公差技术测量

合集下载

公差配合与测量技术

公差配合与测量技术
生物医学设备
生物医学设备中的各种器械,都离不开公差配合和精确的测量技术,符合健康安全卫生要求的工业技术。
如何降低误差?
减少影响因素、提高测量工具精度、加强操作技能等
测量技术的发展历程
古代测量工具
包括太阳针、简朴的角度测量 器、量规等。
现代数字化测量技术
随着电子技术的不断发展,高 精度测量工具如激光量规、超 声波测量仪等得到广泛应用。
3 D打印
3D打印技术将测量技术和工业 制造技术结合,为工业生产带 来巨大的变革。
公差配合及测量技术在工业中的应用发动机内部零件和底盘的制造等。
航空航天
公差配合和测量技术在航空航天制造领域中起着至关重要的作用,关乎到机身安全和飞行性能。
电子设备制造
进行电子设备制造需要进行PCB板的测量和配合,各种精密电子器件的测量也是电子设备制造中不可或 缺的。
公差配合类型
间隙配合
零件之间留有一定的间隙, 允许零件在一定范围内移动。
过盈配合
零件之间没有间隙,需要敲 击等方式才能安装。
紧配合
两个零件用拆卸手段无法拆 开。
公差配合尺寸表示法
1
上下公差
2
零件允许的最大和最小尺寸之差
3
英制
4
使用限制公差表示,而不使用上下公 差;限制公差为最大尺寸-最小尺寸。
基本尺寸
加工零件的设计尺寸
国际制
使用基本尺寸+上下公差的方式表示
测量工具介绍
千分尺
主要用于测量零件几何尺寸
游标卡尺
主要用于测量零件的外径、孔 径和深度等尺寸
投影仪
可对平面、轮廓和表面粗糙度 进行检测和测量
测量误差和影响因素
测量误差类型

公差配合与测量技术3篇

公差配合与测量技术3篇

公差配合与测量技术第一篇:公差配合的概念和原理公差配合是机械制造中非常重要的概念,它是指两个零件之间的尺寸差距。

在生产制造过程中,零件之间的公差配合关系直接决定了产品的精度和质量。

因此,深入了解公差配合的原理和相关知识对于提高产品质量和制造效率具有重要的意义。

1. 公差的基本概念公差是指一个零件的尺寸与标准尺寸之间的差距,包括正公差、负公差和零公差三种形式。

其中,正公差指零件的尺寸大于标准尺寸,负公差则表示零件的尺寸小于标准尺寸,而零公差则意味着零件的尺寸与标准尺寸完全相同。

为了方便表示不同公差之间的尺寸差距,人们通常采用公差带来表示。

公差带是由基准尺寸、公差上限和公差下限三部分组成的,其中基准尺寸是一定的,而公差上限和公差下限则根据要求进行确定,通常以正负公差的一半作为上下限。

2. 公差配合的分类和标准公差配合是指两个零件之间的公差关系,它由两个基本要素组成:一是公差等级,表示一个零件尺寸偏差的大小;二是配合公差,表示两个零件之间允许的相对尺寸偏差。

根据这两个要素,可以将公差配合分为以下五种类型:(1)游隙配合:零部件之间允许有一定的间隙,可靠地传递力矩和负载。

典型的例子是轴和孔的配合。

(2)中间配合:次高精度,配合间隙小于上一级,用于定位或轴承安装,如机床主轴和轴承座的配合。

(3)紧配合:在十分苛刻的应用环境下使用,如汽车发动机缸套和活塞。

(4)浅圆配合:精度较高,由于其相对简单的制造形式,因此成本较低,因此在工程设备中被广泛使用,如轴承内陆和外陆的浅圆配合。

(5)深压配合:最高精度的公差配合,必须在极其严格的环境中制造,例如涡轮增压器中的轴承或仪器中的精密齿轮。

在公差配合中,各种配合关系的尺寸偏差都有所规定,并有国家标准对其进行了详细规定。

调整合理的配合公差,可以保证装配时的互换性和互换可靠性,从而提高产品的质量和性能。

第二篇:公差配合的影响因素影响公差配合的因素有很多,包括所采用的机器和设备、制造材料、制造工艺和技能、制造环境、使用条件等等。

公差配合与技术测量

公差配合与技术测量

公差配合与技术测量1. 引言公差配合和技术测量是工程设计与制造中非常重要的一个方面。

公差配合是指在机械设计中,根据零件之间的相对位置关系和工作要求,为了保证零件之间能正确地配合和运动,需要对零件的尺寸进行控制,这就涉及到公差的问题。

技术测量是指通过一系列的测量方法和工具,对物体的尺寸、形状、位置等进行精确的测量,以确保产品的质量和精度。

2. 公差配合2.1 公差的定义与作用公差是指允许的尺寸偏差范围,即零件尺寸与设计尺寸之间的差值。

公差的作用是确保零件之间能够正常配合和运动,同时控制产品的尺寸精度,确保产品的质量和性能。

2.2 公差配合的分类公差配合可以分为以下几种类型:•运动配合:用于要求零件之间具有一定的相对运动关系,如轴与孔的配合;•刚性配合:用于要求零件之间具有一定的相对固定关系,如齿轮与轴的配合;•过盈配合:用于要求零件之间具有一定的紧固效果,如销与孔的配合;•游隙配合:用于要求零件之间具有一定的间隙,如套与轴的配合。

2.3 公差配合的表示方法公差配合一般采用标准符号表示,常用的符号有:•H:表示最大下限;•h:表示最小上限;•c:表示跳动;•s:表示最大下偏差;•S:表示最小上偏差。

3. 技术测量3.1 测量工具技术测量中常用的测量工具有:•卡尺:用于线尺寸的测量;•微量测量仪:用于小尺寸的测量;•表面粗糙度仪:用于表面质量的测量;•角度测量器:用于角度的测量;•轮廓仪:用于复杂形状的测量。

3.2 测量方法技术测量中常用的测量方法有:•直接测量法:直接使用测量工具进行测量,如卡尺、角度测量器等;•间接测量法:通过一些间接的方法进行测量,如三角法、相机测量法等;•接触测量法:测量对象与测量工具直接接触进行测量,如表面粗糙度仪、微量测量仪等;•非接触测量法:测量对象与测量工具不接触进行测量,如激光测量法、视觉测量法等。

3.3 测量精度控制在技术测量中,精度控制是非常重要的,可以通过以下几个方面进行控制:•测量仪器的校准和精度保证;•测量方法的正确选择和操作;•测量环境的控制,如温度、湿度等;•测量数据的统计和分析。

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面一、教学目标1. 知识与技能:(1)理解公差配合的基本概念及其在机械设计中的重要性;(2)掌握基本尺寸、极限尺寸和公差的概念;(3)学会运用公差配合知识解决实际问题。

2. 过程与方法:(1)通过实例分析,培养学生的动手能力和实际操作技能;(2)学会使用测量工具,提高测量精度。

3. 情感态度与价值观:(1)培养学生对机械制造行业的兴趣和热情;(2)培养学生认真负责、细致观察的职业素养。

二、教学内容1. 公差配合的基本概念(1)基本尺寸、极限尺寸和公差的概念;(2)公差配合的分类及应用。

2. 公差配合的计算(1)基本公差、标准公差和极限公差的关系;(2)线性尺寸、角度尺寸和圆柱尺寸的公差计算方法。

3. 公差配合在机械设计中的应用(1)公差配合在轴和孔配合中的应用;(2)公差配合在齿轮传动中的应用。

三、教学重点与难点1. 教学重点:(1)公差配合的基本概念及其计算方法;(2)公差配合在机械设计中的应用。

2. 教学难点:(1)公差配合的计算方法;(2)公差配合在实际问题中的应用。

四、教学方法1. 讲授法:讲解公差配合的基本概念、计算方法和应用实例;2. 演示法:展示测量工具的使用方法和实际操作过程;3. 实践操作法:学生动手实践,提高测量精度。

五、教学准备1. 教材:《公差配合与技术测量》;2. 教具:测量工具(卡尺、千分尺等)、示教模型;3. 课件:公差配合的相关图片、图表和实例。

六、教学过程1. 引入新课:通过一个实际案例,介绍公差配合在机械设计中的重要性。

2. 讲解基本概念:讲解基本尺寸、极限尺寸和公差的概念,并通过示例进行说明。

3. 公差配合的计算:讲解基本公差、标准公差和极限公差的关系,并通过实例演示公差配合的计算方法。

4. 应用实例:分析公差配合在轴和孔配合、齿轮传动等方面的应用。

5. 总结与练习:对本节课的内容进行总结,布置相关的练习题目。

七、作业布置1. 复习本节课的内容,整理笔记;2. 完成练习题目,包括公差配合的计算和应用实例。

公差配合与技术测量

公差配合与技术测量

公差配合与技术测量一、公差配合公差配合是机械制造过程中的一种重要技术。

所谓公差,指的是零件尺寸允许的误差范围;所谓配合,则是指两个或多个零件之间的形状和尺寸关系。

公差配合的作用是保证机械的运转精度,提高机械可靠性。

公差配合可分为三种类型:间隙配合、过盈配合和同型配合。

1. 间隙配合间隙配合是指两个零件之间的空隙。

因为机械零件的加工精度和热膨胀系数不同,所以为了保证机械的运转精度和可靠性,一般要求在设计时在零件之间留有一定的间隙。

间隙配合比较常用的类型有:滑动轴承配合、带销轴承配合等。

2. 过盈配合过盈配合是指两个零件之间的紧固。

它一般采用缩口、插销、卡套等方式实现。

因为过盈配合需要加大热膨胀间隙,所以要在设计前对材料的热膨胀系数进行计算,确保没有超过允许范围。

过盈配合比较常用的类型有:键轴配合、套筒轴配合等。

3. 同型配合同型配合是指两个零件之间的形状相同,一般是为了使零部件更加坚固,比较常用的类型有:凸凹配合、马蹄头配合等。

二、技术测量技术测量是一种与现代制造技术密切相关的技术。

它通过使用一些检测设备和测量工具来确定零件的几何形状、质量、位置精度和表面粗糙度等数值。

技术测量的作用是使机械加工能够更加准确、稳定、高效地完成,从而提高零部件和机器的性能和质量。

技术测量涉及到很多技术手段,常用的测量方法有以下几种:1. 视觉检验视觉检验是一种简单、直观的测量方法。

它通过观察零件的颜色、形状和表面的光泽度等来进行检验和鉴定。

这种方法适用于表面形状较简单或表面缺陷不太明显的零件。

2. 量规检验量规检验是一种基于物理量的测量方法,其中最常用的量规有内径千分尺、外径千分尺、深度千分尺等。

它通过用量规对零件的直径、深度、长度和宽度等物理量进行测量。

由于量规精度很高,所以这种方法可以得到较为准确的测量结果。

3. 表面粗糙度测量表面粗糙度测量是一种检测零件表面性质的方法。

这种方法对于表面质量要求高、表面含油量高和表面对摩擦特性有影响的零件特别有用。

公差配合与技术测量

公差配合与技术测量
度等
影像测量仪: 测量二维、三
维尺寸等
量块:测量长 度、内外径等
坐标测量机: 测量三维尺寸、 形状、位置等
测量步骤和注意事项
确定测量对象:明确需要 测量的公差配合项目
设定测量条件:设定测量 环境、温度、湿度等条件
选择测量工具:根据测量 对象选择合适的测量仪器 和工具
进行测量:按照测量步骤 进行测量,记录测量数据
置误差的允许范围
技术测量:指对零件 的尺寸、形状和位置
进行测量和检验
公差配合为技术测量 提供依据,技术测量 为公差配合提供保障
协同发展可以提高 产品质量和生产效
率,降低成本
协同发展:公差配 合与技术测量相互
依赖、相互促进
协同发展可以促进 技术创新和产业升

谢谢
03 数据处理:对测量数据 进行处理,包括平滑、 滤波、去噪等,以提高 数据的准确性和可靠性
04 结果评价:根据测量结 果,评价公差配合的符 合程度和精度,为改进 和提高提供依据和参考
公差配合与技术测量的关 系
公差配合对技术测量的影响
1
公差配合是技术测 量的基础,决定了 测量的精度和准确

2
公差配合的选择直 接影响到测量结果 的可靠性和稳定性
公差配合的分类
间隙配合:具有 间隙的配合,如 轴和孔之间的配

过盈配合:具有 过盈的配合,如 轴承和轴之间的
配合
过渡配合:具有 间隙和过盈的配 合,如齿轮和轴
之间的配合
螺纹配合:具有 螺纹的配合,如 螺栓和螺母之间
的配合
公差配合的应用
01
机械制造:保证 零件的装配精度 和性能
02
汽车工业:提高 汽车零部件的装 配精度和可靠性

公差配合与技术测量总结报告

公差配合与技术测量总结报告

公差配合与技术测量总结报告一、引言公差配合是机械制造中不可或缺的一部分,其目的在于保证零件之间的相对位置和运动精度。

技术测量则是实现公差配合的关键,因为只有通过准确的测量,才能确定零件尺寸是否符合要求。

本报告将对公差配合和技术测量进行总结和分析。

二、公差配合1. 公差的定义公差是指零件尺寸与设计尺寸之间允许的偏差范围。

在机械制造中,常用的公差包括基本偏差、上限偏差和下限偏差。

2. 配合的定义配合是指两个或多个零件之间相互连接、定位或运动时所形成的空间关系。

常见的配合类型包括套筒配合、轴承配合、键槽配合等。

3. 公差与配合之间的关系公差与配合之间存在着密切联系,因为只有通过正确地选择公差,才能保证零件之间具有正确的配合关系。

例如,在套筒和轴之间形成滑动副时,应选择H7/d6这种带有负公差的配合,以保证套筒和轴之间具有适当的紧配合。

4. 常见的公差配合标准常见的公差配合标准包括GB/T 1800、GB/T 1802、GB/T 1804、GB/T 1805等。

这些标准规定了不同类型零件所应采用的公差和配合类型,对于机械制造来说具有重要的指导意义。

三、技术测量1. 技术测量的定义技术测量是指对零件尺寸进行精确测量并记录其实际尺寸值的过程。

技术测量是实现公差配合的关键,因为只有通过准确地测量,才能确定零件尺寸是否符合要求。

2. 常见的技术测量工具常见的技术测量工具包括游标卡尺、外径千分尺、内径千分尺、深度千分尺等。

这些工具可以帮助工人对零件进行精确地测量,并记录下其实际尺寸值。

3. 技术测量中需要注意的问题在技术测量过程中,需要注意以下问题:(1)选择正确的测量工具和方法;(2)保证测量工具的精度和准确性;(3)避免测量误差,例如环境温度变化、人为误差等;(4)记录测量结果,以备后续参考。

四、结论公差配合和技术测量是机械制造中不可或缺的一部分。

通过正确地选择公差和配合类型,并采用精确的技术测量方法,可以保证零件之间具有正确的配合关系,并提高机械制造的精度和质量。

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面一、教学目标1. 让学生理解公差配合与技术测量的基本概念。

2. 让学生掌握公差配合与技术测量的基本原理和方法。

3. 培养学生运用公差配合与技术测量知识解决实际问题的能力。

二、教学内容1. 公差配合与技术测量的基本概念公差、配合、间隙、过盈、间隙配合、过盈配合、过渡配合2. 公差配合与技术测量的基本原理基本尺寸、基准、基本偏差、标准公差、配合公差3. 公差配合与技术测量的方法极限配合、最小极限、最大极限、上偏差、下偏差三、教学重点与难点1. 教学重点:公差配合与技术测量的基本概念、基本原理、方法。

2. 教学难点:公差配合与技术测量的实际应用。

四、教学方法与手段1. 教学方法:讲解、演示、实践、案例分析。

2. 教学手段:多媒体课件、实物模型、测量工具。

五、教学过程1. 引入新课:通过讲解公差配合与技术测量在工程中的应用,引起学生的兴趣。

2. 讲解基本概念:讲解公差、配合、间隙、过盈等基本概念,并通过实物模型展示。

3. 讲解基本原理:讲解基本尺寸、基准、基本偏差等基本原理,并通过实例进行分析。

4. 讲解测量方法:讲解极限配合、最小极限、最大极限等测量方法,并通过实践操作演示。

5. 案例分析:分析实际工程中的公差配合与技术测量问题,引导学生运用所学知识解决实际问题。

7. 布置作业:布置一些有关公差配合与技术测量的练习题,巩固所学知识。

六、教学评价1. 评价方式:过程评价与终结评价相结合,以过程评价为主。

2. 评价内容:学生对公差配合与技术测量的基本概念、基本原理和方法的理解和运用能力。

3. 评价方法:课堂提问、作业批改、实践操作考核。

七、教学资源1. 教材:《公差配合与技术测量》教材。

2. 实物模型:公差配合与技术测量的相关实物模型。

3. 测量工具:卡尺、千分尺、micrometer screw gauge。

4. 多媒体课件:公差配合与技术测量的相关课件。

八、教学进度安排1. 第1-2周:讲解公差配合与技术测量的基本概念。

公差配合与技术测量心得

公差配合与技术测量心得

公差配合与技术测量心得引言公差配合和技术测量是现代工程中非常重要的一环。

公差配合涉及到工程制造中零件之间的尺寸和形位关系控制,而技术测量则是对工件尺寸和形状进行精确测量和分析的过程。

本文将深入探讨公差配合和技术测量的相关知识和心得体会。

公差配合理论基础公差配合是对零件之间的尺寸关系进行控制的技术。

在工程制造中,由于材料特性、制造工艺等因素的影响,零件的尺寸很难完全符合设计要求,因此需要通过公差配合来实现合适的尺寸关系。

公差配合的理论基础包括几个重要概念:1.公差:公差是指零件尺寸与设计尺寸之间允许的最大差值。

公差分为基本偏差和公差界限两部分,基本偏差是零件尺寸相对于设计尺寸的偏离值,而公差界限则是规定了基本偏差允许的上下限。

2.上下偏差:上偏差是指零件尺寸比设计尺寸大的偏差值,下偏差则相反。

通过设置上下偏差,可以控制零件尺寸在一定范围内的变化。

3.基本尺寸:基本尺寸是指零件尺寸加上基本偏差的结果,即设计尺寸与公差的代表值。

常见配合类型在公差配合中,常见的几种类型包括:套配合、轴配合、键配合等。

它们分别适用于不同的工程情况和要求。

1.套配合:套配合是指通过一个外套和一个内套来实现零件之间的连接。

在套配合中,常见的是过盈配合和间隙配合。

过盈配合要求外套尺寸大于内套尺寸,通过压入或加热的方式使其结合;间隙配合则要求外套尺寸小于内套尺寸,使其有一定的间隙。

2.轴配合:轴配合是指通过一个轴和一个孔来实现零件之间的连接。

轴配合中常见的类型包括:轴线配合、轴线并行配合、轴线交叉配合等。

不同的轴配合类型适用于不同的工程要求。

3.键配合:键配合是指通过键连接将两个零件固定在一起。

键配合中常见的类型有平键配合、斜键配合等。

通过选择合适的键配合方式,可以实现零件的可靠连接和传递力矩的要求。

技术测量常用测量工具技术测量中,常用的测量工具包括:千分尺、游标卡尺、深度规、千分表、百分表等。

这些测量工具具有不同的测量范围和测量精度,可以满足不同工程要求的测量需求。

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面一、教学目标1. 让学生了解并掌握公差配合的基本概念和原理。

2. 使学生熟悉并能够运用技术测量方法来检测和控制尺寸公差。

3. 培养学生运用公差配合与技术测量知识解决实际问题的能力。

二、教学内容1. 公差配合的基本概念:公差、配合、间隙、过盈、过渡配合。

2. 公差配合的等级:IT、JT、MT、HT、ST。

3. 尺寸公差、形状公差、位置公差的概念及其标注。

4. 技术测量方法:长度测量、角度测量、形状和位置测量。

5. 测量工具:卡尺、千分尺、百分表、测微仪、投影仪等。

三、教学重点与难点1. 重点:公差配合的基本概念、公差配合的等级、尺寸公差、形状公差、位置公差的标注及应用。

2. 难点:公差配合的计算、技术测量方法的运用、测量工具的使用。

四、教学方法与手段1. 采用讲授、讨论、案例分析相结合的教学方法。

2. 使用多媒体教学,展示公差配合与技术测量的相关图片和视频。

3. 组织学生进行实际操作,熟悉测量工具的使用。

五、教学安排1. 第一课时:介绍公差配合的基本概念和原理。

2. 第二课时:讲解公差配合的等级及其应用。

3. 第三课时:讲解尺寸公差、形状公差、位置公差的标注。

4. 第四课时:介绍技术测量方法及其应用。

5. 第五课时:讲解测量工具的使用方法和技巧。

六、教学过程1. 引入新课:通过展示实际产品中的配合实例,引发学生对公差配合与技术测量的好奇心,激发学习兴趣。

2. 讲解与演示:教师讲解公差配合的基本概念,配合等级的选用原则,并通过多媒体演示公差配合的图示和动画,帮助学生理解。

3. 案例分析:分析实际工程中的尺寸公差、形状公差和位置公差案例,让学生学会公差的标注和理解。

4. 实践操作:学生分组使用测量工具,进行实际测量练习,掌握测量方法和技巧。

5. 总结与复习:教师引导学生总结公差配合与技术测量的重要知识点,布置复习题,巩固学习成果。

七、教学评估1. 课堂问答:教师通过提问方式检查学生对公差配合基本概念的理解程度。

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面一、教学目标1. 知识与技能:(1)理解公差配合的基本概念;(2)掌握公差配合的选用方法;(3)了解技术测量基本原理及方法。

2. 过程与方法:(1)通过实例分析,培养学生解决实际问题的能力;(2)运用小组讨论法,培养学生团队合作精神。

3. 情感态度与价值观:(1)培养学生对机械制造行业的兴趣;(2)增强学生对公差配合与技术测量重要性的认识。

二、教学内容1. 公差配合的基本概念(1)公差、偏差的定义及关系;(2)基本公差、配合公差的概念;(3)公差带的表示方法。

2. 公差配合的选用方法(1)根据设计要求确定公差等级;(2)选用配合时需考虑的使用条件;(3)常见配合的选用原则。

三、教学重点与难点1. 教学重点:(1)公差配合的基本概念;(2)公差配合的选用方法。

2. 教学难点:(1)公差、偏差的关系;(2)公差配合选用原则的灵活运用。

四、教学方法1. 讲授法:讲解公差配合的基本概念、选用方法及实例分析。

2. 小组讨论法:讨论公差配合选用原则在实际工程中的应用。

3. 实践操作法:引导学生参与实际测量操作,提高动手能力。

五、教学准备1. 教学资源:教材、多媒体课件、测量工具(如卡尺、千分尺等)。

2. 教学环境:实验室或教室。

六、教学过程1. 引入新课:通过展示实际零部件,引导学生了解公差配合在工程中的应用。

2. 讲解基本概念:介绍公差、偏差等基本概念,阐述它们之间的关系。

3. 实例分析:分析实际案例,让学生掌握公差配合的选用方法。

4. 小组讨论:引导学生探讨公差配合选用原则在实际工程中的应用。

5. 实践操作:组织学生进行测量工具的使用练习,提高动手能力。

七、课堂练习1. 填空题:(1)公差是指允许尺寸___的变动范围。

(2)基本公差是指在一定___条件下,允许尺寸变动的最小单位。

2. 选择题:(1)下列哪种配合属于过盈配合?(A. H7/k6 B. H7/n6 C. H7/d6 D. H7/m6)(2)在选用公差配合时,主要考虑的使用条件是___。

公差配合与技术测量心得

公差配合与技术测量心得

公差配合与技术测量心得
公差配合与技术测量是机械制造领域中非常重要的技术。

在我的工作中,我学习了一些有关公差配合和技术测量的心得,现在分享给大家:
1. 公差配合是指机械零件之间的尺寸差,其产生的目的是为了保证机械零件的配合精度和密封性。

在实际应用中,公差配合要考虑材料的热胀冷缩、载荷和温度等因素。

2. 技术测量是指利用测量仪器对工件进行尺寸、形状、位置等方面的测量。

测量精度对于机械制造来说非常重要,因为精度不足可能会导致产品质量问题甚至安全隐患。

3. 在进行公差配合时,要根据实际情况选择合适的公差等级。

由于不同的零件所需的配合精度不同,在选择公差等级时要考虑到具体的使用环境和条件。

4. 在进行技术测量时,要严格按照操作规程进行操作,保证测量数据的准确性。

同时,要懂得正确使用测量仪器,掌握各种常见误差的修正方法。

总之,公差配合与技术测量是机械制造领域中非常关键的技术,需要认真对待和学习。

通过不断的实践和学习,我们可以提高自己的技术水平,为机械制造行业的发展做出贡献。

公差配合与技术测量教案

公差配合与技术测量教案

公差配合与技术测量教案第一章:概述1.1 课程介绍介绍公差配合与技术测量课程的目的和重要性解释公差配合与技术测量在工程和制造中的应用1.2 公差配合的概念解释公差和配合的定义讨论公差和配合在设计和制造过程中的作用1.3 技术测量的基本原理介绍技术测量的定义和目的解释常用的测量方法和工具第二章:公差配合的类型与计算2.1 基本公差配合类型讨论基本公差配合的分类和特点解释公差配合的等级和系列2.2 公差配合的计算方法介绍公差配合的计算方法和步骤举例说明公差配合的计算过程第三章:尺寸公差与形位公差3.1 尺寸公差解释尺寸公差的定义和作用讨论尺寸公差的标准和规定3.2 形位公差介绍形位公差的定义和分类解释形位公差的重要性和应用第四章:表面粗糙度与尺寸链4.1 表面粗糙度讨论表面粗糙度的定义和测量解释表面粗糙度对产品性能和寿命的影响4.2 尺寸链介绍尺寸链的定义和原理解释尺寸链在公差配合中的应用和作用第五章:技术测量工具与方法5.1 机械测量工具介绍常用的机械测量工具及其特点讨论机械测量工具的选择和使用方法5.2 电子测量工具解释电子测量工具的定义和分类介绍常用的电子测量工具及其应用第六章:测量误差与数据处理6.1 测量误差的概念解释测量误差的定义和分类讨论测量误差的影响因素6.2 测量不确定度介绍测量不确定度的概念和计算方法解释测量不确定度在实际测量中的应用6.3 数据处理与分析介绍数据处理与分析的基本方法解释数据处理与分析在技术测量中的重要性第七章:几何公差与角度公差7.1 几何公差解释几何公差的定义和作用讨论几何公差的标准和规定7.2 角度公差介绍角度公差的定义和分类解释角度公差在设计和制造中的应用第八章:公差配合在设计中的应用8.1 设计中的公差配合讨论公差配合在设计中的重要性和应用解释如何合理选择公差配合以满足产品性能要求8.2 实例分析:公差配合在机械设计中的应用通过实例分析公差配合在机械设计中的应用和效果第九章:现代测量技术与自动化9.1 概述现代测量技术介绍现代测量技术的发展趋势和特点解释现代测量技术在工程和制造中的应用9.2 自动化测量系统解释自动化测量系统的定义和组成讨论自动化测量系统在实际生产中的应用和优势第十章:综合练习与案例分析10.1 综合练习提供综合练习题,巩固所学知识鼓励学生自主学习和思考,提高解决问题的能力10.2 案例分析提供实际案例,分析公差配合与技术测量在其中的应用培养学生运用所学知识分析和解决实际问题的能力重点和难点解析六、测量误差与数据处理测量误差的概念和分类:理解系统误差、随机误差和粗大误差的区别。

公差配合与技术测量课程总结

公差配合与技术测量课程总结

公差配合与技术测量课程总结简介公差配合与技术测量是机械设计与制造专业中非常重要的一门课程。

本课程主要涉及公差配合原理、测量技术及仪器的基本原理、技术参数等内容。

通过学习本课程,我们可以掌握公差配合的基本原理和计算方法,学习常用的测量仪器的使用与校准,使我们在机械设计与制造领域中能够更好地进行工作。

重要观点1. 公差配合原理公差配合是指由于零件制造的误差,加工和装配时所产生的间隙或相对位置的限制。

公差配合的原则是在保证功能要求的前提下,尽量减小制造成本和提高装配性能。

在公差配合中,需要考虑基本尺寸、公差、配合类型、配合间隙等因素。

2. 测量技术的基本原理测量技术是保证零件质量和装配精度的一项重要工作。

在测量过程中需要注意测量对象、测量原理和测量误差的控制。

常用的测量技术包括直接测量和间接测量,常用的测量仪器有千分尺、游标卡尺、光学测量仪等。

3. 公差的控制方法公差的控制方法包括尺寸链法和公差链法。

尺寸链法是根据零件最大尺寸、最小尺寸和公差等数据,分别计算出加工、装配公差和校验公差。

公差链法是通过确定一个参考零件,然后根据配合尺寸和公差要求,在各个零件上分别计算出公差。

关键发现1. 公差配合与功能公差配合在功能上起到了一个重要的作用。

合适的公差配合可以保证产品的正常运转和使用,并能够提高产品的稳定性和可靠性。

同时,公差配合还可以保证零件之间的互换性,提高生产效率和降低成本。

2. 测量技术的精度要求在进行测量时,我们需要注意测量的精度要求。

不同的零件和产品对测量精度的要求是不同的,我们需要根据实际情况选择合适的测量方法和仪器,并对测量仪器进行定期校准和维护,以确保测量结果的准确性。

3. 公差控制与制造成本公差控制是在保证产品质量的前提下,尽量减小制造成本的一项重要工作。

合理的公差控制可以避免过度加工和调整,减少废品率和返工率,提高生产效率和经济效益。

进一步思考1. 进一步学习测量技术的应用测量技术在机械设计与制造中具有广泛的应用。

第三章公差测量技术基础

第三章公差测量技术基础
• 选择检测器具 按照规范要求选择适当的检测 器具,设计、制作专用的检测器具和辅助工具, 并进行必要的误差分析。
八、检测的一般步骤
• 检测前准备 清理检测环境并检查是否满足检测要 求,清洗标准器、被测件及辅助工具,对检测器 具进行调整使之处于正常的工作状态。
• 采集数据 安装被测件,按照设计预案采集测量数 据并规范地作好原始记录。
四、测量方法
测量方法是根据一定的测量原理,在实施测量过程中对测量 原理的运用及其实际操作。
广义地说,测量方法可以理解为测量原理、测量器具(计量器 具)和测量条件(环境和操作者)的总和。
在实施测量过程中,应该根据被测对象的特点(如材料硬度、 外形尺寸、生产批量、制造精度、测量目的等)和被测参数的定义 来拟定测量方案、选择测量器具和规定测量条件,合理地获得可 靠的测量结果。
得到其实际值并判断其是否合格的方法。
三、计量单位
我国规定采用以国际单位制为基础的“法定计量单位制”。 它是由一组选定的基本单位和由定义公式与比例因数确定的导出 单位所组成的。如“米”、“千克”、“秒”、“安”等为基本单位。
在测量过程中,测量单位必须以物质形式来体现,能体现计 量单位和标准量的物质形式有:光波波长、精密量块、线纹尺、 各种圆分度盘等。
36.745 (组合) 1.005 (第一块)
35.74
35.74(组合) 1.24 (第二块 )
34.5
34.5(组合) 4.5(第三块) 30(第四块)
8、量块使用的注意事情项
• 量块必须在使用有效期内,否则应及时送专业部门检定。 • 使用环境良好,防止各种腐蚀性物质及灰尘对测量面的损
伤,影响其粘合性。 • 分清量块的“级”与“等”,注意使用规则。 • 所选量块应用航空汽油清洗、洁净软布擦干,待量块温度

公差配合和技术测量

公差配合和技术测量

第一、公差配合一、公差配合的根本术语1. 根本尺寸〔或公称尺寸〕设计图样所规定的根本计算尺寸。

如:25+0.005那么此-0.010 25为根本尺寸〔或公称尺寸〕。

2. 实际尺寸:工件加工后通过测量所得的尺寸。

3. 最大极限尺寸:在公差X围内工件尺寸的最大值。

如:25船mm,那么最大极限尺寸为25+0.005=25.005mm。

4. 最小极限尺寸:在公差X围内工件尺寸的最小值。

如:25.0.005mm,那么最小极限尺寸为25-0.010=24.990mm。

5. 上偏差:最大极限尺寸与名义尺寸的差数。

如:25+-00..000150,那么上偏差为25.005-25=+0.005mm。

6. 下偏差:最小极限尺寸与名义尺寸的差数。

如25+-00..000150,下偏差为24.990-25=-0.010mm。

7. 实际偏差:实际尺寸与根本尺寸之差。

如轴承内径的根本尺寸为25mm,假设某—套的实际尺寸为24.995mm,那么此轴承内径的实际偏差为24.995-25=-0.005mm。

8. 公差:即允许的偏差X围。

也就是最大极限尺寸与最小极限尺寸的差数。

如:25-°-o05mm,公差为25.005-24.990=0.015mm。

公差是一个不等于零,而且没有正、负的数值。

因此习惯上说“零公差〞、“正公差〞“负公差〞是不妥当的,更不应把公差和偏差混为一谈。

公差是表示一个X围的数值,而偏差那么是一个有正负〔或零〕的数值。

9. 零线和公差带:零线为根本尺寸的界限;下列图中箭头所指的线为零线。

公差带:由代表上、下偏差的两条直线所限定的一个区域。

常用向右上方倾斜的细实线表示孔公差带,用网纹表示轴公差带。

10. 配合:根本尺寸一样的,相互结合的孔或轴公差带之间的关系,称为孔和轴的配合。

根据配合的松紧程度的不同,配合可分为间隙配合、过盈配合及过渡配合。

相互配合的轴、孔零件,如孔的实际尺寸大于轴的实际尺寸,两者配合时轴会产生间隙。

公差配合与技术测量

公差配合与技术测量

公差配合与技术测量引言公差配合和技术测量是现代制造业中非常重要的概念和方法。

公差配合是指在制造过程中,为了确保零件之间的相互匹配和协调,设定一定的尺寸误差范围。

技术测量则是通过测量和检测技术,精确地确定零件的尺寸和形状。

本文将深入探讨公差配合和技术测量的基本概念、方法和重要性。

一、公差配合1.1 公差的定义公差是指允许的尺寸误差范围,包括上限公差和下限公差。

上限公差是零件尺寸可以大于理论值的最大值,下限公差是零件尺寸可以小于理论值的最小值。

公差的设计是为了确保不同零件之间的装配质量和可靠性。

1.2 公差配合类型公差配合按照具体要求和目的不同,可以分为以下几种类型:•游隙配合:允许一定的间隙,适用于需要灵活运动的部件,如轴与孔的配合。

•过盈配合:允许一定的干涉,适用于需要紧密连接的部件,如销与孔的配合。

•中间配合:介于游隙配合和过盈配合之间,要求既有一定的间隙又有一定的干涉。

1.3 公差配合标准为了统一公差配合的要求,制定了一系列的国际标准。

常见的公差配合标准有ISO、GB和ANSI等。

这些标准规定了不同公差等级、尺寸范围和配合紧度等内容,便于制造工艺和装配工作的开展。

二、技术测量2.1 技术测量的概念技术测量是指利用测量仪器和方法对零件的尺寸、形状和位置等进行精确测量的过程。

它是保证制造精度和装配质量的重要环节。

技术测量的结果将直接影响到产品的质量和性能。

2.2 技术测量的方法技术测量可以采用多种方法,常见的方法包括:•直接测量法:直接使用测量仪器进行尺寸测量,如卡尺、游标卡尺等。

•比较测量法:通过与已知尺寸进行比较,间接测量待测尺寸,如滑动规、外径规等。

•光学测量法:利用光学原理进行测量,如投影仪、显微镜等。

•非接触式测量法:利用光电、超声波等原理,通过无接触测量实现高精度测量,如激光三角测量仪、激光干涉仪等。

2.3 技术测量的重要性技术测量对于制造业来说具有非常重要的意义。

首先,技术测量可以帮助制造商保证产品尺寸的准确性,确保零部件之间能够正确地配合。

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面

《公差配合与技术测量》教案最全面第一章:绪论1.1 课程介绍了解《公差配合与技术测量》课程的背景和重要性。

理解公差配合与技术测量在工程技术和制造行业中的应用。

1.2 公差配合的概念解释公差配合的含义和作用。

掌握基本公差和配合的分类。

1.3 技术测量的基本概念介绍技术测量的定义和目的。

掌握常用测量工具和仪器的基本原理和使用方法。

第二章:尺寸公差与配合2.1 尺寸公差的概念解释尺寸公差的概念和作用。

掌握基本尺寸、公称尺寸和实际尺寸的关系。

2.2 配合制度介绍配合制度的分类和特点。

掌握配合公差等级的表示方法。

2.3 配合的应用学习配合的选择和应用方法。

掌握配合公差在实际工程中的应用实例。

第三章:形状和位置公差3.1 形状公差解释形状公差的概念和作用。

掌握基本形状公差的表示方法。

3.2 位置公差介绍位置公差的概念和作用。

掌握基本位置公差的表示方法。

3.3 形状和位置公差的应用学习形状和位置公差的选择和应用方法。

掌握形状和位置公差在实际工程中的应用实例。

第四章:表面粗糙度4.1 表面粗糙度的概念解释表面粗糙度的含义和作用。

掌握表面粗糙度的表示方法。

4.2 表面粗糙度的测量介绍表面粗糙度的测量方法和仪器。

掌握表面粗糙度测量的基本技巧。

4.3 表面粗糙度的应用学习表面粗糙度的选择和应用方法。

掌握表面粗糙度在实际工程中的应用实例。

第五章:测量技术5.1 测量概述了解测量技术的概念和作用。

掌握测量的基本原理和方法。

5.2 测量工具和仪器介绍常用测量工具和仪器的基本原理和使用方法。

掌握测量工具和仪器的选择和操作技巧。

5.3 测量误差与数据处理学习测量误差的概念和分类。

掌握数据处理的基本方法和技巧。

第六章:尺寸链与公差带6.1 尺寸链的概念解释尺寸链的含义和作用。

掌握尺寸链的构成和计算方法。

6.2 公差带的概念介绍公差带的含义和作用。

掌握公差带的表示方法。

6.3 尺寸链和公差带的应用学习尺寸链和公差带的选择和应用方法。

公差与测量技术知识点

公差与测量技术知识点

公差与测量技术知识点一、公差的概念公差是指在工业生产中,为了保证产品的质量和互换性,对零件尺寸、形状等要素所规定的允许偏差范围。

公差是在设计和制造过程中确定的,它是指允许的最大偏差和最小偏差之间的范围。

二、公差分类1. 尺寸公差:即零件尺寸与其设计尺寸之间的允许偏差范围。

2. 形位公差:即零件位置关系与设计位置关系之间的允许偏差范围。

3. 转动配合公差:即轴与孔配合关系中,轴和孔之间的允许偏差范围。

4. 精度等级:用于表示零件制造精度和加工精度等级,通常用数字表示。

三、测量技术知识点1. 测量工具常见测量工具有游标卡尺、外径卡尺、深度卡尺、高度规等。

不同类型的测量工具适用于不同类型的测量任务。

2. 测量误差测量误差是指实际测量值与真实值之间的差异。

测量误差可以由多种因素引起,如测量工具的精度、环境条件等。

3. 测量方法常见的测量方法有直接测量法、间接测量法和比较测量法。

直接测量法是指直接用测量工具对零件进行尺寸或位置等方面的测量;间接测量法是指通过计算或推算来得到零件的尺寸或位置等信息;比较测量法是指将待测零件与已知标准进行比较,从而得到其尺寸或位置等信息。

4. 测量精度测量精度是指在一定条件下,所能达到的最小可分辨单位。

常见的表示方式有绝对误差和相对误差。

5. 数据处理数据处理是指通过计算、分析等手段对收集到的数据进行处理,以得出有用信息。

常见数据处理方法包括平均值、标准差、方差等。

四、公差与质检公差在质检中起着重要作用,它可以帮助质检人员确定是否符合产品设计要求。

在质检中,常用的方法包括抽样检验和全检验两种。

1. 抽样检验抽样检验是指从生产批次中随机抽取一定数量的样品进行检验,以判断整个批次的质量是否符合要求。

常见的抽样方法有AQL(接受质量限)和LTPD(拒绝质量限)。

2. 全检验全检验是指对整个生产批次进行逐一检验,以确保每个零件都符合要求。

全检验适用于对产品质量要求非常高的情况。

五、公差与制造公差在制造中也起着重要作用,它可以帮助制造人员确定加工精度和产品互换性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公差与测量指导说明书工程学院实验守则1、实验前按要求认真进行预习。

2、准时到达实验室,除了与实验有关的书籍文具外,其它物品不得带入室内。

3、保持室内整洁、,禁止随地吐痰,不准喧哗和打闹。

4、只有在完全弄清楚量仪各部分功用及操作方法后,方可动手操作仪器。

5、不动与本实验无关的量仪,不要正对仪器精密表面及光学镜头呵气或咳嗽,不得用各种形式擦抹光学镜头,尽可能少用手接触精密表面。

6、认真填写实验报告,要求整洁、准确,独立完成。

7、实验完毕,放好仪器,摆好桌椅方可离去。

8、有事要请假,无故不作实验者,以不及格论。

9、凡不遵守本规定,经指出不听者,指导老师有权停止其实验。

损坏仪器或设备者应负责赔偿。

实验一常用量仪的介绍以及孔轴测量一、实验基本要求1.了解常用量具、量仪的构造、原理及使用方法2.学会调节仪器零位的方法及测量方法二、常用量具、量仪的构造、原理及使用方法机械式量仪的种类很多,本实验介绍的主要有:1、游标卡尺:普通游标卡尺(见图1)、高度游标卡尺、深度游标卡尺、齿厚游标卡尺等。

分度值常用的有0.05、0.02mm。

图1 普通游标卡尺图2 外径千分尺2、千分尺:外径千分尺、内径千分尺、杠杆千分尺、深度千分尺、内侧千分尺、螺纹千分尺、公法线千分尺等。

分度值常用的有0.01、0.001mm。

其中外径千分尺在生产中应用广泛。

如图2,其分度值为0.01mm,测量范围有0-25、25-50、50-75、75-100、100-125、125-150mm等。

3、指示表:百分表、杠杆百分表、内径百分表、千分表、扭簧比较仪等。

图3是机械式百分表的外形图和传动原理图。

百分表的分度值为0.01mm,表面刻度盘上共有100条等分刻线。

因此,百分表齿轮传动机构,应使量杆移动1mm时,指针回转一圈。

百分表的测量范围,有0-3、0-5、0-10mm三种。

图3 百分表外形图和传动原理图1.表盘2.大指针3.小指针4.套筒5.测量杆6.测量头(齿侧间隙的消除:通过游丝消除齿偶间隙,提高测量精度。

测量力的控制:弹簧是控制百分表的测量力的。

)内径百分表由百分表和表架组成,用于测量孔的形状和孔径,内径百分表的构造如图4所示。

图4 内径百分表1.活动量杆 2.等臂杠杆 3.固定量杆 4.壳体 5.长管 6.推杆7.9.弹簧 8.百分表 10.定位护桥内径百分表的活动测头,其移动量很小,其测量范围是由更换或调整可换测头长度达到的。

内径百分表的测量范围有以下几种:10-18、18-35、35-50、50-100、100-160、160-250、250-450mm。

用内径百分表测量孔径是一种相对量法,测量前应根据被测孔径的大小,在千分尺或其他量具上调整好尺寸后才能使用。

使用时将内径百分表的两测头放入两量爪之间,与两量爪相接触。

为了使内径百分表的两测头轴线与两量爪平面相垂直,需拿住表杆中部微微摆动内径百分表,找出表针的转折点,并转动表盘使“0”刻线对准该转折点,此时零位已调好。

将调好零位的内径百分表放入被测孔中,微微摆动内径百分表,找出新的转折点进行与零位之间的读数,该读数值为内径该测量点实际尺寸与其基本尺寸的偏差。

三、思考题1.用游标卡尺、内径百分表测量工件是属于绝对测量法还是相对测量法?2.千分尺为什么要设置测力装置?实验二齿轮测量一、实验基本要求了解公法线千分尺、齿厚游标卡尺、齿圈跳动检查仪的工作原理和使用方法。

二、实验步骤1.公法线长度测量公法线长度W是指基圆切线与齿轮上两异名齿廓交点间的距离,公法线平均长度偏差是指在齿轮一周范围内,公法线长度平均值W 与公称值W之差。

公法线平均长度偏差是评定齿侧间隙的一个指标。

取公法线长度平均值是为消除运动偏心对公法线长度的影响。

公法线长度变动是指在齿轮一周范围内,实际公法线长度的最大值与最小值之差。

齿轮运动偏心越大,公法线长度变动也越大。

图1 为公法线千分尺测量示意图图1 千分尺测量公法线示意图本实验采用公法线千分尺测量公法线长度。

按公式计算公法线公称长度W、跨齿数n:对于标准直齿轮则有:W = m[1.476(2n −1) + 0.014 z],n = 0.111z + 0.5 W 和n 值也可以直接从相关表中查出。

根据跨齿数n 按图1 所示对被测齿轮逐齿测量或沿齿圈均布测量六条公法线长度,取最大值Wma x 与Wmin 之差为公法线长度变动;测量不同方位三个对称位置上测量值的平均值与公称值W 之差为公法线平均长度偏差。

按照齿轮图样的技术要求确定公法线长度的上偏差Ebns、下偏差Ebni,并判断被测齿轮的适用性。

为保证测量结果准确,测量时应轻轻摆千分尺,取最小读数值,要正确使用棘轮机构,以控制测量力。

2.齿厚偏差测量齿厚偏差Esn是指在齿轮分度圆柱面上,齿厚的实际值与公称值之差。

对于斜齿轮是指法向齿厚。

控制齿厚偏差Esn 是为了保证齿轮传动中所必须的齿侧间隙。

齿轮分度圆齿厚可用图2 所示的齿厚游标卡尺测量。

该卡尺刻度值为0.02mm,能够测量模数为1-26mm 齿轮。

这种卡尺是由两个游标卡尺组合而成。

水平游标卡尺1 用于测量分度圆的弦尺厚S ,垂直游标卡尺2 用于保证卡尺1 两测量点与齿廓在分度圆处相接触,控制分度圆至齿顶圆的弦齿高h 。

2用齿轮游标尺测量齿厚偏差,是以齿顶圆为基准。

直齿圆柱齿轮分度圆处弦齿高h 与弦齿厚S 的按下式计算:h = m•{1 + (Z / 2)• [1 –cos (90°/ Z ) ] } - (De - De´) / 2式中:式中:m——模数 Z——齿数 De——公称齿顶圆直径De´——实验齿顶圆直径S = m•Z•sin (90°/ Z )测量时用外径千分尺测量齿顶圆的实际直径,计算h 和S 值(也可查相关表);将垂直游标卡尺2调到h值,锁紧。

3.先将水平游标卡尺两测量点调开一段距离,使垂直游标卡尺测量端与齿顶圆接触。

然后,微调水平游标卡尺游标,使两测量点与齿廓接触,即可由水平游标卡尺上读得弦齿厚的实际尺寸。

注意:在调水平游标卡尺游标时,用力不得过大,否则垂直游标卡尺量脚将脱离齿顶造成较大的测量误差。

分别在齿轮均匀分布的四个位置上进行测量,用实际齿厚减去公称齿厚S为各齿的齿厚实际偏差Esn,这些值都应在齿厚上下偏差Ess、Esi 之间。

按齿轮图样标注的技术要求,确定齿厚上偏差Ess和下偏差Esi,判断被测齿厚的适用性。

3.齿圈径向跳动测量齿圈径向圆跳动误差Fr 是在齿轮一转范围内,测头相继在每个齿槽位于齿高中部与齿廓双面接触时,测头相对于齿轮轴线的最大变动量。

Fr 可用齿圈径向跳动检查仪测量。

测量示意如图3。

图3 齿圈径向跳动的测量测量前,将被测齿轮无间隙地装于标准芯轴上,并将芯轴安装在齿圈径向跳动检查仪顶尖间。

应无轴向串动,但可转动自如。

选择合适的球形测头或量棒(为测量各种不同模数的齿轮,仪器备有不同直径的球形测量头或量棒),以保证测头与被测齿轮在齿高中部接触,测量时,将球形测头或量棒与左、右齿面接触,并使其指针压缩1~2 圈,把指示表指针调到零位,反复测量几次,直到表针稳定在零位为止。

将球形测头(或量棒)逐齿伸入齿槽中,从千分表中读取测量数据,沿齿圈测量一周,其最大值与最小值之差即为齿圈径向跳动误差Fr。

三、思考题1.只检查公法线长度变动能保证齿轮传递运动的准确性吗?为什么?2.测量公法线平均长度偏差,取平均值的原因何在?3.测量齿厚偏差为什么要先量出被测齿轮齿顶园的实际直径?实验三形位误差测量一、实验基本要求了解平板测量方法和圆跳动的测量方法。

二、实验步骤1.平面度误差的测量平面度公差用以限制平面的形状误差。

其公差带是距离为公差值的两平行平面之间的区域。

并规定,理想形状的位置应符合最小条件,常见的平面度测量方法有用指示表测量、用光学平晶测量平面度等方法。

用各种不同的方法测得的平面度测值,应进行数据处理,然后按一定的评定准则处理结果。

用指示表测量平面度误差在检测时,将被测零件放在平板上,带千分表的测量架放在平板上,并使千分表测量头垂直地指向被测零件表面,压表并调整表盘,使指针指在零位。

然后,按(图1)所示,将被测平板沿纵横方向均布画好网格,四周离边缘10mm,其画线的交点为测量的9个点。

同时记录各点的读数值。

全部被测点的测量值取得后,按对角线法求出平面度误差值。

图1 用指示表测量平面度误差2.圆跳动测量圆跳动误差是一项综合测量误差。

径向圆跳动误差是被测要素同轴度误差和形状误差的综合;端面圆跳动误差是端面对轴线的垂直度误差和端面形状误差的综合。

图2为测量示意图,将被测工件装在心轴上,并安装在跳动检查仪的两顶尖之间。

调节千分表,使测头与工件右端面接触,并有1~2圈的压缩量,并且测杆与端面基本垂直。

将被测工件回转一周,千分表的最大读数与最小读数之差即为所测直径上的端面圆跳动误差。

测量若干直径(可根据被测工件直径的大小适当选取)上的端面圆跳动误差,取其最大值作为该被测要素的端面圆跳动误差。

调节千分表,使测头与工件外圆表面接触,且有1~2圈的压缩量。

将被测工件缓慢回转,使指示表测头在外圆的整个表面上划过,记下表上指针的最大读数与最小读数。

取两读数之差值作为所测直径上的径向圆跳动误差,测量若干位置上的径向圆跳动误差,取其最大值作为该被测要素的径向圆跳动误差。

根据测量结果,判断合格性。

图2 跳动测量示意图三、思考题1.假设同轴度误差为零,测得的径向圆跳动误差是何种误差?实验四表面粗糙度测量一、实验基本要求了解光切显微镜的测量原理二、实验步骤表面粗糙度是一种微观几何形状误差,其常用的测量方法主要有粗糙度样板比较法、光切法、干涉法及针描法等。

常用来测量表面粗糙度的仪器有光切显微镜、干涉显微镜及电动轮廓仪等。

光切显微镜的外形如图 1所示,它是采用光切法原理测量工件表面的微观不平度Rz 值的。

其测量范围取决于选用的物镜的放大倍数,通常适用于测量Rz =0.8∼80μm 的表面粗糙度。

光切显微镜的工作原理如图2所示。

测量时,光源发出的光线经聚光镜,穿过狭缝后形成带状光束,如图2 所示。

光束再经物镜以45°角照射在被测物体表面上,凹凸不平的被测表面,被光亮的具有平直边缘的狭缝象的亮带照射后,再以45°角反射,表面的波峰在S 点产生反射,波谷在S’产生反射,经物镜分别成象在分划板的a 和 a,点。

在目镜中观察到的即为与被测表面一样的曲折亮带,其凹凸不平即反映被测表面的不平度。

1.工作台2.立柱3.横臂4.上下调节环5.固紧图2 显微镜工作原理图螺钉6.微调手轮7.手柄8.照明灯9.10.13.摄影装置11.测微目镜12.物镜组图 1 光切显微镜外形图测量时根据图纸的Rz 值或被测工件粗糙度的估计值查表1,选一合适的物镜组安装在镜管下面。

相关文档
最新文档