少的情况,将所购的票的票面朝下随意叠放在一起,随机抽两张,求正好抽出一张指定日普通票和一张平日优惠票的概率.6.如图1所示旅行箱的箱盖和箱底两部分的厚度相同,图1中四边形ABCD形如矩形的旅行箱一侧的示意图,F为AD的中点,EF∥CD,现将放置在地面上的箱子打开,使箱盖的一端靠在墙上点D处,O为墙角,图2为箱子打开后的示意图,若箱子厚度AD=30cm,宽度AB=50cm.(1)图2中,EC= cm,当点D与点O重合时,AO的长为 cm.(2)若∠CDO=60°,求AO的长(结果取整数值)(参考数据:sin60°=0.87,cos60°=0.5,tan60°=≈1.73,可使用科学计算器)7.某校九年级(1)班数学学习小组对某次测试“满分值为6分的一道解答题的得分”情况进行了统计,绘制成下表(学生得分均为整数):已知全班同学此题的平均得分为4分,结合表格解决下列问题:(1)完成表格,并求该班学生总数;(2)根据表中提供的数据,补全条形统计图;若将“该班同学本道题的得分情况”绘制成扇形统计图,求“此题得0分”的人数所对应的圆心角的度数.(3)若本年级学生共有540人,请你估计整个年级中此题得满分的学生人数.8.如图,▱ABCD的顶点A、C、D都在⊙O上,AB与⊙O相切于点A,BC与⊙O交于点E,设∠OCD=α,∠BAD=β.(1)求证:AB=AE;(2)试探究α与β之间的数量关系.9.如图1,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的一动点(不与端点A、D重合),连结PC,过点P作PE⊥PC交AB于点E,在P点运动过程中,图中各角和线段之间是否存在的某种关系和规律?特例求解当E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中BE的取值范围.10.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两抛物线L 1、L 2互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)在图1中,抛物线:L 1:y=﹣x 2+4x ﹣3与L 2:y=a (x ﹣4)2﹣3互为“伴随抛物线”,则点A 的坐标为 ,a 的值为 ; (2)在图2中,已知抛物线L 3:y=2x 2﹣8x+4,它的“伴随抛物线”为L 4,若L 3与y 轴交于点C ,点C 关于L 3的对称轴对称的对称点为D ,请求出以点D 为顶点的L 4的解析式;(3)若抛物线y=a 1(x ﹣m )2+n 的任意一条“伴随抛物线”的解析式为y=a 2(x ﹣h )2+k ,请写出a 1与a 2的关系式,并说明理由.江西初三初中数学中考模拟答案及解析一、选择题1.的倒数是( ).A .2B .﹣2C .D .【答案】B.【解析】利用倒数的定义:乘积是1的两数互为倒数,∵﹣2×(﹣)=1,∴﹣的倒数是﹣2.故选B .【考点】倒数的定义.2.下面几何体的左视图是( ).A .B .C .D .【答案】A.【解析】根据从左边看得到的图形是左视图,此图从左边看左侧是两个小正方形,右侧是一个小正方形,故选:A .【考点】简单组合体的三视图.3.下列运算中正确的是( ).A .3a+2a=5a 2B .(2a+b )(2a ﹣b )=4a 2﹣b 2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【答案】B.【解析】根据合并同类项法则,A选项错误,应该为3a+2a=5a;根据平方差公式,B选项(2a+b)(2a﹣b)=4a2﹣b2,正确;根据同底数幂的乘法,C选项错误,应该为2a2•a3=2a5;根据完全平方公式展开式是三项,D选项错误,应该为(2a+b)2=4a2+4ab+b2.故选B.【考点】1.平方差公式;2.合并同类项;3.同底数幂的乘法;4.完全平方公式.4.如图,△ABC中,∠BAC=70°,将△ABC绕点C顺时针旋转一定角度,得到△DEC,点A的对应点为D,ED过点A,则旋转角的度数为().A.30°B.35°C.40°D.45°【答案】C.【解析】此题求出∠ACD的度数是解题的关键,根据旋转的性质和等腰三角形的性质得到AC=CD,∠D=∠BAC=∠DAC=70°,然后根据三角形的内角和即可算出.∵将△ABC绕点C顺时针旋转一定角度得到△DEC,∴AC=CD,∠D=∠BAC=∠DAC=70°,∴∠ACD=180°﹣∠D﹣∠CAD=180°﹣70°-70°=40°,故选C.【考点】旋转的性质.5.抛物线y=x2+2x+2﹣m与x轴有两个交点,则下列m的值符合题意的是().A.﹣2B.﹣1C.0D.2【答案】D.【解析】抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.∵抛物线y=x2+2x+2﹣m与x轴有两个交点,∴△=b2﹣4ac>0,即22﹣4×1×(2﹣m)>0,解得:m>1,所以D符合题意,故选D.【考点】抛物线与x轴的交点.6.如图,将一个正方形纸片(图1),切去四个角上同样大小的小正方形,翻折粘合成一个无盖的长方体(图2),若图1中原正方形纸片的边长为6,图2中长方体的长为a,高为b,则下列说法错误的是().A.a<6B.a+2b=6C.a=2时,图2为正方体D.长方体的所有棱长之和是个定值【答案】D.【解析】根据图形的剪拼,A选项原正方形纸片的边长为6,切去四个角上同样大小的小正方形,所以a<6,正确;B选项根据题意得出a+2b=6,正确;C选项当a=2时,b=2,所以图2为正方体,正确;D选项长方体的所有棱长之和不是定值,错误;故选D.【考点】图形的剪拼.二、填空题1.36的算术平方根是.【答案】6.【解析】根据算术平方根的定义,36的算术平方根是6.故答案为:6.【考点】算术平方根.2.今年4月份中国汽车工业协会公布的统计数据显示,第一季度全国乘用车共销售566.90万辆,将566.90万用科学记数法可表示为 . 【答案】5.669×106. 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.将566.90万用科学记数法可表示为5.669×106,故答案为:5.669×106.【考点】科学记数法—表示较大的数.3.已知一组数据2,4,x ,3,5,3,2的众数是2,则这组数据的中位数是 .【答案】3.【解析】根据众数和中位数的概念,∵数据2,4,x ,3,5,3,2的众数是2,∴x=2,则这组数据按照从小到大的顺序排列为:2,2,2,3,3,4,5,则中位数为3.故答案为:3.【考点】1.众数;2.中位数.4.如图,直线l 1∥l 2,两直线之间的距离为2,A ,B 是直线l 2上两点,AB=4,点P 直线l 1上一个动点,则∠APB 的最大值为 .【答案】90°.【解析】结合已知条件作图如下,“以线段AB 为直径作圆,圆与直线l 1交于点P ,在l 1上任找一点P′(与点P 不重合),连接AP′交圆于点C ,连接BC”,根据线段AB 为直径可得出∠APB=∠ACB=90°,再结合三角形外角的性质即可得出∠APB >∠AP′B ,由此即可得出结论.∵AB=4,直线l 1∥l 2,两直线之间的距离为2,∴以线段AB 为直径作圆,圆与直线l 1交于点P ,在l 1上任找一点P′(与点P 不重合),连接AP′交圆于点C ,连接BC ,如上图所示.∵线段AB 为直径,∴∠APB=∠ACB=90°,∵∠ACB=∠AP′B+∠CBP′,∴∠APB=∠ACB >∠AP′B .∴当点P 在线段AB 的垂直平分线上时,∠APB 最大,最大值为90°.故答案为:90°.【考点】1.平行线的性质;2.圆的有关性质.5.如图,矩形ABCD 内接于⊙O ,AB=2,AD=3,点P 是⊙O 上任一点,则sin ∠APB 的值为 .【答案】.【解析】连接BD ,先根据勾股定理求出BD 的长,再由锐角三角函数的定义得出sin ∠ADB 的度数,根据圆周角定理即可得出结论.如图,连接BD ,∵矩形ABCD 内接于⊙O ,AB=2,AD=3,∴BD===,∴sin ∠ADB===,∵同弧所对的圆周角相等,∴∠APB=∠ADB ,∴sin ∠APB= sin ∠ADB=.故答案为:. 【考点】1.圆周角定理;2.矩形的性质.6.一次函数y=kx+2的图象过点A (2,4),且与x 轴相交于点B ,若点P 是坐标轴上一点,∠APB=90°,则点P 的坐标为 .【答案】(2,0),(0,2+2),(0,2﹣2)【解析】根据已知条件,由于y=kx+2的图象过点A(2,4),将点A代入一次函数可得函数解析式;该函数式与x轴交于点B,设B(x,0),再将其代入函数解析式,求得B点坐标;P点在坐标轴上有两种可能,P点在x轴上或P点在y轴上,根据勾股定理可求出P点坐标.∵一次函数y=kx+2的图象过点A(2,4),∴4=2k+2,∴k=1,∴一次函数解析式为y=x+2,∵一次函数y=x+2与x轴交于B,∴0=x+2,∴x=﹣2,∴B点坐标为(﹣2,0);P在坐标轴上分两种情况讨论:① p在x轴上,设点P为(x,0)如图一∵∠APB=90°,∴AP⊥x轴,∴x=2,点P坐标为(2,0);②若P在y轴上,设P(0,y),如图二、图三∵∠APB=90°,∴PB2+PA2=AB2,∵PB2=(﹣2)2+y2,PA2=22+(y﹣4)2,AB2=42+42,∴(﹣2)2+y2+22+(y ﹣4)2=42+42,解得:y=2±2,P点坐标为(0,2+2),(0,2﹣2).综上所述点P的坐标为(2,0),(0,2+2),(0,2﹣2).【考点】一次函数图象上点的坐标特征.三、计算题(1)计算:()﹣1﹣﹣()0+|﹣1|(2)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.【答案】(1)﹣;(2)﹣6.【解析】(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.试题解析:(1)利用零指数幂、负整数指数幂法则,二次根式性质,以及绝对值的代数意义化简,原式=﹣2﹣1+1=﹣;(2)利用平方差公式,完全平方公式化简,去括号合并得到最简结果,原式=x2﹣4﹣x2+2x﹣1=2x﹣5,当x=﹣时,原式=﹣1﹣5=﹣6.【考点】1.整式的化简求值;2.实数的运算;3零指数幂;4.负整数指数幂.四、解答题1.如图,△AOB 和△COD 均为等腰直角三角形,∠AOB=∠COD=90°,点D 在AB 上,连接AC ,求证:△AOC ≌△BOD .【答案】证明参见解析.【解析】根据等腰直角三角形得出OA=OB ,OC=OD ,∠AOC=∠BOD ,根据SAS 推出全等即可.试题解析:∵△AOB 和△COD 均为等腰直角三角形,∠AOB=∠COD=90°,∴OA=OB ,OC=OD ,∠AOC=∠BOD=90°﹣∠AOD ,在△AOC 和△BOD 中,,∴△AOC ≌△BOD (SAS ).【考点】1.全等三角形的判定;2.等腰三角形.2.求不等式组的解集,并判断x=是否为该不等式组的一个解. 【答案】1≤x <3,是.【解析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,判断x=是否在该解集内即可.试题解析:解不等式x ﹣1≥1﹣x ,得:x≥1,解不等式x+8>4x ﹣1,得:x <3,∴不等式组的解集为:1≤x <3,∵<<,∴1<x=<3,∴x=是该不等式组的一个解.【考点】1.解一元一次不等式组;2.求不等式的解集.3.如图,反比例函数y=的图象过点A (1,3),请根据下列条件试用无刻度的直尺分别在图1和图2中按要求画图.(1)在图1中取一点B ,使其坐标为(﹣1,﹣3);(2)在图2中,在(1)中画图的基础上,画一个平行四边形ACBD .【答案】作图参见解析.【解析】(1)作直线OA 交反比例函数图象于另一点B ,则点B 与点A 关于原点对称,所以B (﹣1,﹣3);(2)在反比例函数图象上任取一点C ,作直线OC 交反比例函数图象于点D ,则OA=OB 、OC=OD ,所以四边形ACBD 为平行四边形.试题解析:(1)如图1,作直线OA 交反比例函数图象于另一点B ,则点B 与点A 关于原点对称,点B 即为(﹣1,﹣3);(2)如上图2,在反比例函数图象上任取一点C ,作直线OC 交反比例函数图象于点D ,则OA=OB 、OC=OD ,根据对角线互相平分的四边形是平行四边形,可判断四边形ACBD 为所求.【考点】1.复杂作图;2.反比例函数的性质,3.平行四边形的判定.4.已知x 1,x 2是方程x 2﹣2x+a=0的两个实数根,且x 1+2x 2=﹣1,求x 1,x 2和a 的值.【答案】x 1=5,x 2=﹣3,a=﹣15.【解析】根据根与系数关系得到x 1+x 2=2,x 1x 2=a ,再将x 1+2x 2=﹣1左边式子变形,求出x 2的值,然后进一步求出x 1和a 的值.试题解析:根据题意得x 1+x 2=2,x 1x 2=a ,而x 1+2x 2=﹣1,即x 1+x 2+ x 2=﹣1,因为x 1+x 2=2,所以x 2=﹣3,进一步求出x 1=5,所以a=5×(﹣3)=﹣15.故答案为x 1=5,x 2=﹣3,a=﹣15.【考点】根与系数的关系.5.某艺术剧院门票价格如表所示:某团体准备了700元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.门票价格一览表(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中选中一种总票张数最少的情况,将所购的票的票面朝下随意叠放在一起,随机抽两张,求正好抽出一张指定日普通票和一张平日优惠票的概率.【答案】(1)3种;(2).【解析】(1)设购买指定日普通票x 张,平日优惠票y 张,根据题意列方程200x+100y=700,即2x+y=7,然后讨论二元一次方程的正整数解即可;(2)总票张数最少的情况为购买指定日普通票3张,平日优惠票1张,用A 表示普通票,用B 表示优惠票,画树状图展示所有12种等可能的结果数,再找出正好抽出一张指定日普通票和一张平日优惠票的结果数,然后根据概率公式求解.试题解析:(1)设购买指定日普通票x 张,平日优惠票y 张,根据题意得200x+100y=700,即2x+y=7,而x 、y 都为正整数,所以当x=1时,y=5;x=2时,y=3;x=3,y=1,所以有3种购票方案:购买指定日普通票1张,平日优惠票5张;购买指定日普通票2张,平日优惠票3张;购买指定日普通票3张,平日优惠票1张;(2)总票张数最少的情况为购买指定日普通票3张,平日优惠票1张,用A 表示普通票,用B 表示优惠票,画树状图为:共有12种等可能的结果数,其中正好抽出一张指定日普通票和一张平日优惠票的结果数为6,所以正好抽出一张指定日普通票和一张平日优惠票的概率==.【考点】列表法与树状图法求随机事件的概率.6.如图1所示旅行箱的箱盖和箱底两部分的厚度相同,图1中四边形ABCD 形如矩形的旅行箱一侧的示意图,F 为AD 的中点,EF ∥CD ,现将放置在地面上的箱子打开,使箱盖的一端靠在墙上点D 处,O 为墙角,图2为箱子打开后的示意图,若箱子厚度AD=30cm ,宽度AB=50cm .(1)图2中,EC= cm ,当点D 与点O 重合时,AO 的长为 cm .(2)若∠CDO=60°,求AO 的长(结果取整数值)(参考数据:sin60°=0.87,cos60°=0.5,tan60°=≈1.73,可使用科学计算器)【答案】(1)15,100;(2)101cm .【解析】(1)根据EC=BC=AD ,AO=AB+CD=2AB 即可解决问题;(2)过点C 作OA 的平行线,分别交BE 和OD 于H ,G ,根据∠CDO=60°,分别求出CG 、HC ,求出HG 的长,就求出了BO 的长,从而求出了AO 的长.试题解析:(1)∵EF ∥AB ∥CD ,DF=AF ,∴EC=EB=BC=AD=15cm ,当点D 与点O 重合时,∵AB=B0=50,∴AO=50+50=100cm .故答案为15,100;(2)过点C 作OA 的平行线,如图:分别交BE和OD于H,G.∵EB⊥OA,OD⊥OA,∴HG=HC+CG=OB,∵∠ECD=90°,∠CDO=60°,∴∠DCG=30°,∠ECH=60°,∵CD=50cm,EC=15cm,∴HC=EC=7.5cm,CG=CD•sin60°=50×0.87≈43.5cm,∴AO=AB+OB=AB+HC+CG=50+7.5+43.5=101cm.【考点】解直角三角形的应用.7.某校九年级(1)班数学学习小组对某次测试“满分值为6分的一道解答题的得分”情况进行了统计,绘制成下表(学生得分均为整数):已知全班同学此题的平均得分为4分,结合表格解决下列问题:(1)完成表格,并求该班学生总数;(2)根据表中提供的数据,补全条形统计图;若将“该班同学本道题的得分情况”绘制成扇形统计图,求“此题得0分”的人数所对应的圆心角的度数.(3)若本年级学生共有540人,请你估计整个年级中此题得满分的学生人数.【答案】(1)45人;(2)补图参见解析,24°;(3)132人.【解析】(1)设该班得6分的学生为x人,然后根据“全班同学此题的平均得分为4分”列出方程求解即可;(2)由(1)中x的值可补全条形图,用“此题得0分”的人数占总人数比例乘以360°可得;(3)利用本班中得满分的学生占全班学生的比例即可求出整个年级有多少同学此题得满分.试题解析:(1)设该班得6分的学生为x人,则根据题意得:1×1+2×5+3×7+4×8+5×10+6x=(3+1+5+7+8+10+x)×4,化简得:114+6x=136+4x,解得:x=11,所以该班共有:3+1+5+7+8+10+11=45(人);(2)根据该班得6分的有11人,补全条形统计图如下:由统计表可知,得0分的有3人,所以“此题得0分”的人数所对应的圆心角的度数为:×360°=24°;(3)该班得满分所占的比例是,所以×540=132(人),估计整个年级中此题得满分的学生人数为132人.【考点】1.条形统计图;2.用样本估计总体;3.扇形统计图.8.如图,▱ABCD的顶点A、C、D都在⊙O上,AB与⊙O相切于点A,BC与⊙O交于点E,设∠OCD=α,∠BAD=β.(1)求证:AB=AE;(2)试探究α与β之间的数量关系.【答案】(1)证明参见解析;(2)β=135°﹣α.【解析】(1)连接DE,先证明∠CED=∠ADE ,推出弧AE=弧CD ,进一步推出AE=CD ,因为AB=CD,由此即可证明;(2)延长AO 交CD 于F ,由β=90°+∠OAD ,∠OAD=∠FOD ,∠FOD=∠FOC=90°﹣α,由此即可解决问题.试题解析:(1)连接DE .先证明∠CED=∠ADE ,∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB=CD ,∴∠CED=∠ADE ,∴弧AE=弧CD ,∴AE=CD ,∵AB=CD,∴AB=AE ;(2)延长AO 交CD 于F ,∵AB 是⊙O 切线,∴AB ⊥AF ,∵AB ∥CD ,∴AF ⊥CD ,∵OC=OD ,∴∠OCD=∠ODC ,∴∠COF=∠DOF=90°﹣α,∵∠OAD=∠ODA ,∴(90°﹣α),∴β=∠BAF+∠OAD=90°+∠OAD=90°+(90°﹣α)=135°﹣α.故α与β之间的数量关系为β=135°﹣α.【考点】1.切线的性质;2.平行四边形的性质;3.圆周角定理.9.如图1,已知在矩形ABCD 中,AB=2,BC=3,P 是线段AD 边上的一动点(不与端点A 、D 重合),连结PC ,过点P 作PE ⊥PC 交AB 于点E ,在P 点运动过程中,图中各角和线段之间是否存在的某种关系和规律? 特例求解当E 为AB 的中点,且AP >AE 时,求证:PE=PC .深入探究当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求整个运动过程中BE 的取值范围.【答案】(1)证明参见解析;(2)≤BE <2.【解析】(1)特例求解:当E 为AB 的中点,设AP=x ,证明△APE ∽△DCP ,根据相似三角形的性质得到比例式,解一元二次方程求出x 的值,再证明△APE ≌△DCP 即可;(2)深入探究:设AP=x ,AE=y ,证明△APE ∽△DCP ,根据相似三角形的性质得到比例式,计算出x 值,建立y 与x 的二次函数关系,讨论最值问题即可.试题解析:(1)特例求解,∵PE ⊥PC ,∴∠APE+∠DPC=90°,∵∠D=90°,∴∠DCP+∠DPC=90°,∴∠APE=∠DCP ,又∠A=∠D=90°,∴△APE ∽△DCP ,∴,设AP=x ,则DP=3﹣x ,又当E 为AB 的中点,即AE=BE=1,∴x (3﹣x )=1×2,整理得x 2﹣3x+2=0,解得,x 1=2,x 2=1,∵AP >AE ,∴AP=CD=2,AE=PD=1,∴△APE ≌△DCP ,∴PE=PC ;(2)深入探究,设AP=x ,AE=y ,∵△APE ∽△DCP ,∴,即x (3﹣x )=2y ,∴y=x (3﹣x )=﹣x 2+x=﹣(x ﹣)2+,∴当x=时,y 的最大值为,∵AE=y 取最大值时,BE 取最小值为2﹣=,∴BE 的取值范围为≤BE <2.【考点】1.四边形综合题;2.三角形相似的判定与性质;2.三角形全等的判定与性质.10.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两抛物线L 1、L 2互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)在图1中,抛物线:L 1:y=﹣x 2+4x ﹣3与L 2:y=a (x ﹣4)2﹣3互为“伴随抛物线”,则点A 的坐标为 ,a 的值为 ;(2)在图2中,已知抛物线L 3:y=2x 2﹣8x+4,它的“伴随抛物线”为L 4,若L 3与y 轴交于点C ,点C 关于L 3的对称轴对称的对称点为D ,请求出以点D 为顶点的L 4的解析式;(3)若抛物线y=a 1(x ﹣m )2+n 的任意一条“伴随抛物线”的解析式为y=a 2(x ﹣h )2+k ,请写出a 1与a 2的关系式,并说明理由.【答案】(1)A (2,1),a 为1;(2)y=﹣2(x ﹣4)2+4;(3)a 1=﹣a 2,理由参见解析.【解析】(1)根据点A 是抛物线L 1的顶点,可得点A 的坐标,再把点A 坐标代入抛物线L 2中求得a 的值;(2)由L 3解析式可知点C 坐标,进而知道点C 关于对称轴的对称点D 的坐标,设L 4解析式:y=a (x ﹣h )2+k ,将顶点D 的坐标及L 3顶点坐标代入,求出系数a ,得到以点D 为顶点的L 3的“伴随抛物线”L 4的解析式,于是求出L 4的解析式;(3)根据抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得:(a 1+a 2)(m ﹣h )2=0,可得a 1=﹣a 2.试题解析:(1)∵点A 是抛物线L 1的顶点,抛物线L 1:y=﹣x 2+4x ﹣3=-(x-2)2+1,∴此抛物线的顶点坐标为A (2,1),∵抛物线L 2过点A (2,1),∴把点A 坐标代入抛物线L 2中,1=a (2﹣4)2﹣3,∴a=1,故答案为A (2,1),a=1;(2)由L 3解析式:y=2x 2﹣8x+4化成顶点式,得y=2(x ﹣2)2﹣4,∵L 3与y 轴交于点C ,∴C (0,4),对称轴为直线x=2,顶点坐标(2,﹣4).∴点C 关于对称轴x=2的对称点D (4,4),设L 4:y=a (x ﹣h )2+k ,将顶点D (4,4)代入得,y=a (x ﹣4)2+4,再将点(2,﹣4)代入得,﹣4=4a+4,解得:a=﹣2,所以L 3的伴随抛物线L 4的解析式为:y=﹣2(x ﹣4)2+4;(3)a 1=﹣a 2,理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,∴可以列出两个方程,①+②得:(a 1+a 2)(m ﹣h )2=0,∵伴随抛物线的顶点不重合,∴a 1=﹣a 2【考点】1.二次函数综合题;2.阅读理解题.。

江西初三初中数学同步测试带答案解析

江西初三初中数学同步测试带答案解析

江西初三初中数学同步测试班级:___________ 姓名:___________ 分数:___________一、单选题1.下面结论正确的有()① 0是最小的整数;②在数轴上7与9之间的有理数只有8;③若a+b=0,则a、b互为相反数;④有理数相减,差不一定小于被减数;⑤ 1是绝对值最小的正数;⑥有理数分为正有理数和负有理数.A.1个B.2个C.3个D.4个2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( )A.2.3×109B.0.23×109C.2.3×108D.23×1073.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°4.如图,在一密闭的圆柱形玻璃杯中装有一半的水,当玻璃杯水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形5.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A. 平均数B. 众数C. 方差D. 中位数6.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 L B.25 L C.27L D.30 L二、填空题1.分解因式:a 3﹣4ab 2=2.关于x 的方程的解为2,则k 的值为_____.3.若关于x 的方程2x+m-3(m-1)=1+x 的解为负数,则m 的范围是_________4.已知实数m 、n 满足m 2=2﹣2m ,n 2=2﹣2n ,则=________.5.三角形的每条边的长都是方程x 2﹣6x+8=0的根,则三角形的周长是6.如图,在平行四边形ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于点M 、N. 给出下列结论:①△ABM ≌△CDN ;②AM=AC ;③DN=2NF ;④S △AMB =S △ABC .其中正确的结论是_______________(只填番号)7.如图,已知点A (0,1),B (0,-1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC 等于 度.8.如图,在Rt △ABC 中.∠A=90°.AB=AC ,BC=20,DE 是△ABC 的中位线.点M 是边BC 上一点.BM=3.点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是_____.三、解答题1.计算:sin60°+|﹣5|﹣ (4015﹣π)0+(﹣1)2017+()﹣1.2.先化简,再求值:,其中.3.如图,已知A (﹣3,﹣3),B (﹣2,﹣1),C (﹣1,﹣2)是直角坐标平面上三点. (1)请画出△ABC 关于原点O 对称的△A 1B 1C 1;(2)请写出点B 关于y 轴对称的点B 2的坐标,若将点B 2向上平移h 个单位,使其落在△A 1B 1C 1内部,指出h 的取值范围.4.如图,在四边形ABCD 中,AB=CD ,M 、N 、P 分别是AD 、BC 、BD 的中点,∠ABD=20°,∠BDC=70°,求∠PMN 的度数.5.居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A .非常赞同;B .赞同但要有时间限制;C .无所谓;D .不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题: (1)求本次被抽查的居民有多少人? (2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A 层次和B 层次)的大约有多少人.6.(1)如图1,在Rt △ABC 中,∠ABC =90°,以点B 为中心,把△ABC 逆时针旋转90°,得到△A 1BC 1;再以点C 为中心,把△ABC 顺时针旋转90°,得到△A 2B 1C ,连接C 1B 1,则C 1B 1与BC 的位置关系为_______;(2)如图2,当△ABC 是锐角三角形,∠ABC =α(α≠60°)时,将△ABC 按照(1)中的方式旋转α,连接C 1B 1,探究C 1B 1与BC 的位置关系,写出你的探究结论,并加以证明; (3)如图3,在图2的基础上,连接B 1B ,若C 1B 1=BC ,△C 1BB 1的面积为4,则△B 1BC 的面积为 .7.某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y (万个)与销售价格(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y 与x 的函数关系式;(2)求出该厂生产销售这种产品的纯利润w (万元)与销售价格x (元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?8.如图,已知AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F,交⊙O 于点E,AE 与BC 交于点H,点D 为OE 的延长线上一点,且∠ODB=∠AEC . (1)求证:BD 是⊙O 的切线; (2)求证:CE 2=EH·EA ;(3)若⊙O 的半径为5,sinA=,求BH 的长.9.如图,已知一条直线过点(0,4),且与抛物线y=0.25x 2交于A ,B 两点,其中点A 的横坐标是-2. (1)求这条直线的函数关系式及点B 的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3)过线段AB上一点P,作PM //x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?江西初三初中数学同步测试答案及解析一、单选题1.下面结论正确的有()① 0是最小的整数;②在数轴上7与9之间的有理数只有8;③若a+b=0,则a、b互为相反数;④有理数相减,差不一定小于被减数;⑤ 1是绝对值最小的正数;⑥有理数分为正有理数和负有理数.A.1个B.2个C.3个D.4个【答案】B【解析】① 0不是最小的整数,还有负整数;②在数轴上7与9之间的有理数有无数多个;③若a+b=0,则a、b互为相反数;正确;④有理数相减,差不一定小于被减数;正确;⑤ 1是绝对值最小的正整数;⑥有理数分为正有理数、负有理数和0.故选B.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( )A.2.3×109B.0.23×109C.2.3×108D.23×107【答案】C【解析】230000000=2.3×108 ,故选C.3.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°【答案】B【解析】∵AE∥BD,∴∠CBD=∠1=120°,∵∠BDC=∠2=40°,∠C+∠CBD+∠CDB=180°,∴∠C=20°.故选B.4.如图,在一密闭的圆柱形玻璃杯中装有一半的水,当玻璃杯水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形【答案】B【解析】分析:此题实质是垂直圆柱底面的截面形状;解:水面的形状就是垂直圆柱底面的截面的形状,即为长方形;故选B。

江西初三初中数学同步测试带答案解析

江西初三初中数学同步测试带答案解析

江西初三初中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,AC=4,tan A=,则BC等于()A.B.C.D.53.如图,CD是Rt△ABC斜边上的高,若AB=5,AC=3,则tan∠BCD=()A.B.C.D.4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°5.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.米2D.米26.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.30海里B.30海里C.60海里D.30海里7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早期,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考数据:≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米二、单选题如图,沿AC方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A. 500sin55°米B. 500cos35°米C. 500cos55°米D. 500tan55°米三、填空题1.如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为________.2.在Rt△ABC中,∠C=90°,AB=4,BC=2,则sin= .3.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为.4.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD 为1m,则旗杆高BC为__m(结果保留根号).5.B在A的北偏东30°方向(距A)2千米处,C在B的正东方向(距B)2千米处,则C和A之间的距离为________千米.6.BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD的长为________________.四、解答题1.如图,在Rt△ABC中,已知∠C=90°,sin B=,AC=8,D为线段BC上一点,CD=2.(1)求BD的值;(2)求cos∠DAC的值.2.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?3.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.4.如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).江西初三初中数学同步测试答案及解析一、选择题1.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A等于()A.B.C.D.【答案】D【解析】根据题意画出示意图.∵a=2,b=3,即BC=2,AC=3,∴在Rt△ABC中,,即c=,∴.故本题应选D.2.在Rt△ABC中,∠C=90°,AC=4,tan A=,则BC等于()A.B.C.D.5【答案】B【解析】根据题意画出示意图.∵,∴在Rt△ABC中,,∵AC=4,∴,故本题应选B.3.如图,CD是Rt△ABC斜边上的高,若AB=5,AC=3,则tan∠BCD=()A.B.C.D.【答案】A【解析】∵在Rt△CDB中,∠BCD+∠CBD=90°,即∠BCD+∠CBA=90°,又∵在Rt△ABC中,∠BAC+∠CBA=90°,∴∠BCD=∠BAC,∴tan∠BCD=tan∠BAC,∵在Rt△ABC中,,∴在Rt△ABC中,,∴.故本题应选A.4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°【答案】C【解析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.【考点】解直角三角形的应用.5.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.米2D.米2【答案】D.【解析】在Rt△ABC中,BC=AC×tan∠CAB=4tanq,∴所需地毯的长度为AC+BC=4+4tanq(米).面积为:(4+4tanq)×1=4+4tanq(米2).故此题应选D.【考点】解直角三角形的应用.6.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.30海里B.30海里C.60海里D.30海里【答案】A【解析】过点P作PC⊥AB于点C.在Rt△PAC中,∵PA=60海里,∠PAC=30°,∴CP=AP=30海里.在Rt△PBC中,∵PC=30海里,∠PBC=∠BPC=45°,∴PB=PC=30海里.即海轮所在的B处与灯塔P的距离为30海里.【考点】解直角三角形的应用-方向角问题7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早期,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考数据:≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米【答案】A【解析】由题意知,BC="10" (米),BD=25(米).∵在Rt△ABC中,,在Rt△ABD中,,又∵,∴,∴ (米),即铁塔的高度约为15.81米.故本题应选A.点睛:本题考查了解直角三角形的应用. 解决仰角与俯角相关问题的关键在于熟练应用与解直角三角形相关的典型图形以及解法. 本题中出现的“双直角三角形”是解直角三角形应用的典型图形之一,应该重点理解和掌握该图形中的几何关系以及相应的解法.二、单选题如图,沿AC方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A. 500sin55°米B. 500cos35°米C. 500cos55°米D. 500tan55°米【答案】C【解析】试题解析:∵∠ABD=145°,∴∠EBD=35°,∵∠D=55°,∴∠E=90°,在Rt△BED中,BD=500米,∠D=55°,∴ED=500cos55°米,故选C三、填空题1.如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为________.【答案】4【解析】∵cosB=,即cos30°=,∴AB===4.故答案为:4.2.在Rt△ABC中,∠C=90°,AB=4,BC=2,则sin= .【答案】【解析】根据在Rt△ABC中,∠C=90°,AB=4,BC=2,可以求得∠A正弦值,从而可以求得∠A=60°,进而可求得sin=sin30°=.【考点】特殊角的三角函数值3.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为.【答案】6【解析】根据斜面坡度为1:2,斜坡AB的水平宽度为12米,可得AC=12m,BC=6m,然后利用勾股定理求出AB的长度.解:∵斜面坡度为1:2,AC=12m,∴BC=6m,则AB===(m).故答案为:6m.【考点】解直角三角形的应用-坡度坡角问题.4.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD 为1m,则旗杆高BC为__m(结果保留根号).【答案】10+1.【解析】如图,由题意可得AE=DC=10m,AD=CE=1m,在Rt△AEC中,tan∠BAE=,即,解得BE=10m,所以BC=BE+CE=(10+1)m.【考点】解直角三角形的应用.5.B在A的北偏东30°方向(距A)2千米处,C在B的正东方向(距B)2千米处,则C和A之间的距离为________千米.【答案】2【解析】根据题意画出示意图.过点B作BD⊥AC,垂足为D.由图可知,∠NAB=30°,AB=BC=2(千米),∴△ABC为等腰三角形,根据各方向之间的几何关系可知,NA∥BS,∴∠ABS=∠NAB=30°,∵∠CBS=90°,∴∠ABC=∠ABS+∠CBS=30°+90°=120°,∴在等腰三角形ABC中,∠BCA=30°,即∠BCD=30°,∴在Rt△BCD中, (千米),∵△ABC为等腰三角形,BD⊥AC,∴ (千米),即C和A之间的距离为千米.故本题应填写:.点睛:解决这种类型的应用问题时,应该利用相关几何关系将题目中给出的各个角度转化为相应三角形内角的角度值. 重点应该关注三角形中出现的特殊角度并利用这些角构造直角三角形. 另外,由于本题没有提供相应的示意图,所以应该根据题意画出示意图以便分析条件之间的关系.6.BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD的长为________________.【答案】或【解析】图(1) BD=1,tan∠ABD=图(2),图(3), BD=1,tan∠ABD=又综上述,四、解答题1.如图,在Rt△ABC中,已知∠C=90°,sin B=,AC=8,D为线段BC上一点,CD=2.(1)求BD的值;(2)求cos∠DAC的值.【答案】(1)BD="4;" (2)【解析】(1) 由于已知线段CD的长,所以只要求得线段BC的长就容易得到线段BD的长. 已知的值以及线段AC的长,利用锐角三角函数的定义不难在Rt△ABC中得到线段AB的长,进而通过勾股定理求得线段BC的长.(2) 在Rt△ACD中,由于已知线段AC与CD的长,所以可以通过勾股定理得到线段AD的长. 通过锐角三角函数的定义,可以在Rt△ACD中求得的值.试题解析:(1) ∵在Rt△ABC中,,又∵AC=8,∴,∴AB=10,∴在Rt△ABC中,,∵CD=2,∴BD=BC-CD=6-2=4.(2) ∵AC=8,CD=2,∴在Rt△ACD中,,∴在Rt△ACD中,.点睛:本题考查了锐角三角函数与勾股定理的综合应用. 解决本题的关键在于能够在一个直角三角形中准确地利用锐角三角函数的定义写出相应边的比值. 另外,在解直角三角形的相关应用中,锐角三角函数常常与勾股定理综合应用,应该予以重视.2.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?【答案】7.3.【解析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.试题解析:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,在Rt△APC中,∵cos∠APC=,∴PC=20cos60°=10,∴AC==,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=﹣10≈7.3(海里).答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.【考点】解直角三角形的应用-方向角问题.3.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【答案】.【解析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.试题解析:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM==60米,DN==米,∴AB=CD+DN﹣CM==()米,即A、B两点的距离是()米.【考点】解直角三角形的应用;探究型.4.如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【答案】.【解析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.试题解析:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=,在RT△ABM中,tan∠ABM=,∴AM=,∴AC=AM+CM=.【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.。

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、填空题1.一次体检中,某班学生视力情况如下表:从表中看出全班视力情况的众数是_____________2.计算:=__________.3.已知不等式组的解集中共有5个整数,则a的取值范围为____________.4.如图,在半圆AOB中,半径OA=2,C、D两点在半圆上,若四边形OACD为菱形,则图中阴影部分的面积是_________.5.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为_________.二、单选题1.的倒数是()A.B.C.D.2.据统计去年来国内旅游人数达到9.98亿人次,用科学记数法表示9.98亿为()A.B.C.D.3.下面立体图形的左视图为()A.B.C.D.4.某服装专卖店销售的A款品牌西服去年销售总额为50000元,今年该款西服每件售价比去年便宜400元,若售出的件数相同,则该款西服销售总额将比去年降低20%,求今年该款西服的每件售价.若设今年该款西服的每件售价为x元,那么可列方程为()A.B.C.D.5.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则下列说法中正确的是()A.DF平分∠ADC B.AF=3CF C.BE=8D.DA=DB6.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.三、解答题1.以线段AC为对角线的凸四边形ABCD(它的四个顶点A、B、C、D按顺时针方向排列,每个内角均小于180°),已知AB=BC=CD,∠ABC=120°,∠CAD=30°,则∠BCD的大小为____________.2.(1)解方程组;(2)如图,点D在射线AE上,AB∥CD,∠CDE=140°,求∠A的度数.3.已知,求的值.4.如图,AD是△ABC的中线,,,.求:(1)BC的长;(2)sin∠ADC的值.5.已知矩形ABCD的顶点A、D在圆上,B、C两点在圆内,请仅用没有刻度的直尺作图.(1)如图1,已知圆心O,请作出直线l⊥AD;(2)如图2,未知圆心O,请作出直线l⊥AD.6.先阅读下面某校八年级师生的对话内容,再解答问题.(温馨提示:一周只上五天课,另外考试时每半天考一科)小明:“听说下周会进行连续两天的期中考试.”刘老师:“是的,要考语文、数学、英语、物理共四科,但具体星期几不清楚.”小宇:“我估计是星期四、星期五.”(1)求小宇猜对的概率;(2)若考试已定在星期四、星期五进行,但各科考试顺序没定,请用恰当的方法求同一天考语文、数学的概率.7.某校为了了解初中各年级学生每天的平均睡眠时间(单位:h,精确到1 h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数的值为_______,所抽查的学生人数为______;(2)求出平均睡眠时间为8小时的人数,并补全条形图;(3)求出这部分学生的平均睡眠时间的平均数;(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.8.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道(通道面积不超过总面积的),其余部分铺上草皮.(1)如图1,若设计两条通道,一条横向,一条纵向,4块草坪为全等的长方形,每块草坪的两边之比为3:4,并且纵向通道的宽度是横向通道宽度的2倍,问横向通道的宽是多少?(2)如图2,为设计得更美观,其中草坪①②③④为全等的正方形,草坪⑤⑥为全等的长方形(两边长BN:BM=2:3),通道宽度都相等,问:此时通道的宽度又是多少呢?9.如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数经过菱形对角线的交点D,且与边BC交于点E,请求出点E的坐标.10.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=,∠F=,且≠.请你用含有、的代数式表示∠A的大小.11.如图,抛物线与x轴交于点A,顶点为点P.(1)直接写出抛物线的对称轴是_______,用含a的代数式表示顶点P的坐标_______;(2)把抛物线绕点M(m,0)旋转得到抛物线(其中m>0),抛物线与x轴右侧的交点为点B,顶点为点Q.①当m=1时,求线段AB的长;②在①的条件下,是否存在△ABP为等腰三角形,若存在请求出a的值,若不存在,请说明理由;③当四边形APBQ为矩形时,请求出m与a之间的数量关系,并直接写出当a=3时矩形APBQ的面积.12.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B =∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是;设△BDC的面积为,△AEC的面积为,则与的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中与的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高DM和AN,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使,请求出相应的BF的长.江西初三初中数学中考模拟答案及解析一、填空题1.一次体检中,某班学生视力情况如下表:从表中看出全班视力情况的众数是_____________【答案】1.0【解析】众数是一组数据中出现次数最多的数据,1.0占全班人数的40%,故1.0是众数.点睛:本题考查的是众数的概念,众数是一组数据中出现次数最多的数据,注意众数可以不只一个.2.计算:=__________.【答案】34°30′【解析】=3.已知不等式组的解集中共有5个整数,则a的取值范围为____________.【答案】7<a≤8【解析】∵不等式组的解集中共有5个整数,∴7<a≤8.4.如图,在半圆AOB中,半径OA=2,C、D两点在半圆上,若四边形OACD为菱形,则图中阴影部分的面积是_________.【答案】【解析】作OE⊥AB于点E.∵四边形OACD为菱形,∴OA=OD=CD=AC=2.∵OE⊥AB,∴DE=2÷2=1..5.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为_________.【答案】2【解析】如图所示,连接BE,交CD于点F。

江西初三初中数学同步测试带答案解析

江西初三初中数学同步测试带答案解析

江西初三初中数学同步测试班级:___________ 姓名:___________ 分数:___________一、解答题1.如图①所示的旅行箱的箱盖和箱底两部分的厚度相同,四边形ABCD为形如矩形的旅行箱一侧的示意图,F为AD的中点,EF∥CD.现将放置在地面上的箱子打开,使箱盖的一端点D靠在墙上,O为墙角,图②为箱子打开后的示意图.箱子厚度AD=30cm,宽度AB=50cm.(1)图②中,EC=________cm,当点D与点O重合时,AO的长为________cm;(2)若∠CDO=60°,求AO的长(结果取整数值,参考数据:sin60°≈0.87,cos60°=0.5,tan60°≈1.73,可使用科学计算器).2.如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).3.探索发现(1)数学课上,老师出了一道题:如图①,在Rt△ABC中,∠C=90°,∠A=22.5°,请你在图①中,构造一个合适的等腰直角三角形,并求出tan22.5°的值(结果可带根号);学以致用(2)如图②,厂房屋顶人字架(AB=BD)的跨度为10米(即AD=10米),∠A=22.5°,BC是中柱(C为AD的中点),请运用(1)中的结论求中柱BC的长(结果可带根号).江西初三初中数学同步测试答案及解析一、解答题1.如图①所示的旅行箱的箱盖和箱底两部分的厚度相同,四边形ABCD为形如矩形的旅行箱一侧的示意图,F为AD的中点,EF∥CD.现将放置在地面上的箱子打开,使箱盖的一端点D靠在墙上,O为墙角,图②为箱子打开后的示意图.箱子厚度AD=30cm,宽度AB=50cm.(1)图②中,EC=________cm,当点D与点O重合时,AO的长为________cm;(2)若∠CDO=60°,求AO的长(结果取整数值,参考数据:sin60°≈0.87,cos60°=0.5,tan60°≈1.73,可使用科学计算器).【答案】(1)15,100(2)101cm【解析】试题分析:(1)根据EC=BC=AD,AO=AB+CD=2AB即可解决问题.(2)过点C作OA的平行线,分别交BE和OD于H,G,根据∠CDO=60°,分别求出CG、HC,即可解决问题.试题解析:(1)根据图①,EF∥AB∥CD,F为AD的中点,∴DF=AF,∴EC=EB=BC=AD=15cm.根据图②,当点D与点O重合时,BO=CD.∵CD=AB=50cm,∴AO=AB+BO=AB+CD=50+50=100(cm).故答案为15,100.(2)过点C作OA的平行线,分别交BE和OD于H,G.∵EB⊥OA,OD⊥OA,又∵∠O=90°,∴四边形BOGH是矩形.∴BO=HG=HC+CG.∵∠CGD=∠ECD=90°,∠CDO=60°,∴∠DCG=90°-∠CDG=30°,∴∠ECH=180°-∠ECD-∠DCG=180°-90°-30°=60°.在Rt△CDG和Rt△ECH中,CD=50cm,EC=15cm,∴HC=EC·cos∠ECH=7.5cm,CG=CD·sin∠CDG≈50×0.87=43.5(cm),∴AO=AB+BO=AB+HC+CG≈101cm.点睛:本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线解决问题,通过添加辅助线构造直角三角形以及特殊四边形,属于中考常考题型.2.如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).【答案】(1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【解析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.试题解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.【考点】解直角三角形的应用;探究型.3.探索发现(1)数学课上,老师出了一道题:如图①,在Rt△ABC中,∠C=90°,∠A=22.5°,请你在图①中,构造一个合适的等腰直角三角形,并求出tan22.5°的值(结果可带根号);学以致用(2)如图②,厂房屋顶人字架(AB=BD)的跨度为10米(即AD=10米),∠A=22.5°,BC是中柱(C为AD的中点),请运用(1)中的结论求中柱BC的长(结果可带根号).【答案】(1)-1(2)中柱BC的长为(5-5)米【解析】试题分析:(1)在AC上截取CE=BC=x,结合等腰直角三角形的性质以及利益锐角三角函数关系得出答案;(2)利用(1)中所求,由tan22.5°=−1=,进而得出BC的长.试题解析:(1)设BC=x,在AC 上截取CE=BC=x,连接BE.∵∠C=90°,∴∠BEC=45°.∵∠A=22.5°,∴∠ABE=22.5°,∴AE=BE=x,∴AC=x+x,∴tan22.5°==-1.(2)∵AB=BD,∴△ABD为等腰三角形.∵C为AD的中点,∴AC=CD=5米,BC⊥AD.在Rt△ABC中,BC=AC·tan22.5°=(5-5)米.答:中柱BC的长为(5-5)米.点睛:此题主要考查了解直角三角形的应用,正确正确做出辅助线是解题关键.。

【初三数学】南昌市九年级数学上(人教版)第21章一元二次方程测试题及答案

【初三数学】南昌市九年级数学上(人教版)第21章一元二次方程测试题及答案

人教版九年级上册数学单元知识检测题:第二十一章一元二次方程(含答案)一、选择题1.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是( )A. 0B. 1C. ﹣1D. ±12.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠03.如果2是方程x2﹣c=0的一个根,那么c的值是()A. 4B. ﹣4C. 2D. -24.一元二次方程x2+6x-7=0的解为( )A. x1=1,x2=7B. x1=-1,x2=7C. x1=-1,x2=-7D. x1=1,x2=-75.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.用配方法解一元二次方程时,下列变形正确的是().A. B. C.D.7.一元二次方程的两根分别为和,则为()A. B. C. 2 D.8.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.9.已知、是一元二次方程的两个实数根,下列结论错误的是( )A. B. C.D.10.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3011.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=210二、填空题12.方程转化为一元二次方程的一般形式是________.13.若关于x的一元二次方程(m+2)x2+3x+m2-4=0的一个根为0,则m的值为=________.14.方程x2+2x=0的解为________.15.在的括号中添加一个关于的一次项,使方程有两个相等的实数根________16.如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.17.都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档